Science.gov

Sample records for hot wire anemometers

  1. Frequency Responses Of Hot-Wire Anemometers

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1992-01-01

    Report describes theoretical study of frequency response of constant-temperature hot-wire anemometer, with view toward increasing frequency response while maintaining stable operation in supersonic flow. Effects of various circuit parameters discussed.

  2. Hot-wire anemometer for spirography.

    PubMed

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  3. Nonlinear theory of a hot-wire anemometer

    NASA Technical Reports Server (NTRS)

    Betchov, R

    1952-01-01

    A theoretical analysis is presented for the hot-wire anemometer to determine the differences in resistance characteristics as given by King's equation for an infinite wire length and those given by the additional considerations of (a) a finite length of wire with heat loss through its ends and (b) heat loss due to a nonlinear function of the temperature difference between the wire and the air.

  4. [How reliable is a hot-wire anemometer?].

    PubMed

    von Rechenberg, H; Konder, H; Höser, K; Lennartz, H

    1985-08-01

    To examine the advantage of hot-wire anemometer for clinical use, we have checked two types of this tools with respect to reliability and validity. It was found that electronic suppression of noise caused a distortion of the measurements. Furthermore changes of transducers were also responsible for deviations from true values. We require of the manufacturer to indicate the threshold of perception and the coefficient of variation for repeated measurements with several transducers. We recommend a simple rule which permits an estimation of the limits of reliable measurements for clinical use depending on the threshold of the equipment and on the parameters of ventilation.

  5. Transient thermal response of a hot-wire anemometer

    NASA Astrophysics Data System (ADS)

    Morris, S. C.; Foss, J. F.

    2003-03-01

    The ability of a thermal anemometry system to accurately measure unsteady fluid velocity depends on the electrical control system as well as the thermal properties of the sensor. The present work is a numerical study of the thermal transient response of a hot-wire. A conventional constant temperature anemometer with an ideal feedback amplifier as well as a pulse width modulated system were used to model the electrical current supplied to the sensor to maintain a nominally constant sensor resistance. The agreement between these two electrical models confirmed that the response characteristics are only due to thermal effects. The thermal response was tested by providing a known input function for the cooling velocity, and comparing this with the output of the model. The first test used a step input function. It was found that the thermal transient effects along the length of the sensor caused the system to initially under predict the actual velocity increase; this was followed by an exponential increase to the steady state velocity. Secondly, the model was tested with sinusoidal inputs over a wide frequency range. The ratio: indicated-velocity/input-velocity, as a function of the input frequency was used to characterize the 'thermal frequency response'.

  6. Calibration of Hot Wire Anemometers. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning calibration methods and measurement correction schemes for hot wire anemometers. Coverage includes static and dynamic calibration of sensors having single, multiple, cross, and ring wire configurations. Correction methods to account for yaw angle, low-velocity flow, microgravity, wall proximity, and highly fluctuating turbulence, velocity, or temperature are covered. Correction methods are also referenced for installations having multiple sensors. Hot film and laser anemometers, and the use of anemometers in specific industrial and aerospace applications are extensively covered in separate biblographies. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Calibration of Hot Wire Anemometers. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning calibration methods and measurement correction schemes for hot wire anemometers. Coverage includes static and dynamic calibration of sensors having single, multiple, cross, and ring wire configurations. Correction methods to account for yaw angle, low-velocity flow, microgravity, wall proximity, and highly fluctuating turbulence, velocity, or temperature are covered. Correction methods are also referenced for installations having multiple sensors. Hot film and laser anemometers, and the use of anemometers in specific industrial and aerospace applications are extensively covered in separate biblographies. (Contains 50-250 citations and includes a subject term index and title list.)

  8. Application of the hot-wire anemometer to respiratory measurements in small animal.

    PubMed

    Godal, A; Belenky, D A; Standaert, T A; Woodrum, D E; Grimsrud, L; Hodson, W A

    1976-02-01

    A hot-wire anemometer was evaluated to determine its suitability for measurement of small tidal volumes. Used with a constant background flow of gas, the output of the hot-wire anemometer was linear and independent of respiratory frequency, temperature, and humidity. The change in output with CO2 concentration was negligible within the physiologic range. The use of a background flow eliminates the need for one-way valves, minimizes dead space, and maintains the flow velocity past the hot wire within its range of linear response.

  9. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    PubMed

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  10. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth

    PubMed Central

    Ligęza, Paweł

    2008-01-01

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constant-temperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth. PMID:27873897

  11. Burnout protection of a hot-wire anemometer

    NASA Astrophysics Data System (ADS)

    Takagi, S.

    1990-04-01

    A burnout protection circuit which will prevent hot-wire overloading is described. The transient response of a hot-wire system to power loading is examined. Two methods for preventing the overloading of the hot-wire system are: (1) to start the positive power earlier than the negative power or (2) to slowly start the power transistor after the bipolar powers are imposed on the serve-amplifier. An example is presented in which the second protection is applied to a hot-wire bridge circuit. The time histories of the bridge output for an unprotected and a protected circuit are compared. It is observed that in the unprotected circuit a negative spike appears prior to an equilibrium state and as protection increases the spike decreases.

  12. Dynamic characteristics of a simple constant-temperature hot-wire anemometer.

    PubMed

    Lu, S S

    1979-06-01

    A simple constant-temperatue hot-wire anemometer has been analyzed and tested in a shock tube and by electronic tests. In the derivation of the governing equations, the finite open-loop gain of an operational amplifier is considered. The measured values of the natural frequency and the damping coefficient for the anemometer system are in satisfactory agreement with the theory. For short probe cables, the frequency response is found to be limited by the finite open-loop gain of the amplifier.

  13. Constant voltage anemometer operated hot wire at subsonic speeds over wide overheats in unsteady flows

    NASA Astrophysics Data System (ADS)

    Truzzi, Guido E.; Sarma, Garimella R.; Chokani, Ndaona

    2002-12-01

    The constant voltage anemometer (CVA) was used to calibrate a hot wire over a wide overheat range. Instead of the output voltage (E) of the anemometer which is normally used, at each test point a quantity represented by "pdr" equal to the ratio of power dissipated in the hot wire (Pw) and the associated difference in the heated resistance of the hot wire (Rw) and its resistance (Ra) at the ambient fluid temperature is calculated. It is shown that the calibration curves so obtained with pdr=Pw/(Rw-Ra) as the output variable instead of E can be represented by a single calibration equation covering the wide overheat range. Overheat variation is equivalent to allowing an ambient temperature change of the fluid at a given setting. It demonstrates that this approach can be used to cover measurements using the hot wire with fluid temperature drifts without using a second hot wire for temperature corrections and without any temperature calibration. The calibration data was then applied to measure the unsteady flow in the near orifice region of synthetic jets with very good results. The measurements confirm the computational predictions that show that although there is flow reversal, over a cycle of oscillation, the synthetic jet actuator spends most of the cycle ejecting rather than ingesting fluid.

  14. Constant-bandwidth constant-temperature hot-wire anemometer.

    PubMed

    Ligeza, P

    2007-07-01

    A constant-temperature anemometer (CTA) enables the measurement of fast-changing velocity fluctuations. In the classical solution of CTA, the transmission band is a function of flow velocity. This is a minor drawback when the mean flow velocity does not significantly change, though it might lead to dynamic errors when flow velocity varies over a considerable range. A modification is outlined, whereby an adaptive controller is incorporated in the CTA system such that the anemometer's transmission band remains constant in the function of flow velocity. For that purpose, a second feedback loop is provided, and the output signal from the anemometer will regulate the controller's parameters such that the transmission bandwidth remains constant. The mathematical model of a CTA that has been developed and model testing data allow a through evaluation of the proposed solution. A modified anemometer can be used in measurements of high-frequency variable flows in a wide range of velocities. The proposed modification allows the minimization of dynamic measurement errors.

  15. Recovery of rectified signals from hot-wire/film anemometers due to flow reversal in oscillating flows.

    PubMed

    Yang, Yingchen; Jones, Douglas L; Liu, Chang

    2010-01-01

    Hot-wire/film anemometers have been broadly used in experimental studies in fluid mechanics, acoustics, and ocean engineering. Yet, it is well known that hot-wire/film anemometers rectify the signal outputs due to the lack of sensitivity to flow direction. This main drawback, in turn, makes them less useful for diverse fluctuating flow measurements. To solve this issue, a rectification recovery method has been developed based on reconstruction of the Fourier series expansion in conjunction with signal-squaring approach. This signal recovery method was experimentally examined and proven to be successful for both conventional and microfabricated hot-wire/film anemometers. The method was further applied to dipole field measurements, with data from recovered signals perfectly matching the analytical model of the dipole field.

  16. Hot-wire, laser anemometer and force balance measurements of cross-sectional planes of single and interacting trailing vortices

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Park, S.; Backhus, D. R.; Brickman, R. A.; Corsiglia, V. R.

    1978-01-01

    Single and multiple trailing vortices shed from semi-span wings and a transport model in a wind tunnel were studied by means of a laser-velocimeter, hot-wire anemometer, and a trailing model incorporating a 6-component force balance. Velocity profile and turbulence data from the laser-velocimeter and hot-wire anemometer are presented and shown to compare well with the Betz inviscid circulation model. Lift and rolling moment measurements on the following model are compared with those predicted from the flow field measurements.

  17. A high-performance constant-temperature hot-wire anemometer

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1994-01-01

    A high-performance constant-temperature hot-wire anemometer has been designed based on a system theory analysis that can be extended to arbitrary order. A motivating factor behind the design was to achieve the highest possible frequency response while ensuring overall system stability. Based on these considerations, the design of the circuit and the selection of components is discussed in depth. Basic operating instructions are included in an operator's guide. The analysis is used to identify operating modes, observed in all anemometers, that are misleading in the sense that the operator can be deceived by interpreting an erroneous frequency response. Unlike other anemometers, this instrument provides front panel access to all the circuit parameters which affect system stability and frequency response. Instructions are given on how to identify and avoid these rather subtle and undesirable operating modes by appropriate adjustment of the controls. Details, such as fabrication drawings and a parts list, are provided to enable others to construct the instrument.

  18. A high-performance constant-temperature hot-wire anemometer

    NASA Astrophysics Data System (ADS)

    Watmuff, Jonathan H.

    1994-08-01

    A high-performance constant-temperature hot-wire anemometer has been designed based on a system theory analysis that can be extended to arbitrary order. A motivating factor behind the design was to achieve the highest possible frequency response while ensuring overall system stability. Based on these considerations, the design of the circuit and the selection of components is discussed in depth. Basic operating instructions are included in an operator's guide. The analysis is used to identify operating modes, observed in all anemometers, that are misleading in the sense that the operator can be deceived by interpreting an erroneous frequency response. Unlike other anemometers, this instrument provides front panel access to all the circuit parameters which affect system stability and frequency response. Instructions are given on how to identify and avoid these rather subtle and undesirable operating modes by appropriate adjustment of the controls. Details, such as fabrication drawings and a parts list, are provided to enable others to construct the instrument.

  19. The Measurement of Fluctuations of Air Speed by the Hot-Wire Anemometer

    NASA Technical Reports Server (NTRS)

    Dryden, H L; Kuethe, A M

    1930-01-01

    The hot-wire anemometer suggests itself as a promising method for measuring the fluctuating air velocities found in turbulent flow. The only obstacle is the presence of a lag due to the limited energy input which makes even a fairly small wire incapable of following rapid fluctuations with accuracy. This paper gives the theory of the lag and describes an experimental arrangement for compensating for the lag for frequencies up to 100 or more per second when the amplitude of the fluctuation is not too great. An experimental test of the accuracy of compensation and some results obtained with the apparatus in a wind-tunnel air stream are described. While the apparatus is very bulky in its present form, it is believed possible to develop a more portable arrangement. (author)

  20. Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.

  1. Hot wire anemometer measurements in the unheated air flow tests of the SRB nozzle-to-case joint

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    1988-01-01

    Hot-Wire Anemometer measurements made in the Solid Rocket Booster (SRB) nozzle-to-case joint are discussed. The study was undertaken to glean additional information on the circumferential flow induced in the SRB nozzle joint and the effect of this flow on the insulation bonding flaws. The tests were conducted on a full-scale, 2-D representation of a 65-in long segment of the SRB nozzle joint, with unheated air as the working fluid. Both the flight Mach number and Reynolds number were matched simultaneously and different pressure gradients imposed along the joint face were investigated. Hot-wire anemometers were used to obtain velocity data for different joint gaps and debond configurations. The procedure adopted for hot-wire calibration and use is outlined and the results from the tests summarized.

  2. Constant-temperature hot-wire anemometer practice in supersonic flows. I - The normal wire

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Hayakawa, K.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature normal hot-wire in a supersonic flow is critically examined. It is shown that this instrument is inherently unsuitable for measuring turbulent temperature correlations because of the highly nonlinear response to temperature fluctuations, particularly at low overheat ratios. The instrument is therefore limited to measurements of mean and fluctuating mass-flow rates. Suitable calibration procedures, as well as the limits on spatial and temporal resolution are discussed, and corrections for mean stagnation temperature changes are suggested.

  3. A Comparison of Wind Readings from LIDAR, Hot Wire, and Propeller and Vane Anemometers over Time Periods Relevant to Fire Control Applications

    DTIC Science & Technology

    2015-04-02

    UNCLASSIFIED Technical Report RDAR-WSF-D-TR-20140722 A Comparison of Wind Readings from LIDAR, Hot Wire, and Propeller & Vane...Information Report 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE A Comparison of Wind Readings from LIDAR, Hot Wire, and Propeller & Vane...The work presented within compares the wind readings obtained from a weapon mountable hot wire anemometer and co-located down range laser wind sensor

  4. Software corrected hot wire thermal lag for the constant voltage anemometer featuring a constant bandwidth at the selected compensation setting

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Comte-Bellot, Genevieve; Faure, Thierry M.

    1998-09-01

    Software compensation correction for thermal lag of a hot wire in the application of a constant voltage anemometer (CVA) for turbulence measurements in the boundary layer of a supersonic wind tunnel has been demonstrated. The CVA was used with a fixed compensation setting while measuring the in situ thermal lag (time constant) of the hot wire. Using the measured time constant, corrections are applied to the fixed compensation output of the CVA in postprocessing of the data. To demonstrate the flexibility of the approach it was used for two compensation settings at a test point to obtain the same results from both settings. A unique advantage of this approach is shown to be that for a given compensation setting in the CVA the bandwidth of the measurements for the test remains constant for all of the different test conditions and yields higher productivity. The results of the turbulence levels measured with this method agree with earlier research using other anemometers. Spectral plots of the mass flux and temperature and the measured in situ time constant responses under different conditions of the hot wire have been presented.

  5. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    PubMed

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  6. A comparative study of constant-voltage and constant-temperature hot-wire anemometers: . Part II - The dynamic response

    NASA Astrophysics Data System (ADS)

    Kegerise, M. A.; Spina, E. F.

    2000-12-01

    The dynamic response of the constant-voltage anemometer (CVA) system was investigated both analytically and experimentally and compared to that of the CTA. The frequency response functions of the CVA system for a number of different circuit parameters and flow conditions were determined via laser-based radiative heating of the hot-wire sensor. A 2nd-order linear systems model of the CVA was developed to provide insight to the dynamic response and to interpret the experimental results. The qualitative variations in the frequency response function with changes in circuit parameters are in agreement with the model. The experimentally determined frequency-response functions of the CVA systems used in this study were found to have little dependence on the wire overheat ratio and Reynolds number.

  7. Improved Circuit For Hot-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Gray, David L.

    1993-01-01

    Circuit suitable for automation or computer control of setup and operation. Hot-film or hot-wire anemometer circuit features individual current drives for two arms of wheatstone bridge, plus other features that provide improved calibration and automated or computer-controlled operation.

  8. High Reynolds Number Effects on Multi-Hole Probes and Hot Wire Anemometers

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Smith, A.; Gerry, G.; Kauffman, W.

    1995-01-01

    The paper reports on the results from an experimental investigation of the response of multi-hole and hot wire probes at high flow Reynolds numbers (Re approx. 10(exp 6)). The limited results available in literature for 5-hole probes are restricted to Re approx. 10(exp 4). The experiment aims to investigate the probe response (in terms of dimensionless pressure ratios, characterizing pitch, and yaw angles and the total and static pressures) at high Re values and to gauge their effect on the calculated velocity vector. Hot wire calibrations were also undertaken with a parametric variation of the flow pressure, velocity and temperature. Different correction and calibration schemes are sought to be tested against the acquired data set. The data is in the analysis stage at the present time. The test provided good benchmark quality data that can be used to test future calibration and testing methods.

  9. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing.

    PubMed

    Lundström, H

    2015-08-01

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  10. A calibration technique for a hot-wire-probe vector anemometer

    NASA Technical Reports Server (NTRS)

    Scheiman, J.; Marple, C.; Vann, D. S.

    1982-01-01

    Calibration tests using hot wires were conducted using a newly developed test rig that greatly reduced the data acquisition time. A comparison of measured and computed velocity vector magnitude and direction indicates the necessity of complete probe calibration to determine flow interference and/or operating limitation regions. Calibration results indicate that flow rates with 3 percent accuracy and flow angles with 5 deg accuracy are attainable.

  11. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing

    NASA Astrophysics Data System (ADS)

    Lundström, H.

    2015-08-01

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  12. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing

    SciTech Connect

    Lundström, H.

    2015-08-15

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  13. Expired tidal volumes measured by hot-wire anemometer during high-frequency oscillation in preterm infants.

    PubMed

    Zimová-Herknerová, Magdalena; Plavka, Richard

    2006-05-01

    We sought to determine the normocapnic values of expiratory tidal volume measured by hot-wire anemometer, and to evaluate how often expiratory tidal volume exceeds estimated anatomical dead space during high-frequency oscillatory ventilation (HFOV) in preterm infants. We also sought to determine the relationship between expiratory tidal volume and other respiratory parameters. The neonatal respiration monitor SLE 2100 VPM, a hot-wire anemometer, was used to measure expired tidal volume (V(T,E)) in patients ventilated by the Sensormedics 3,100A during routine clinical use of HFOV. Two hundred and fourteen simultaneous measurements of PaCO(2), V(T,E), fraction of inspired oxygen (FiO(2)), continuous distending pressure (CDP), frequency, and amplitude were obtained from 28 patients. The median birth weight was 852 g (range, 435-3,450 g), and median gestational age was 27.2 weeks (range, 23.3-41.0 weeks). One hundred and eighteen (55%) normocapnic measurements, 42 (20%) hypocapnic measurements, and 54 (25%) hypercapnic measurements were recorded in which the median V(T,E) was 1.67 ml/kg (95% confidence interval (CI), 1.55-1.79), 1.94 ml/kg (95% CI, 1.74-2.14), and 1.54 ml/kg (95% CI, 1.42-1.66), respectively. The measured V(T,E) exceeded 2.0 ml/kg in 30 instances of normocapnic V(T,E) (14%) and 54 of all V(T,E) (25%), and 3 ml/kg only in 7 (3%) and 11 (5%) instances of normocapnic and all V(T,E). There was a significant difference in median normocapnic V(T,E) obtained when FiO(2) was between 0.21-0.35, compared to values obtained when FiO(2) was 0.36-1.0 (1.61 ml/kg (95% CI, 1.52-1.70) vs. 2.06 ml/kg (95% CI, 1.93-2.19), P < 0.002). The calculated values of PaCO(2) between 35-47, using the calculated regression equation for prediction of PaCO(2) (mmHg), correctly predicted normocapnic values in 60% of measurements. Values >47 should predict hypercapnia in 81% of cases. In conclusion, expired tidal volume measurement by heated double-wire anemometer sensor is feasible

  14. A method of measuring the three-dimensional mean flow and turbulence quantities inside a rotating turbo-machinery passage. [by hot-wire anemometer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1975-01-01

    A method of measuring the three-dimensional components of mean velocity and turbulence quantities within a rotating turbomachinery passage is developed through the use of hot wire anemometry techniques. Equations are derived which, when solved simultaneously and in conjunction with the data obtained from the hot wire anemometer measurements, will provide values for the radial, axial and tangential components of mean velocity, turbulence intensity and turbulence stress within the rotating turbomachinery passage. A three-bladed rocket pump inducer model, operating in air, was used in the experimentation. The method is very accurate and provides very useful information on the characteristics of the flow inside rotor passages hitherto unexplored.

  15. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    DTIC Science & Technology

    2015-10-01

    Science degree in 1969, both from the University of Melbourne. His Master’s degree was concerned with the yielding of aluminium alloy when subjected...leads form one arm of a Wheatstone bridge. The wire, which is heated by passing an electric current through it, has a high frequency response and is...unetched wire is then positioned in the acid bubble formed at the outlet of the hypodermic tube, as shown in Figure 6, and the silver coating is etched

  16. A comparative study of constant-voltage and constant-temperature hot-wire anemometers . Part I: The static response

    NASA Astrophysics Data System (ADS)

    Kegerise, M. A.; Spina, E. F.

    2000-12-01

    The static response of the constant-voltage anemometer (CVA) was investigated analytically for both subsonic and supersonic flow, and a corroborative experiment was performed at Mach 3.5 using both CVA and CTA systems. This experiment allowed a direct comparison of the static sensitivities of the two systems by utilizing the identical flow conditions and the same wire sensors. The subsonic analysis of the CVA indicates that the anemometer has primary sensitivity to velocity fluctuations at high overheat ratios and to temperature fluctuations at low overheat ratios. The theoretical and empirical relative static sensitivity of the CVA system to mass-flux and total-temperature variations appears very similar to that of the CTA and CCA systems over a wide range of overheat ratio.

  17. Microsensor Hot-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Stephens, Ralph; Hopson, Purnell; Bartlett, James E.; Sheplak, Mark; Spina, Eric F.

    1995-01-01

    Improved hot-film anemometer developed for making high-bandwidth turbulence measurements in moderate-enthalpy supersonic and hypersonic flows (e.g., NASP inlets and control surfaces, HSCT jet exhaust). Features include low thermal inertia, ruggedness, and reduced perturbation of flow.

  18. Some influences of approximate values for velocity, density and total temperature sensitivities on hot wire anemometer results

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.

    1986-01-01

    There is a renewed interest in hot wire anemometry at transonic speeds. Recent results were published which indicate that at transonic speeds a heated wire is sensitive only to mass flow and total temperature, results similar to those obtained for supersonic flows. Other results were obtained to show that the sensitivity is a function of velocity, density, and total temperature, results in agreement with many of those obtained in the 1950s. An analysis of anemometry results was made to evaluate possible errors when various assumptions were made concerning the sensitivity of a heated wire to fluid flow variables.

  19. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, V.; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-12-01

    A linear array of microscale thermal anemometers has been designed, fabricated and characterized. The sensitive element consists of a self-compensated-stress multilayer (Ni/W) patterned to form a wire with length, width, and thickness close to 200 μm, 5 μm and 2 μm respectively. The wire is deposited and supported by prongs made of nano-crystalline diamond (NCD) of about 2 μm in thickness. Due to its high Young’s modulus, NCD allows a very high mechanical toughness without the need for thicker support for the hot wire. Also, depending on grain size, the NCD is able to present thermal conductivity smaller than 10 W mK-1, providing good thermal insulation from the substrate and less conductive end losses to the prongs. The sensor was characterized experimentally. Its electrical and thermal properties were obtained first in the absence of fluid flow. The results confirm the effectiveness of thermal insulation and the mechanical robustness of the structure. The fluidic characterizations were performed and analysed in the case of an airflow with velocities of up to 30 m s-1.

  20. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  1. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    NASA Technical Reports Server (NTRS)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  2. Applications of hot-film anemometers in hypersonic shear layers

    NASA Technical Reports Server (NTRS)

    Grubb, J. P.; Strike, W. T.

    1991-01-01

    A wind tunnel test was conducted on a flat plate at zero angle of attack with a rearward facing 2D cooling film injector nozzle. The freestream Mach number was 8 and the injector Mach number was 3. The freestream Reynolds number varied from 0.43 to 3.3 million per ft during the test, and the injector flow rate was such that the jet exit and freestream static pressures were matched. The analysis reported herein will focus on data obtained at a freestream Reynolds number of 0.85 million per ft. The data consists of heat-transfer measurements obtained upstream and downstream of the injector nozzle and flowfield surveys obtained downstream of the injector nozzle with a pitot, total temperature, hot-film anemometer and hot-wire anemometer probes. The flowfield surveys were made at stations 0.1 to 9 in. downstream of the injector nozzle from near the model surface to approximately 2 in above the model surface. The hot-film anemometer was used to define the fluctuations in the shear layer separating the flows. The hot-film results are integrated with conventional measurement techniques to obtain a more complete description of the complicated shear layer separating hypersonic and supersonic flows.

  3. Some Experiences Regarding the Nonlinearity of Hot Wires

    NASA Technical Reports Server (NTRS)

    Betchov, R.; Welling, W.

    1952-01-01

    We compare here the results of some experiences with the formulas established in our preceding report 'Nonlinear Theory of a Hot-Wire Anemometer.' We shall show that the nonlinear term plays a role as important as the thermal conduction in the calculation of the thermal inertia of the hot wire.

  4. Hot wire anemometry in transonic flow

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.; Rose, W. C.

    1975-01-01

    The use of hot-wire anemometry for obtaining fluctuating data in transonic flows has been evaluated. From hot-wire heat loss correlations based on previous transonic data, the sensitivity coefficients for velocity, density, and total temperature fluctuations have been calculated for a wide range of test conditions and sensor parameters. For sensor Reynolds numbers greater than 20 and high sensor overheat ratios, the velocity sensitivity remains independent of Mach number and equal to the density sensitivity. These conclusions were verified by comparisons of predicted sensitivities with those from recent direct calibrations in transonic flows. Based on these results, techniques are presented to obtain meaningful measurements of fluctuating velocity, density, and Reynolds shear stress using hot-wire and hot-film anemometers. Examples of these measurements are presented for two transonic boundary layers.

  5. Hot-wire anemometry in transonic flow

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.; Rose, W. C.

    1977-01-01

    The use of hot-wire anemometry for obtaining fluctuating data in transonic flows has been evaluated. From hot-wire heat loss correlations based on previous transonic data, the sensitivity coefficients for velocity, density, and total temperature fluctuations have been calculated for a wide range of test conditions and sensor parameters. For sensor Reynolds number greater than 20 and high sensor overheat ratios, the velocity sensitivity remains independent of Mach number and equal to the density sensitivity. These conditions were verified by comparisons of predicted sensitivities with those from recent direct calibrations in transonic flows. Based on these results, techniques are presented to obtain meaningful measurements of fluctuating velocity, density, and Reynolds shear stress using hot-wire and hot-film anemometers. Example of these measurements are presented for two transonic boundary layers.

  6. Distributed hot-wire anemometry based on Brillouin optical time-domain analysis.

    PubMed

    Wylie, Michael T V; Brown, Anthony W; Colpitts, Bruce G

    2012-07-02

    A distributed hot-wire anemometer based on Brillouin optical time-domain analysis is presented. The anemometer is created by passing a current through a stainless steel tube fibre bundle and monitoring Brillouin frequency changes in the presence of airflow. A wind tunnel is used to provide laminar airflow while the device response is calibrated against theoretical models. The sensitivity equation for this anemometer is derived and discussed. Airspeeds from 0 m/s to 10 m/s are examined, and the results show that a Brillouin scattering based distributed hot-wire anemometer is feasible.

  7. Flush-mounted hot film anemometer accuracy in pulsatile flow.

    PubMed

    Nandy, S; Tarbell, J M

    1986-08-01

    The accuracy of a flush-mounted hot film anemometer probe for wall shear stress measurements in physiological pulsatile flows was evaluated in fully developed pulsatile flow in a rigid straight tube. Measured wall shear stress waveform based on steady flow anemometer probe calibrations were compared to theoretical wall shear stress waveforms based on well-established theory and measured flow rate waveforms. The measured and theoretical waveforms were in close agreement during systole (average deviation of 14 percent at peak systole). As expected, agreement was poor during diastole because of flow reversal and diminished frequency response at low shear rate.

  8. Sphere anemometer - a faster alternative solution to cup anemometry

    NASA Astrophysics Data System (ADS)

    Hölling, M.; Schulte, B.; Barth, S.; Peinke, J.

    2007-07-01

    We present an anemometer technique characterized by an instrument in a sealed enclosure without moving parts. Measurements taken with our improved sphere anemometer in comparison to cup anemometer and hot-wire anemometer data subjected to wind gusts are discussed. The hot-wire anemometer serves as a reference with high temporal and spacial resolution. A manually driven "gust generator" produced gusts at low frequencies of about 1Hz. All measurements were carried out in the wind tunnel at the University of Oldenburg.

  9. The Design and Use of a Temperature-Compensated Hot-Film Anemometer System for Boundary-Layer Flow Transition Detection on Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Chiles, Harry R.

    1988-01-01

    An airborne temperature-compensated hot-film anemometer system has been designed, fabricated, and used to obtain in-flight airfoil boundary-layer flow transition data by the NASA Ames-Dryden Flight Research Facility. Salient features of the anemometer include near constant sensitivity over the full flight envelope, installation without coaxial wiring, low-noise outputs, and self-contained signal conditioning with dynamic and steady-state outputs. The small size, low-power dissipation, and modular design make the anemometer suitable for use in modern high-performance research aircraft. Design of the temperature-compensated hot-film anemometer and its use for flow transition detection on a laminar flow flight research project are described. Also presented are data gathered in flight which is representative of the temperature-compensated hot-film anemometer operation at subsonic, transonic, and supersonic flight conditions.

  10. A crossed hot-wire technique for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1991-01-01

    This paper describes a crossed hot-wire technique for the measurement of all components of mean velocity, Reynolds stresses, and triple products in a complex turbulent flow. The accuracy of various assumptions usually implicit in the use of crossed hot-wire anemometers is examined. It is shown that significant errors can result in flow with gradients in mean velocity or Reynolds stress, but that a first-order correction for these errors can be made using available data. It is also shown how corrections can be made for high turbulence levels using available data.

  11. A Hot-wire Circuit with Very Small Time Lag

    NASA Technical Reports Server (NTRS)

    Weske, John R

    1943-01-01

    A circuit for a hot-wire anemometer for the measurement of fluctuating flow is presented in the present report. The principal elements of the circuit are a Wheatstone bridge, one branch of which is the hot wire; and an electronic amplifier and a current regulator for the brief current which in combination maintain the bridge balance constant. Hence the hot wire is kept at practically constant resistance and temperature, and the time lag caused by thermal inertia of the wire is thereby reduced. Through the addition of a nonlinear amplifying stage the reading of the instrument has been rendered proportional to the velocity. A discussion of certain characteristics of the circuit and the results of related calibrating tests are given.

  12. Crossed hot-wire data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Mehta, R. D.

    1984-01-01

    The report describes a system for rapid computerized calibration acquisition, and processing of data from a crossed hot-wire anemometer is described. Advantages of the system are its speed, minimal use of analog electronics, and improved accuracy of the resulting data. Two components of mean velocity and turbulence statistics up to third order are provided by the data reduction. Details of the hardware, calibration procedures, response equations, software, and sample results from measurements in a turbulent plane mixing layer are presented.

  13. Subminiature Hot-Wire Probes

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Lemos, F. R.; Ligrani, P. M.

    1989-01-01

    Class of improved subminiature hot-wire flow-measuring probes developed. Smaller sizes yield improved resolution in measurements of practical aerodynamic flows. Probe made in one-wire, two-perpendicular-wire, and three-perpendicular-wire version for measurement of one, two, or all three components of flow. Oriented and positioned on micromanipulator stage and viewed under microscope during fabrication. Tested by taking measurements in constant-pressure turbulent boundary layer. New probes give improved measurements of turbulence quantities near surfaces and anisotropies of flows strongly influence relative errors caused by phenomena related to spatial resolution.

  14. Uncertainties in hot-wire measurements of compressible turbulent flows implied by comparisons with laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Logan, P.

    1986-01-01

    A hot-wire anemometer and a new nonintrusive laser-induced fluorescence (LIF) technique are used to survey a Mach 2 turbulent boundary layer. The hot-wire anemometer's ability to accurately measure mass flux, temperature, and density fluctuations in a compressible flow is examined by comparing its results with those obtained using LIF. Several methods of hot-wire calibration are used, and the uncertainties in their measurements of various fluctuating flow parameters are determined. The results show that although a hot-wire operated at high overheat can measure mass flux fluctuations, temperature and density fluctuations are not determined accurately from such measurements. However, a hot-wire operated at multiple overheats can be used to measure static and total temperature fluctuations. The presence of pressure fluctuations and their correlation with density can prevent the use of hot-wire data to determine density fluctuations.

  15. Characterization of particles in the Langley 0.3 meter transonic cryogenic tunnel using hot wire anemometry

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Marple, C. G.; Davis, W. T.

    1982-01-01

    Hot wire anemometry was used to identify the nature of particles reportedly observed during free stream velocity measurements in the Langley 0.3-meter transonic cryogenic tunnel using a Laser Doppler Velocimeter. Since the heat-transfer process from the hot wire depends on the thermal conductivity and sticking capability of the particles, it was anticipated that the hot wire anemometer response would be affected differently upon impaction by liquid droplets and solid aerosols in the test gas stream. Based on the measured time response of the hot-wire anemometer in the cryogenic tunnel operated in the 0.3-0.8 Mach number range, it is concluded that the particles impacting the hot wire are liquid in nature rather than solid aerosols. It is further surmised that the liquid aerosols are unevaporated liquid nitrogen droplets used for cooling the tunnel test gas.

  16. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  17. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented

  18. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.

    1992-01-01

    This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.

  19. A strategy to eliminate all nonlinear effects in constant-voltage hot-wire anemometry.

    PubMed

    Berson, Arganthaël; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2009-04-01

    A constant-voltage anemometer is subject to nonlinear effects when the operating hot wire is exposed to large velocity fluctuations in the incident flow. This results in the generation of undesirable higher harmonics, just as in the two classic systems, constant-current and constant-temperature anemometers, for which no attempts are normally made to correct the nonlinearities. The present investigation shows that these undesirable higher harmonics can be suppressed in the case of a constant-voltage anemometer. A new approach to process experimental data is proposed. It is based on three explicit equations established and solved with all terms included, i.e., without linearization. These are (1) the first-order differential equation that describes the electronic circuit of a constant-voltage anemometer-this equation permits to deduce the instantaneous resistance of the hot wire from the output voltage of the anemometer; (2) the first-order differential equation that expresses the thermal lag behavior of the hot wire when used in a constant-voltage mode-this equation permits to restore the instantaneous resistance that an ideal wire would have without thermal inertia in the same flow conditions; and (3) the algebraic relation that expresses the heat-transfer law of an ideal wire, according to King's law, a look-up table, or a polynomial fit-this relation permits to deduce the instantaneous flow velocity from the instantaneous resistance of the ideal wire. The proposed method is easily implemented on a personal computer and permits odd turbulence moments, such as skewness factors, to be obtained satisfactorily.

  20. Hot-wire anemometry for superfluid turbulent coflows.

    PubMed

    Durì, Davide; Baudet, Christophe; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

    2015-02-01

    We report the first evidence of an enhancement of the heat transfer from a heated wire to an external turbulent coflow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counterflow mechanism, while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that-contrary to a common assumption-such sensor can be used to probe local velocity in turbulent superfluid helium.

  1. Hot-wire anemometry for superfluid turbulent coflows

    NASA Astrophysics Data System (ADS)

    Durı, Davide; Baudet, Christophe; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

    2015-02-01

    We report the first evidence of an enhancement of the heat transfer from a heated wire to an external turbulent coflow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counterflow mechanism, while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that—contrary to a common assumption—such sensor can be used to probe local velocity in turbulent superfluid helium.

  2. A strategy to eliminate all nonlinear effects in constant-voltage hot-wire anemometry

    NASA Astrophysics Data System (ADS)

    Berson, Arganthaël; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2009-04-01

    A constant-voltage anemometer is subject to nonlinear effects when the operating hot wire is exposed to large velocity fluctuations in the incident flow. This results in the generation of undesirable higher harmonics, just as in the two classic systems, constant-current and constant-temperature anemometers, for which no attempts are normally made to correct the nonlinearities. The present investigation shows that these undesirable higher harmonics can be suppressed in the case of a constant-voltage anemometer. A new approach to process experimental data is proposed. It is based on three explicit equations established and solved with all terms included, i.e., without linearization. These are (1) the first-order differential equation that describes the electronic circuit of a constant-voltage anemometer—this equation permits to deduce the instantaneous resistance of the hot wire from the output voltage of the anemometer; (2) the first-order differential equation that expresses the thermal lag behavior of the hot wire when used in a constant-voltage mode—this equation permits to restore the instantaneous resistance that an ideal wire would have without thermal inertia in the same flow conditions; and (3) the algebraic relation that expresses the heat-transfer law of an ideal wire, according to King's law, a look-up table, or a polynomial fit—this relation permits to deduce the instantaneous flow velocity from the instantaneous resistance of the ideal wire. The proposed method is easily implemented on a personal computer and permits odd turbulence moments, such as skewness factors, to be obtained satisfactorily.

  3. Modelling and operation of sub-miniature constant temperature hot-wire anemometry

    NASA Astrophysics Data System (ADS)

    Samie, M.; Watmuff, J. H.; Van Buren, T.; Hutchins, N.; Marusic, I.; Hultmark, M.; Smits, A. J.

    2016-12-01

    High-Reynolds number flows are very common in technological applications and in nature, and hot-wire anemometry is the preferred method for measuring the time-series of fluctuating velocity in such flows. However, measurement of very high-Reynolds number flows requires hot-wires with higher temporal and spatial resolution than is available with conventional probes. Much effort has therefore been devoted to decreasing the size of the hot-wire probes and this has led to associated challenges with operation. It is this latter operation problem which is the focus of this paper. To this end, an existing theoretical model of constant-temperature hot-wire anemometers (Perry 1982 Hot-Wire Anemometry (New York: Oxford University Press), Watmuff 1995 Exp. Therm. Fluid Sci. 11 117-34) is applied, and its accuracy is tested for the first time by comparison to measurements using an in-house constant temperature anemometer (CTA) for both conventional 5~μ m-diameter wires and sub-miniature hot-wires. With the aid of this model, we propose modifications to the CTA design and demonstrate successful operation of the CTA with the Princeton nano-scale thermal anemometry probe (NSTAP) (Bailey et al 2010 J. Fluid Mech. 663 160-79). It is also shown that the transfer function obtained from the model can be utilized to estimate the true frequency response and cut-off frequency of a hot-wire-CTA system to the velocity fluctuations, which is essential in accurate measurements of energy spectrum and higher order statistics of turbulent flows.

  4. The Analysis of Turbulent Flow by Hot Wire Signals. Ph.D. Thesis - Physikalische Ingenieurvissenschaft der Technischen Univ., 1981

    NASA Technical Reports Server (NTRS)

    Bartenwerfer, M.

    1982-01-01

    When measuring velocities in turbulent gas flow, approximation signal analysis with hot wire anemometers having one and two wire probes are used. A numeric test of standard analyses shows the resulting systemmatic error increases quickly with increasing turbulent intensity. Since it also depends on the turbulence structure, it cannot be corrected. The use of such probes is thus restricted to low turbulence. By means of three wire probes (in two dimensional flows with X wire probes) in principle, instantaneous values of velocity can be determined, and an asymmetric arrangement of wires has a theoretical advantage.

  5. Computerized hot-wire anemometry--principles of calculation.

    PubMed

    Hald, A; Stigsby, B

    1980-04-01

    Principles of calculation of respiratory parameters based on a hot-wire anemometer with special reference to computer monitoring were evaluated. Flow-rate, gas-pressure, and flow-direction signals were recorded simultaneously on magnetic tape. Subsequent quantitative analyses were performed on a general purpose digital minicomputer. An analysis epoch of 256 s was selected from the 3 channels. After identification of one cycle baseline values of flow-rate and pressure were determined. Different time-lags in one respiratory cycle (inspiratory time, pause time and expiratory time) could be determined. Inspiratory and expiratory volumes were obtained by integration. Peak of the thoracic cage and the lungs were calculated using the above mentioned parameters. Finally, the respiratory frequency was calculated.

  6. Active Thermal Isolation For Hot-Film Anemometers

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D.; Gray, David L.; Carraway, Debra L.

    1993-01-01

    Local heating compensates for conduction of heat from sensors into modules. Two hot-film sensors stacked on wind-tunnel model. Outer sensor detects changes in boundary-layer flow. Inner sensor provides active thermal isolation between outer sensor and model. Thermal boundary condition controlled at response time of detection hot-film sensor, significantly less than response time of internally heated model. Requires less power to maintain outer hot-film sensor at given temperature, enabling system to respond over greater dynamic range before power limits of instrument reached. Stacked sensors bonded to surface of most wind-tunnel models, even to curved surfaces, and removed after completion of experiments.

  7. Angular response of hot wire probes

    NASA Astrophysics Data System (ADS)

    di Mare, L.; Jelly, T. O.; Day, I. J.

    2017-03-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined.

  8. An anemometer for highly turbulent or recirculating flows

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Mckinzie, D. J.; Durbin, E. J.

    1987-01-01

    An anemometer which determines flow velocity by ionizing air and sensing the convective displacement of the ions is described. It is suited to measurement in low speed, highly unsteady gas flows. Comparisons to hot wire spectra suggest the corona anemometer has adequate frequency response to make it a useful tool for fluid dynamics measurement.

  9. Plasma Anemometer Measurements and Optimization

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2013-11-01

    Velocity measurements using a constant-current plasma anemometer were performed in a Mach 0.4 jet in order to further optimize the anemometer design. The plasma anemometer uses an AC glow discharge (plasma) formed in the air gap between two protruding low profile electrodes as the flow sensing element. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean fluctuating velocity components. Experiments were performed to investigate the effect of the electrode gap, AC current, and AC frequency on the mean and fluctuating velocity sensitivity and repeatability of the sensor. This involved mean velocity calibrations from 0 to 140 m/s and mean and fluctuating velocity profiles through the shear layer of the jet. Measurements with a constant temperature hot-wire anemometer were used for reference. The results showed an improvement in performance with increasing AC frequency that was attributed a more stable glow discharge. The agreement with the hot-wire were good, with the advantage of the plasma anemometer being its 100-times higher frequency response. Supported by Air Force SBIR Phase II FA8650-11-C-2199.

  10. Hot-wire accuracy in supersonic turbulence from comparisons with laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Logan, Pamela; Bershader, Daniel; Mckenzie, Robert L.

    1988-01-01

    A hot-wire anemometer and a new, nonintrusive, laser-induced fluorescence (LIF) technique are used to survey a turbulent boundary layer in a supersonic channel flow at Mach no. 2.06. The purpose is to test the accuracy of using the hot wire to measure the fluctuation amplitudes of static temperature and density in a compressible turbulent flow by comparing the results with independent and direct LIF measurements. Several methods of hot-wire calibration and analysis are applied. With each method, the hot-wire response can be related primarily to fluctuations of mass flux and total temperature, from which fluctuations of static temperature and density are calculated. However, these calculations are shown to be valid only if the fluctuations in static pressure are negligible. The acquisition and the analysis of the hot-wire data are often simplified further by neglecting the effects of fluctuations in total temperature. Comparisons of the fluctuation amplitudes of temperature and density obtained by hot-wire and LIF measurements demonstrate that such assumptions might not always be warranted, even in apparently simple flows.

  11. Construction and experimental testing of the constant-bandwidth constant-temperature anemometer.

    PubMed

    Ligeza, P

    2008-09-01

    A classical constant-temperature hot-wire anemometer enables the measurement of fast-changing flow velocity fluctuations, although its transmission bandwidth is a function of measured velocity. This may be a source of significant dynamic errors. Incorporation of an adaptive controller into the constant-temperature system results in hot-wire anemometer operating with a constant transmission bandwidth. The construction together with the results of experimental testing of a constant-bandwidth hot-wire anemometer prototype are presented in this article. During the testing, an approximately constant transmission bandwidth of the anemometer was achieved. The constant-bandwidth hot-wire anemometer can be used in measurements of high-frequency variable flows characterized by a wide range of velocity changes.

  12. In-situ swinging arm calibration for hot-film anemometers

    NASA Astrophysics Data System (ADS)

    Zabat, M.; Browand, F. K.; Plocher, D.

    1992-03-01

    A method of calibration for hot-film anemometers is presented. A swinging arm that moves under the influence of gravity serves as both a calibration mechanism and a probe support. The velocity of the probe is found by differentiating the angular position history of the arm and multiplying it with the arm length. Limitations on the quality of calibration data while the arm is accelerating are discussed. The hot film voltage output is then matched to the velocity to find the two constants in King's law. The calibration was tested by taking velocity profile measurements in a laminar boundary layer. The results of these compared well to the Blasius profile.

  13. Engineering considerations in anemometer calibration

    NASA Astrophysics Data System (ADS)

    Meserole, L. T.

    The increased usage of portable anemometers has marked the need for better calibration quality. Efforts being made to achieve correlation between some US Department of Defense laboratories are described. A wind tunnel developed by the Navy Primary Standards Laboratory was used to calibrate 12 models of hot-wire anemometers and 13 models of vane anemometers. The latter category consisted of swinging-vane, mechanical rotating-vane, electrical rotating-vane, torsional-vane anemometers. Stable instruments such as the rotating-vane and electrical rotating-vane types were found to be fairly capable of comparing calibrations made by different facilities. However, greater accuracy and cost-efficiency would be achieved with fewer top-notch facilities as opposed to having a greater number of facilities but with minimum accuracy.

  14. The wedge hot-film anemometer in supersonic flow

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.

    1983-01-01

    A commercial wedge hot-film probe is studied to determine its heat transfer response in transonic to low supersonic flows of high unit Reynolds number. The results of this study show that its response in this flow regime differs from the response of cylindrical type sensors. Whereas the cylindrical sensor has the same sensitivity to velocity as to density for free-stream Mach numbers exceeding 1.3, the wedge probe sensitivity to velocity is always greater than its sensitivity to density over the entire flow regime. This property requires determination of three fluctuation components due to density, velocity, and temperature, in a transonic or supersonic turbulent flow. Sensitivity equations are derived based on the observed behavior of the wedge probe. Both the durability and the frequency response of the probe are excellent, the square wave insertion test indicating frequency response near 130 kHz. The directional response of the probe at sonic speed is poor and requires further examination before Reynolds stress measurements are attempted with dual sensor probes.

  15. Calibration, Data Acquisition, and Post Analysis of Turbulent Fluid Flow in a Calibration Jet Using Hot-wire Anemometry

    NASA Technical Reports Server (NTRS)

    Moreno, Michelle

    2004-01-01

    The Turbine Branch concentrates on the following areas: Computational Fluid Dynamics (CFD), and implementing experimental procedures to obtain physical modeling data. Hot-wire Anemometry is a valuable tool for obtaining physical modeling data. Hot-wire Anemometry is likely to remain the principal research tool for most turbulent air/gas flow studies. The Hot-wire anemometer consists of a fine wire heated by electric current. When placed in a fluid stream, the hot-wire loses heat to the fluid by forced convection. In forced convection, energy transfer is due to molecular motion imposed by an extraneous force moving fluid parcels. When the hot-wire is in "equilibrium", the rate of heat input to the wire is equal to the rate of heat loss at the wire ends. The equality between heat input and heat loss is the basis for King s equation, which relates the electrical parameters of the hot-wire to the flow parameters of the fluid. Hot-wire anemometry is based on convective heat transfer from a heated wire element placed in a fluid flow. Any change in the fluid flow condition that affects the heat transfer from the heated element will be detected virtually instantaneously by a constant-temperature Hot-wire anemometry system. The system implemented for this research is the IFA 300. The system is a fully-integrated, thermal anemometer-based system that measures mean and fluctuating velocity components in air, water, and other fluids. It also measures turbulence and makes localized temperature measurements. A constant-temperature anemometer is a bridge and amplifier circuit that controls a tiny wire at constant temperature. As a fluid flow passes over the heated sensor, the amplifier senses the bridge off-balance and adjusts the voltage to the top of the bridge, keeping the bridge in balance. The voltage on top of the bridge can then be related to the velocity of the flow. The bridge voltage is sensitive to temperature as well as velocity and so the built-in thermocouple

  16. A Hot-Polymer Fiber Fabry-Perot Interferometer Anemometer for Sensing Airflow.

    PubMed

    Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung

    2017-09-02

    This work proposes the first hot-polymer fiber Fabry-Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry-Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer's steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W.

  17. Hot-wire coil probe for high-speed flows

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M.

    1973-01-01

    Small-diameter-wire coil probes developed for use in a hypersonic helium tunnel are discussed. The springlike properties of the coil minimize strain-gauge effects, and allow to use a higher length-to-diameter ratio for a given flow. In addition, the coil is more rugged for sudden flow changes, and since it can be mounted straight across the support tips, there is less support interference in cross flows. In addition to measuring fluctuating quantities in a boundary layer, the probes were used with a constant temperature anemometer for measuring mean mass flow profiles, and with a constant current anemometer for measuring mean total temperature profiles.

  18. Use of hot-wire anemometry for turbulence measurements in shock induced flows

    NASA Technical Reports Server (NTRS)

    Hartung, L. C.; Duffy, R. E.; Troller, J. W.

    1986-01-01

    A research program is currently being conducted with the aim to investigate the operating environment of future gas turbines. The present paper provides a description of the experimental methods which have been employed in performing turbulence intensity measurements in shock-induced flows. In a discussion of the instrumentation, attention is given to the employed low pressure shock tube, the hot-wire probe, the anemometer, the test facility, the experimental setup, the Kistler pressure transducer, and silicon piezoresistive gages. Aspects of instrumentation calibration are considered along with data corrections, experimental data, and data processing.

  19. Turbulence measurements in a complex plowfield using a crossed hot-wire. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckillop, B. E.

    1983-01-01

    Turbulence was quantified in complex axisymmetric, nonreacting, nonswirling flowfields using a crossed hot-wire anemometer. Mean velocity, turbulence intensities, turbulent viscosity, and Reynolds tree were measured in round free jet and confined jet flowfields. The confined jet, a model of an axisymmetric can combustor, had an expansion ratio D/d=2, an expansion angle of 90 deg, and an axial location increments of 0.5 diameters. The confined jet was studied with and without a contraction nozzle. Free jet measurements validated the experimental technique and data reduction. Results show good agreement with those of previous research. Measurements in the confined jet indicate that the cross hot-wire used cannot handle axial flow reversal and the experimental technique is inadequate for measuring time-mean radial velocity. Other quantities show a high level of comparability.

  20. Note: Signal conditioning of a hot-film anemometer for a periodic flow rate monitoring system.

    PubMed

    Mantovani, Federico; Tagliaferri, Cristian

    2011-12-01

    A flow monitoring system based on a constant temperature hot-film anemometer is presented. The device has been designed to monitor a dispensing process of extremely low quantities of adhesive material. The monitoring device presented in this paper is useful in industrial applications where exact flow speed tracking is not needed, but reliability and tolerance to parameters variability are essential. During the design of the device, problems related to the physical characteristic of the calorimetric sensor, in particular its thermal capacitance, and to the periodic nature of the monitored flow have been taken into account and suitable solutions have been implemented. The schematic representation of the monitoring device together with the experimental results obtained by monitoring fluids with different physical characteristics are presented.

  1. Spectrum analysis of turbulence in the canine ascending aorta measured with a hot-film anemometer.

    PubMed

    Yamaguchi, T; Kikkawa, S; Tanishita, K; Sugawara, M

    1988-01-01

    We measured turbulence velocity in the canine ascending aorta using a hot-film anemometer. Blood flow velocity was measured at various points across the ascending aorta approximately 1.5-2 times the diameter downstream from the aortic valve. The turbulence spectrum was calculated and its characteristics were examined in connection with the mean Reynolds number and/or measuring positions. In the higher wave number range the values of the turbulence spectra were higher at larger mean Reynolds number. In the higher wave number range, the values of the turbulence spectra were higher at points closer to the centerline of the aorta, when the mean Reynolds number was relatively large. The patterns of the turbulence spectra at various points outside the boundary layer on the aortic wall were similar.

  2. The flying hot wire and related instrumentation

    NASA Technical Reports Server (NTRS)

    Coles, D.; Cantnell, B.; Wadcock, A.

    1978-01-01

    A flying hot-wire technique is proposed for studies of separated turbulent flow in wind tunnels. The technique avoids the problem of signal rectification in regions of high turbulence level by moving the probe rapidly through the flow on the end of a rotating arm. New problems which arise include control of effects of torque variation on rotor speed, avoidance of interference from the wake of the moving arms, and synchronization of data acquisition with rotation. Solutions for these problems are described. The self-calibrating feature of the technique is illustrated by a sample X-array calibration.

  3. An experimental approach to the calibration and use of triple hot-wire probes

    NASA Astrophysics Data System (ADS)

    Gieseke, T. J.; Guezennec, Y. G.

    1993-04-01

    A method of calibrating and extracting velocities from arbitrary geometry triple hot-wire probes has been developed and tested. The three-step procedure involves experimental determination of an accurate cooling law for each wire in the array, use of these models to develop a set of tables relating anemometer output to flow velocity input, and a table look-up procedure to extract the velocities. The functional form for the cooling law can be arbitrarily chosen and these equations are never directly inverted. Solutions are tabulated making use of special variable transformations that separate the dependence on flow angle and velocity magnitude. Errors in the table look-up procedure are commensurate with those in exact inversion techniques. Most of the error arises from accurate determination of the cooling laws. An application to turbulent boundary layer measurements is presented as an example of the use of the method.

  4. Hot-wire anemometry in hypersonic helium flow

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Weinstein, L. M.

    1974-01-01

    Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.

  5. Comparison of hot wire/laser velocimeter turbulence intensity measurements

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Wilkinson, S. P.

    1982-01-01

    The question of whether a random measure of particle velocities yields a good statistical estimate of the stationary condition of the turbulence flow field was investigated by comparing hot-wire and laser velocimeter turbulence intensity measurements. Great care was taken to insure that the instrument precision of both the laser velocimeter and hot wire was maximized. In this attempt to reduce the measurement uncertainties in the hot wire, direct digitization of the analog output signal was performed with point-by-point conversion to velocity through a spline fit calibration curve and the turbulence intensity function was calculated statistically. Frequent calibrations of the hot wire were performed using the laser velocimeter as the velocity standard to account for the presence of the small seed particles in the air flow and signal drift in the hot wire.

  6. Electronic noise in a constant voltage anemometer

    NASA Astrophysics Data System (ADS)

    Weiss, Julien; Comte-Bellot, Geneviève

    2004-05-01

    The electronic noise and the signal-to-noise ratio in a constant voltage anemometer (CVA) are analyzed in terms of the main constitutive elements of the circuit. It is shown that the output voltage due to electronic noise decreases with the wire resistance, permitting one to know the noise upper limit by using the results of the unheated wire. The noise power spectrum increases at high frequencies as f2, like in other anemometers, because of the need to compensate for the thermal lag of the hot wire, thus leading to a reduced signal-to-noise ratio at high frequencies. Explicit formulas are given in terms of wire, CVA, and flow quantities. Measurements of electronic noise in a CVA prototype confirm the theoretical analysis and illustrate some interesting issues concerning measurements of noise and low levels of flow fluctuations.

  7. Hot-wire calibration in a nonisothermal incompressible pressure variant flow

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Eaton, Frank D.; Bishop, Kenneth P.; McCrae, Kimberley A.

    1999-08-01

    The calibration procedure for a hot-wire anemometer system operating in a non-isothermal pressure-variant flow field is presented. Sensing of atmospheric velocity and temperature fluctuations from an altitude-variant platform using hot- wire anemometry equipment operating in both constant- temperature and constant-current modes requires calibration for velocity, temperature, and atmospheric pressure variations. Calibration tests to provide the range of velocity, temperature and pressure variations anticipated during Air Force Research Lab, Directed Energy Directorate- sponsored kite/tethered-balloon experiments were conducted and the result of these tests presented. The calibration tests were performed by placing the kite/tethered-balloon sensor package on a vehicle and driving from Kirtland AFB, NM to the top of Sandia Crest, a 10678 ft mountain range to the east of Albuquerque, NM. By varying the velocity of the van and conducting the test at different times of the day, variations in velocity, temperature and pressure within the range of those encountered during the kite/tethered-balloon experiments were obtained. The method of collapsing the calibration data is presented. Problems associated with collecting hot-wire anemometry data in a non-laboratory environment are discussed. Example data sets of temperature and velocity collected during the kite/tethered-balloon experiments are presented.

  8. Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct

    SciTech Connect

    Trabold, T.A.; Moore, W.E.; Morris, W.O.

    1997-06-01

    A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 {le} {bar Z} {le} 0.80, where {bar Z} is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets.

  9. The hot-film anemometer--a method for blood velocity determination. I. In vitro comparison with the electromagnetic blood flowmeter.

    PubMed

    Paulsen, P K

    1980-01-01

    In an invitro flowmodel a constrant temperature hot-film anemometer was tested, using conical needle and catheter-mounted probes. Calibration, linearization and zero-point determination as well as sensitivity change with hematocrit, angulation, flow direction and dirt deposits on the film are described. Curves were compared with those obtained simultaneously from an electromagnetic flowmeter. The hog-film anemometer was direction-insensitive and signals were seen 0.01--0.03 sec before the flowmeter signals. The frequency response of the anemometer was sufficiently higher to register turbulent flow. In 27 simultaneous measurements the mean anemometer results were 6 +/- 8% (+/- SD) higher than the flowmeter results and the peak results correspondingly 16 +/- 6%. Both differences was significant (p < 0.001). Qualitatively hog-film anemometer curves were comparable to electromagnetic flowmeter curves. However, certain differences were demonstrated.

  10. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  11. Hot wire anemometry in compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    1981-11-01

    Hot-wire anemometry in compressible flow was studied. New techniques for the measurement of turbulence in compressible flows with thermal sensors are described. The greatest amount of information about fluctuating flow variables as achieved using the newly developed sensors and techniques in conjunction with the classical hot-wire mode diagram method. It was found that the hot wire has no fundamental handicap for accurate high speed turbulence measurements in non-separated boundary layers outside the immediate wall region. It was also known that extreme overheating of a supported sensors leads to advantages in simplicity and accuracy of measurements of turbulent fluctuations over the full Mach number range.

  12. The hot-film anemometer--a method for blood velocity determination. II. In vivo comparison with the electromagnetic blood flowmeter.

    PubMed

    Paulsen, P K

    1980-01-01

    Using a constant temperature hot-film anemometer and an electromagnetic blood flowmeter, volumetric flows and velocity profiles were registered in the pulmonary artery, ascending aorta, abdominal aorta and superior vena cava of mongrel dogs. The anemometer registered in 3 out of 4 dogs in the ascending aorta and in 4 out of 5 dogs in the pulmonary artery. The flow profile in these two vessels was flat with a slight deviation with the highest velocity nearer to the posterior wall. In the abdominal aorta the flow profile was sinusoid and in the superior vena cava irregular. In 22 simultaneous measurements anemometer mean results were 97 +/- 23% (+/- SD) of flowmeter results and peak results correspondingly 113 +/- 23%. None of these differences were significant. It is stressed that both qualitatively and quantitatively hot-film anemometer results are comparable to electromagnetic flowmeter results. However, certain differences have been demonstrated.

  13. Constant-Operating-Resistance Hot-Wire Probe

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.

    1985-01-01

    Effects of lead-wire-resistance changes with temperature nullified. Constant-operating-resistance hot-wire probe uses two sets of leads. Exposed to identical conditions, comparison of resistance gives change in sensing element itself. Data taken in more convenient manner, with advantage of not having to constantly check for possible changes in lead resistance and consequently readjust potentiometer.

  14. Constant temperature hot wire anemometry data reduction procedure

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.

    1974-01-01

    The theory and data reduction procedure for constant temperature hot wire anemometry are presented. The procedure is valid for all Mach and Prandtl numbers, but limited to Reynolds numbers based on wire diameter between 0.1 and 300. The fluids are limited to gases which approximate ideal gas behavior. Losses due to radiation, free convection and conduction are included.

  15. Constant-Operating-Resistance Hot-Wire Probe

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.

    1985-01-01

    Effects of lead-wire-resistance changes with temperature nullified. Constant-operating-resistance hot-wire probe uses two sets of leads. Exposed to identical conditions, comparison of resistance gives change in sensing element itself. Data taken in more convenient manner, with advantage of not having to constantly check for possible changes in lead resistance and consequently readjust potentiometer.

  16. Heat-transfer regularities of the anemometric wire

    NASA Astrophysics Data System (ADS)

    Mikheev, N. I.; Sakhovsky, A. V.; Khairnasov, K. R.; Kratirov, D. V.

    2010-06-01

    Experimental heat-transfer data for a small-diameter hot wire have been obtained and generalized in a wide range of Reynolds numbers typical of hot-wire anemometry. The experiments were carried out using an IRVIS-TA5 digital hot-wire anemometer and standard critical nozzles used for regulating the flow in the test section of the Eiffel chamber in which the hot-wire sensor was installed. Approaches to carrying out hot-wire anemometric measurements without a labor-consuming calibration procedure for the hot-wire sensor are substantiated.

  17. Flow field measurements around a Mars lander model using hot film anemometers under simulated Mars surface conditions

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.

    1972-01-01

    Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.

  18. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach.

    PubMed

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-10-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about -0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%.

  19. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach

    PubMed Central

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-01-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about –0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%. PMID:23724368

  20. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  1. A review of hot wire anemometry in transonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.

    1985-01-01

    The present paper provides a review of hot wire anemometry for compressible flows, giving particular attention to the transonic flow problem. It is pointed out that the first and most important definitive work in hot wire anemometry for compressible flows was reported by Kovasznay (1953). The existence of three independent fluctuating modes in compressible flows for small perturbations was found, taking into account the vorticity mode, the entropy mode, and the sound-wave mode. A review of Kovasznays' method for supersonic flows is also presented, and advances reported by Markovin (1956) are examined. Attention is given to experiments conducted by Horstman and Rose (1977), a general solution to the hot wire problem at transonic conditions sought by Stainback et al. (1983), and some apparent problems.

  2. Hot wire/film behavior in low-temperature gases

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Shakkottai, P.; Luchik, T. S.; Aaron, K. M.; Fabris, G.; Back, L. H.

    1992-01-01

    Commercially available hot wires/films were used to measure the velocities of evaporated hydrogen or helium gas during cryogenic mixing experiments. Hot wires were found to be too delicate to use in this harsh environment. Hot films were rugged enough to use at cryogenic temperatures even though they failed after a number of thermal cycles. Since the hot films have small aspect ratios, 13.4 and 20, they are quite sensitive to the thermal loading, Tw/Tg, even with a correction for the conduction end loss. In general, although the increase of the Nusselt number with Reynolds number at low temperatures was similar to that at room temperature, there was also a pronounced variation with Tw/Tg over the large range of 1.2 to 12 investigated.

  3. Continuous registration of blood velocity and cardiac output with a hot-film anemometer probe, mounted on a Swan-Ganz thermodilution catheter.

    PubMed

    Paulsen, P K; Andersen, M

    1981-01-01

    In order to construct a catheter, capable of monitoring cardiac output, a specially designed double-conical hot-film anemometer probe was fastened at the tip of a Swan-Ganz thermodilution catheter. Common sources of error for most catheter velocity probes include difficult calibration, unknown velocity profile at the point of measurement and unknown position of the probe in this profile. By using mongrel dogs and in order to exclude these sources of error, the intermittent thermodilution method was used to in vitro calibrate the hot-film anemometer, which registered velocity continuously. A mean correlation coefficient between these two methods was found to be 0.886. A mean line of regression between thermodilution (abscissa) and anemometer (ordinate) had a slope of 0.796 +/- 0.223 (+/- SD) and a y-intercept of 24 +/- 14 ml/min/kg. The slope was significantly lower than one (t test, p less than 0.05) and the y-intercept significantly larger than zero (t test, p less than 0.02). As a control of the thermodilution method, electromagnetic flow in the ascending aorta was registered and a mean correlation coefficient of 0.967 found. The hot-film sensor itself can be used as thermodilution method with the hot-film anemometer's continuous registration of velocity.

  4. Measurement of turbulence intensity in the center of the canine ascending aorta with a hot-film anemometer.

    PubMed

    Yamaguchi, T; Kikkawa, S; Yoshikawa, T; Tanishita, K; Sugawara, M

    1983-05-01

    The blood flow velocity near the central axis of the canine ascending aorta was measured with a hot-film anemometer. The cardiac output and the heart rate were controlled at will by means of an extracorporeal circulation and by atrial pacing. The turbulent component of the blood flow velocity was calculated using an ensemble average technique. Ensemble average turbulent intensity was also calculated to show the time course of turbulence in the aorta. The ratio of the mean turbulence intensity to the time mean sectional average velocity in the aorta was constant in most animals regardless of the changes in fluid mechanical parameters. The correlation between the frequency parameter and the relative mean turbulence intensity was weakly positive. The power spectrum of the turbulence was also calculated.

  5. Thermal conductivity calibration for hot wire based dc scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Lefèvre, Stéphane; Volz, Sebastian; Saulnier, Jean-Bernard; Fuentes, Catherine; Trannoy, Nathalie

    2003-04-01

    Thermal conductivity characterization with nanoscale spatial resolution can be performed by contact probe techniques only. The technique based on a hot anemometer wire probe mounted in an atomic force microscope is now a standard setup. However, no rigorous calibration procedure is provided so far in basic dc mode. While in contact with the sample surface, the electrical current I injected into the probe is controlled so that electrical resistance or the wire temperature is maintained by the Joule effect. The variation in current is assumed to be linearly related to the heat flux lost towards the sample and traditional calibration is carried out by relating the thermal conductivity of a set of samples to the measured current I. We provide analytical and numerical thermal modeling of the tip and sample to estimate the key heat transfer in a conductivity calibration procedure. A simple calibration expression is established that provides thermal conductivity as a function of the probe current or voltage measured. Finally, experimental data allow us to determine the unknown quantities of the parametric form obtained, i.e., the mean tip-sample contact radius and conductance.

  6. Model for predicting thermal conductivity using transient hot wire method

    NASA Astrophysics Data System (ADS)

    Kumar, Sublania Harish; Singh K., J.; Somani A., K.

    2016-05-01

    The use of the hot wire method for estimating the thermal conductivity measurement has recently known a significant increase. However, this method is theoretically not applicable to materials. Thermal conductivity values are necessary whenever a heat transfer problem is to be evaluated.

  7. Phenomena at hot-wire electrodes.

    PubMed

    Gründler, P

    2000-06-01

    An overview is given describing phenomena at heated microelectrodes where matter and heat energy are simultaneously emitted into the solution. With controlled electric heating, virtual "quiescent" periods as well as ones with constant streaming conditions are found that depend on the heating time. A close look at a permanently heated wire reveals a well defined structure with stationary concentration, temperature and flow rate profiles. The observed phenomena can be utilised for analytical measurements, e.g. with the novel method "Temperature Pulse Voltammetry" (TPV).

  8. Flow gradient corrections on hot-wire measurements using an X-wire probe

    NASA Astrophysics Data System (ADS)

    Gooden, J. H. M.; van Lent, M.

    A method has been developed to correct hot-wire measurements by means of a single X-wire probe for the effect of gradients normal to the plane of the wires in the mean flow velocities as well as in the turbulence intensities. Dataprocessing is performed in an iterative way, using the results of measurements with different probe rolling angles, to determine the gradient corrections along the traverse from the previous loop. The method has been applied to measurements in the wake above the trailing edge flap of a wing and it is shown that substantial improvements in the results have been achieved.

  9. Calibration of Direct Velocimetry Using Hot Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Holland, Michael L.; DeSilva, Upul P.; Johnson, Joseph A., III

    1997-01-01

    We studied the functionality of the IFA300 Hot Wire Anemometry system and its feasibility for the calibration of Direct Estimator Velocimetry (DEV) using Laser Induced Florescence (LIF). The experimental setup consisted of a single-wire hot wire probe measuring one component of velocity, the anemometry computational hardware and software, an HP oscilloscope, and a table fan to produce a simple flow with fluctuations. Measurements were taken at several points in the stream wise and transverse directions in the flow and various parameters recorded such as mean velocities temperature, turbulence intensities, skewness coefficients and flatness coefficients. The IFA300 software also allowed us to perform statistical manipulations such as spectrum analysis on velocities samples and correlation. Utilization of data files, also produced by the anemometry software, and post analysis were performed to produce graphical representations of turbulent intensity versus probe position and a flow field velocity profile. We concluded that the IFA300 Hot Wire Anemometry system is a reliable and functional method for calibration of DEV using LIF. Our future intentions are to set up a test chamber such that both velocity measurement techniques can be applied simultaneously, thus the calibration.

  10. Calibration of Direct Velocimetry Using Hot Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Holland, Michael L.; DeSilva, Upul P.; Johnson, Joseph A., III

    1997-01-01

    We studied the functionality of the IFA300 Hot Wire Anemometry system and its feasibility for the calibration of Direct Estimator Velocimetry (DEV) using Laser Induced Florescence (LIF). The experimental setup consisted of a single-wire hot wire probe measuring one component of velocity, the anemometry computational hardware and software, an HP oscilloscope, and a table fan to produce a simple flow with fluctuations. Measurements were taken at several points in the stream wise and transverse directions in the flow and various parameters recorded such as mean velocities temperature, turbulence intensities, skewness coefficients and flatness coefficients. The IFA300 software also allowed us to perform statistical manipulations such as spectrum analysis on velocities samples and correlation. Utilization of data files, also produced by the anemometry software, and post analysis were performed to produce graphical representations of turbulent intensity versus probe position and a flow field velocity profile. We concluded that the IFA300 Hot Wire Anemometry system is a reliable and functional method for calibration of DEV using LIF. Our future intentions are to set up a test chamber such that both velocity measurement techniques can be applied simultaneously, thus the calibration.

  11. Drag Force Anemometer Used in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  12. The static response of a bowed inclined hot wire

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1984-01-01

    The directional sensitivity of a bowed, inclined hot wire is investigated using a simple model for the convective heat transfer. The static response is analyzed for subsonic and supersonic flows. It is shown that the effects of both end conduction and wire bowing are greater in supersonic flow. Regardless of the Mach number, however, these two phenomena have distinctly different effects; end conduction appears to be responsible for reducing the nonlinearity of the response, whereas bowing increases the directional sensitivity. Comparison with the available data suggests that the analysis is useful for interpreting the experimental results.

  13. Hot-wire amperometric monitoring of flowing streams.

    PubMed

    Wang, J; Jasinski, M; Flechsig, G U; Grundler, P; Tian, B

    2000-01-10

    This paper describes the design of a hot-wire electrochemical flow detector, and the advantages accrued from the effects of locally increased temperature, mainly thermally induced convection, upon the amperometric monitoring of flowing streams. A new hydrodynamic modulation voltammetric approach is presented, in which the solution flow rate remains constant while the temperature of the working electrode is modulated. Factors influencing the response, including the flow rate, temperature pulse, or applied potential, have been investigated. The hot-wire operation results also in a significant enhancement of the flow injection amperometric response. The minimal flow rate dependence observed with the heated electrode should benefit the on-line monitoring of streams with fluctuated natural convection, as well as various in-situ remote sensing applications.

  14. Algorithm to optimize transient hot-wire thermal property measurement.

    PubMed

    Bran-Anleu, Gabriela; Lavine, Adrienne S; Wirz, Richard E; Kavehpour, H Pirouz

    2014-04-01

    The transient hot-wire method has been widely used to measure the thermal conductivity of fluids. The ideal working equation is based on the solution of the transient heat conduction equation for an infinite linear heat source assuming no natural convection or thermal end effects. In practice, the assumptions inherent in the model are only valid for a portion of the measurement time. In this study, an algorithm was developed to automatically select the proper data range from a transient hot-wire experiment. Numerical simulations of the experiment were used in order to validate the algorithm. The experimental results show that the developed algorithm can be used to improve the accuracy of thermal conductivity measurements.

  15. ESR studies on hot-wire amorphous silicon

    SciTech Connect

    Unold, T.; Mahan, A.H.

    1997-07-01

    The authors measure a series of hot-wire (HW) amorphous silicon films grown with hydrogen contents C{sub H} varying between 0.5--17 at.%. From constant photocurrent method (CPM) measurements and the steady-state photocarrier grating method (SSPG) they find good agreement with previous measurements on similar hot-wire films. Electron spin resonance measurements on the same samples, however, yield significantly higher spin densities than expected. A thickness series indicates a highly defective layer close to the substrate interface. They propose that this defective layer may be due to excessive out diffusion of hydrogen during growth at high temperatures, as seen by secondary ion mass spectroscopy. ESR measurements on light-degraded samples indicate an improved stability of samples with C{sub H} < 9 at.%.

  16. Turbulence measurements in shock induced flow using hot wire anemometry

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Duffy, Robert E.; Trolier, James W.

    1988-01-01

    Heat transfer measurements over various geometric shapes have been made by immersing models in shock-induced flows. The heat transfer to a body is strongly dependent on the turbulence level of the stream. The interpretation of such heat transfer measurements requires a knowledge of the turbulence intensity. Turbulence intensity measurements, using hot-wire anemometry, have been successfully carried out in shock-induced flows. The experimental procedures for making such measurements and the techniques required are discussed.

  17. Distributed flow sensing using optical hot -wire grid.

    PubMed

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  18. Hot-wire Laser Welding of Deep and Wide Gaps

    NASA Astrophysics Data System (ADS)

    Näsström, J.; Frostevarg, J.; Silver, T.

    Heavy section Gas Metal Arc Welding (GMAW) usually requires special edge preparation and several passes. One alternative for increased performance is Laser Arc Hybrid Welding (LAHW). For very thick sheets however, imperfections like root drops or solidification cracks can occur. In this study, other techniques are also studied, including multi-pass filling of deep gaps with wire deposition. A laser is then used to melt the filler and base material. The hot- and cold wire laser welding processes are highly sensitive to wire-laser positioning, where controlled melting of the wire is essential. Apart from a comprehensive literature survey, preliminary experiments were also performed in order to find a novel method variant that can successfully fill deep and wide gaps. The method applied uses a defocused laser that generates the melt pool. A resistance heated wire is fed into the melt pool front in a leading position. This is similar to additive manufacturing techniques such as laser direct metal deposition with wire. A layer height of several millimeters can be achieved and rather low laser power can be chosen. The preliminary experiments were observed using high speed imaging and briefly evaluated by visual examination of the resulting beads. Using a defocused laser beam turned out to have two major advantages; 1. It adds heat to the melt pool in a manner that properly fuses the bottom and walls of the base material. 2. It counteracts difficulties due to an irregularly oscillating filler wire. These early results show that this can be a promising technique for joining thick steels with wide gaps.

  19. A schlieren and hot-wire investigation of karman vortex streets

    NASA Astrophysics Data System (ADS)

    Wissler, J. B.

    1985-12-01

    This thesis involved taking schlieren and hot-film anemometer data on Karman vortex streets, then developing a means of characterizing the individual vortices in a street using a schlieren picture and the corresponding anemometer trace. A ThermoSystems, Inc. IFA-100 anemometer system, with a Tektronix 425 oscilloscope, was used to record an anemometer trace. The trace was captured on photographic film. The oscilloscope also fired a Cordin Model 5401 spark lamp, which provided, via a schlieren optical system, a physical picture of the Karman streets formed behind a 5/16-inch dia cylinder in a 2-inch by 2-inch square cross-section test region with a Mach 0.43 flow. Distance and angle information were obtained from the schlieren photographs, and timing and anemometer output voltage were obtained from the anemometer trace photograph using an HP-9874A digitizer. The data were analyzed using a Newton-Raphson method to solve for two constants, which should have completely characterized the vortices in the vortex street, assuming the vortices followed the theoretical equation for a combined free and forced vortex. It was assumed that the superposition of two vortices plus the mean flow were the parameters influencing the flow at any point in space and time.

  20. Experimental investigations of a sphere anemometer: Wind tunnel and field tests

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2013-11-01

    In our contribution we will compare the sphere anemometer and two standard sensors for wind energy and meteorology based on results from laboratory and atmospheric measurements. The sphere anemometer is a drag-based sensor for simultaneous wind speed and direction measurements. The new anemometer makes use of the velocity-dependent deflection of a lightweight sphere mounted on top of a flexible tube. The deflection of the sphere is detected by means of a highly sensitive light pointer, as used in atomic force microscopy. This allows for the detection of very small displacements and thus enables a high sensor resolution. In wind tunnel experiments the sphere anemometer, a 3D sonic anemometer and a standard cup anemometer were exposed to a turbulent wind field generated with a so-called active grid. All acquired data was compared to those of a highly resolving hot-wire probe. Moreover, the sphere anemometer and the two reference sensors were installed on two near-shore sites in the German Wadden Sea. Several month of data from these campaigns were analyzed regarding wind speed and direction measurements as well as durability and stability of the new anemometer. The presented work was founded by the German Ministry of the Environment, Nature Conservation and Nuclear Safety.

  1. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2012-12-01

    is far less susceptible to contaminating influences as other techniques (e.g., hot wire/hot film) that have been used for anemometry at Mars. Our instrument is conceptually derived from the commercial terrestrial sonic anemometers, but uses specialized acoustic transducers to optimally couple with the low density martian air as well as survive the extreme temperature swings on Mars. Additionally, we use sophisticated signal processing to extract as much information as possible in the low S/N environment that is achievable at Mars. We have developed our instrument through to TRL 5, proving it in a martian wind tunnel in Denmark. We found wind speed sensitivities and precision to be of order 3 cm/s, and with appropriate calibration, accuracy can be similar, even when operating at 20-100 Hz. We will also test this instrument at 120,000' altitude (i.e., equivalent to Mars atmospheric density) as an autonomous package on a stratospheric balloon. We are currently developing a TRL 6 version of the instrument that will be tested once again in the Denmark Mars Wind Tunnel. We expect our flight configuration instrument to be about 1 kg, including a 1.5m mast. It will also draw about 2-3W of power. This instrument is now ready to be proposed for future Mars missions, where we believe it will make a significant contribution and a step forward in Mars atmospheric science.

  2. Investigation of Constant Temperature Hot-wire System Response using Laser Pulse

    NASA Astrophysics Data System (ADS)

    Jaffa, Nicholas; Morris, Scott; Cameron, Joshua

    2016-11-01

    Constant temperature hot-wire systems use a Wheatstone bridge and feedback amplifier circuit to maintain a constant average temperature across the wire yielding frequency responses of order 100 kHz. This high frequency response allows hot-wires to be used extensively for aerodynamic measurements in high speed flows and uncertainty at these high frequencies can be difficult to diagnose. The standard frequency response check for constant temperature hot-wires uses an electronic pulse across the circuit to check the electronic feedback circuit response time, but does not account for the impact of the heat transfer along the wire. In order to investigate the frequency response of the entire constant temperature hot-wire system, including the heat transfer along the wire, a novel method was developed using a pulsed PIV laser focused to illuminate only the hot-wire. The laser pulse duration was effectively an instantaneous change in wire surface temperature through radiation. A hot-wire was placed in a uniform open calibration jet for a range of flow conditions. The response of the entire hot-wire system was observed across a range of conditions including changes in flow, wire temperature, and thermal boundary conditions and compared with the electronic pulse test.

  3. Carbon nanotube electrodes for hot-wire electrochemistry.

    PubMed

    Gründler, Peter; Frank, Otakar; Kavan, Ladislav; Dunsch, Lothar

    2009-02-23

    The use and preparation of single-walled carbon nanotubes (SWCNTs) at thin metallic wire electrodes for hot-wire electrochemical studies is described. The nanotubes were deposited on metal substrates such as gold by electrophoresis from a dispersion containing sodium dodecyl sulphate as an anionic surfactant. The formation of a layer of pure SWCNTs is achieved by thermal treatment at 350 degrees C. When heated in situ by a strong ac current, the electrodes can be used for electrochemical studies of nanotubes at increased temperatures. The state and functionality of the electrodes were characterized by Raman spectroscopy, scanning electron microscopy, and cyclic voltammetry with both anionic and cationic redox systems (dopamine, ferrocene carboxylic acid). First time experiments at the heated SWCNT electrodes demonstrated an excellent suitability of these as-prepared electrodes for thermoelectrochemical studies.

  4. Statistical calibration via Gaussianization in hot-wire anemometry

    NASA Astrophysics Data System (ADS)

    Gluzman, Igal; Cohen, Jacob; Oshman, Yaakov

    2017-03-01

    A statistical method is introduced, that is based on Gaussianization to estimate the nonlinear calibration curve of a hot-wire probe, relating the input flow velocity to the output (measured) voltage. The method uses as input a measured sequence of voltage samples, corresponding to different unknown flow velocities in the desired operational range, and only two measured voltages along with their known (calibrated) flow velocities. The method relies on the conditions that (1) the velocity signal is Gaussian distributed (or has another known distribution), and (2) the measured signal covers the desired velocity range over which the sensor is to be calibrated. The novel calibration method is validated against standard calibration methods using data acquired by hot-wire probes in wind-tunnel experiments. In these experiments, a hot-wire probe is placed at a certain region downstream of a cube-shaped body in a freestream of air flow, properly selected, so that the central limit theorem, when applied to the random velocity increments composing the instantaneous velocity in the wake, roughly holds, and renders the measured signal nearly Gaussian distributed. The statistical distribution of the velocity field in the wake is validated by mapping the first four statistical moments of the measured signals in different regions of the wake and comparing them with corresponding moments of the Gaussian distribution. The experimental data are used to evaluate the sensitivity of the method to the distribution of the measured signal, and the method is demonstrated to possess some robustness with respect to deviations from the Gaussian distribution.

  5. Evaluation of performance of multi-sensors hot-wire probes using Neural-Networks in-situ calibration

    NASA Astrophysics Data System (ADS)

    Liberzon, Dan; Kit, Eliezer

    2015-11-01

    Neural Networks (NN) based in-situ calibration of hot-wire anemometers was recently successfully implemented in field measurements. Although proving feasibility of field measurements using this, relatively new, calibration method the acquired field data also revealed some significant ambiguities in use of combined two- or three-sensor probes. A clearly better behavior of the probe comprised of four sensors (a pair of X shaped probes) has motivated the presented here work, aimed to investigate the NN based procedure performance dependence on the number of wires in the probe. Hypothesizing that the main reason for performance differences is in the fact that a 3-wire probe lacks any special features to withstand the noise in the signal due to temperature fluctuations and sensors' contamination, series of wind tunnel experiments with grid generated turbulence were designed and performed. Performance of a various multi-sensor probes' geometries was examined using the NN based method, while standard calibration data sets were also obtained prior to each set of measurements serving as a reference and as alternative training sets for the NN. The obtained results clearly indicated an advantage in using a symmetrical geometry, and especially using the four-sensor probe to obtain a reasonable description of the 3D velocity field. This is argued to be a result of redundant information on one or several velocity components present in four-sensor probes and serving as an efficient tool for noise reduction.

  6. Lead-resistance effects in a constant voltage anemometer

    NASA Astrophysics Data System (ADS)

    Comte-Bellot, Geneviève; Weiss, Julien; Béra, Jean-Christophe

    2004-06-01

    Two effects of the lead resistances connecting the hot wire to a constant voltage anemometer (CVA) were analyzed and tested: one concerns the change in the sensitivity coefficient relating the anemometer output to velocity or temperature fluctuations, and the other the time constant of the hot wire determined by an in situ square-wave test technique. Small perturbations were assumed in both cases. The CVA output sensitivity was found to be reduced and the time constant increased with the lead resistance. Explicit formulas which involve the lead resistance, the cold wire resistance, and the wire overheat, as well as some characteristics of the CVA circuit, were established to take into account these effects. In the ranges tested, each effect can individually introduce as much as 10% error. Product of the two governs the overall response for the CVA. However, because the two effects change in opposite directions, interestingly, variation in the net response from their product is minimized. This feature may be very useful for many engineering applications of the CVA. Results of experiments conducted with the CVA in a subsonic jet are presented. They confirm the analysis and also establish that accurate measurements can be performed even with a large ratio of lead resistance to hot-wire resistance by applying the correction formulas developed with the analysis. Results from earlier experiments in a supersonic boundary layer also are presented.

  7. The effects of feedback amplifier characteristics on constant temperature hot-wire anemometer systems

    NASA Technical Reports Server (NTRS)

    Watmuff, J. H.

    1989-01-01

    The 3rd-order analysis of Perry and Morrison (1971) was extended to 7th-order by Watmuff (1987) by including both the bridge-capacitance and the frequency-response characteristics of the feedback amplifier. In this paper, the bridge capacitance has been excluded from the analysis. The influence of the gain K, roll-off frequency f(A), and offset voltage E(qi) of the feedback amplifier are examined in more detail together with their interactions with the bridge inductance.

  8. Transfer function analysis of the constant voltage anemometer

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.

    1998-06-01

    The transfer function for the constant voltage anemometer (CVA) circuit has been derived in terms of circuit and hot-wire parameters and the expressions for the natural frequency and damping ratio have been obtained. Bandwidth in each case was determined from the plot of the normalized transfer function. The theoretical bandwidth behavior calculated from the transfer function plots for the prototype agrees with independent tests of the prototype using laser radiation heating of the hot wire in an air jet. The near constant value of the bandwidth of the CVA with the variation in the hot-wire overheat and its Reynolds number that were observed with the laser tests have been substantiated with the theoretical values from the transfer function. Bandwidth testing with sine wave injection, in situ time constant measurement for proper compensation setting, method to optimize the design to have nearly a constant bandwidth even with different compensation time constants and the operational advantages of CVA are also discussed.

  9. Turbulent Channel Flow Measurements Using Matched Hot-Wires

    NASA Astrophysics Data System (ADS)

    Estejab, Baraheh; Bailey, Sean

    2011-11-01

    We present an experimental study conducted in a turbulent channel flow facility using hot-wire probes with both constant and varying viscous-scaled wire length. The objectives of the study were threefold: first, to validate the flow produced by the channel flow facility; second, to investigate the validity of recently proposed spatial filtering corrections for Reynolds stress profiles; and third, to extend the investigation of the near-wall peak Reynolds number dependence in turbulent pipe flow conducted by Hultmark, Bailey and Smits (see J. Fluid Mech. (2010), vol. 649, pp. 103-113). We found that in channel flow, unlike in the pipe flow experiments, the near-wall peak exhibited the same Reynolds number dependence observed in turbulent boundary layer studies and channel flow DNS. Since the same measurement techniques and procedures were used in the current study as used in the pipe flow study, this demonstrated that the near-wall Reynolds number independence observed in the pipe study was not due to error introduced by measurement methodology. Furthermore, comparison of results from wires of different length verified that spatial filtering corrections work in channel flow as well as pipe and boundary layer flows. Corrected results were in good agreement with channel flow DNS, thus verifying that the flow in the facility approximates one-dimensional turbulent Poiseuille flow.

  10. Development of subminiature multi-sensor hot-wire probes

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.

    1988-01-01

    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.

  11. Narrow groove welding of titanium using the hot-wire gas tungsten arc process

    SciTech Connect

    Crement, D.J. )

    1993-04-01

    From this study of automatic gas tungsten arc welding of commercially pure titanium, the following may be concluded: (1) automatic cold-wire GTAW and automatic hot-wire GTAW may be used to weld titanium in the open without contamination from the atmosphere when proper shielding is used; (2) automatic hot-wire GTAW exhibits substantial reductions in transverse weld shrinkage, as compared to manual GTAW; (3) increased deposition rates can be achieved with hot-wire additions to automatic gas tungsten arc welding; (4) automatic cold-wire GTAW and automatic hot-wire GTAW may be used with narrow groove joint designs; (5) direct viewing of the arc may be used to aid in torch placement and wire entry position.

  12. Nanoscale Hot-Wire Probes for Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken T.; Herring, Gregory C.

    2003-01-01

    Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes. The hot-wire components of the probes would likely be made from semiconducting carbon nanotubes or ropes of such nanotubes. According to one design concept, a probe would comprise a single nanotube or rope of nanotubes laid out on the surface of an insulating substrate between two metallic wires. According to another design concept, a nanotube or rope of nanotubes would be electrically connected and held a short distance away from the substrate surface by stringing it between two metal electrodes. According to a third concept, a semiconducting nanotube or rope of nanotubes would be strung between the tips of two protruding electrodes made of fully conducting nanotubes or ropes of nanotubes. The figure depicts an array of such probes that could be used to gather data at several distances from a wall. It will be necessary to develop techniques for fabricating the probes. It will also be necessary to determine whether the probes will be strong enough to withstand the aerodynamic forces and impacts of micron-sized particles entrained in typical flows of interest.

  13. Influence of red blood cell concentrations on the measurement of turbulence using hot-film anemometer.

    PubMed

    Sallam, A M; Hwang, N H

    1983-11-01

    Measurement of local velocity fluctuations was made with an L-shaped conical hot-film probe in a submerged circular jet. The experiment was carried out in solutions of washed human red blood cells (RBC) in a phosphate buffer solution (PBS), at hematocrit concentrations (Ht percent) of 10, 19, 29, and 38 percent. The viscosity of the testing solutions was kept at 3.2 c.p. by adding proper amount of dextran. The experiment was conducted at Reynolds numbers (NR) 674, 963, 1255 and 1410, based on the jet exit velocity and exit diameter. Statistical analyses were performed on the recorded instantaneous velocity signals to obtain the root-mean-square (rms) values, the probability density functions (PDF) and the power spectral density functions (PSDF) of the signals. Within the range tested, we noticed an incidental rise in rms values at 19 to 29 Ht percent for NR = 963 similar to those reported earlier in the literature. Further analyses using PDF and PSDF, however, showed neither a trend nor any physical significance of this rise. Based on the analyses of both the PDF and the PSDF, we believe that the incidental rise in rms value can be partially attributed to the high spikes registered by the probe in a high RBC concentrations fluid flow. The bombardment of RBC on the probe thermal boundary layer may cause a characteristic change in the probe response to certain flow phenomenon, at least within the Reynolds number range used in this study.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Wall proximity corrections for hot-wire readings in turbulent flows

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.

    1980-01-01

    This note describes some details of recent (successful) attempts of wall proximity corrections for hot-wire measurements performed in a three-dimensional incompressible turbulent boundary layer. A simple and quite satisfactory method of estimating wall proximity effects on hot-wire readings is suggested.

  15. A new tubular hot-wire CVD for diamond coating

    NASA Astrophysics Data System (ADS)

    Motahari, Hamid; Bellah, Samad Moemen; Malekfar, Rasoul

    2017-06-01

    A new tubular hot-wire chemical vapor deposition (HWCVD) system using a tubular quartz vacuum chamber has been fabricated. The filaments in this system can heat the substrate and act as a gas activator and thermally activator for gas species at the same time. The nano- and microcrystalline diamond coatings on the surface of steel AISI 316 substrates have been grown. To assess the results, SEM and FESEM images and Raman spectroscopy investigations have been applied. The results reveal that micro- and nanocrystalline diamond structures have been formed in the coatings, but the disordered diamond and some non-diamond phases, such as graphitic carbons, are also present in the coating layers. The analytical measurements show the growth of diamond films with well-faceted crystals in (111) direction. However, intrinsic stress, secondary nucleation, and poor adhesion are the main issues of future research for this new designed HWCVD.

  16. Hot-wire polysilicon waveguides with low deposition temperature.

    PubMed

    Masaud, Taha M Ben; Tarazona, Antulio; Jaberansary, Ehsan; Chen, Xia; Reed, Graham T; Mashanovich, Goran Z; Chong, H M H

    2013-10-15

    We fabricated and measured the optical loss of polysilicon waveguides deposited using hot-wire chemical vapor deposition at a temperature of 240°C. A polysilicon film 220 nm thick was deposited on top of a 2000 nm thick plasma-enhanced chemical vapor deposition silicon dioxide layer. The crystalline volume fraction of the polysilicon film was measured by Raman spectroscopy to be 91%. The optical propagation losses of 400, 500, and 600 nm waveguides were measured to be 16.9, 15.9, and 13.5 dB/cm, respectively, for transverse electric mode at the wavelength of 1550 nm. Scattering loss is expected to be the major contributor to the propagation loss.

  17. Micromachined hot-wire thermal conductivity probe for biomedical applications.

    PubMed

    Yi, Ming; Panchawagh, Hrishikesh V; Podhajsky, Ronald J; Mahajan, Roop L

    2009-10-01

    This paper presents the design, fabrication, numerical simulation, and experimental validation of a micromachined probe that measures thermal conductivity of biological tissues. The probe consists of a pair of resistive line heating elements and resistance temperature detector sensors, which were fabricated by using planar photolithography on a glass substrate. The numerical analysis revealed that the thermal conductivity and diffusivity can be determined by the temperature response induced by the uniform heat flux in the heating elements. After calibrating the probe using a material (agar gel) of known thermal conductivity, the probe was deployed to calculate the thermal conductivity of Crisco. The measured value is in agreement with that determined by the macro-hot-wire probe method to within 3%. Finally, the micro thermal probe was used to investigate the change of thermal conductivity of pig liver before and after RF ablation treatment. The results show an increase in thermal conductivity of liver after the RF ablation.

  18. The use of hot-wire anemometry in transonic periodic flow

    NASA Technical Reports Server (NTRS)

    Bodapati, S.; Lee, C.-S.

    1984-01-01

    The unsteady wake profiles of an airfoil with an oscillating flap were measured in the NASA Ames 11 x 11-foot transonic wind tunnel. Laser Doppler Velocimetry (LDV) and holography techniques were used in limited region where optical accessability is available. X-hot-film wire was used to measure the wake profiles in the complete region to obtain magnitude and direction of the flow. A thorough calibration was carried out to determine the sensitivity coefficients of the hot-wire in three different tunnels at transonic speeds. A calculation procedure is established to resolve the hot-wire signals at transonic speeds and applied in the measurements of steady and periodic wake profiles. The effect of flow incidence on the hot-wire signals is evaluated and incorporated in the analyses. Typical hot-wire results are compared with the results of LDV, holography and pitot-static tube embedded with Kulite transducers.

  19. The Microstructure and Hardness of Hot Dip Galvanized Steel During Wire Drawing

    SciTech Connect

    Klmaku, Snukn; Syla, Nairn; Dilo, Teuta

    2010-01-21

    The steel wire samples are hot-dip-galvanized. The zinc coating is preformed using the standard method. To recognize the behavior of the zinc coated steel wire during the submission to deformation, the wire samples are drawn on a machine designed for this aim and then investigated. In this research is represented the phase structure of the zinc coated samples. Afterwards the thickness of the layer and the hardness of the hot-dip galvanized steel depending on the drawing is represented.

  20. The Microstructure and Hardness of Hot Dip Galvanized Steel During Wire Drawing

    NASA Astrophysics Data System (ADS)

    Klinaku, Shukri; Dilo, Teuta; Syla, Naim

    2010-01-01

    The steel wire samples are hot-dip-galvanized. The zinc coating is preformed using the standard method. To recognize the behavior of the zinc coated steel wire during the submission to deformation, the wire samples are drawn on a machine designed for this aim and then investigated. In this research is represented the phase structure of the zinc coated samples. Afterwards the thickness of the layer and the hardness of the hot-dip galvanized steel depending on the drawing is represented.

  1. Development of a temperature-compensated hot-film anemometer system for boundary-layer transition detection on high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Chiles, H. R.; Johnson, J. B.

    1985-01-01

    A hot-film constant-temperature anemometer (CTA) system was flight-tested and evaluated as a candidate sensor for determining boundary-layer transition on high-performance aircraft. The hot-film gage withstood an extreme flow environment characterized by shock waves and high dynamic pressures, although sensitivity to the local total temperature with the CTA indicated the need for some form of temperature compensation. A temperature-compensation scheme was developed and two CTAs were modified and flight-tested on the F-104/Flight Test Fixture (FTF) facility at a variety of Mach numbers and altitudes, ranging from 0.4 to 1.8 and 5,000 to 40,000 ft respectively.

  2. Use of hot wire anemometry to measure velocity of the limb during human movement.

    PubMed

    Sun, S C; Mote, C D; Skinner, H B

    1992-09-01

    Hot film anemometry, x-configuration probes were used in two experiments to evaluate their effectiveness at measurement of limb velocity. Data from tests with a probe attached to the end of a pendulum establish that the hot films measure velocity in the swing phase within 0.098 ms-1. The kinetic energy per unit mass of the pendulum was predicted within +/- 0.005 m2 s-2, from the measured velocity. In gait experiments with one human subject at speeds greater than 0.25 ms-1, the hot film anemometer and a video system predicted speeds within 0.083 ms-1. The hot film data are electronic signals that are easily stored and processed. The results from these experiments demonstrate that hot film anemometry is an effective and efficient method for direct measurement and analysis of the limb velocity.

  3. Instabilities induced in a laminar jet by acoustic hot-wires

    NASA Astrophysics Data System (ADS)

    Paranthoen, P.; Fouari, A.; Lecordier, J. C.

    1985-10-01

    The use of hot-wires to cause controlled and local excitation of a laminar flow and generate acoustic waves is discussed. The excitation system which consists of two hot-wires located on the edge of the nozzle is described. The observations from excitation of 6 mm and 3.8 mm laminar jets are provided. A phase relation between acoustic waves generated by the hot-wires is detected; when the acoustic waves are in phase = O axisymmetric structures are observed and when the acoustic waves are in phase = pi nonaxisymmetric structures are present.

  4. Comparison of PIV and Hot-Wire statistics of turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Dróżdż, A.; Uruba, V.

    2014-08-01

    The paper shows a cross checking of turbulent boundary layer measurements using large field of view PIV and hot-wire anemometry techniques. The time-resolved PIV method was used for the experiments. The measuring plane was oriented perpendicularly to the wall and parallel to the mean flow. Hot wire measurement has been performed using the special probe with perpendicular hot wire. The HW point measurements were performed in the same place as PIV experiments. The hot-wire probe has the wire length of l+ < 20 in considered range of Reynolds numbers. Various evaluation methods were applied on PIV data. The profiles of statistical characteristics of streamwise velocity components were evaluated from the data. Mean values, standard deviations as well as skewness and kurtosis coefficients were compared for a few values of Reθ. Reynolds number ranges from 1000 to 5500. The result shows that with the increasing Reynolds number the attenuation of fluctuations maximum in PIV measurements occurs with respect to Hot-Wire measurements, however representation of velocity fluctuations using the PIV method is satisfactory. The influence of wall-normal fluctuation component on Hot-Wire near wall peak was also investigated.

  5. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  6. "Hot-wire" microfluidic flowmeter based on a microfiber coupler.

    PubMed

    Yan, Shao-Cheng; Liu, Zeng-Yong; Li, Cheng; Ge, Shi-Jun; Xu, Fei; Lu, Yan-Qing

    2016-12-15

    Using an optical microfiber coupler (MC), we present a microfluidic platform for strong direct or indirect light-liquid interaction by wrapping a MC around a functionalized capillary. The light propagating in the MC and the liquid flowing in the capillary can be combined and divorced smoothly, keeping a long-distance interaction without the conflict of input and output coupling. Using this approach, we experimentally demonstrate a "hot-wire" microfluidic flowmeter based on a gold-integrated helical MC device. The microfluid inside the glass channel takes away the heat, then cools the MC and shifts the resonant wavelength. Due to the long-distance interaction and high temperature sensitivity, the proposed microfluidic flowmeter shows an ultrahigh flow rate sensitivity of 2.183 nm/(μl/s) at a flow rate of 1 μl/s. The minimum detectable change of the flow rate is around 9 nl/s at 1 μl/s.

  7. Hot-Wire Probe for Compressible Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Johnson, C. B.; Basnett, C. B.

    1985-01-01

    Probe measures velocity, density, and total temperature fluctuations. Three-wire probe used with each wire operating at different overheat ratio. Technique extendable into transonic and low supersonic flow regimes without difficulty except for those problems usually associated with lengthy calibration and possible wire breaking.

  8. Thermal conductivity measurements using hot-wires at small Peclet number

    NASA Astrophysics Data System (ADS)

    Arwatz, Gilad; Fan, Yuyang; Hultmark, Marcus

    2015-11-01

    The feasibility of using hot-wires to measure gas thermal conductivity is investigated. When the local Peclet number of a hot-wire is small (Pe<<1), molecular diffusion dominates the heat transport, and the wire becomes less sensitive to velocity. This phenomenon can be utilized to measure the thermal conductivity of the gas. To investigate the viability of the principle of operation, a lumped capacitance model is proposed, capturing the effects of both convection and conduction on heat transfer from the wire. By investigating the sensitivity of the model to velocity, temperature and conduction, it is shown that as wire dimension decreases, the sensor becomes less sensitive to both velocity and temperature and more sensitive to conduction. The model also captures the effect of varying wire dimension as well as overheat ratio.

  9. The aging of tungsten filaments and its effect on wire surface kinetics in hot-wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Holt, Jason K.; Swiatek, Maribeth; Goodwin, David G.; Atwater, Harry A.

    2002-10-01

    Wire-desorbed radicals present during hot-wire chemical vapor deposition growth have been measured by quadrupole mass spectrometry. New wires produce Si as the predominant radical for temperatures above 1500 K, with a minor contribution from SiH3, consistent with previous measurements; the activation energy for the SiH3 signal suggests its formation is catalyzed. Aged wires also produce Si as the predominant radical (above 2100 K), but show profoundly different radical desorption kinetics. In particular, the Si signal exhibits a high temperature activation energy consistent with evaporation from liquid silicon. The relative abundance of the other SiHx species suggests that heterogeneous pyrolysis of SiH4 on the wire may be occurring to some extent. Chemical analysis of aged wires by Auger electron spectroscopy suggests that the aging process is related to the formation of a silicide at the surface, with silicon surface concentrations as high as 15 at. %. A limited amount (2 at. %) of silicon is observed in the interior as well, suggesting that diffusion into the wire occurs. Calculation of the relative rates for the various wire kinetic processes, coupled with experimental observations, reveals that silicon diffusion through the silicide is the slowest process, followed by Si evaporation, with SiH4 decomposition being the fastest.

  10. Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.

    PubMed

    Kiełbasa, Jan

    2007-08-01

    The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.

  11. Improved method of analyzing hot-wire measurements in supersonic turbulence

    NASA Technical Reports Server (NTRS)

    Logan, Pamela

    1989-01-01

    The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.

  12. Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures.

    PubMed

    Perkins, R A; Ramires, M L; Nieto de Castro, C A

    2000-01-01

    Absolute measurements of the thermal conductivity of a distilled and dried sample of toluene near saturation are reported. The transient hot-wire technique with an anodized tantalum hot wire was used. The thermal conductivities were measured at temperatures from 300 K to 550 K at different applied power levels to assess the uncertainty with which it is possible to measure liquid thermal conductivity over wide temperature ranges with an anodized tantalum wire. The wire resistance versus temperature was monitored throughout the measurements to study the stability of the wire calibration. The relative expanded uncertainty of the resulting data at the level of 2 standard deviations (coverage factor k = 2) is 0.5 % up to 480 K and 1.5 % between 480 K and 550 K, and is limited by drift in the wire calibration at temperatures above 450 K. Significant thermal-radiation effects are observed at the highest temperatures. The radiation-corrected results agree well with data from transient hot-wire measurements with bare platinum hot wires as well as with data derived from thermal diffusivities obtained using light-scattering techniques.

  13. Full elimination of nonlinear effects in a Constant Voltage Anemometer

    NASA Astrophysics Data System (ADS)

    Comte-Bellot, Geneviève; Berson, Arganthaël; Blanc-Benon, Philippe

    2008-11-01

    A procedure for the elimination of all nonlinearities in a Constant Voltage Anemometer (CVA) has been developed which is easily implemented on a PC when post-processing experimental data. It relies on (1) the first-order differential equation governing the CVA circuit, (2) the first-order differential equation describing the hot-wire response and (3) the algebraic equation corresponding to the calibration law. In practice, the method is adapted to any length of the connection cable between the hot wire probe and the CVA and only requires the extra measurement of the time constant of the hot wire using an embedded square-wave test. The present procedure aims at replacing previous data-processing methods that were mostly based on linearized equations. The two main features of the CVA, i.e. a constant bandwidth and a rapid adjustment of the hot-wire operation in the cold and hot modes to take into account temperature drifts of the incident flow, still hold when using the present method. Benefits of the new procedure are demonstrated for higher order odd moments of turbulence (skewness factors).

  14. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  15. Hot-wire anemometry for in-flight measurement of aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.

    1977-01-01

    A development program has demonstrated that hot-wire anemometry can be used successfully on an aircraft in flight to make measurements of wake vortices produced by another aircraft. The probe, whose wires were made of platinum/rhodium, 10 microns in diameter, provides unambiguous results for inflow angles less than about 35 deg. off the probe axis. The high frequency response capability of the hot-wire system allows detailed measurement of the flow structure, and the study of aircraft hazards associated with wake turbulence.

  16. Control of the dynamic non-linearity in a Constant Voltage Anemometer

    NASA Astrophysics Data System (ADS)

    Comte-Bellot, GeneviÈ.}Ve; Weiss, Julien; Bera, Jean-Christophe

    2005-11-01

    A second harmonic appears in most hot-wire anemometers due to a combined effect of the large amplitudes of the turbulent fluctuations, the thermal lag of the wire, and the electronic circuitry - see Corrsin Handbook of Physics, 8, 524-590, 1963, for a constant current anemometer (CCA) and Freymuth, Rev. Sci Instrum, 40, 258-262, 1969, for a constant temperature anemometer (CTA). For a constant voltage anemometer (CVA), which is a recent and innovative technique, it is shown that the second and higher harmonics can be rejected by inverting the differential equation which expresses the wire response and which is known (Comte-Bellot, CRC Handbook, 1998). This treatment is made when post-processing the data and it does not slow down the experiments. The constant frequency bandwidth insured by the partial thermal lag correction available in a CVA is also preserved. It is shown that the skewness factors of turbulent fluctuations, which are affected by the presence of a second harmonic, retrieve correct values.

  17. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids.

    PubMed

    Perkins, R A; Roder, H M; Nieto de Castro, C A

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, Cp , of the fluid, provided that the density is measured, or available through an equation of state.

  18. Analysis of the uncertainties in velocity measurements with triple hot-wire probes

    NASA Technical Reports Server (NTRS)

    Frota, M. N.; Moffat, R. J.

    1984-01-01

    A detailed computerized sensitivity analysis of the triple hot-wire equations has been performed in order to delineate the uncertainties associated with measurements of the velocity components. Absolute and relative uncertainties for the instantaneous hot-wire outputs are calculated as functions of roll and pitch angles, based on a constant probability combination of the uncertainties in the inputs. From the results, it is concluded that the small inherent difficulties associated with the triple hot-wire data do not reflect artifacts introduced by the data processing. Fixed errors present in the V and W channels of the output are due to the nonzero measuring volume of the triple wire probe, and are entirely predictable.

  19. A hot-wire method for high-intensity turbulent flows

    NASA Technical Reports Server (NTRS)

    Mueller, U. R.

    1983-01-01

    A measuring technique for determing instantaneous, three-dimensional velocity vectors in highly turbulent flows by means of a 4-sensor hot-wire probe is described. As is well known, the hot-wire signal received in reversing flows cannot uniquely be interpreted. This difficulty is circumvented by tracking the thermal wake of a heated wire. Whenever the approximate flow direction is indicated by a temperature-sensitive wake detector, all components of the instantaneous velocity vector are evaluated by means of a digital data reduction method. Uniqueness of the solution derived from the triple-hot-wire response equations is examined. A first application of the proposed measuring technique in the recirculating flow downstream of a backward-facing step is described.

  20. A hot-wire method for high-intensity turbulent flows

    NASA Technical Reports Server (NTRS)

    Mueller, U. R.

    1983-01-01

    A measuring technique for determing instantaneous, three-dimensional velocity vectors in highly turbulent flows by means of a 4-sensor hot-wire probe is described. As is well known, the hot-wire signal received in reversing flows cannot uniquely be interpreted. This difficulty is circumvented by tracking the thermal wake of a heated wire. Whenever the approximate flow direction is indicated by a temperature-sensitive wake detector, all components of the instantaneous velocity vector are evaluated by means of a digital data reduction method. Uniqueness of the solution derived from the triple-hot-wire response equations is examined. A first application of the proposed measuring technique in the recirculating flow downstream of a backward-facing step is described.

  1. Pitfalls of hot-wire probes for a new method of dissipation evaluation

    NASA Astrophysics Data System (ADS)

    Turan, O.; Azad, R. S.

    A new method of obtaining dissipation with hot-wire anemometry has been introduced recently by Azad et al. (1985, 1986). The method is based on extrapolation to zero wire length of the dissipation rate measured with hot-wire probes of different lengths. The present study has been undertaken to examine this method in detail. It has been observed in the present study that there are two major pitfalls in extrapolating dissipation to zero wire length. The first is due to the length to diameter ratio, L/d of the probes used. The second pitfall is due to defects in the probe structure. Spatial filtering due to wire length in the measurement of dissipation has been confirmed to be linear provided probes with L/d of greater than 160 are free of structural defects. The method can be used advantageously to detect such defective probes.

  2. Synthesis of silicon nanowires using tin catalyst by hot wire chemical vapor processing

    SciTech Connect

    Meshram, Nagsen; Kumbhar, Alka; Dusane, R.O.

    2013-06-01

    Highlights: ► Silicon nanowires are grown by hot wire chemical vapor processing at 400 °C using Sn as catalyst material via VLS. ► For nanowire synthesis Sn nanotemplates are formed with hot wire generated atomic hydrogen. ► The TEM image reveals the crystalline nature of nanowire. - Abstract: Silicon nanowires (SiNWs) have been synthesized at temperatures in the range 300–400 °C by the hot wire chemical vapor processing (HWCVP) using tin nanotemplate. The tin nano-template is formed by hot wire atomic hydrogen treatment of thermally evaporated Sn films (∼300 nm thick) on glass substrates. Silicon nanowires are then grown using hot wire induced dissociation of SiH{sub 4} gas over the nanotemplate. Growth conditions like growth time and temperature were varied to study their effect on the tin nanoparticle size and on the silicon nanowire dimensions thereafter. From the observations, it is clear that the nanowire diameters and lengths depend on the size of nanoparticles and the growth time respectively. Though SiNWs were observed to grow at temperatures as low as 300 °C, nanowires with a narrow diameter distribution were achieved at 400 °C. Raman spectra and transmission electron microscope (TEM) reveal the crystalline nature of the silicon nanowires.

  3. Low-power anemometer

    NASA Technical Reports Server (NTRS)

    Gilje, R. I.; Lehman, W.

    1977-01-01

    Device allows wind speeds to be measured with less power by alternating hot-wire or hot-film heating periods with measurement periods. System includes reference auxiliary circuits to generate V sub ref and ramp voltage (E sub 3) and reference half of bridge circuit. Circuit permits use of several sensing films with common temperature compensation sensor.

  4. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  5. Turbulence measurements in a swirling confined jet flowfield using a triple hot-wire probe

    NASA Technical Reports Server (NTRS)

    Janjua, S. I.; Mclaughlin, D. K.

    1982-01-01

    An axisymmetric swirling confined jet flowfield, similar to that encountered in gas turbine combustors was investigated using a triple hot-wire probe. The raw data from the three sensors were digitized using ADC's and stored on a Tektronix 4051 computer. The data were further reduced on the computer to obtain time-series for the three instantaneous velocity components in the flowfield. The time-mean velocities and the turbulence quantities were deduced. Qualification experiments were performed and where possible results compared with independent measurements. The major qualification experiments involved measurements performed in a non-swirling flow compared with conventional X-wire measurements. In the swirling flowfield, advantages of the triple wire technique over the previously used multi-position single hot-wire method are noted. The measurements obtained provide a data base with which the predictions of turbulence models in a recirculating swirling flowfield can be evaluated.

  6. Demonstration of skin friction measurements featuring in situ estimation of conduction loss using constant voltage anemometers and surface hot-films

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Moes, Timothy R.

    2005-05-01

    The top of the 12.2m long NASA Dryden Flight Research Center's ground research vehicle (GRV) was used as a flat plate test bed for demonstrating an approach to measure skin friction. Using an array of surface hot-films operated by constant voltage anemometers (CVAs), the approach was demonstrated with in situ estimation of conduction heat loss from the hot-films to the substrate. An algebraic relationship, using the channel calibration constants a and b (determined a priori) with CVA output voltages Vs and Vw from that channel, is used for the estimation of the required quantities and lead resistance (rL) of the hot-film measured on site. Estimates of the power dissipated in the hot-film alone (Phf) (excluding the lead resistances), in situ resistance (Rw) of the hot-film due to applied overheat and flow, and the cold resistance (Ra) of the same hot-film at the ambient temperature are so obtained. Different approaches to estimate the in situ cold resistance (which is the resistance without any self-heating) of the hot-film are presented addressing the suitability of the procedure for flight applications as well. Tests were performed at several speeds of the GRV on the tarmac of a runway at the flight test center. The measured values are fitted to the classical (1/3) law equation with the computational dimensional skin friction (τ) obtained using the empirical local skin friction law for the long flat plate. There was an excellent (1/3) law fit in all the hot-films, demonstrating that the measured values fit classical theory. Using this measured fit with the theoretical values, calibration coefficients (A and B) for dimensional skin friction (τ) were obtained. Using these calibration coefficients, measured values were then converted to nondimensional local skin friction coefficients cf for all the hot-films at all speeds. Measured cf values agree well with the associated flat plate theory. Since the in situ measurement of heat loss to the substrate should ideally

  7. dc-ac hot-wire procedure for determining thermophysical properties under pressure

    NASA Astrophysics Data System (ADS)

    Nilsson, O.; Sandberg, O.; Bäckström, G.

    1986-09-01

    The paper describes a new hot-wire method for simultaneous determination of thermal conductivity and heat capacity per unit volume of electrically insulating liquids and solids under pressure. The method uses dc heating of the hot wire, whereas the temperature increase is recorded by an ac bridge circuit. The temperature data obtained are analyzed using the exact solution instead of the commonly used long time approximation. The procedure was tested on a number of alcohols and water and the accuracy was found to be 1.5%. New data on glycerol up to 1.5 GPa are presented. The appearance of an automagnetoresistance effect when Ni is employed as hot-wire probe is discussed.

  8. Hybrid approach to data reduction for multi-sensor hot wires

    NASA Technical Reports Server (NTRS)

    Hooper, C. L.; Westphal, R. V.

    1991-01-01

    A hybrid approach to implementing the calibration equations for a multisensor hot-wire probe is discussed. The approach combines some of the speed of a look-up approach with the moderate storage requirements of direct calculation based on functional fitting. Particular attention is given to timing and storage comparisons for an X-wire probe. The method depends on the oft-employed concept of an effective cooling velocity which is a function only of the bridge output voltage.

  9. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  10. Apparatus to study the onset of free convection about vertical and inclined hot wires.

    PubMed

    Giaretto, Valter; Miraldi, Elio; Torchio, Marco F

    2007-07-01

    This article describes a methodology and an apparatus used to evaluate the onset time of free convection in hot-wire experiments. The evaluation of the onset time is useful to obtain a measurement interval that is suitable to estimate the thermal properties of a fluid. If a pure conduction regime is present, the hot-wire temperature increment versus time is a straight line in a semilog plot, whereas the convection effect induces a deviation from this trend. An algorithm based on the F test is proposed to evaluate the onset time of free convection. The experimental facility has the particular feature of allowing an easy change of the hot-wire inclination angle up to 118.3 mrad. The wire is kept in a tilted position by a permanent horseshoe magnet, and the tilting angle from the vertical is measured by a theodolite. Some testing results using water are discussed for vertical and inclined wires. A good agreement between the experimental onset times and the theoretical ones is found in the case of a vertical wire.

  11. Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Soo; Youn, Woong-Kyu; Lee, Dong-Kwon; Seol, Kwang-Soo; Hwang, Nong-Moon

    2009-07-01

    The nanocrystalline alpha silicon nitride (α-Si 3N 4) was deposited on a silicon substrate by hot-wire chemical vapor deposition at the substrate temperature of 700 °C under 4 and 40 Torr at the wire temperatures of 1430 and 1730 °C, with a gas mixture of SiH 4 and NH 3. The size and density of crystalline nanoparticles on the substrate increased with increasing wire temperature. With increasing reactor pressure, the crystallinity of α-Si 3N 4 nanoparticles increased, but the deposition rate decreased.

  12. Use of the Hot Wire Anemometry for Velocity and Temperature Measurements in a Turbomachine

    NASA Astrophysics Data System (ADS)

    Blidi, Sami; Miton, Hubert

    1995-10-01

    The hot film anemometry in a highly heterogeneous unsteady flow is a quite complex measurement technique. The velocity is determined from the heat flux measurement. The part of the signal related to velocity must be kept apart from one related to temperature and to pressure of flow. After a brief return to the principle of hot wire anemometry and the different heat transfer models between hot wire and flow, an experimentally established heat flux expression is presented. This study was achieved in view to measure the instantaneous velocity fields between blade rows of a low speed axial compressor by means of a crossed hot film probe. In such a turbomachine, the flow is highly tri-dimensional and unsteady. Although compressor rotating speed is relatively low (4500 rpm), the spatio-temporal fluctuations of flow temperature are not negligible. Knowledge of temperature is then an important objective, for itself on the one hand, and by its influence on the measurement of velocity on the other hand. The simultaneous measurement of these two parameters would then be a quite interesting solution. For this purpose, an original apparatus including a standard model constant temperature anemometer has been set out. Its main advantage is to require only the use of an external small cabinet which commutes the probe overheat temperature. System utilisation limits, especially in frequency have been brought to the fore. The operating method and achieved results obtained in 1 compressor are presented in this paper. L'anémométrie à film chaud dans un écoulement instationnaire fortement hétérogène est une technique de mesure assez complexe. La vitesse est déterminée à partir de la mesure d'un flux de chaleur. La partie du signal concernant la vitesse doit être séparée de celle relative à la température et éventuellement la pression de l'écoulement. Après avoir rappelé le principe de l'anémométrie à fil chaud et les différents modèles d'échanges de chaleur

  13. Feasibility of Hot-Block Anemometry.

    DTIC Science & Technology

    1988-02-29

    operate constant- temperature hot-wires and hot- films (Refs. 30-33) and temperature sensors (Ref. 34) was applied to the Phase I prototype probes...by simpler and less expensive electronics: simple thermistor circuits could be used for the * temperature sensors and only one anemometer amplifier and...thermal losses due to forced convection from a small body, a sphere or block. Temperature or heat-transfer sensors are located to measure variations in

  14. Low temperature junction growth using hot-wire chemical vapor deposition

    DOEpatents

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  15. The influence of temperature fluctuations on hot-wire measurements in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Örlü, Ramis; Malizia, Fabio; Cimarelli, Andrea; Schlatter, Philipp; Talamelli, Alessandro

    2014-07-01

    There are no measurement techniques for turbulent flows capable of reaching the versatility of hot-wire probes and their frequency response. Nevertheless, the issue of their spatial resolution is still a matter of debate when it comes to high Reynolds number near-wall turbulence. Another, so far unattended, issue is the effect of temperature fluctuations—as they are, e.g. encountered in non-isothermal flows—on the low and higher-order moments in wall-bounded turbulent flows obtained through hot-wire anemometry. The present investigation is dedicated to document, understand, and ultimately correct these effects. For this purpose, the response of a hot-wire is simulated through the use of velocity and temperature data from a turbulent channel flow generated by means of direct numerical simulations. Results show that ignoring the effect of temperature fluctuations, caused by temperature gradients along the wall-normal direction, introduces—despite a local mean temperature compensation of the velocity reading—significant errors. The results serve as a note of caution for hot-wire measurements in wall-bounded turbulence, and also where temperature gradients are more prevalent, such as heat transfer measurements or high Mach number flows. A simple correction scheme involving only mean temperature quantities (besides the streamwise velocity information) is finally proposed that leads to a substantial bias error reduction.

  16. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  17. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  18. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    SciTech Connect

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-21

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  19. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  20. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  1. Hot wire needle probe for thermal conductivity detection

    DOEpatents

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  2. Introducing a nano-scale crossed hot-wire for high Reynolds number measurements

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Fu, Matthew; Hultmark, Marcus

    2016-11-01

    Hot-wire anemometry is commonly used for high Reynolds number flow measurements, mainly because of its continuous signal and high bandwidth. However, measuring two components of velocity in high Reynolds number wall-bounded flows has proven to be quite challenging with conventional crossed hot-wires, especially close to the wall, due to insufficient resolution and obstruction from the probe. The Nano-Scale Thermal Anemometry Probe (NSTAP) is a miniature hot-wire that drastically increased the spatial and temporal resolutions for single-component measurements by using a nano-scale platinum wire. Applying a novel combining method and reconfiguration of the NSTAP design, we created a sensor (x-NSTAP) that is capable of two-component velocity measurements with a sensing volume of approximately 50 × 50 × 50 μ m, providing spatial and temporal resolutions similar to the single component NSTAP. The x-NSTAP is deployed in the Superpipe facility for accurate measurements of the Reynolds stresses at very high Reynolds numbers. Supported under NSF Grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  3. Analysis of hot-wire measurements accuracy in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Drózdz, Artur; Elsner, Witold

    2015-09-01

    This paper discusses the issue of measuring velocity fluctuations of turbulent boundary layer using hot-wire probes. The study highlights the problem of spatial resolution, which is essential when measuring small-scales in wall-bounded flows. Additionally, attention was paid to the inconsistency in streamwise fluctuation measurements using single- and X-wire probes. To clarify this problem, the energy spectra using wavelet transformation were calculated. The analysis was performed for turbulent boundary layer flow, which was characterized by Reynolds number based on the friction velocity equal Reτ≈ 1000.

  4. Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer.

    PubMed

    Paulsen, P K; Hasenkam, J M

    1983-01-01

    Three-dimensional blood velocity profiles were registered in the ascending aorta of dogs approximately 2 and 5 cm above the aortic valves by means of constant temperature hot-film anemometry. The velocity was measured at 41 predetermined points of measurement evenly distributed over the cross-sectional area. Later data analyses using a three-dimensional plotting system, visualized velocity profiles at 200 time intervals during one mean heart cycle. The overall appearance of the profiles was that of a flat transitional flow with a slight skewness. The highest velocity was found nearer to the posterior and left vessel wall. The skewness started during top systole and persisted to the beginning of diastole. Furthermore, many small velocity fluctuations were seen during top systole, but they might also be caused by secondary rotational flow phenomena. This new three-dimensional and dynamic method for visualizing velocity profiles seems to offer advantages, as it demonstrates the total velocity profile all over the cross-sectional area.

  5. Development of a Martian Sonic Anemometer

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Banfield, D. J.; Lasnik, J.; Waters, J. T.; McEwan, I. J.; Richardson, M. I.

    2005-08-01

    This presentation will describe the progress to-date on the development of an acoustic anemometer for the in-situ measurement of wind speeds on Mars, funded by NASA PIDDP. Improved measurements of Martian winds are needed for several reasons: better prediction and understanding of global and regional weather, direct measurement of fluxes between surface/atmosphere of momentum, heat, and trace atmospheric constituents, characterizing and monitoring boundary layer winds that influence the safe delivery of spacecraft to/from the Martian surface, and improved characterization of geologically important aeolian processes that can pose a hazard to future exploration via dust storms and dust devils. Prior attempts to measure surface winds have been limited in capability and difficult to calibrate. Sonic anemometry, measuring wind speed via sound pulse travel-time differences, can overcome many of these issues. Sonic anemometry has several distinct advantages over other methods such as hot wire techniques: higher sensitivity ( <5 cm/s), higher time resolution (10-100 Hz), and fewer intrinsic biases for improved accuracy. Together, these open the possibility of resolving turbulent boundary layer eddies to directly capture surface-to-atmospheric fluxes for the first time. We will describe the results of our development of an acoustic anemometer using capacitive micro-machined devices, optimized for acoustic coupling in a low-pressure medium like the Martian atmosphere. This development includes transducer characterization tests in a pressure chamber at Ball Aerospace with Mars-relevant CO2 pressures. We will also describe experimental results showing that the addition of water in a low-pressure CO2 atmosphere can significantly increase acoustic attenuation. Finally we will describe plans for further optimization of the instrument for future Mars payloads.

  6. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-09-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power ( P), scanning speed ( V s), wire feed rate ( V f), and wire current ( I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  7. Development of absolute hot-wire anemometry by the 3omega method.

    PubMed

    Heyd, Rodolphe; Hadaoui, Abdallah; Fliyou, Mohamed; Koumina, Abdelaziz; El Hassani Ameziane, Lahcen; Outzourhit, Abdelkader; Saboungi, Marie-Louise

    2010-04-01

    We have developed hot-wire anemometry applying the 3omega method. The approach is based on the same heat transfer process as traditional anemometry, but substituting the constant current by a sinusoidal current and using synchronous detection to measure the conductive-convective exchange coefficient and the gas flow rate. Our theoretical model is tested with air flow at 300 K under atmospheric pressure: The experimental results are in agreement with the numerical simulation, justifying the technical choices in the 3omega method and the approximations made. The effectiveness of the 3omega method for measuring the flow rate and the conductive-convective exchange coefficient between the hot wire and flowing gas is discussed.

  8. Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers

    SciTech Connect

    Monkewitz, P. A.; Duncan, R. D.; Nagib, H. M.

    2010-09-15

    The current experimental activity aimed at resolving the scaling of stream-wise turbulence intensity profiles uu{sup +}(y{sup +}) with Reynolds number in turbulent flat plate boundary layers has brought the largely unresolved issue of correcting systematic errors in hot-wire measurements of uu{sup +}(y{sup +}) into focus. Here, a heuristic scheme is proposed to generate unique uu{sup +}(y{sup +};Re{sub {delta}{sup *}}) profiles from data obtained with single hot wires of widely different length, aspect ratio and construction over a large Reynolds number range of 4000 < or approx. Re{sub {delta}{sup *}} < or approx. 50 000. A comparison with LDA data and other checks suggest that the present correction scheme produces uu{sup +}(y{sup +};Re{sub {delta}{sup *}}) profiles close to the (unknown) true profiles.

  9. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  10. Gravitationally defined velocities for a low speed hot-wire calibration

    NASA Technical Reports Server (NTRS)

    Haw, R. C.; Ali, S. K.; Foss, J. F.

    1987-01-01

    A technique to provide the reference velocity for a low speed hot-wire calibration is described. A pivoted arm falls under the action of gravity and the resulting velocity field can be used to define the transfer function coefficients in a modified Collis and Williams (1959) relationship. In nominal agreement with a published result, a deviation from this relationship for a film Reynolds number such that Re exp n of less than about 0.24 is observed.

  11. Hot-wire anemometry for turbulence measurements in helium-air mixtures

    NASA Technical Reports Server (NTRS)

    Libby, P. A.; Larue, J. C.

    1979-01-01

    The use of extended hot-wire anemometry involving an interfering probe is shown to permit measurements of variable density turbulence such as arises in the mixing of helium and air. The methods of calibration and data reduction leading to time series in one or more velocity components, in the mass fraction of helium, and in the mixture density are described. Typical results in various flows to which the technique has been applied are discussed.

  12. Hot-wire anemometry for in-flight measurement of aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.

    1974-01-01

    An airborne hot-wire anemometry system capable of providing data concerning the vortex structure in the wake of a preceding aircraft has been used in several flight studies. The design features of this technique and the operational experience with it are described. This development program has resulted in a flight-test technique that can make accurate velocity measurements in flow regimes where large velocity gradients occur.

  13. Gravitationally defined velocities for a low speed hot-wire calibration

    NASA Technical Reports Server (NTRS)

    Haw, R. C.; Ali, S. K.; Foss, J. F.

    1987-01-01

    A technique to provide the reference velocity for a low speed hot-wire calibration is described. A pivoted arm falls under the action of gravity and the resulting velocity field can be used to define the transfer function coefficients in a modified Collis and Williams (1959) relationship. In nominal agreement with a published result, a deviation from this relationship for a film Reynolds number such that Re exp n of less than about 0.24 is observed.

  14. Thermal conductivity measurement in clay dominant consolidated material by Transient Hot-Wire method.

    NASA Astrophysics Data System (ADS)

    Garnier, J. P.; Gallier, J.; Mercx, B.; Dudoignon, P.; Milcent, D.

    2010-06-01

    The transient hot-wire (THW) technique is widely used for measurements of the thermal-conductivity of most fluids and some attempts have also been carried out for simultaneous measurements of the thermal-diffusivity with the same hot wire. This technique was also tried to determine thermal properties of soils by the mean of probes which can be considered as wire with some assumptions. The purpose of this paper is to validate the thermal conductivity measurement by the THW technique in geomaterials, composed of compacted sand + clay mineral that can be used for earth construction (Compacted Earth Brick). The thermal transfer behaviors are mainly governed by the texture and moisture of the geomaterials. Thus the investigations were performed (1) in media made of glass beads of different diameters in dry and saturated state in order to observe the role of grain sizes and saturation state on the wire temperature (Δt) measurements and (2) in the compacted clay-geomaterial at different moisture states. The Δt / ln(t) diagrams allow the calculation of two thermal conductivities. The first one, measured in the short time acquisition (< 1s), characterizes the microtexture of the material and its hydrated state. The second one, measured for longer time acquisitions, characterizes the mean thermal conductivity of the material.

  15. Novel method and experimental validation of statistical calibration via Gaussianization in hot-wire anemometry

    NASA Astrophysics Data System (ADS)

    Gluzman, Igal; Cohen, Jacob; Oshman, Yaakov

    2016-11-01

    We introduce a statistical method based on Gaussianization to estimate the nonlinear calibration curve of a hot-wire probe, that relates the input flow velocity to the output (measured) voltage. The method uses as input a measured sequence of voltage samples, corresponding to different unknown flow velocities in the desired operational range, and only two measured voltages along with their known (calibrated) flow velocities. The novel method is validated against standard calibration methods using data acquired by hot-wire probes using wind-tunnel experiments. We demonstrate our new calibration technique by placing the hot-wire probe at certain region downstream of a cube-shaped body in a free stream of air flow. For testing our calibration method we rely on flow statistics that exist, among others, in a certain region of a turbulent wake formed downstream of the cube-shaped body. The specific properties are: first, the velocity signal in the wake should be as close to Gaussian as possible. Second, the signal should cover the desired velocity range that should be calibrated. The appropriate region to place our probe is determined via computation of the first four statistical moments of the measured signals in different regions of the wake.

  16. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  17. Improvements of a nano-scale crossed hot-wire for high Reynolds number measurements

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Hultmark, Marcus

    2015-11-01

    Hot-wire anemometry, despite its limited spatial and temporal resolution, is still the preferred tool for high Reynolds number flow measurements, mainly due to the continuous signal. To address the resolution issues, the Nano-Scale Thermal Anemometry Probe (NSTAP) was developed at Princeton University. The NSTAP has a sensing volume more than one order of magnitude smaller than conventional hot-wires, and it has displayed superior performance. However, the NSTAP can only measure a single component of the velocity. Using a novel combining method, a probe that enables two-component velocity measurements has been created (the x-NSTAP). The measurement volume is approximately 50 × 50 × 50 μ m, more than one order of magnitude smaller in all directions compared to conventional crossed hot-wires. The x-NSTAP has been further improved to allow more accurate measurements with the help of flow visualization using a scaled model but matching Reynolds number. Results from turbulent flow measurements with the new x-NSTAP are also presented. Supported under NSF grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  18. Evaluation of a hot-wire respiratory flowmeter for clinical applicability.

    PubMed

    Yoshiya, I; Shimada, Y; Tanaka, K

    1979-11-01

    A hot-wire flowmeter was evaluated for clinical applicability. 1) Calibration with a syringe could be done if emptying duration was 1-15 s. 2) Outputs linearly decreased with decreasing concentration of N2 in O2. Outputs with CO2 in O2 and N2O in O2 represented nonlinear convex relationships with varying concentrations of CO2 and N2O. Correction for each gas mixture to be measured is required. 3) Outputs linearly decreased with decreasing barometric pressure. 4) Stability assessed with a piston respirator was excellent (within +/- 2% of syringe volume) after 15 min warmup time. However, daily calibrations are recommended in clinical situations. 5) Nebulization, if not excessive, was acceptable if the expired gas was measured at the mouth. 6) Hot-wire burning, which occurred when it was partially in contact with materials whose specific heat differed with air, was successfully protected with a simple shutoff circuit. 7) The possibility of producing nitrogen oxides by the catalytic action of the platinum hot-wire was denied by colorimetric determination. Interchangeability and sterilizability of transducers and improved mechanical strength with platinum-rhodium alloy are also discussed.

  19. Analysis of human glottal velocity using hot-wire anemometry and high-speed imaging.

    PubMed

    Kataoka, Hideyuki; Arii, Shiro; Ochiai, Yoshitaka; Suzuki, Toyohiko; Hasegawa, Kensaku; Kitano, Hiroya

    2007-05-01

    The aim of this study was to analyze glottal velocity and glottal opening and closure. For this purpose, we developed a miniature, flexible, hot-wire probe that can make truly instantaneous measurements of the human larynx in vivo. A miniature hot-wire tip was inserted into a flexible transnasal endoscope. Fiberscopic examination was performed transnasally so that we could observe glottal vibration using high-speed imaging. The tip of the hot-wire probe was placed just above the glottis. The position of the probe was carefully monitored and checked with another flexible endoscope. Changes in velocity were recorded periodically. The velocity was higher in close proximity to the vocal folds. High-speed motion pictures were taken at a rate of 2000 frames per second with an auxiliary light source. Quantitative analysis of glottal velocity is required to improve our understanding of the relationship between laryngeal physiology and acoustics in humans. To solve the problem of synchronization inaccuracy, glottal velocity was captured instantaneously in the high-speed imaging system's processor memory.

  20. All hot wire CVD TFTs with high deposition rate silicon nitride (3 nm/s)

    NASA Astrophysics Data System (ADS)

    Schropp, R. E. I.; Nishizaki, S.; Houweling, Z. S.; Verlaan, V.; van der Werf, C. H. M.; Matsumura, H.

    2008-03-01

    Using the hot wire (HW) chemical vapor deposition (CVD) method for the deposition of silicon nitride (SiN x) and amorphous silicon (a-Si:H) thin films we have achieved high deposition rates for device quality materials up to 7.3 nm/s and 3.5 nm/s, respectively. For thin films of SiN 1.3, deposited at 3 nm/s, the mass-density of the material reached a very high value of 3.0 g/cm 3. The silane utilization rate for this fast process is 77%. The high mass-density was consistent with the low 16BHF etch rate of 7 nm/min. We tested this SiN 1.3 in "all hot wire" thin film transistors (TFTs), along with a-Si:H material in the protocrystalline regime at 1 nm/s. Analysis shows that these "all hot wire" TFTs have a Vth = 1.7-2.4 V, an on/off ratio of 10 6, and a mobility of 0.4 cm 2/V s after a forming gas anneal. We therefore conclude that the HWCVD provides SiN x materials with dielectric properties at least as good as PECVD does, though at a much higher deposition rate and better gas utilization rates.

  1. Thermal MEMS flow meter for gaseous working fluids on the basis of the hot-wire thermoanemometric sensor

    NASA Astrophysics Data System (ADS)

    Tsivinskaya, T. A.; Avaeva, L. G.; Grigoriev, P. V.; Mileshin, S. A.

    2016-10-01

    This paper describes the main principles of constructing innovative MEMS flow meters for gaseous working fluids. MEMS flow meter contains hot-wire thermoanemometrisc sensor which response to the temperature change caused by convective working fluid heat transfer from a hot-wire. The advantages of using hot-wire thermoanemometric sensors were analyzed. The main emphasis of this work is on speed, construction simplicity and small size of the sensor. The new approach to the solution of a problem of sensor output signal relation with the working fluid temperature is presented. This approach is based on adding an extra temperature sensor and a special scheme for thermal compensation to the hot-wire sensor. The temperature scale between temperature sensors (thermistors) corresponds to the flow speed and the flow rate.

  2. Evaluation of a hot-wire hair removal device compared to razor shaving.

    PubMed

    Biesman, Brian S

    2013-07-01

    We describe a blinded, controlled, prospective clinical study of a hot-wire device promoted for hair removal and the reduction or delay of hair regrowth (no!no!, Radiancy, Inc., Orangeburg, NY) compared to a shaving control. Twenty-two subjects were treated by trained clinical staff with the hot-wire device according to its Instructions for Use on the lower leg two times per week for 8 weeks. An adjacent site was shaved with a razor blade on the same schedule to provide a control. Subjects were followed for 3 months after the last treatment to study the durability of the results. Standardized high-resolution photographs were made at baseline, once a week during treatment, and monthly during the post-treatment follow-up period. Micro-tattoos were used to ensure treatments and photographs were reliably made in the same anatomical location from visit to visit. Both active and control sites were shaved prior to baseline and allowed to regrow for a fixed period of time before first treatment to provide a consistent and well-defined baseline hair condition. Quantitative hair counts were made by a third party from the photographs and standard statistical analysis was performed to look for differences between the active and control sites. Visual assessments and quantitative analysis was also performed on the photographs to see if there were any differences in hair thickness (diameter) and hair color between the active and control sites. The results show that shaving and the hot-wire device are indistinguishable in short-term or long-term effect, based on both visual assessment of the photographs and statistical analysis of the hair counts. The control (shaving) had a mean baseline hair count of 79.4, which remained stable (74.8-84.3) during the 8 week-treatment phase and climbed substantially after stopping treatment to 98.8, 100.1, and 104.6 at 1, 2, and 3 months post-treatment, respectively. The active (hot-wire device) had a mean baseline hair count of 86.0 which

  3. Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer.

    PubMed

    Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.

  4. A Thermal Analysis of a Hot-Wire Probe for Icing Applications

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Rigby, David L.; Venkataraman, Krishna

    2014-01-01

    This paper presents a steady-state thermal model of a hot-wire instrument applicable to atmospheric measurement of water content in clouds. In this application, the power required to maintain the wire at a given temperature is used to deduce the water content of the cloud. The model considers electrical resistive heating, axial conduction, convection to the flow, radiation to the surroundings, as well as energy loss due to the heating, melting, and evaporation of impinging liquid and or ice. All of these parameters can be varied axially along the wire. The model further introduces a parameter called the evaporation potential which locally gauges the maximum fraction of incoming water that evaporates. The primary outputs of the model are the steady-state power required to maintain a spatially-average constant temperature as well as the variation of that temperature and other parameters along the wire. The model is used to understand the sensitivity of the hot-wire performance to various flow and boundary conditions including a detailed comparison of dry air and wet (i.e. cloud-on) conditions. The steady-state power values are compared to experimental results from a Science Engineering Associates (SEA) Multi-Element probe, a commonly used water-content measurement instrument. The model results show good agreement with experiment for both dry and cloud-on conditions with liquid water content. For ice, the experimental measurements under read the actual water content due to incomplete evaporation and splashing. Model results, which account for incomplete evaporation, are still higher than experimental results where the discrepancy is attributed to splashing mass-loss which is not accounted in the model.

  5. Generation and Transport of Hot Electrons in Cone-Wire Targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  6. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    NASA Astrophysics Data System (ADS)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2017-08-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  7. Measurement of three-dimensional flow in turbomachinery with a single slanted hot-wire

    NASA Astrophysics Data System (ADS)

    Li, Yuchun; Jiang, Haokang

    1989-04-01

    An improvement to measuring three-dimensional mean flow field in turbomachinery with a single slanted hot-wire is presented. The method features high accuracy and broad angular measuring range. In order to obtain the three-dimensional flow field, the single slanted wire is set in several positions around the probe axis. The data are sampled with the help of a high-speed data acquisition system and the phase-locked ensemble averaging technique. Then, the three-dimensional mean flow field is calculated by means of a data processing program previously developed. A periodic three-dimensional flow field at the exit of an axial-flow compressor rotor is successfully measured. A proof calculation against the calibration data shows that the errors in velocity measurement are less than 1 percent of the mean velocity, and the errors in the flow direction are less than 1 degree.

  8. Calibration and Measurement in Turbulence Research by the Hot-Wire Method

    NASA Technical Reports Server (NTRS)

    Kovasznay, Kaszlo

    1947-01-01

    The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.

  9. Real-time monitoring of laser hot-wire cladding of Inconel 625

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  10. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    PubMed

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.

  11. Fabrication and testing of subminiature multi-sensor hot-wire probes

    NASA Technical Reports Server (NTRS)

    Ligrani, P. M.; Westphal, R. V.; Lemos, F. R.

    1989-01-01

    A method for the fabrication of hot-wire sensors measuring 0.6 micron in diameter and 200 microns in length is described. This method allows accurate control of sensing-element orientation, thus making it possible to produce multisensor probes. Test results obtained with a miniature sensor fabricated by this method, for the outer region of a turbulent boundary layer developing in a zero presure gradient were compared to measurements from a conventional-sized probe made in the same flow, demonstrating that, because of their improved spatial resolution, subminiature sensors can provide more accurate measurements in boundary layers than do the conventional probes.

  12. Hot-Wire CVD Amorphous Si Materials for Solar Cell Application

    SciTech Connect

    Wang, Q.

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.

  13. Flow distribution in a roller jet bit determined from hot-wire anemometry measurements

    SciTech Connect

    Gavignet, A.A.; Bradbury, L.J.; Quetier, F.P.

    1987-03-01

    In current practice, the optimization of drilling hydraulics consists of the selection of nozzle sizes that maximize either jet impact or hydraulic power at the nozzle. But what is required for a real optimization is the knowledge of the hydraulic forces available for cleaning at the rock face, not at the nozzle. This paper shows the results of hot-wire anemometry experiments that provide insight into the flow distribution in a jet bit. Direct measurements of the flow field, including turbulence levels, are reported and discussed.

  14. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  15. Battlefield applications of anemometers

    NASA Astrophysics Data System (ADS)

    Bober, Tomas; Rophael, David; Recchia, Thomas

    2017-05-01

    The work presented within examines the performance of mechanical and electronic anemometers in battlefield applications. The goals of the study were to determine the utility of a local anemometer in quasi-combat engagements for direct fire weapon systems, to observe the limitations of each type of anemometer, and to determine which measurement method results in the most accurate ballistic correction. These goals are accomplished by combining a ballistic trajectory model, a turbulent wind field model, a sensor response model, and a fire control model into a single larger scale simulation that utilizes a Monte Carlo approach. The results of this effort showed that utilizing either a mechanical anemometer or an electronic anemometer with a relatively long averaging window produced the most accurate ballistic wind correction.

  16. Note: effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method.

    PubMed

    Lee, Seung-Hyun; Jang, Seok Pil

    2012-07-01

    In this paper, numerical and experimental investigations are systematically performed to identify the effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method (THWM), a widely accepted technique for measuring the thermal conductivity of various media, especially nanofluids. To validate our numerical simulation code, the numerical results are compared with theoretical solutions as well as with experimental results. Based on the results, we show that the onset time of natural convection in THWM decreases rapidly with the increase of the wire's tilting angle from vertical position. Also, we systematically show the effect of the wire's tilting angle on the linear region, which is a suitable measurement interval, and on the measurement error of THWM.

  17. Unraveling the complex chemistry using dimethylsilane as a precursor gas in hot wire chemical vapor deposition.

    PubMed

    Toukabri, Rim; Shi, Yujun

    2014-05-07

    The gas-phase reaction chemistry when using dimethylsilane (DMS) as a source gas in a hot-wire chemical vapor deposition (CVD) process has been studied in this work. The complex chemistry is unraveled by using a soft 10.5 eV single photon ionization technique coupled with time-of-flight mass spectrometry in combination with the isotope labelling and chemical trapping methods. It has been demonstrated that both free-radical reactions and those involving silylene/silene intermediates are important. The reaction chemistry is characterized by the formation of 1,1,2,2-tetramethyldisilane (TMDS) from dimethylsilylene insertion into the Si-H bond of DMS, trimethylsilane (TriMS) from free-radical recombination, and 1,3-dimethyl-1,3-disilacyclobutane (DMDSCB) from the self dimerization of either dimethylsilylene or 1-methylsilene. At low filament temperatures and short reaction time, silylene chemistry dominates. The free-radical reactions become more important with increasing temperature and time. The same three products have been detected when using tantalum and tungsten filaments, indicating that changing the filament material from Ta to W does not affect much the gas-phase reaction chemistry when using DMS as a source gas in a hot-wire CVD reactor.

  18. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  19. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    SciTech Connect

    Yuan, Guangjie Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  20. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-06

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well.

  1. Measurements of thermal conductivity and thermal diffusivity of hen egg-white lysozyme crystals using a short hot wire method

    NASA Astrophysics Data System (ADS)

    Fujiwara, Seiji; Maki, Syou; Tanaka, Seiichi; Maekawa, Ryunosuke; Masuda, Tomoki; Hagiwara, Masayuki

    2017-07-01

    Thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals were examined by using the transient short hot wire method. This method is based on the conventional hot wire method, but improved by using a wire that is much shorter than conventional ones. The magneto-Archimedes levitation technique was utilized to attach the HEWL crystals onto the wire. Owing to the upward magnetic force, the HEWL crystals were deposited at the air-liquid interface of the protein buffer solution where the short hot wire was preliminarily fixed. In situ observation clarified that the wire was completely buried into the HEWL crystals. By means of these techniques, the measurement of thermal conductivity and thermal diffusivity of HEWL crystals was realized for the first time. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. Crystal growth was carried out over 20 h at 17.2 °C. The applied magnetic field was 4 T. Measurements were conducted during the crystal growth at two different times. The thermal conductivity and diffusivity of the HEWL crystals were determined to be 0.410 W/(m.K) and 3.77×10-8 m2/s at 14 h after, and 0.438 W/(m.K) and 5.18×10-8 m2/s at 20 h after, respectively. We emphasize that this method is versatile and applicable for other protein crystals.

  2. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma

    SciTech Connect

    Terasaka, K. Kato, Y.; Tanaka, M. Y.; Yoshimura, S.; Morisaki, T.; Furuta, K.; Aramaki, M.

    2014-11-15

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  3. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma.

    PubMed

    Terasaka, K; Yoshimura, S; Kato, Y; Furuta, K; Aramaki, M; Morisaki, T; Tanaka, M Y

    2014-11-01

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  4. Thermoelectric Power of Nanocrystalline Silicon Prepared by Hot-Wire Chemical-Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kearney, Brian; Liu, Xiao; Jugdersuren, Battogtokh; Queen, Daniel; Metcalf, Thomas; Culbertson, James; Chervin, Christopher; Stroud, Rhonda; Nemeth, William; Wang, Qi

    Although doped bulk silicon possesses a favorable Seebeck coefficient and electrical conductivity, its thermal conductivity is too large for practical thermoelectric applications. Thin film nanocrystalline silicon prepared by hot-wire chemical-vapor deposition (HWCVD) is an established material used in multijunction amorphous silicon solar cells. Its potential in low cost and scalable thermoelectric applications depends on achieving a low thermal conductivity without sacrificing thermoelectric power and electrical conductivity. We examine the thermoelectric power of boron-doped HWCVD nanocrystalline silicon and find that it is comparable to doped nanostructured silicon alloys prepared by other methods. Given the low thermal conductivity and high electrical conductivity of these materials, they can achieve a high thermoelectric figure of merit, ZT. Work supported by the Office of Naval Research.

  5. The Third Hot-wiring the Transient Universe Workshop (HTU-III)

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Graham, M. J.; Mahabal, A. A.; Seaman, R.

    2014-10-01

    Hot-wiring the Transient Universe 3 explored opportunities and challenges of massively parallel time domain surveys coupled with rapid coordinated multi-wavelength follow-up observations. The interdisciplinary agenda covered future and ongoing science investigations, information infrastructure for publishing observations in real time, as well as novel data science to classify events and systems to optimize follow-up campaigns. Time domain astronomy is at the fore of modern astrophysics and crosses fields from solar physics and solar system objects, through stellar variability, to explosive phenomena at galactic and cosmological distances. Recent rapid progress by instruments in space and on the ground has been toward a continuous record of the electromagnetic sky with ever increasing coverage, sensitivity, and temporal resolution. With the advent of gravitational wave and neutrino observatories we are witnessing the birth of multi-messenger astronomy.

  6. Landing Gear Components Noise Study - PIV and Hot-Wire Measurements

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.

    2010-01-01

    PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.

  7. Direct drag and hot-wire measurements on thin-element riblet arrays

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Lazos, B. S.

    1987-01-01

    An experimental study of stream wise, near-wall, thin-element riblet arrays under a turbulent boundary layer has been conducted in low-speed air. Hot-wire data show that a single, isolated thin-element riblet causes formation of counter-rotating vortex-pairs with a spanwise wavelength of 130 viscous lengths. Abrupt shifts in turbulence intensity magnitude and peak location are observed for streamwise riblet arrays as spanwise riblet spacing is varied. Direct drag measurements show net drag reduction (up to 8.5 percent) over a wide range of riblet spacings along with behavior at discrete non-dimensional spacings indicative of vortex activity. Overall, the data suggest that more than one drag reduction mechanism may be involved.

  8. Computational aspects of hot-wire identification of thermal conductivity and diffusivity under high temperature

    NASA Astrophysics Data System (ADS)

    Vala, Jiří; Jarošová, Petra

    2016-07-01

    Development of advanced materials resistant to high temperature, needed namely for the design of heat storage for low-energy and passive buildings, requires simple, inexpensive and reliable methods of identification of their temperature-sensitive thermal conductivity and diffusivity, covering both well-advised experimental setting and implementation of robust and effective computational algorithms. Special geometrical configurations offer a possibility of quasi-analytical evaluation of temperature development for direct problems, whereas inverse problems of simultaneous evaluation of thermal conductivity and diffusivity must be handled carefully, using some least-squares (minimum variance) arguments. This paper demonstrates the proper mathematical and computational approach to such model problem, thanks to the radial symmetry of hot-wire measurements, including its numerical implementation.

  9. Measurement of the Thermal-Conductivity Coefficient of Nanofluids by the Hot-Wire Method

    NASA Astrophysics Data System (ADS)

    Minakov, A. V.; Rudyak, V. Ya.; Guzei, D. V.; Pryazhnikov, M. I.; Lobasov, A. S.

    2015-01-01

    In this work, the authors present results of adaptation and testing of the hot-wire method for determination for the thermal-conductivity coefficient of nanofluids. A mathematical model of heat transfer with allowance for free convection has been constructed to elucidate the parameters of an experimental setup and the range of its applicability. The experimental procedure has been tested on measurements of the thermal conductivities of water and ethylene glycol. The thermal-conductivity coefficient of a nanofluid has been measured at room temperature. The nanofluid under study was prepared on the basis of ethylene glycol and alumina nanoparticles. The concentrations of the nanoparticles ranged from 0.5% to 2% by volume. Good agreement has been obtained between the measured values of the thermal-conductivity coefficient and the data of other authors.

  10. Measuring on-line compliance in ventilated infants using hot wire anemometry.

    PubMed

    Baboolal, R; Kirpalani, H

    1990-10-01

    We investigated the validity of using tidal volume (VT) as measured by the neonatal volume monitor (NVM) to derive respiratory compliance. The NVM is a noninvasive device that measures VT by hot wire anemometry. The quotient of VT and the inflation pressure amplitude from the mechanical ventilator provided a measure of respiratory compliance. This was validated against the single breath occlusion technique in 15 infants (birth weight 0.9 to 4.4 kg). To ensure fully passive expiration, only paralyzed or sedated patients were studied. Only 12 of the 15 infants were analyzed because of limitations in the single breath technique. In three infants the flow-volume curves obtained were alinear, indicating inhomogeneity. In the 12 infants with acceptable single breath data, agreement between the two methods was excellent. Using the expired volume, r2 was .99. We conclude that the NVM can be used to obtain valid estimates of respiratory compliance on-line in intubated infants.

  11. Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Soo; Lee, Sang-Hoon; Kim, Da-Seul; Kim, Kun-Su; Park, Soon-Won; Hwang, Nong-Moon

    2017-01-01

    The deposition behavior of silicon films by hot wire chemical vapor deposition (HWCVD) was approached by non-classical crystallization, where the building block of deposition is a nanoparticle generated in the gas phase of the reactor. The puzzling phenomenon of the formation of an amorphous incubation layer on glass could be explained by the liquid-like property of small charged nanoparticles (CNPs), which are generated in the initial stage of the HWCVD process. Using the liquid-like property of small CNPs, homo-epitaxial growth as thick as 150 nm could be successfully grown on a silicon wafer at 600 °C under the processing condition where CNPs as small as possible could be supplied steadily by a cyclic process which periodically resets the process. The size of CNPs turned out to be an important parameter in the microstructure evolution of thin films.

  12. Measurement of Thermal Conductivity of Suspension for Ice Storage by Transient Hot Wire Method

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Obara, Keisuke; Okada, Masashi; Kawagoe, Tetsuo; Kang, Chaedong

    We have been studying on a suspension as a new thermal storage material. The suspension is made from silicone oil-water mixture with some additive or water with that by cooling with stirring. When designing the ice storage system using this suspension, the thermal conductivity of the suspension is essential. The purpose of this study is to measure a thermal conductivity of the ice-oil or ice-water suspension with good fluidity. The thermal conductivity was measured by at ransient hot wire method. In this study, the relationship between thermal conductivity and IPF was clarified, and thermal conductivity was expressed as a function of IPF. Moreover, the uncertainty of measurement of the thermal conductivity was estimated.

  13. A novel data reduction technique for single slanted hot-wire measurements used to study incompressible compressor tip leakage flows

    NASA Astrophysics Data System (ADS)

    Berdanier, Reid A.; Key, Nicole L.

    2016-03-01

    The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.

  14. Influence of wire mesh at nozzle exit on heat transfer from square jets - An experimental investigation

    NASA Astrophysics Data System (ADS)

    Muvvala, Pullarao; Balaji, C.; Venkateshan, S. P.

    2017-06-01

    The goal of this work is to compare the fluid flow and heat transfer characteristics of square jet in the presence of a wire mesh at the nozzle exit. Towards this, in-house experiments are carried out by impinging a square jet on a uniformly heated plate of finite thickness, with air as the cooling medium. Two different sets of square jets are employed in this study namely a jet in the absence of mesh and a jet in the presence of a wire mesh at the nozzle exit. Jet centerline mean velocity and turbulence intensity measurements are done with a hot-wire anemometer to support the heat transfer results.

  15. Experimental comparison of two hot-wire techniques for resolution of turbulent mass flux and local stagnation temperature in supersonic flow

    NASA Technical Reports Server (NTRS)

    Walker, D. A.; Ng, W. F.; Walker, M. D.

    1988-01-01

    The performance of two constant-temperature normal hot-wire techniques in a supersonic flow is examined. The first technique uses a single-wire and rapid scanning of multiple overheat ratios. Time averages of the signals at all overheats are used to separate the mean and rms mass flux, stagnation temperature and their cross-correlation. The second technique uses a dual-wire probe with each wire operating at different overheat ratios, giving instantaneous mass flux and stagnation temperature. Preliminary results indicate that the separation distance (0.18 mm) between the two hot wires in the dual-wire probe does not introduce significant error. However, the rms mass flux inferred from the dual-wire technique is a factor of two higher than that from the single-wire technique.

  16. Miniature drag force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  17. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    SciTech Connect

    Abrutis, Adulfas Silimavicus, Laimis; Kubilius, Virgaudas; Murauskas, Tomas; Saltyte, Zita; Kuprenaite, Sabina; Plausinaitiene, Valentina

    2014-03-15

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2 cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates were increased by a factor of ≈10–20 compared with those of traditional CVD at the same substrate temperature (400 °C). In-doped ZnO films with thickness of ≈150 nm deposited on sapphire-R grown at a wire current of 9 A exhibited a resistivity of ≈2 × 10{sup −3} Ωcm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.

  18. Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow

    NASA Astrophysics Data System (ADS)

    Segalini, A.; Cimarelli, A.; Rüedi, J.-D.; De Angelis, E.; Talamelli, A.

    2011-10-01

    The effort to describe velocity fluctuation distributions in wall-bounded turbulent flows has raised different questions concerning the accuracy of hot-wire measurement techniques close to the wall and more specifically the effect of spatial averaging resulting from the finite size of the wire. Here, an analytical model which describes the effect of the spatial filtering and misalignment of hot-wire probes on the main statistical moments in turbulent wall-bounded flows is presented. The model, which is based on the two-point velocity correlation function, shows that the filtering is directly related to the transverse Taylor micro-scale. By means of turbulent channel flow DNS data, the capacity of the model to accurately describe the probe response is established. At the same time, the filtering effect is appraised for different wire lengths and for a range of misalignment angles which can be expected from good experimental practice. Effects of the second-order terms in the model equations are also taken into account and discussed. In order to use the model in a practical situation, the Taylor micro-scale distribution at least should be provided. A simple scaling law based on classic turbulence theory is therefore introduced and finally employed to estimate the filtering effect for different wire lengths.

  19. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  20. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  1. The perennial cup anemometer

    NASA Astrophysics Data System (ADS)

    Kristensen, L.

    1999-01-01

    A short version of the history of the cup anemometer precedes a more technical discussion of the special features of this instrument. These include its extremely linear calibration and the non-linearity of its response to wind speed changes. A simple conceptual model by Schrenk is used to demonstrate this and to explain why the cup anemometer is able to start from a zero rotation rate at zero wind to one corresponding to a sudden change in the ambient wind speed to a finite value. The same model is used to show that the cup anemometer should be characterized by a distance constant rather than by a time constant. The bias in the measured mean wind speed due to the random variations in the three velocity components is discussed in terms of standard, semiquantitative turbulence models, and the main thesis is that this bias is overwhelmingly dominated by the fluctuations of the lateral wind velocity component, i.e. the wind component perpendicular to the mean wind direction, and not, as is often assumed, by the longitudinal wind velocity component. It is shown theoretically and tested experimentally that the bias due to lateral wind velocity fluctuations can be significantly reduced by means of a special data processing of the simultaneous signals from a cup anemometer and a wind vane. This means that, with care, the overall overspeeding can be reduced to less than 1%.

  2. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D.; Gierasch, P. J.; Toigo, A.; Dissly, R.; Dagle, W. R.; Schindel, D.; Hutchins, D.; Khuri-Yakub, B. T.

    2004-05-01

    We are developing an acoustic anemometer for use in the low pressure atmosphere of Mars. Acoustic anemometers have high sensitivity, high temporal resolution, high accuracy, and are insensitive to radiative heating and demand little power. In these ways they are superior to the anemometers previously flown to Mars. Accurate, well-calibrated anemometers are crucial for understanding the near-surface atmospheric environment (e.g., slope winds, convective cells, dust devils, and aeolian processes in general). Furthermore, the high time-resolution, sensitivity, 3-D capabilities and well-defined, open sampling volume available from an acoustic anemometer allow it to resolve individual turbulent eddies, a first for Mars. This feature allows it to directly measure eddy fluxes, for example water vapor vertical fluxes between the surface and atmosphere when coupled with a fast hygrometer (e.g. a TDL). This novel ability to measure water vapor fluxes is viewed as a high priority science goal of Mars landers. We expect that the instrument designed in this program will be a prime candidate to fly on either the Mars Science Laboratory Lander (2009 launch), or any of the future planned Mars Scout landers or Mars Surveyor Landers. With adaptation, the instrument could also find application on Titan, or at high altitude on Earth. Acoustic anemometers are well developed for Earth, but need modifications to function in the vastly different martian pressure environment. The two main hurdles are sound attenuation in Mars air, and transducer coupling inefficiency from density and sound speed mismatches with Mars air. The sound attenuation on Mars is significant, especially at ultrasonic frequencies. We have a simple model of the relevant phenomena to guide our choices to the optimal frequencies for Mars. The coupling between a transducer and the atmosphere is characterized by the match of their densities and sound speeds, or acoustic impedances, similar to index of refraction in optics

  3. Crystal Silicon Heterojunction Solar Cells by Hot-Wire CVD: Preprint

    SciTech Connect

    Wang, Q.; Page, M. R.; Iwaniczko, E.; Xu, Y. Q.; Roybal, L.; Bauer, R.; To, B.; Yuan, H. C.; Duda, A.; Yan, Y. F.

    2008-05-01

    Hot-wire chemical vapor deposition (HWCVD) is a promising technique for fabricating Silicon heterojunction (SHJ) solar cells. In this paper we describe our efforts to increase the open circuit voltage (Voc) while improving the efficiency of these devices. On p-type c-Si float-zone wafers, we used a double heterojunction structure with an amorphous n/i contact to the top surface and an i/p contact to the back surface to obtain an open circuit voltage (Voc) of 679 mV in a 0.9 cm2 cell with an independently confirmed efficiency of 19.1%. This is the best reported performance for a cell of this configuration. We also made progress on p-type CZ wafers and achieved 18.7% independently confirmed efficiency with little degradation under prolong illumination. Our best Voc for a p-type SHJ cell is 0.688 V, which is close to the 691 mV we achieved for SHJ cells on n type c-Si wafers.

  4. Notch toughness in hot-rolled low carbon steel wire rod

    SciTech Connect

    Baarman, M.H.

    1999-12-01

    Charpy V-notch toughness has been investigated in four hot-rolled, low carbon steels with different grain sizes and carbon contents between 0.019 and 0.057%. The raw material was wire rod designed for drawing and possible subsequent cold heading operations and manufactured from continuous cast billets. In this study, the influence of microstructure, mechanical properties, and alloying elements on the ductile-brittle transition behavior has been assessed. A particular emphasis has been given to the influence of boron with contents up to 0.0097%. As a result, transition temperatures between {minus}29 and +50 C explicated by the material properties have been obtained. The examination also shows that the transition temperature raises with circa 0.5 C for each added ppm boron most likely as a consequence of an enlargement of the ferrite grain size and the reduction of yield and tensile strength. The highest upper shelf energy and lowest transition temperature can be observed in a steel without boron additions and with maximum contents of carbon, silicon, and manganese.

  5. Hot-wire sandwiched Fabry-Perot interferometer for microfluidic flow rate sensing

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-08-01

    We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a "hot-wire" sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.

  6. Four-sensor Hot-Wire Probes: A Calibration and Data Reduction Strategy

    NASA Astrophysics Data System (ADS)

    Neal, Douglas; Foss, John

    2014-11-01

    Four-sensor hot-wire probes are capable of simultaneously measuring three components of the velocity vector with a high temporal resolution. Effective use of these probes requires sophisticated calibration and data reduction techniques and a number of different approaches have been published. Lavoie and Pollard (2003) evaluated four of these approaches and found them to vary significantly in terms of complexity, computational costs and accuracy of the results. Lavoie and Pollard showed the work of Wittmer (1998) is the least complicated to implement and has the smallest computational expense. The work of Doebbling (1990) has the best accuracy. A new technique for calibration and data reduction will be presented and compared against the methods of Wittmer (1998) and Doebbling (1990), using the same methodology and evaluation criteria. The results will be shown for a double x-array configuration over the calibration region of +/- 36° in pitch and yaw, but these methods are directly applicable to other four-sensor geometries.

  7. Automatic hot wire GTA welding of pipe offers speed and increased deposition

    SciTech Connect

    Sykes, I.; Digiacomo, J.

    1995-07-01

    Heavy-wall pipe welding for the power and petrochemical industry must meet code requirements. Contractors strive to meet these requirements in the most productive way possible. The challenge put to orbital welding equipment manufacturers is to produce pipe welding equipment that cost-effectively produces code-quality welds. Orbital welding equipment using the GTA process has long produced outstanding quality results but has lacked the deposition rate to compete cost effectively with other manual and semiautomatic processes such as SMAW, FCAW and GMAW. In recent years, significant progress has been made with the use of narrow-groove weld joint designs to reduce weld joint volume and improve welding times. Astro Arc Polysoude, an orbital welding equipment manufacturer based in Sun Valley, Calif., and Nantes, France, has combined the hot wire GTAW process with orbital welding equipment using a narrow-groove weld joint design. Field test results show this process and procedure is a good alternative for many heavy-wall-pipe welding applications.

  8. A hot probe setup for the measurement of Seebeck coefficient of thin wires and thin films using integral method

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Kasiviswanathan, S.

    2008-02-01

    An experimental setup is developed for the measurement of the Seebeck coefficient of thin wires and thin films in the temperature range of 300-650K. The setup makes use of the integral method for measuring the Seebeck voltage across the sample. Two pointed copper rods with in-built thermocouples serve as hot and cold probes as well as leads for measuring the Seebeck voltage. The setup employs localized heating and enables easy sample loading using a spring loaded mounting system and is fully automated. Test measurements are made on a constantan wire and indium tin oxide (ITO) thin film for illustration. The Seebeck voltage obtained for constantan wire is in agreement with the NIST data for copper constantan couple with an error of 1%. The calculated carrier concentration of ITO film from the Seebeck coefficient measurement is comparable with that obtained by electrical transport measurements. The error in the Seebeck coefficient is estimated to be within 3%.

  9. A hot probe setup for the measurement of Seebeck coefficient of thin wires and thin films using integral method.

    PubMed

    Kumar, S R Sarath; Kasiviswanathan, S

    2008-02-01

    An experimental setup is developed for the measurement of the Seebeck coefficient of thin wires and thin films in the temperature range of 300-650 K. The setup makes use of the integral method for measuring the Seebeck voltage across the sample. Two pointed copper rods with in-built thermocouples serve as hot and cold probes as well as leads for measuring the Seebeck voltage. The setup employs localized heating and enables easy sample loading using a spring loaded mounting system and is fully automated. Test measurements are made on a constantan wire and indium tin oxide (ITO) thin film for illustration. The Seebeck voltage obtained for constantan wire is in agreement with the NIST data for copper constantan couple with an error of 1%. The calculated carrier concentration of ITO film from the Seebeck coefficient measurement is comparable with that obtained by electrical transport measurements. The error in the Seebeck coefficient is estimated to be within 3%.

  10. Very thin and stable thin-film silicon alloy triple junction solar cells by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Veldhuizen, L. W.; Schropp, R. E. I.

    2016-08-01

    We present a silicon-based triple junction solar cell that requires a deposition time of less than 15 min for all photoactive layers. As a low-bandgap material, we used thin layers of hydrogenated amorphous silicon germanium with lower band gap than commonly used, which is possible due to the application of hot wire chemical vapor deposition. The triple junction cell shows an initial energy conversion efficiency exceeding 10%, and with a relative performance stability within 6%, the cell shows a high tolerance to light-induced degradation. With these results, we help to demonstrate that hot wire chemical vapor deposition is a viable deposition method for the fabrication of low-cost solar cells.

  11. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  12. Photodetectors on the basis of Ge/Si(001) heterostructures grown by the hot-wire CVD technique

    SciTech Connect

    Shengurov, V. G. Chalkov, V. Yu.; Denisov, S. A.; Alyabina, N. A.; Guseinov, D. V.; Trushin, V. N.; Gorshkov, A. P.; Volkova, N. S.; Ivanova, M. M.; Kruglov, A. V.; Filatov, D. O.

    2015-10-15

    The fabrication of photodetectors for the wavelength range of communications λ = 1.3–1.55 µm on the basis of Ge/Si(001) heterostructures with thick (∼0.5 µm) Ge layers grown by the hot-wire technique at reduced growth temperatures (350°C) is reported. The single-crystal Ga layers are distinguished by a low density of threading dislocations (∼10{sup 5} cm{sup –2}). The photodetectors exhibit a rather high quantum efficiency (∼0.05 at λ = 1.5 µm and 300 K) at moderate reverse saturation current densities (∼10{sup –2} A cm{sup –2}). Thus, it is shown that the hot-wire technique offers promise for the formation of integrated photodetectors for the wavelength range of communications, especially in the case of limitations on the conditions of heat treatments.

  13. Zero Pressure Gradient Flat Plate Boundary Layer Experiments Using Synchronized PIV and a Hot Wire Anemometry Rake

    NASA Astrophysics Data System (ADS)

    Tutkun, M.; Johansson, P. B. V.; George, W. K.; Stanislas, M.; Foucaut, J. M.; Kostas, J.; Coudert, S.; Delville, J.

    2006-11-01

    Zero pressure gradient flat plate boundary layer experiments have been performed in the 20 meter long test section of the Laboratoire de M'ecanique de Lille, LML, wind tunnel. Measurements were carried out at Reθ=10 000 and Reθ=20 000 using synchronized PIV and a hot wire anemometry rake. The boundary layer thickness at the measurement location was about 30 cm. A hot wire rake of 143 probes was placed in the test section of the wind tunnel to provide the time history of the boundary layer. 2 stereo PIV systems in the wallnormal-spanwise (YZ) plane, and 1 stereo PIV system to record in the streamwise-wallnormal (XY) were used. One high repetition PIV system was used in streamwise-spanwise (XZ) plane. The sampling frequency of the XZ PIV system was 3000 VF/s at Reθ=20 000 and 1500 VF/s at Reθ=10 000.

  14. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    PubMed

    Woo, Y R; Yoganathan, A P

    1985-01-01

    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.

  15. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  16. Improvement of the Crystallinity of Silicon Films Deposited by Hot-Wire Chemical Vapor Deposition with Negative Substrate Bias

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shen, Honglie; You, Jiayi

    2013-08-01

    We have investigated the effect of negative substrate bias on microcrystalline silicon films deposited on glass and stainless steel by hot-wire chemical vapor deposition (HWCVD) to gain insight into the effect of negative substrate bias on crystallization. Structural characterization of the silicon films was performed by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. It was found that the crystallinity of the films is obviously improved by applying the substrate bias, especially for films on stainless steel. At hot-wire temperature of 1800°C and negative substrate bias of -800 V, grain size as large as 200 nm was obtained on stainless-steel substrate with crystalline fraction 9% higher than that of films deposited on glass and 15% higher than that of films deposited without substrate bias. It is deduced that the improvement of the crystallinity is mainly related to the accelerated electrons emitted from the hot wires. The differences in this improvement between different substrates are caused by the different electrical potential of the substrates. A solar cell fabricated by HWCVD with -800 V substrate bias is demonstrated, showing an obviously higher conversion efficiency than that without substrate bias.

  17. In situ ellipsometric studies of the growth of a-Si:H films prepared by the hot wire deposition

    SciTech Connect

    Bauer, S.; Dusane, R.O.; Biehl, R.; Schroeder, B.; Oechsner, H.

    1996-12-31

    In situ ellipsometric studies have been performed during the nucleation and growth of hydrogenated amorphous silicon (a-Si:H) films prepared by the hot wire chemical vapor deposition (HWCVD) method in order to understand the growth mechanism of these films. For a comparison with films deposited by plasma enhanced chemical vapor deposition (PECVD), the hot wire deposition was carried out under similar conditions and reactor geometry as for the PECVD process. It is observed from the kinetic ellipsometry measurements that low filament temperature (T{sub Fil}) and low gas pressure favor the growth of more dense films, but at lower deposition rates. Moreover, for a given set of conditions an increase in substrate temperature (T{sub s}) leads to a higher final value of the film density with a different growth behavior in the initial stage. Thus, the filament temperature in the hot wire method seems to have a similar effect on the film density as the rf power has in the PECVD process, which has been observed earlier. Film density and surface roughness obtained from spectroscopic ellipsometry using a tetrahedron model which takes into account the effect of hydrogen on the dielectric function, is used to get information about the film microstructure. A correlation between this microstructure, the growth behavior and the electronic properties as the defect density or the ambipolar diffusion length in the films is also reported.

  18. Hot-wire chemical vapor deposition of silicon and silicon nitride for photovoltaics: Experiments, simulations, and applications

    NASA Astrophysics Data System (ADS)

    Holt, Jason Knowles

    Hot-wire chemical vapor deposition is a promising technique for deposition of thin film silicon for photovoltaics. Fundamental questions remain, however, about the gas-phase and surface-kinetic processes involved. To this end, the nature of the decomposition process has been studied in detail by use of mass spectrometry. Catalysis was evident for SiH3 production with the use of a new wire, while aged wires appear to produce radicals by a non-catalyzed route. Large quantities of silicon were present at the surface, consistent with a silicide layer. Threshold ionization mass spectrometry revealed large quantities of the SiH2 radical, attributed to heterogeneous pyrolysis on the walls of the reactor. At dilute (1% in He) silane pressures of up to 2 Torr, a negligible amount of ions and silicon agglomerates (Si2, Si2H, Si 2H6) were detected. Density functional theory calculations reveal an energetically favorable route for the reaction of Si and SiH 4, producing Si2H2 and H2. Two-dimensional Monte Carlo simulations were used to model a hot-wire reactor, showing that filament arrays can be used to improve film growth uniformity. Continuum simulations predict a maximum growth rate of 10 nm/s for dilute (1%) silane conditions and a rate of 50 nm/s for pure silane. Hot-wire chemical vapor deposition was used to deposit silicon nitride films with indices of refraction from 1.8--2.5 and hydrogen content from 9--18 atomic %. By tuning the SiH4/NH3 flow ratio, films in which the hydrogen was predominantly bound to N or Si could be produced. Platinum-diffused silicon samples, capped by a hydrogenated silicon nitride layer revealed, upon annealing at 700°C, platinum-hydrogen complexes with a bulk concentration of 1014 cm-3. Photovoltaic cells employing a hot-wire nitride layer were found to have comparable electrical properties to those using plasma nitride layers. Finally, a method for in situ generation of SiH 4 by atomic hydrogen etching was evaluated. Using a cooled

  19. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  20. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  1. A transient hot-wire method for measuring the thermal conductivity of gases and liquids

    NASA Astrophysics Data System (ADS)

    Richard, R. G.; Shankland, I. R.

    1989-05-01

    In this paper we describe a version of a transient hot-wire apparatus which employs an integrating digital voltmeter to measure the bridge out-of-balance signal. The integrating period of the voltmeter is variable and is routinely set equal to one 60-Hz power-line cycle, 16.67 ms. Use of measurement or integration periods less than an integral multiple of the power-line period results in substantially more electronic noise and a significant degradation in experimental precision. A correction to the working equation which accounts for the integration of the out-of-balance signal is also presented. The precision of the digital voltmeter used with the apparatus is ±0.1 μV, which translates into an ultimate precision of ±0.03 mK in the measured temperature rise. In practice the precision in the temperature rise is typically ±0.3 mK, which represents a moderate improvement over the precision generally obtained with transient techniques employing automatic bridge balancing schemes. Although the current apparatus is designed principally for measurements of the thermal conductivity of liquids, it can been used for gas-phase measurements, with some decrease in accuracy due to the somewhat larger heat capacity correction which must be applied to the temperature rise measurements. The operation of the instrument was verified by measuring the thermal conductivities of toluene and nitrogen. Preliminary data are presented for the new environmentally acceptable fluorocarbons such as R-134a (CF3CH2F), R-123 (CHCl2CF3), and R-141b (CCl2FCH3).

  2. Thermal Remote Anemometer Device

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  3. ROBUST hot wire probe efficiency for total water content measurements in glaciated conditions

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Lilie, Lyle; Weber, Marc; Schwarzenboeck, Alfons; Strapp, J. Walter

    2017-04-01

    During the two High Altitude Ice Crystals (HAIC, Dezitter et al. 2013)/High Ice Water Content (HIWC, Strapp et al., 2016a) international flight campaigns that investigated deep convection in the tropics, the French Falcon 20 research aircraft was equipped with two different devices measuring the Total Water Content (TWC): - the IKP-2 (Isokinetic Probe, Davison et al. 2008, 2016), - and the hot wire ROBUST probe (Strapp et al. 2008; Grandin et al. 2014). The IKP-2 probe is an evaporator that has been specifically designed to measure high ice water content (Strapp et al. 2016b) with a collection efficiency near unity. It has undergone extensive performance assessment in liquid and glaciated conditions in several wind tunnels. The Robust probe was initially developed by Science Engineering Associates to estimate high ice water content in a high speed wind tunnel, in harsh conditions where other hot-wires had been observed to suffer failures. It was known at the outset that, like other hot-wire TWC probes, it would measure only a quasi-constant fraction of the true ice water content. Early wind tunnel and flight experience with the ROBUST probe revealed that this fraction was the order of 40% for ice crystals. During the HAIC/HIWC campaigns (Leroy et al. 2016, 2017), supercooled liquid water conditions were documented according to a detailed analysis of a Rosemount Ice detector (RICE) and a Cloud Droplet Probe (CDP) measurements, and were found to be rare. Thus, the HAIC/HIWC dataset represents a unique opportunity to study in more detail the ROBUST efficiency in glaciated conditions, using the IKP-2 values as a comparative reference. Comparison of IKP-2 and ROBUST measurements will show that the ROBUST behavior differs between low (below 1.5 g/m3) and high (above 2 g/m3) ice content conditions and is also sensitive to temperature. The sensitivity of the ROBUST collection efficiency to ice particles size could also be explored as optical imaging probes were part of the

  4. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.

    PubMed

    Dames, C; Chen, S; Harris, C T; Huang, J Y; Ren, Z F; Dresselhaus, M S; Chen, G

    2007-10-01

    A hot wire probe has been developed for use inside a transmission electron microscope to measure the thermal resistance of individual nanowires, nanotubes, and their contacts. No microfabrication is involved. The probe is made from a platinum Wollaston wire and is pretensioned to minimize the effects of thermal expansion, intrinsic thermal vibrations, and Lorentz forces. An in situ nanomanipulator is used to select a particular nanowire or nanotube for measurement, and contacts are made with liquid metal droplets or by electron-beam induced deposition. Detailed thermal analysis shows that for best sensitivity, the thermal resistance of the hot-wire probe should be four times that of the sample, but a mismatch of more than two orders of magnitude may be acceptable. Data analysis using the ratio of two ac signals reduces the experimental uncertainty. The range of detectable sample thermal resistances spans from approximately 10(3) to 10(9) KW. The probe can also be adapted for measurements of the electrical conductance and Seebeck coefficient of the same sample. The probe was used to study a multiwalled carbon nanotube with liquid Ga contacts. The measured thermal resistance of 3.3 x 10(7) KW had a noise level of approximately +/-3% and was repeatable to within +/-10% upon breaking and re-making the contact.

  5. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.

    PubMed

    Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S

    1998-12-01

    The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.

  6. Hot-wire chemical vapour deposition at low substrate temperatures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bakker, R.

    2010-09-01

    The need for large quantities of rapidly and cheaply produced electronic devices has increased rapidly over the past decades. The transistors and diodes that are used to build these devices are predominantly made of crystalline silicon. Since crystalline silicon is very expensive to produce on a large scale and cannot be directly deposited on plastic substrates, much research is being done on thin film amorphous or nanocrystalline semiconductors and insulators. Hot-wire chemical vapour deposition (HWCVD) is a novel, low cost, and convenient way to deposit these materials. The process can be controlled in such a way that specific chemical reactions take place and unwanted side reactions are minimized. It can easily be scaled up to produce large-area thin film electronics. Conventionally, plasma enhanced chemical vapour deposition (PECVD) is used to deposit semiconductors and inorganic dielectrics. Recently, HWCVD has been explored for fast deposition of such materials. An adaptation of HWCVD, initiated chemical vapour deposition (iCVD), offers the unique possibility of producing organic materials and polymers in a vacuum reactor, without the use of solvents. This technique was originally proposed at the Massachusetts institute of technology (MIT) by Prof. Karen Gleason. The iCVD process involves the creation of radicals by dissociation of a peroxide (a molecule with a ~O-O~ bond) by a heated wire in a vacuum reactor. This radical initiates a polymerization reaction of a vinyl (a molecule with a double carbon-carbon bond, ~C=C~) monomer at a substrate held at room temperature. This thesis describes a dedicated iCVD reactor for polymer deposition, installed at Utrecht University, along with a reactor with a cooled substrate holder in an existing HWCVD multi-chamber setup for low-temperature silicon nitride (SiNx) depositions. The most important features of these reactors are described and the characterization techniques are explained. This thesis contains four new

  7. A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Alloush, A.; Gosney, W. B.; Wakeham, W. A.

    1982-09-01

    This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 μm. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.

  8. Correcting hot-wire spatial resolution effects in third- and fourth-order velocity moments in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Talamelli, Alessandro; Segalini, Antonio; Örlü, Ramis; Schlatter, Philipp; Alfredsson, P. Henrik

    2013-04-01

    Spatial averaging, resulting from the finite size of a hot-wire probe, significantly affects the accuracy of velocity measurements in turbulent flows close to walls. Here, we extend the theoretical model, introduced in Segalini et al. (Meas Sci Technol 22:104508, 2011) quantifying the effect of a linear spatial filter of hot-wire probes on the mean and the variance of the streamwise velocity in turbulent wall-bounded flows, to describe the effect of the spatial filtering on the third- and fourth-order moments of the same velocity component. The model, based on the three-(four) point velocity-correlation function for the third-(fourth-) order moment, shows that the filtering can be related to a characteristic length scale which is an equivalent of the Taylor transverse microscale for the second-order moment. The capacity of the model to accurately describe the attenuation is validated against direct numerical simulation (DNS) data of a zero pressure-gradient turbulent boundary layer. The DNS data allow the filtering effect to be appraised for different wire lengths and for the different moments. The model shows good accuracy except for the third-order moment in the region where a zero-crossing of the third-order function is observed and where the equations become ill-conditioned. An "a posteriori" correction procedure, based on the developed model, to correct the measured third- and fourth-order velocity moments is also presented. This procedure, based on combining the measured data by two single hot-wire sensors with different wire lengths, is a natural extension of the one introduced by Segalini et al. (Exp Fluids 51:693-700, 2011) to evaluate both the turbulence intensity and the transverse Taylor microscale in turbulent flows. The technique is validated against spatially averaged simulation data showing a good capacity to correct the actual profiles over the entire height of the boundary layer except, as expected, for the third-order moment in the region where

  9. Measurement of the properties of liquids and gases using a transient hot-wire technique.

    PubMed

    Parsons, J R; Mulligan, J C

    1978-10-01

    A transient method of making simultaneous, in situ measurements of the thermal conductivity, volumetric specific heat, and kinematic viscosity of liquids and gases is presented. The technique utilizes the temperature response record of a fine horizontal wire, functioning as a resistance thermometer, when subjected to a sudden and constant electrical heating. It is shown that a formulation of the transient mechanisms governing the transition from pure conductive to free convective heat transfer from the wire can be used to produce simultaneous determinations of fluid properties from a single wire temperature versus time record. A simple apparatus is presented, along with the results of its use in determining the properties of air.

  10. Turbulence measurements in a complex flowfield using a crossed hot-wire

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Mckillop, B. E.

    1984-01-01

    An X-wire probe was used to measure the time-mean and fluctuating velocities and shear stress in nonswirling nonreacting confined jet flows. Data were taken from an axisymmetric confined jet with an expansion ratio of 2 and an expansion angle of 90 deg, and from the same segment with a contraction nozzle. Velocity profiles developed faster in the confined jet than in the free jet, with the former experiencing higher turbulence levels and larger time-mean velocities. The X-wire is concluded to furnish more accurate results for the turbulent shear stress than a multioriented single-wire technique.

  11. Thermal transient anemometer

    DOEpatents

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  12. Thermal transient anemometer

    DOEpatents

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  13. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    SciTech Connect

    Daw, J.E.; Knudson, D.L.; Villard, J.F.; Liothin, J.; Destouches, C.; Rempe, J.L.; Matheron, P.; Lambert, T.

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were fabricated for both

  14. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  15. Influence of velocity gradients on measurements of velocity and streamwise vorticity with hot-wire X-array probes

    NASA Technical Reports Server (NTRS)

    Vukoslavcevic, P.; Wallace, J. M.

    1981-01-01

    An analysis and measurement of the effects of the streamwise velocity gradients partial derivative of U with respect to y and partial derivative of U with respect to z, on the velocity components, U, v, and w, and the streamwise vorticity component, omega sub x measured in turbulent flow with a pair of orthogonal hot-wire X arrays, is presented. It is shown that these gradients, which can have the same order of magnitude instantaneously as the mean shear stress at the wall, cause extremely large errors in the measured instantaneous cross-stream velocity and streamwise vorticity components.

  16. Coherent structure in the turbulent wake behind a circular cylinder 3. Flow visualization and hot wire measurements

    NASA Astrophysics Data System (ADS)

    Yamane, Ryuichiro; Oshima, Shuzo; Okubo, Masaaki; Kotani, Juzo

    1988-07-01

    In the previous papers the authors have reported that the two-dimensional Kármán vortices behind a circular cylinder are deformed until they form chains of spoon-shaped vortex couples whose spanwise scale is about 8 d, which is a new type of coherent structure. In this report experimental evidence of this structure is presented. Formation process of the structure and the turbulence in it were investigated for the wake behind a circular cylinder with Re = 2100 and 4200 by means of the flow visualization technique, simultaneous hot wire measurements, spanwise correlation measurements, construction of instantaneous velocity field by the conditional sampling method, etc.

  17. Comparison of hot-wire measurement techniques in a Mach 3 pilot quiet tunnel

    NASA Technical Reports Server (NTRS)

    Chen, F.-J.; Beckwith, I. E.

    1985-01-01

    Disturbance measurements were made in the free stream of a small Mach 3 quiet tunnel using constant-current and constant-temperature anemometers (CCA and CTA). Data from the two types of instruments are compared in terms of frequency response and normalized rms levels of mass flow fluctuations. The mode-diagram analysis of the CCA data produces reliable results because the frequency response is consistent for a wide range of overheat ratios. However, the mode-diagram results for the CTA data cannot be used due to the rapidly decreasing frequency response with decreasing overheat ratio. Only the mass flow fluctuations at high overheat ratio can be obtained with the CTA system, and they can be as much as 50 percent higher than those from the CCA system. Possible reasons for these measurement differences between the two systems are considered.

  18. FireWire: Hot New Multimedia Interface or Flash in the Pan?

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Examines potential solutions to the problem of personal computer cabling and configuration and serial port performance, namely "FireWire" (P1394) and "Universal Serial Bus" (USB). Discusses interface design, technical capabilities, user friendliness, compatibility, costs, and future perspectives. (AEF)

  19. Walks of bubbles on a hot wire in a liquid bath

    NASA Astrophysics Data System (ADS)

    Duchesne, A.; Caps, H.

    2017-05-01

    When a horizontal resistive wire is heated up to the boiling point in a subcooled liquid bath, some vapor bubbles nucleate on its surface. The traditional nucleate boiling theory predicts that bubbles generated from active nucleate sites grow up and depart from the heating surface due to buoyancy and inertia. However, we observed here a different behavior: the bubbles slide along the heated wire. In this situation, unexpected regimes are observed; from the simple sliding motion to bubble clustering. We noticed that bubbles could rapidly change their moving direction and may also interact. Finally, we propose an interpretation for both the attraction between the bubbles and the wire and for the motion of the bubbles on the wire in terms of Marangoni effects.

  20. A new transducer for respiratory monitoring. A description of a hot-wire anemometer and a test procedure for general use.

    PubMed

    Kann, T; Hald, A; Jørgensen, F E

    1979-08-01

    A respiratory transducer based on the constant temperature anemometry principle has been developed for respiratory monitoring, and as a tool for bedside evaluation of pulmonary function. The transducer is characterized by a dynamic range from 0-2.5 1/s and an upper limiting frequency of 50 Hz. It is designed with a view to a low pressure drop of 2.5 mbar/1/s and a minimum dead space of 5 ml. The transducer has been tested using a generally applicable procedure which includes both static and dynamic test set-ups. The influence of variation in gas composition, temperature and pressure, together with variations in tidal volume and respiration rate, have been investigated. The results show that the transducer registers the immediate value of gas flow-rate with a mean error less than 5-10% in all situations which are predictable in clinical use. The mean error can be reduced to less than 5% when systematic errors are eliminated.

  1. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.

    PubMed

    Nandy, S; Tarbell, J M

    1987-01-01

    Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.

  2. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  3. Sliding bubbles on a hot horizontal wire in a subcooled bath

    NASA Astrophysics Data System (ADS)

    Duchesne, Alexis; Dubois, Charles; Caps, Hervé

    2015-11-01

    When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.

  4. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  5. Hot embossing of electrophoresis microchannels in PMMA substrates using electric heating wires.

    PubMed

    Gan, Zhibing; Yu, Zhengyin; Chen, Zhi; Chen, Gang

    2010-04-01

    A simple method based on electric heating wires has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) electrophoresis microchips in ordinary laboratories without the need for microfabrication facilities. A piece of stretched electric heating wire placed across the length of a PMMA plate along its midline was sandwiched between two microscope slides under pressure. Subsequently, alternating current was allowed to pass through the wire to generate heat to emboss a separation microchannel on the PMMA separation channel plate at room temperature. The injection channel was fabricated using the same procedure on a PMMA sheet that was perpendicular to the separation channel. The complete microchip was obtained by bonding the separation channel plate to the injection channel sheet, sealing the channels inside. The electric heating wires used in this work not only generated heat; they also served as templates for embossing the microchannels. The prepared microfluidic microchips have been successfully employed in the electrophoresis separation and detection of ions in connection with contactless conductivity detection.

  6. Calibration Fixture For Anemometer Probes

    NASA Technical Reports Server (NTRS)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  7. Can A Cup Anemometer `Underspeed'?

    NASA Astrophysics Data System (ADS)

    Kristensen, L.

    An analysis of cup-anemometer dynamics has been carried out inorder to determine whether the mean-wind velocity can have anegative bias. This would be contrary to the general belief thatcup anemometers always overspeed. Compared to prior analyses, theeffect of a possible nonlinearity of the calibration function isincluded. The conclusion is that neither longitudinal nor lateralvelocity fluctuations can contribute significantly to a negativebias. However, if a cup anemometer has an angular response thatfalls below the ideal cosine response, there will, as demonstratedin the concluding discussion, be a negative contribution from thevertical velocity fluctuations to the total bias, and thiscontribution may even outbalance the positive contributions fromthe longitudinal velocity fluctuations. Concrete evidence of suchexotic cup anemometer behaviour has not been reported in theliterature.

  8. Calibration Fixture For Anemometer Probes

    NASA Technical Reports Server (NTRS)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  9. The 2d-LCA as an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2015-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  10. SDSS DR4: Progress on the Hot Wire Dwarf Luminosity Function

    DTIC Science & Technology

    2009-01-01

    SDSS DR4: Progress on the hot white dwarf luminosity function This article has been downloaded from IOPscience. Please scroll down to see the full...TITLE AND SUBTITLE SDSS DR4: progress on the hot white dwarf luminosity function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Sloan Digital Sky Survey ( SDSS ) data release 4 (DR4) WD catalog data allowed us to obtain a luminosity function (LF)for the hottest WDs. The LF was

  11. Anomaly detection on cup anemometers

    NASA Astrophysics Data System (ADS)

    Vega, Enrique; Pindado, Santiago; Martínez, Alejandro; Meseguer, Encarnación; García, Luis

    2014-12-01

    The performances of two rotor-damaged commercial anemometers (Vector Instruments A100 LK) were studied. The calibration results (i.e. the transfer function) were very linear, the aerodynamic behavior being more efficient than the one shown by both anemometers equipped with undamaged rotors. No detection of the anomaly (the rotors’ damage) was possible based on the calibration results. However, the Fourier analysis clearly revealed this anomaly.

  12. Transverse vorticity measurements using an array of four hot-wire probes

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  13. Highly Sensitive Hot-Wire Anemometry Based on Macro-Sized Double-Walled Carbon Nanotube Strands

    PubMed Central

    Wang, Dingqu; Xiong, Wei; Zhou, Zhaoying; Zhu, Rong; Yang, Xing; Li, Weihua; Jiang, Yueyuan; Zhang, Yajun

    2017-01-01

    This paper presents a highly sensitive flow-rate sensor with carbon nanotubes (CNTs) as sensing elements. The sensor uses micro-size centimeters long double-walled CNT (DWCNT) strands as hot-wires to sense fluid velocity. In the theoretical analysis, the sensitivity of the sensor is demonstrated to be positively related to the ratio of its surface. We assemble the flow sensor by suspending the DWCNT strand directly on two tungsten prongs and dripping a small amount of silver glue onto each contact between the DWCNT and the prongs. The DWCNT exhibits a positive TCR of 1980 ppm/K. The self-heating effect on the DWCNT was observed while constant current was applied between the two prongs. This sensor can evidently respond to flow rate, and requires only several milliwatts to operate. We have, thus far, demonstrated that the CNT-based flow sensor has better sensitivity than the Pt-coated DWCNT sensor. PMID:28762998

  14. A satellite anemometer

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Heelis, R. A.

    1995-01-01

    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  15. Reinvestigation of hot-wire anemometry applicable to subsonic compressible flows using fluctuation diagrams

    SciTech Connect

    Stainback, P.C.; Nagabushana, K.A.

    1995-06-01

    Much has been written about the improbability and impossibility of obtaining solutions to the mean square equation for constant current anemometry in subsonic slip and transonic flows. For these flow conditions, the voltage across a heated wire mounted normal to the flow is a function of velocity, density,a nd total temperature. In principal, the fluctuations of these quantities can be measured; however, to date there are no known acceptable solutions to the mean square equation in these flow regimes. In this study, data presented in the 1950`s by Spangenberg were used to compute the sensitivities of a heated wire to changes in velocity, density, and total temperature. These results indicated that there was a large region in the Nusselt number-Reynolds number or Nusselt number-Knudsen number regimes where the velocity and density sensitivities were different, a condition required for solutions to the mean square equation. A second necessary condition for a solution was also noted. The possible existence of a solution to the mean square equation was based on the evaluation of the condition number of the sensitivity matrix. The condition numbers obtained from Spangenberg`s data were very large and near perfect data would be required to obtain accurate measurements of the fluctuations.

  16. A rotating hot-wire technique for spatial sampling of disturbed and manipulated duct flows

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Nagib, H. M.; Jennings, M. J.

    1990-01-01

    A duct flow spatial sampling technique, in which an X-wire probe is rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section in order to furnish nearly instantaneous multipoint measurements of the streamwise and azimuthal components, is presently evaluated in view of the control of flow disturbances downstream of various open inlet contractions. The effectiveness of a particular contraction in controlling ingested flow disturbances was ascertained by artificially introducing disturbances upstream of the contractions; control effectiveness if found to be strongly dependent on inlet contraction, with consequences for the reduction of passing-blade frequency noise during gas turbine engine ground testing.

  17. Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Nagabushana, K. A.

    1991-01-01

    The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.

  18. A rotating hot-wire technique for spatial sampling of disturbed and manipulated duct flows

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Nagib, H. M.; Jennings, M. J.

    1990-01-01

    A duct flow spatial sampling technique, in which an X-wire probe is rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section in order to furnish nearly instantaneous multipoint measurements of the streamwise and azimuthal components, is presently evaluated in view of the control of flow disturbances downstream of various open inlet contractions. The effectiveness of a particular contraction in controlling ingested flow disturbances was ascertained by artificially introducing disturbances upstream of the contractions; control effectiveness if found to be strongly dependent on inlet contraction, with consequences for the reduction of passing-blade frequency noise during gas turbine engine ground testing.

  19. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  20. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  1. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  2. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  3. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  4. Heat-resistant anemometers for fire research

    Treesearch

    John R. Murray; Clive M. Countryman

    1968-01-01

    Heat-resistant anemometers have been developed for measuring horizontal and vertical air flow in fire behavior studies. The anemometers will continue to produce data as long as the anemometer body is less than 650°F. They can survive brief immersion in flame without major damage. These air-flow sensors have aluminum bodies and rotor hubs and stainless steel...

  5. Comparison of Inclusions in Cold Drawn Wire and Precursor Hot-Rolled Rod Coil in VIM-VAR Nickel-Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Sczerzenie, Frank; Paul, Graeme; Belden, Clarence

    2011-07-01

    Inclusion content is important for the mechanical behavior and performance of Nitinol wires, particularly in fatigue-rated devices. The purpose of this work was to make a quantitative comparison between inclusion populations in cold drawn wires and the precursor populations in hot-rolled rod coil. Inclusion content was examined in a series of VIM-VAR alloys with different transformation temperatures (TTR) controlled by the Ni to Ti ratio. This range of chemistry was chosen to assess the effect of Ni to Ti ratio on inclusion formation. In order to understand the differences in behavior between carbides and intermetallic oxides in wire drawing, carbides, and intermetallic oxide inclusions were measured separately using optical metallography pursuant to ASTM F2063. In VIM-VAR alloys at higher Ni to Ti ratios about 50.79 a/o Ni the formation of intermetallic oxides appears to be suppressed in the as-cast material through the presence of carbon and the precipitation of eutectic TiC in place of eutectic Ti4Ni2O x . The structure of VIM-VAR alloy also varies after hot working depending on the TTR of the alloy. Higher TTR binary alloys with lower Ni to Ti ratios tend to have more and larger intermetallic oxides and fewer and smaller carbides after hot working. Microsegregation plays a role in inclusion formation. That is, during solidification, C, O, N diffuse to the interdendritic regions. This increases the potential for the precipitation of nonmetallic species. Carbides and intermetallic oxides behave differently in hot working and cold drawing. The change in maximum carbide size from coil to wire is very near zero for all Ni to Ti ratios. The change in maximum inclusion size from coil to wire is driven mainly by the fracture of intermetallic oxides and the formation of intermetallic oxide stringers.

  6. Energy-loss rate of hot electrons due to confined acoustic phonon modes in a semiconductor quantum wire under transverse electric field

    NASA Astrophysics Data System (ADS)

    Stepanyan, A.; Yeranosyan, M.; Vardanyan, L.; Asatryan, A.; Kirakosyan, A.; Vartanian, A.

    2017-08-01

    The hot-electron energy-loss rate via the acoustic-phonons in an embedded semiconductor quantum wire of circular cross section in the presence of external electric field has been investigated using deformation potential theory. Dimensional confinement effect on modifying acoustic-phonon modes are taken into account. The energy-loss rate as a function of electric field strength, electron density and electron temperature is obtained. Our calculations show that the electric field applied perpendicularly to the wire axis can be used as an important tool for the control of the energy-loss processes in nanowires.

  7. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  8. Hydrogen Assisted Nano-crystallization in TiO2 Thin Film Prepared by Hot-Wire Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Iida, Tamio; Koie, Ryousuke; Masuda, Toshiro; Ueno, Hiroyuki; Nonomura, Shuichi

    2009-03-01

    Preparations and structural studies of TiO2 thin films using hot-wire chemical vapor deposition (CVD) (hot-filament CVD) are reported for the first time. Titanium tetra-isopropoxide [Ti(OC3H7)4] was used as a source gas and decomposed on a heated rhenium filament. The film deposited at the filament temperature (Tf) of 1300 °C shows amorphous structure with the substrate temperature (Ts) of 300 °C, and X-ray diffraction (XRD) peaks originated from nano-crystalline with anatase structure appeared over Ts of 400-700 °C. The optical band gap energies of the nano-crystalline TiO2 films with anatase structure were ˜3.4 eV. An increase of Ts from 400 to 700 °C enhanced the XRD peak intensity of (112) orientation. Meanwhile, an increase of Tf up to 1500 °C induces nano-crystalline TiO2 with rutile structure. Furthermore, the hydrogen dilution realizes the nano-crystallite growth of rutile structure even in the deposition at Tf = 1300 °C. During this deposition, the actual substrate surface temperature (Tsuf) was 305 °C. In bulk TiO2 materials, the anatase structure changes to the rutile structure by thermal annealing up to about 800 °C. We propose for the first time that atomic hydrogen contributes to the low temperature nucleation of rutile structure in the deposition of oxide system, TiO2 films.

  9. A Novel Low-Power-Consumption All-Fiber-Optic Anemometer with Simple System Design.

    PubMed

    Zhang, Yang; Wang, Fang; Duan, Zhihui; Liu, Zexu; Liu, Zigeng; Wu, Zhenlin; Gu, Yiying; Sun, Changsen; Peng, Wei

    2017-09-14

    A compact and low-power consuming fiber-optic anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is presented. TFBG as a near infrared in-fiber sensing element is able to excite a number of cladding modes and radiation modes in the fiber and effectively couple light in the core to interact with the fiber surrounding mediums. It is an ideal in-fiber device used in a fiber hot-wire anemometer (HWA) as both coupling and sensing elements to simplify the sensing head structure. The fabricated TFBG was immobilized with an SWCNT film on the fiber surface. SWCNTs, a kind of innovative nanomaterial, were utilized as light-heat conversion medium instead of traditional metallic materials, due to its excellent infrared light absorption ability and competitive thermal conductivity. When the SWCNT film strongly absorbs the light in the fiber, the sensor head can be heated and form a "hot wire". As the sensor is put into wind field, the wind will take away the heat on the sensor resulting in a temperature variation that is then accurately measured by the TFBG. Benefited from the high coupling and absorption efficiency, the heating and sensing light source was shared with only one broadband light source (BBS) without any extra pumping laser complicating the system. This not only significantly reduces power consumption, but also simplifies the whole sensing system with lower cost. In experiments, the key parameters of the sensor, such as the film thickness and the inherent angle of the TFBG, were fully investigated. It was demonstrated that, under a very low BBS input power of 9.87 mW, a 0.100 nm wavelength response can still be detected as the wind speed changed from 0 to 2 m/s. In addition, the sensitivity was found to be -0.0346 nm/(m/s) under the wind speed of 1 m/s. The proposed simple and low-power-consumption wind speed sensing system exhibits promising potential for future long-term remote monitoring and on-chip sensing in

  10. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  11. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  12. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.

    PubMed

    Sarkar, Saugata; Zimmermann, Kristen; Leng, Weinan; Vikesland, Peter; Zhang, Jianfei; Dorn, Harry; Diller, Thomas; Rylander, Christopher; Rylander, Marissa Nichole

    2011-06-01

    Developing combinatorial treatments involving laser irradiation and nanoparticles require an understanding of the effect of nanoparticle inclusion on tissue thermal properties, such as thermal conductivity. This information will permit a more accurate prediction of temperature distribution and tumor response following therapy, as well as provide additional information to aid in the selection of the appropriate type and concentration of nanoparticles. This study measured the thermal conductivity of tissue representative phantoms containing varying types and concentrations of carbon nanotubes (CNTs). Multi-walled carbon nanotubes (MWNTs, length of 900-1200 nm and diameter of 40-60 nm), single-walled carbon nanotubes (SWNTs, length of 900-1200 nm and diameter <2 nm), and a novel embodiment of SWNTs referred to as single-walled carbon nanohorns (SWNHs, length of 25-50 nm and diameter of 3-5 nm) of varying concentrations (0.1, 0.5, and 1.0 mg/mL) were uniformly dispersed in sodium alginate tissue representative phantoms. The thermal conductivity of phantoms containing CNTs was measured using a hot wire probe method. Increasing CNT concentration from 0 to 1.0 mg/mL caused the thermal conductivity of phantoms containing SWNTs, SWNHs, and MWNTs to increase by 24, 30, and 66%, respectively. For identical CNT concentrations, phantoms containing MWNTs possessed the highest thermal conductivity.

  13. High-angle tilt boundary graphene domain recrystallized from mobile hot-wire-assisted chemical vapor deposition system.

    PubMed

    Lee, Jinsup; Baek, Jinwook; Ryu, Gyeong Hee; Lee, Mi Jin; Oh, Seran; Hong, Seul Ki; Kim, Bo-Hyun; Lee, Seok-Hee; Cho, Byung Jin; Lee, Zonghoon; Jeon, Seokwoo

    2014-08-13

    Crystallization of materials has attracted research interest for a long time, and its mechanisms in three-dimensional materials have been well studied. However, crystallization of two-dimensional (2D) materials is yet to be challenged. Clarifying the dynamics underlying growth of 2D materials will provide the insight for the potential route to synthesize large and highly crystallized 2D domains with low defects. Here, we present the growth dynamics and recrystallization of 2D material graphene under a mobile hot-wire assisted chemical vapor deposition (MHW-CVD) system. Under local but sequential heating by MHW-CVD system, the initial nucleation of nanocrystalline graphenes, which was not extended into the growth stage due to the insufficient thermal energy, took a recrystallization and converted into a grand single crystal domain. During this process, the stitching-like healing of graphene was also observed. The local but sequential endowing thermal energy to nanocrystalline graphenes enabled us to simultaneously reveal the recrystallization and healing dynamics in graphene growth, which suggests an alternative route to synthesize a highly crystalline and large domain size graphene. Also, this recrystallization and healing of 2D nanocrystalline graphenes offers an interesting insight on the growth mechanism of 2D materials.

  14. Role of oxygen and nitrogen in n-type microcrystalline silicon carbide grown by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pomaska, Manuel; Mock, Jan; Köhler, Florian; Zastrow, Uwe; Perani, Martina; Astakhov, Oleksandr; Cavalcoli, Daniela; Carius, Reinhard; Finger, Friedhelm; Ding, Kaining

    2016-12-01

    N-type microcrystalline silicon carbide (μc-SiC:H(n)) deposited by hot wire chemical vapor deposition provides advantageous opto-electronic properties for window layer material in silicon-based thin-film solar cells and silicon heterojunction solar cells. So far, it is known that the dark conductivity (σd) increases with the increase in the crystallinity of μc-SiC:H(n)films. However, due to the fact that no active doping source is used, the mechanism of electrical transport in these films is still under debate. It is suggested that unintentional doping by atmospheric oxygen (O) or nitrogen (N) contamination plays an important role in the electrical transport. To investigate the impact of O and N, we incorporated O and N in μc-SiC:H(n) films and compared the influence on the microstructural, electronic, and optical properties. We discovered that, in addition to increasing the crystallinity, it is also possible to increase the σd by several orders of magnitude by increasing the O-concentration or the N-concentration in the films. Combining a high concentration of O and N, along with a high crystallinity in the film, we optimized the σd to a maximum of 5 S/cm.

  15. Wide-Gap Thin Film Si n-i-p Solar Cells Deposited by Hot-Wire CVD: Preprint

    SciTech Connect

    Wang, Q.; Iwaniczko, E.; Yang, J.; Lord, K.; Guha, S.; Wang, K.; Han, D.

    2002-05-01

    High-voltage wide bandgap thin-film Si n-i-p solar cells have been made using the hot-wire chemical vapor deposition (HWCVD) technique. The best open-circuit voltage (Voc) has exceeded 0.94 V in solar cells using HWCVD in the entire n-i-p structure. A Voc of 0.97V has been achieved using HWCVD in the n and i layers and plasma-enhanced (PE) CVD for the p layer. The high voltages are attributed to the wide-gap i layer and an improved p/i interface. The wide-gap i layer is obtained by using low substrate temperatures and sufficient hydrogen dilution during the growth of the i layer to arrive at the amorphous-to-microcrystalline phase transition region. The optical band gap (E04) of the i layer is found to be 1.90 eV. These high-voltage cells also exhibit good fill factors exceeding 0.7 with short-circuit-current densities of 8 to 10 mA/cm2 on bare stainless steel substrates. We have also carried out photoluminescence (PL) spectroscopy studies and found a correlation between Voc and the PL peak energy position.

  16. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes.

    PubMed

    Oliphant, Clive J; Arendse, Christopher J; Camagu, Sigqibo T; Swart, Hendrik

    2014-02-01

    Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W2C and WC. W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W2C, and WC increases with longer exposure time and increasing filament temperature. The grain size of the recrystallizing W-core and W2C phase grows from the perimeter inwardly and this phenomenon is enhanced at filament temperatures in excess of 1,400°C. Cracks appear at filament temperatures >1,600°C, accompanied by a reduction in the filament operational lifetime. The increase of the W2C and recrystallized W-core grain size from the perimeter inwardly is ascribed to a thermal gradient within the filament, which in turn influences the hardness measurements and crack formation.

  17. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    PubMed

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  18. Decomposition of hexamethyldisilane on a hot tungsten filament and gas-phase reactions in a hot-wire chemical vapor deposition reactor.

    PubMed

    Shi, Yujun; Li, Xinmao; Tong, Ling; Toukabri, Rim; Eustergerling, Brett

    2008-05-14

    To study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated. In the reactor, the abstraction of methyl and H atom, respectively, from the abundant HMDS molecules by the dominant primary trimethylsilyl radicals produces tetramethylsilane (TMS) and trimethylsilane (TriMS). Along with TMS and TriMS, various other alkyl-substituted silanes (m/z = 160, 204, 262) and silyl-substituted alkanes (m/z = 218, 276, 290) are also formed from radical combination reactions. With HMDS, an increasing number of Si-Si bonds are found in the gas-phase reaction products aside from the Si-C bond which has been shown to be the major bond connection in the products when TMS is used in the same reactor. Three methyl-substituted 1,3-disilacyclobutane species (m/z = 116, 130, 144) are present in the reactor with HMDS, suggesting a more active involvement from the reactive silene intermediates.

  19. Hot Wire Needle Probe for In-Pile Thermal Conductivity Detection

    SciTech Connect

    Joshua Daw; Joy Rempe; Keith Condie; Darrell Knudson; S. Curtis Wilkins; Brandon S. Fox; Heng Ban

    2001-11-01

    Thermal conductivity is a key property of interest for both nuclear fuel and structural materials, and must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses advancements from Idaho National Laboratory (INL) / Utah State University (USU) examinations, including background information, governing equations, experimental setup, detailed results, and conclusions for both a steady state and a transient method. Experimental findings of the INL/USU steady state method examinations help to better understand limitations and benefits of two-thermocouple methods, where laboratory results can be extrapolated to in-pile applications. Additionally, results from the transient method offer the immediate potential for in-pile application, as the method reduces the impact on the sample from only a small centerline sensor, measurement times (e.g., only minutes for

  20. Development and testing of a novel single-wire sensor for wide range flow velocity measurements

    NASA Astrophysics Data System (ADS)

    Al-Salaymeh, A.; Durst, F.

    2004-05-01

    Thermal flow sensors with a wide dynamic range, e.g. 1:1000 and more, are currently not available in spite of the great demand for such sensors in practical fluid flow measurements. The present paper introduces a sensor of this kind. The new sensor is mechanically the same as the 'sending' wire of the two-wire thermal flow sensor described by Durst et al, but it is excited by discrete, widely separated, square waves of electrical current rather than a continuous sinusoidal current. The nominal 'output' of the new sensor is the increase in wire temperature so that an integral of the resistance over the pulse length can be used for measurements. This 'output' is a function of the time constant ('thermal inertia') of the heated wire and thus also of the velocity of flow. The time constant decreases as the flow velocity increases, while the heat transfer increases. At very low flow velocities the response is determined almost entirely by the time constant of the wire while at high velocities the device acts almost like a 'constant current' hot-wire anemometer. That is, the effect of thermal inertia augments the output signal of the basic hot wire, thus increasing the flow rate range/sensitivity of the device, especially at the low-velocity end, above than that of a simple hot-wire flowmeter. The sensor described here was developed for slowly changing unidirectional flows, and uses one wire of 12.5 µm diameter. It is excited at 30 Hz frequency and its usable flow velocity range is 0.01-25 m s-1.

  1. Comparison of anemometers for turbulence characterization

    SciTech Connect

    Morris, V.R.; Barnard, J.C.; Wendell, L.L.; Tomich, S.D.

    1992-10-01

    During the first phase of the US Department of Energy's turbulence characterization program, important discoveries were made about the field application of propeller-vane and cup anemometers under very turbulent conditions. First, averaged speeds measured by the propeller-vane anemometer were consistently lower than those from the cup anemometer, even though both registered virtually the same during wind-tunnel calibration testing. Second, the propeller-vane anemometers suffered from structural failures much more frequently than the cup anemometers. The difficulties associated with the use of the propeller-vane motivated us to consider the cup anemometer for turbulence measurements. At fast sample rates, the output of the cup anemometer is severely degraded by discretization error that stems from pulse counting demodulation. However, we found that a low-pass Gaussian filter could be applied to the time series of wind speed derived from the cup anemometer to yield time series and frequency spectra that compared very favorably with those obtained from the propeller-vane anemometer. This finding suggests that the cup anemometer may prove to be an inexpensive and rugged sensor appropriate for turbulence measurements for wind-energy applications.

  2. Relationship of roughness of building stones on the effective thermal conductivity determined by transient hot-wire method

    NASA Astrophysics Data System (ADS)

    Benoit, Merckx; Jean-Didier, Mertz; Patrick, Dudoignon; David, Giovannacci; Jean-Philippe, Garnier

    2013-04-01

    Alteration of inorganic materials in monuments is mainly related to relative humidity change in the porous network. Characterization of water content is a complex issue, specially in case of non-intrusive measurement. An innovative method is developed to quantify the water content using a direct calculation of the thermal conductivity. In order to validate the non-intrusive application to heritage stone, a control of the influence of the rock-sensor interface is required. The study was carried out on five sedimentary french rocks : three limestones (lithographic, oolithic and micritic), a sandstone of Fontainebleau and the so-called Tuffeau limestone. The textural properties are characterized by optical and electronical microscopy, X-ray diffraction, and mercury intrusion porosimetry. The transient hot-wire method is useful to obtain a quick value of effective conductivity of material. Initially used in liquids and gas, It's now more and more used for solid materials. The calculation of one effective thermal conductivity is formulated by the slope of recorded DT/ln(t) diagrams. In case of continuous and homogeneous media, only one slope can be measured. For heterogeneous solids a typical curve present two slopes : the first one measured in the short time acquisitions (<1s) mainly depends on the contact between the wire and grains and thus micro texture of the material. The second one, measured for longer time acquisitions, characterizes the mean effective thermal conductivity of the material. In the case of surface measurement, the first part of curve is relevant from the texture and roughness of the material. Roughness properties are determined by an interferometer system on different polished surfaces of the materials. For all studied stones, the arithmetic average roughness (Sa) is ranged between 44 µm and 1 µm, respectively for the coarse-grained limestone (Bretigny) and the finest one (Migné). According to the relative error of the apparatus (10%), the

  3. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    NASA Astrophysics Data System (ADS)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  4. Operational Features of the Constant Voltage Anemometer For the Investigation of Supersonic Boundary Layers

    NASA Astrophysics Data System (ADS)

    Comte-Bellot, G.; Sarma, G. R.; Mangalam, S. M.

    1998-11-01

    The new Constant Voltage Anemometer (CVA) has been analyzed in several papers particularly by Sarma 1998, Review of Scientific Instruments (RSI), 69, 6, 2385-2391, and Comte-Bellot, 1998 Chap. 34, CRC Press Handbook of Fluid Dynamics. The convenient use of the CVA has been demonstrated in several applications like detection of the in-flight shock location (Moes et. al 1997 NASA TM 4806), boundary layer stability in hypersonic tunnel, 1997 (Lachowicz et. al AIAA J. 35, 1, 23-28). The resolution of the turbulent components in a supersonic boundary layer with the CVA has been successfully demonstrated by Sarma et. al 1998 ( RSI scheduled for September). In this presentation, the authors will illustrate several features of the CVA particularly useful for supersonic turbulence measurements. The data from CVA could be collected using a fixed compensation setting, while also collecting the hot-wire time constant data and post processing the signals yielding a constant bandwidth and higher productivity. Other features like the in-situ remote overheat adjustment for modal analysis and typical noise spectra will be presented.

  5. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    NASA Technical Reports Server (NTRS)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  6. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  7. Hot-wire probe

    NASA Technical Reports Server (NTRS)

    Mikulla, V.

    1976-01-01

    High-temperature platinum probe measures turbulence and Reynolds shear stresses in high-temperature compressible flows. Probe does not vibrate at high velocities and does not react like strain gage on warmup.

  8. Anemometer performance at fire-weather stations.

    Treesearch

    Donald A. Haines; John S. Frost

    1984-01-01

    A survey of 142 fire-weather stations in the Northeastern United States showed that, although maintenance was generally satisfactory, calibration or testing of anemometers was virtually nonexistent. We tested these anemometers using portable equipment that we designed and found the deviations from true wind speed.

  9. Aerodynamics and Characteristics of a Spinner Anemometer

    NASA Astrophysics Data System (ADS)

    Pedersen, T. F.; Sørensen, N. N.; Enevoldsen, P.

    2007-07-01

    A spinner anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine spinner is used for determination of the free wind. Analogies to the concept are the flow around a sphere and a five hole pitot-tube. But, in stead of measuring pressure differences on the surface, the spinner anemometer measures directional air speeds in the flow above the spinner surface. A spinner anemometer, based on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around the spinner was calculated with the EllipSys3D CFD-code. Calculations were made for varying wind speeds and yaw angles, and the air speed within the sonic sensor path was determined during rotation. The calculated air speeds were used as "calibration" data for an analogue spinner anemometer algorithm. The algorithm converts, by inclusion of a measured rotor position, the measured sonic sensor air speeds to free wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept test and a full scale field experiment with a comparison to a 3D sonic anemometer were made. The results indicate that the 300kW spinner anemometer characteristics are comparable to the 3D sonic anemometer with respect to time traces and average and standard deviation of wind speeds.

  10. Competition of silene/silylene chemistry with free radical chain reactions using 1-methylsilacyclobutane in the hot-wire chemical vapor deposition process.

    PubMed

    Badran, I; Forster, T D; Roesler, R; Shi, Y J

    2012-10-18

    The gas-phase reaction chemistry of using 1-methylsilacyclobutane (MSCB) in the hot-wire chemical vapor deposition (CVD) process has been investigated by studying the decomposition of MSCB on a heated tungsten filament and subsequent gas-phase reactions in a reactor. Three pathways exist to decompose MSCB on the filament to form ethene/methylsilene, propene/methylsilylene, and methyl radicals. The activation energies for forming propene and methyl radical, respectively, are determined to be 68.7 ± 1.3 and 46.7 ± 2.5 kJ·mol(-1), which demonstrates the catalytic nature of the decomposition. The secondary gas-phase reactions in the hot-wire CVD reactor are characterized by the competition between a free radical chain reaction and the cycloaddition of silene reactive species produced either from the primary decomposition of MSCB on the filament or the isomerization of silylene species. At lower filament temperatures of 1000-1100 °C and short reaction time (t ≤ 15 min), the free radical chain reaction is equally important as the silene chemistry. With increasing filament temperature and reaction time, silene chemistry predominates.

  11. Effect of cooling rate after hot rolling and of multistage strain aging on the drawability of low-carbon-steel wire rod

    NASA Astrophysics Data System (ADS)

    Taheri, A. Karimi; Maccagno, T. M.; Jonas, J. J.

    1995-05-01

    Tensile testing was used to simulate the multistage strain aging occurring in low-C steel during the relatively short intervals between dies in a multiple-die wire-drawing machine. The effects were examined of three simulated post-hot-rolling cooling rates and three thermal treatments on the strain-aging susceptibility of a high- and a low-N steel. This was measured by applying a 6 pct tensile strain, followed by aging at either 65° or 100 °C for 20 seconds, and then pulling the specimen to failure at room temperature. Increases in flow stress and decreases in the elongation to fracture both indicated high susceptibility to strain aging. It was found that the nitrogen content, the cooling rate from the hot-rolling temperature to about 300 °C, as well as the cooling rate below 300 °C, all have dramatic effects on the strain-aging behavior. Moreover, multistage strain aging is more severe than single-stage strain aging. The implications of these observations on increasing the drawability of low-carbon-steel wire are discussed.

  12. Characterization of a hot-film probe for hypersonic flow

    NASA Technical Reports Server (NTRS)

    Sheplak, M.; Spina, E.; Mcginley, C.

    1995-01-01

    The critical issues concerning the application of constant-temperature hot-film anemometry to hypersonic flow are reviewed and extended. Mass-flux static calibrations were conducted in a Mach 10 helium flow, while mass-flux and total-temperature static calibrations were made in a Mach 6 air flow. In addition, comparative hot-film/hot-wire turbulence measurements were made in a Mach 11 helium boundary layer to provide insight into the dynamic response of the hot film. The measurements indicate that substrate conduction 'losses' dominate the static response of the hot-film probe, thus resulting in poor sensitivity to mass-flux and total temperature. Furthermore, it has been found that it is not possible to isolate mass-flux fluctuations at high overheat ratios for the current hot-film design. Thus, the sapphire-substrate hot-film anemometer is a robust, high-bandwidth instrument limited to qualitative transition and turbulence measurements. Finally, the extension of this technique to providing quantitative information is dependent upon the development of lower thermal-conductivity substrate materials.

  13. Laser transit anemometer experiences in supersonic flow

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.

    1988-01-01

    The purpose of this paper is to present examples of velocity measurements obtained in supersonic flow fields with the laser transit anemometer system. Velocity measurements of a supersonic jet exhausting in a transonic flow field, a cone boundary survey in a Mach 4 flow field, and a determination of the periodic disturbance frequencies of a sonic nozzle flow field are presented. Each of the above three cases also serves to illustrate different modes of laser transit anemometer operation. A brief description of the laser transit anemometer system is also presented.

  14. Effect of Si-H bond on the gas-phase chemistry of trimethylsilane in the hot wire chemical vapor deposition process.

    PubMed

    Shi, Y J; Li, X M; Toukabri, R; Tong, L

    2011-09-22

    The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane.

  15. Hot-spot detection and calibration of a scanning thermal probe with a noise thermometry gold wire sample

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Wolgast, Steven; Covington, Elizabeth; Kurdak, Cagliyan

    2013-02-01

    Measuring the temperature profile of a nanoscale sample using scanning thermal microscopy is challenging due to a scanning probe's non-uniform heating. In order to address this challenge, we have developed a calibration sample consisting of a 1-μm wide gold wire, which can be heated electrically by a small bias current. The Joule heating in the calibration sample wire is characterized using noise thermometry. A thermal probe was scanned in contact over the gold wire and measured temperature changes as small as 0.4 K, corresponding to 17 ppm changes in probe resistance. The non-uniformity of the probe's temperature profile during a typical scan necessitated the introduction of a temperature conversion factor, η, which is defined as the ratio of the average temperature change of the probe with respect to the temperature change of the substrate. The conversion factor was calculated to be 0.035 ± 0.007. Finite element analysis simulations indicate a strong correlation between thermal probe sensitivity and probe tip curvature, suggesting that the sensitivity of the thermal probe can be improved by increasing the probe tip curvature, though at the expense of the spatial resolution provided by sharper tips. Simulations also indicate that a bow-tie metallization design could yield an additional 5- to 7-fold increase in sensitivity.

  16. Atmospheric boundary layer testing: hot-wire anemometry measurements of turbulent boundary layer flow past a two-dimensional obstacle. 1982-1983 equipment loan report. Supplement 2

    SciTech Connect

    White, B.R.; Strataridakis, C.J.

    1984-11-01

    Measurements of a zero-pressure-gradient turbulent boundary layer flow past a two-dimensional obstacle were made in the present study. Measurements were made for both smooth and rough surfaces using single and X hot-wire probes. The Reynolds number based on obstacle height and freestream velocity was about 15,302. Profiles of mean velocity, turbulent intensity and probability density functions in two dimensions were determined. Also, Reynolds stress profiles, energy spectra and second moments of energy spectra were obtained. From the results evidence emerged that upstream, over, and downstream of the obstacle there zones of recirculating flow. The flow-field was dominated by the obstacle presence, such that no distinction between smooth-and rough-surface measurements could be made.

  17. Comparative Study of Solid-Phase Crystallization of Amorphous Silicon Deposited by Hot-Wire CVD, Plasma-Enhanced CVD, and Electron-Beam Evaporation

    SciTech Connect

    Stradins, P.; Kunz, O.; Young, D. L.; Yan, Y.; Jones, K. M.; Xu, Y.; Reedy, R. C.; Branz, H. M.; Aberle, A. G.; Wang, Q.

    2007-01-01

    Solid-phase crystallization (SPC) rates are compared in amorphous silicon films prepared by three different methods: hot-wire chemical vapor deposition (HWCVD), plasma-enhanced chemical vapor deposition (PECVD), and electron-beam physical vapor deposition (e-beam). Random SPC proceeds approximately 5 and 13 times slower in PECVD and e-beam films, respectively, as compared to HWCVD films. Doping accelerates random SPC in e-beam films but has little effect on the SPC rate of HWCVD films. In contrast, the crystalline growth front in solid-phase epitaxy experiments propagates at similar speed in HWCVD, PECVD, and e-beam amorphous Si films. This strongly suggests that the observed large differences in random SPC rates originate from different nucleation rates in these materials while the grain growth rates are relatively similar. The larger grain sizes observed for films that exhibit slower random SPC support this suggestion.

  18. Low temperature silicon nitride by hot wire chemical vapour deposition for the use in impermeable thin film encapsulation on flexible substrates.

    PubMed

    Spee, D A; van der Werf, C H M; Rath, J K; Schropp, R E I

    2011-09-01

    High quality non porous silicon nitride layers were deposited by hot wire chemical vapour deposition at substrate temperatures lower than 110 degrees C. The layer properties were investigated using FTIR, reflection/transmission measurements and 1:6 buffered HF etching rate. A Si-H peak position of 2180 cm(-1) in the Fourier transform infrared absorption spectrum indicates a N/Si ratio around 1.2. Together with a refractive index of 1.97 at a wavelength of 632 nm and an extinction coefficient of 0.002 at 400 nm, this suggests that a transparent high density silicon nitride material has been made below 110 degrees C, which is compatible with polymer films and is expected to have a high impermeability. To confirm the compatibility with polymer films a silicon nitride layer was deposited on poly(glycidyl methacrylate) made by initiated chemical vapour deposition, resulting in a highly transparent double layer.

  19. Annealing effects on capacitance-voltage characteristics of a-Si/SiN(x) multilayer prepared using hot-wire chemical vapour deposition.

    PubMed

    Panchal, A K; Rai, D K; Solanki, C S

    2011-04-01

    Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.

  20. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD.

    PubMed

    Oliphant, C J; Arendse, C J; Malgas, G F; Motaung, D E; Muller, T F G; Knoesen, D

    2009-10-01

    We report on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent post-deposition annealing. Tungsten, originating from the heated tungsten filament, is identified as the catalyst material responsible for the growth of the microcoils. High-resolution transmission spectroscopy, combined with Raman spectroscopy, confirm that the as-deposited microcoils are crystalline, which is induced by the high deposition temperature in the vicinity of the heated filament. These results suggest a simplified, less tedious deposition process for the growth of carbon microcoils, once the process has been optimized.

  1. Turbulence measurements in a transonic boundary layer and free-shear flow using laser velocimetry and hot-wire anemometry techniques

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Rose, W. C.

    1976-01-01

    Quantitative measurements of the turbulence fluctuations in velocity and mass flux have been obtained in Mach 0.6 and 0.8 turbulent boundary layer and free-shear layer flows by laser velocimetry and hot-wire anemometry techniques. To evaluate the effects of compressibility, these transonic data are compared to available incompressible and supersonic results. Based on some simplifying assumptions, estimates of the rms density fluctuations are made for which error bounds are given. In addition to these fluctuation data, the compressible mean velocity data obtained with the laser velocimeter are presented and compared to pitot tube results. The investigation was conducted in the Ames 6- by 6-Foot Supersonic Wind Tunnel at free-stream Mach numbers of 0.6 and 0.8 for a unit Reynolds number of about 10,000,000 per meter.

  2. Numerical-experimental analyses by Hot-Wire method of an alumina cylinder for future studies on thermal conductivity of the fusion breeder materials

    NASA Astrophysics Data System (ADS)

    Lo Frano, R.; Moscardini, M.; Aquaro, D.

    2014-11-01

    The determination of the thermal conductivity of breeder materials is one of the main goal in order to find the best candidate material for the fusion reactor technology. Experimental tests have been and will be carried out with a dedicated experimental devices, built at the Department of Civil and Industrial Engineering of the University of Pisa. The methodological approach used in doing that is characterized by two main phases strictly interrelated each other: the first one focused on the experimental evaluation of thermal conductivity of a ceramic material, by means of hot wire method, to be subsequently used in the second phase, based on the test rig method, to determine the thermal conductivity of pebble bed material. To the purpose, two different experimental devices have been designed and built. This paper deals with the first phase of the methodology. In this framework, the equipment set up and built to perform Hot wire tests, the ceramic material (a cylinder of alumina), the experimental procedure and the measured results obtained varying the temperature, are presented and discussed. The experimental campaign has been lead from 50°C up to 400°C. The thermal conductivity of the ceramic material at different bulk temperatures has been obtained in stationary conditions (detected on the basis of the temperature values measured during the experiment). Numerical analyses have been also performed by means of FEM code Ansys©. The numerical results were in quite good agreement with the experimental one, confirming also the reliability of code in reproducing heat transfer phenomena.

  3. Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method

    NASA Astrophysics Data System (ADS)

    Fujiwara, Seiji; Maki, Syou; Maekawa, Ryunosuke; Tanaka, Seiichi; Hagiwara, Masayuki

    2017-08-01

    Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a " containerless condition" to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410-0.438 \\hbox {W}\\cdot \\hbox {m}^{-1}\\cdot \\hbox {K}^{-1} and 3.77-5.18× 10^{-8} \\hbox {m}2\\cdot \\hbox {s}^{-1}, respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air-liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.

  4. Tethersonde and kite anemometer evaluation

    SciTech Connect

    Chow, W.Y.; Kirchhoff, R.H.

    1988-10-01

    The responses of kite anemometers and tethersonde balloons to the dynamics of the wind are investigated in this study. A three-phase effort of theoretical development, experimental measurement, and comparison of data and theory was undertaken to provide further understanding of how a kite or balloon responds to atmospheric turbulence. Understanding the effect on wind velocity measurements obtained using these instruments is important to their use in, for example, identifying optimum wind turbine sites. The theoretical development included: (1) an extension of double theodolite theory, to provide a mechanism for calculating instrument displacement, and (2) linear small perturbation analysis of the effect of atmospheric turbulence on kite or balloon motion. The results of the small perturbation analyses were response equations that analyze the movement of the kite or balloon as a function of the mean elevation angle of the kite or balloon and turbulence parameters of the wind. The response equations provide the ratio of the fluctuating string tension to the mean string tension (for the kite) and the fluctuating elevation angle for the kite and balloon. 18 refs., 66 figs., 22 tabs.

  5. Three-dimensional visualization of axial velocity profiles downstream of six different mechanical aortic valve prostheses, measured with a hot-film anemometer in a steady state flow model.

    PubMed

    Hasenkam, J M; Westphal, D; Reul, H; Gormsen, J; Giersiepen, M; Stodkilde-Jorgensen, H; Paulsen, P K

    1987-01-01

    Hot-film anemometry was used for in vitro steady-state measurements downstream of six mechanical aortic valve prostheses at flow rates 10, 20 and 30 l.min-1. Three-dimensional visualizations of velocity profiles at two downstream levels were made with the valves rotated 0 and 60 degrees in relation to the sinuses of valsalvae. The velocity fields downstream of the disc valves were generally skew with increasing velocity gradients and laminar shear stresses with increasing flow rates. Furthermore, increased skewness of the velocity profiles was noticed when the major orifices of the disc valves were towards the commissure than when approaching a sinus of valsalvae. The velocity profiles downstream of the ball valve were generally flat but with considerably more disturbed flow, consistent with the findings in turbulent flow.

  6. Sonic Anemometer Vertical Wind Speed Measurement Errors

    NASA Astrophysics Data System (ADS)

    Kochendorfer, J.; Horst, T. W.; Frank, J. M.; Massman, W. J.; Meyers, T. P.

    2014-12-01

    In eddy covariance studies, errors in the measured vertical wind speed cause errors of a similar magnitude in the vertical fluxes of energy and mass. Several recent studies on the accuracy of sonic anemometer measurements indicate that non-orthogonal sonic anemometers used in eddy covariance studies underestimate the vertical wind speed. It has been suggested that this underestimation is caused by flow distortion from the interference of the structure of the anemometer itself on the flow. When oriented ideally with respect to the horizontal wind direction, orthogonal sonic anemometers that measure the vertical wind speed with a single vertically-oriented acoustic path may measure the vertical wind speed more accurately in typical surface-layer conditions. For non-orthogonal sonic anemometers, Horst et al. (2014) proposed that transducer shadowing may be a dominant factor in sonic flow distortion. As the ratio of sonic transducer diameter to path length and the zenith angle of the three transducer paths decrease, the effects of transducer shadowing on measurements of vertical velocity will decrease. An overview of this research and some of the methods available to correct historical data will be presented.

  7. Industry guidelines for the calibration of maximum anemometers

    SciTech Connect

    Bailey, B.H.

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  8. Wind speed measurement by paper anemometer

    NASA Astrophysics Data System (ADS)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-09-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows that the sound wave detected in the paper cup has a larger amplitude and the noise is depressed, though the frequency of the sound is twice that detected directly from the strip. From the experiments, we find that the frequency of the sonic wave does not change with wind speed; however, its amplitude increases with wind speed. To predict the wind speed, a correlation is established from the sound wave amplitude.

  9. Rugged constant-temperature thermal anemometer.

    PubMed

    Palma, J; Labbé, R

    2016-12-01

    Here we report a robust thermal anemometer which can be easily built. It was conceived to measure outdoor wind speeds and for airspeed monitoring in wind tunnels and other indoor uses. It works at a constant, low temperature of approximately 90 °C, so that an independent measurement of the air temperature is required to give a correct speed reading. Despite the size and high thermal inertia of the probe, the test results show that this anemometer is capable of measuring turbulent fluctuations up to ∼100 Hz in winds of ∼14 m/s, which corresponds to a scale similar to the length of the probe.

  10. Laser anemometry for hot section applications

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Oberle, L. G.; Weikle, D. H.

    1983-01-01

    Laser anemometers (LA's) for use in the study of the hot section components of turbomachinery are being developed. Specifically, laser anemometers are being developed for use in the 50.8-cm (20-in.) diameter warm turbine and high-pressure turbine (HPT) facilities at Lewis. A brief review of the status of the program along with some preliminary data taken in an open-jet burner are presented.

  11. Oxygen additive amount dependence of rate of photoresist removal by H radicals generated on a tungsten hot-wire catalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masashi; Umemoto, Hironobu; Ohdaira, Keisuke; Shikama, Tomokazu; Nishiyama, Takashi; Horibe, Hideo

    2016-07-01

    We examined an environmentally friendly photoresist removal method using radicals produced by decomposing mixtures of hydrogen and oxygen on a hot tungsten catalyst. The photoresist removal rate increased with the oxygen additive amount (the flow rate ratio of oxygen to hydrogen) up to an optimal amount and then decreased gradually. When the catalyst temperature was 1600 °C, the optimal oxygen additive amount was 1.0% and the removal rate was 1.7 times higher than that in the pure hydrogen system. At 2000 °C, the optimal amount increased to 2.5% but the increase ratio decreased by 1.3 times. At high catalyst temperatures, the absolute removal rate as well as the optimal oxygen additive amount is high, but the increase ratio is low. At the optimal oxygen additive amount, H, O, and OH radicals may exert their effects together to decompose photosensitive polymers.

  12. The influence of charge effect on the growth of hydrogenated amorphous silicon by the hot-wire chemical vapor deposition technique

    SciTech Connect

    Wang, Q.; Nelson, B.P.; Iwaniczko, E.; Mahan, A.H.; Crandall, R.S.; Benner, J.

    1998-09-01

    The authors observe at lower substrate temperatures that the scatter in the dark conductivity on hydrogenated amorphous silicon (a-Si:H) films grown on insulating substrates (e.g., Corning 7059 glass) by the hot-wire chemical vapor deposition technique (HWCVD) can be five orders of magnitude or more. This is especially true at deposition temperatures below 350 C. However, when the authors grow the same materials on substrates with a conductive grid, virtually all of their films have acceptable dark conductivity (< 5 {times} 10{sup {minus}10} S/cm) at all deposition temperatures below 425 C. This is in contrast to only about 20% of the materials grown in this same temperature range on insulating substrates having an acceptable dark conductivity. The authors estimated an average energy of 5 eV electrons reaching the growing surface in vacuum, and did additional experiments to see the influence of both the electron flux and the energy of the electrons on the film growth. Although these effects do not seem to be important for growing a-Si:H by HWCVD on conductive substrates, they help better understand the important parameters for a-Si:H growth, and thus, to optimize these parameters in other applications of HWCVD technology.

  13. Nanocrystalline Si/SiO{sub 2} core-shell network with intense white light emission fabricated by hot-wire chemical vapor deposition

    SciTech Connect

    Matsumoto, Y. Dutt, A.; Santana-Rodríguez, G.; Santoyo-Salazar, J.; Aceves-Mijares, M.

    2015-04-27

    We report the fabrication of a stable Si/SiO{sub 2} core-shell network using hot-wire chemical vapor deposition on a silicon substrate at a relatively low substrate temperature of 200 °C. Structural investigations using transmission electron microscopy and X-ray diffraction confirm the presence of nanocrystalline silicon and silicon dioxide quantum dots in the form of a core-shell network embedded in the amorphous SiO{sub x} matrix, while selected area electron diffraction confirms the formation of a core-shell structure. The core-shell structure exhibits a bright white emission that can be seen with the unaided eye at room temperature without any post-annealing treatments, and the observed photoemission does not alter in color or intensity after prolonged laser exposure. Additional measurements are performed while varying the laser power and optical gain is found in the as-deposited material. Intense stable white luminescence is observed and shows the prospective for various optical and biological applications in the future.

  14. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  15. A flying hot wire study of the turbulent near wake of a circular cylinder at Reynolds number of 140,000. Ph.D. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Cantwell, B. J.

    1975-01-01

    The phenomenology was studied of the processes of vortex formation and transport in the near wake, at a Reynolds number sufficiently high to insure a fully turbulent wake, but low enough to insure a laminar separation. The apparatus developed for measuring this flow consisted of X-array hot wire probes mounted on the ends of a pair of whirling arms. A computer controlled data acquisition system was slaved to the position of the rotating arm and managed, monitored, edited, and recorded the vast profusion of data which is continuously poured out by the device. Results are presented which show the instantaneous velocity, intermittency, vorticity, and stress fields as a function of phase for the first six diameters of the near wake. The stresses in the near wake emerge as a concatenation of peaks and valleys, some the result of strong induced motions in the outer flow which cause free stream fluid to move rapidly inward toward the center of the wake, others the result of the random motions of the background turbulence.

  16. Reliability of thermal conductivity measurement of liquids by using transient hot-wire, photon-correlation spectroscopy and the laser flash method

    NASA Astrophysics Data System (ADS)

    Kwon, Suyong; Lee, Joohyun; Kim, Dae Ho

    2016-05-01

    Measuring the thermal conductivity of liquids is important, but not easy, because of the complexity of and the natural convection in liquids, and reliable thermal conductivity measurements in liquids under various sample conditions is essential for data accuracy. We have introduced and developed a validation chain for measuring the thermal conductivity of liquids by using three different experimental methods: the transient hot-wire (THW), the photon correlation spectroscopy (PCS) and the laser flash (LF) methods in the temperature range from -30 to 90 °C. We checked the performance of the validation chain developed in this study by measuring the thermal conductivity of liquid toluene. We found good agreement between the thermal conductivity data obtained by using the THW, PCS and LF methods. To demonstrate the use of this validation chain for measurements of thermophysical properties in liquids, we also showed its use in measuring the specific heat of a volatile liquid, toluene which can be extracted from thermal conductivity, thermal diffusivity, and density measurements without any effects of volatilization.

  17. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  18. Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition.

    PubMed

    Chung, Yung-Bin; Lee, Sang-Hoon; Bae, Sung-Hwan; Park, Hyung-Ki; Jung, Jae-Soo; Hwang, Nong-Moon

    2012-07-01

    Crystalline silicon films on an inexpensive glass substrate are currently prepared by depositing an amorphous silicon film and then crystallizing it by excimer laser annealing, rapid thermal annealing, or metal-induced crystallization because crystalline silicon films cannot be directly deposited on glass at a low temperature. It was recently shown that by adding HCI gas in the hot-wire chemical vapor deposition (HWCVD) process, the crystalline silicon film can be directly deposited on a glass substrate without additional annealing. The electrical properties of silicon films prepared using a gas mixture of SiH4 and HCl in the HWCVD process could be further improved by controlling the initial structure, which was achieved by adjusting the delay time in deposition. The size of the silicon particles in the initial structure increased with increasing delay time, which increased the mobility and decreased the resistivity of the deposited films. The 0 and 5 min delay times produced the silicon particle sizes of approximately 10 and approximately 28 nm, respectively, in the initial microstructure, which produced the final films, after deposition for 300 sec, of resistivities of 0.32 and 0.13 Omega-cm, mobilities of 1.06 and 1.48 cm2 V(-1) S(-1), and relative densities of 0.87 and 0.92, respectively.

  19. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    PubMed

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  20. Carburization of tungsten filaments in a hot-wire chemical vapor deposition process using 1,1,3,3-tetramethyl-1,3-disilacyclobutane.

    PubMed

    Tong, L; Shi, Y J

    2009-09-01

    The alloying of tungsten filament when using 1,1,3,3-tetramethyl-1,3-disilacyclobutane (TMDSCB) in a hot-wire chemical vapor deposition reactor was systematically studied by scanning electron microscopy, Auger electron spectroscopy, analysis of the power consumed by the filament, and in situ mass spectrometric measurements of the gas-phase species produced in the process. Only carburization of the W filament was observed. The carburization is mainly caused by the interaction of methyl radicals with the filament. Graphite as well as both WC and W2C alloys can form on the filament surface, depending on the filament temperatures and source gas pressures. Both WC and graphite are converted to W2C with the diffusion of C into the filament. It is shown that filament carburization affects the consumption rate of the source gas and the intensities of gas-phase reaction products. Gas-phase reactions dominate at T < or = 1400 degrees C. The carburization rate increases with increasing filament temperatures and dominates at T > or = 1800 degrees C.

  1. Study of tungsten filament aging in hot-wire chemical vapor deposition with silacyclobutane as a source gas and the H{sub 2} etching effect

    SciTech Connect

    Tong Ling; Sveen, Chris E.; Shi Yujun

    2008-06-15

    The tungsten filament aging when using silacyclobutane (SCB) as a source gas in a hot-wire chemical vapor deposition reactor was systematically studied by the characterization of surface morphology using scanning electron microscopy and the chemical composition analysis of the filament surfaces using Auger electron spectroscopy. It is shown that filament aging involves the formation of silicides and under more severe conditions, a pure silicon deposit. At low pressures of SCB samples, e.g., 0.06 and 0.03 Torr, only Si{sub 3}W{sub 5} alloy was formed. Silicon-rich silicide, Si{sub 2}W, was found when using a higher pressure of SCB at 0.12 Torr. At the high SCB pressure of 0.12 Torr and low temperatures, pure silicon was deposited on the W filament surface. It is also demonstrated that H{sub 2} can etch the aged filament at high temperatures above 1900 deg. C. The etching products detected by the 10.5 eV vacuum ultraviolet laser single photon ionization/time-of-flight mass spectrometer include SiH{sub 4}, SiCH{sub x} (x=2-5), and SiC{sub 2}H{sub y} (y=4-7)

  2. Study of tungsten filament aging in hot-wire chemical vapor deposition with silacyclobutane as a source gas and the H2 etching effect

    NASA Astrophysics Data System (ADS)

    Tong, Ling; Sveen, Chris E.; Shi, Yujun

    2008-06-01

    The tungsten filament aging when using silacyclobutane (SCB) as a source gas in a hot-wire chemical vapor deposition reactor was systematically studied by the characterization of surface morphology using scanning electron microscopy and the chemical composition analysis of the filament surfaces using Auger electron spectroscopy. It is shown that filament aging involves the formation of silicides and under more severe conditions, a pure silicon deposit. At low pressures of SCB samples, e.g., 0.06 and 0.03Torr, only Si3W5 alloy was formed. Silicon-rich silicide, Si2W, was found when using a higher pressure of SCB at 0.12Torr. At the high SCB pressure of 0.12Torr and low temperatures, pure silicon was deposited on the W filament surface. It is also demonstrated that H2 can etch the aged filament at high temperatures above 1900°C. The etching products detected by the 10.5eV vacuum ultraviolet laser single photon ionization/time-of-flight mass spectrometer include SiH4, SiCHx (x =2-5), and SiC2Hy (y =4-7).

  3. Influence of low energy argon plasma treatment on the moisture barrier performance of hot wire-CVD grown SiNx multilayers

    NASA Astrophysics Data System (ADS)

    Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric

    2014-01-01

    The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.

  4. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor

    SciTech Connect

    Yang, Mengdi Aarnink, Antonius A. I.; Kovalgin, Alexey Y.; Gravesteijn, Dirk J.; Wolters, Rob A. M.; Schmitz, Jurriaan

    2016-01-15

    In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecular or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.

  5. Sampling Bias on Cup Anemometer Mean Winds

    NASA Astrophysics Data System (ADS)

    Kristensen, L.; Hansen, O. F.; Højstrup, J.

    2003-10-01

    The cup anemometer signal can be sampled in several ways to obtain the mean wind speed. Here we discuss the sampling of series of mean wind speeds from consecutive rotor rotations, followed by unweighted and weighted averaging. It is shown that the unweighted averaging creates a positive bias on the long-term mean wind speed, which is at least one order of magnitude larger than the positive bias from the weighted averaging, also known as the sample-and-hold method. For a homogeneous, neutrally stratified flow the first biases are 1%-2%. For comparison the biases due to fluctuations of the three wind velocity components and due to calibration non-linearity are determined under the same conditions. The largest of these is the v-bias from direction fluctuations. The calculations pertain to the Risø P2546A model cup anemometer.

  6. A simple nasal anemometer for clinical purposes.

    PubMed

    Hutters, B; Brøndsted, K

    1992-01-01

    There is a need for clinical methods which give more direct information about the behaviour of the velopharyngeal mechanism in natural speech than do the examination methods normally applied to patients suffering from velopharyngeal insufficiency. One possibility is the recording of nasal airflow in order to detect nasal emission of air. The purpose of the present study is to examine the qualities and the characteristics of a simple and cheap nasal anemometer. As this type of flowmeter is considered less reliable than most other flowmeters, its limitations must be clearly understood and accounted for in drawing conclusions. Therefore, nasal airflow in speech obtained with this flowmeter is discussed in relation to nasal airflow obtained by the more reliable pneumotachograph and in relation to nasal airflow data found in the literature. The tests made here suggest that, at least for the type of speech material and measurements used in the present study, reliable nasal airflow data can be obtained by the anemometer.

  7. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  8. Wind speed and direction measurements using the sphere anemometer

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Hoelling, Michael; Peinke, Joachim

    2009-11-01

    In times of growing energy demand, the importance of wind energy is rapidly increasing and so is the need for accurate wind speed and direction measurements. The widely spread cup anemometers show significant over-speeding under turbulent wind conditions as inherent in atmospherical flows while being solely capable of detecting the wind speed. Therefore, we propose the newly developed sphere anemometer as a simple an robust sensor for direction and velocity measurements. The sphere anemometer exploits the velocity-dependent deflection of a tube, which is the order of μm and can be detected by means of a light pointer as used in atomic force microscopes. In comparative measurements under laboratory conditions the sphere anemometer showed a significantly higher temporal resolution then cup anemometers while it does not exhibit any over-speeding. Additionally, results of atmospherical wind measurements with the sphere anemometer and state-of-the-art cup anemometry are presented.

  9. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method.

    PubMed

    Waman, V S; Kamble, M M; Ghosh, S S; Mayabadi, Azam; Sathe, V G; Amalnekar, D P; Pathan, H M; Jadkar, S R

    2012-11-01

    In this paper, we report the synthesis of highly conducting phosphorous doped hydrogenated nanocrystalline silicon (nc-Si:H) films at substantially low substrate temperature (200 degrees C) by hot-wire chemical vapor deposition (HW-CVD) method using pure silane (SiH4) and phosphine (PH3) gas mixture without hydrogen dilution. Structural, optical and electrical properties of these films were investigated as a function of PH3 gas-phase ratio. The characterization of these films by low-angle X-ray diffraction, Raman spectroscopy and atomic force microscopy revealed that, the incorporation of phosphorous in nc-Si:H induces an amorphization in the nc-Si:H film structure. Fourier transform infrared spectroscopy analysis indicates that hydrogen predominately incorporated in phosphorous doped n-type nc-Si:H films mainly in di-hydrogen species (Si-H2) and poly-hydrogen (Si-H2)n bonded species signifying that the films become porous, and micro-void rich. We have observed high band gap (1.97-2.37 eV) in the films, though the hydrogen content is low (< 1.4 at.%) over the entire range of PH3 gas-phase ratio studied. Under the optimum deposition conditions, phosphorous doped nc-Si:H films with high dark conductivity (sigma Dark -5.3 S/cm), low charge-carrier activation energy (E(act) - 132 meV) and high band gap (- 2.01 eV), low hydrogen content (- 0.74 at.%) were obtained at high deposition rate (12.9 angstroms/s).

  10. Using direct numerical simulation to analyze and improve hot-wire probe sensor and array configurations for simultaneous measurement of the velocity vector and the velocity gradient tensor

    NASA Astrophysics Data System (ADS)

    Vukoslavčević, Petar V.; Wallace, James M.

    2013-11-01

    Multi-sensor, hot-wire probes of various configurations have been used for 25 years to simultaneously measure the velocity vector and the velocity gradient tensor in turbulent flows. This is the same period in which direct numerical simulations (DNS) were carried out to investigate these flows. Using the first DNS of a turbulent boundary layer, Moin and Spalart ["Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence," NASA Technical Memorandum 100022 (1987)] examined, virtually, the performance of a two-sensor X-array probe with the sensors idealized as points in the numerical grid. Subsequently, several investigators have used DNS for similar studies. In this paper we use a highly resolved minimal channel flow DNS, following Jiménez and Moin ["The minimal flow unit in near-wall turbulence," J. Fluid Mech. 225, 213 (1991)], to study the performance of an 11-sensor probe. Our previous studies of this type have indicated that, on balance, a probe of the design described here may provide the most accurate measurements of many of the statistics formed from the velocity vector and the velocity gradient tensor (rms and skewness values of the velocity and vorticity components as well as the Reynolds shear stress and the dissipation and production rates). The results of the present study show that, indeed, the sensor and array configurations of a probe of this design are considerably better than previous designs that have been used, and they are likely to give reasonably satisfactory results for such measurements with a real probe in a real bounded flow.

  11. Aerodynamic Analysis of Cup Anemometers Performance: The Stationary Harmonic Response

    PubMed Central

    Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Ángel

    2013-01-01

    The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement. PMID:24381512

  12. Aerodynamic analysis of cup anemometers performance: the stationary harmonic response.

    PubMed

    Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Angel

    2013-01-01

    The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement.

  13. The critical parameters in in-situ MgB2 wires and tapes with ex-situ MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Morawski, A.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Żuchowska, E.; Gajda, G.; Czujko, T.; Cetner, T.; Hossain, M. S. A.

    2015-05-01

    MgB2 precursor wires were prepared using powder in tube technique by Institute of High Pressure PAS in Warsaw. All samples were annealed under isostatic pressure generated by liquid Argon in the range from 0.3 GPa to 1 GPa. In this paper, we show the effects of different processing routes, namely, cold drawing (CD), cold rolling (CR), hot isostatic pressure (HIP) and doping on critical current density (Jc), pinning force (Fp), irreversible magnetic-field (Birr), critical temperature (Tc), n value, and dominant pinning mechanism in MgB2/Fe wires with ex situ MgB2 barrier. The results show that medium pressures (˜0.35 GPa) lead to high Jc in low and medium magnetic fields (0 T - 9 T). On the other hand, higher pressures (˜1 GPa) lead to enhanced Jc in high magnetic fields (above 9 T). Transport measurements show that CD, CR, and HIP have small effects on Birr and Tc, but CD, CR, HIP, and doping enhance Jc and Fp in in situ MgB2 wires with ex situ MgB2 barrier. Transport measurements on in situ undoped MgB2 wire with ex situ MgB2 barrier yield a Jc of about 100 A/mm2 at 4.2 K in 6 T, at 10 K in 4 T and at 20 K in 2 T. The results also show that cold drawing causes increase of n value.

  14. Method of manufacturing superconductor wire

    DOEpatents

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  15. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  16. Method for fabricating a microscale anemometer

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor)

    2008-01-01

    Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.

  17. Evaluation of a Tethered Kite Anemometer.

    DTIC Science & Technology

    1981-02-01

    interest in alternative methods of wind measurements. One new instrument for obtaining vertical wind profiles is a kite anemometer named TALA* (tethered... alternative to these otner riethods because of its economy and other advantages. 16 MEL, r ATMOSPHERIC SCIENCES RESEARCH REPORTS 1. Lindberg, J. D., "An...intiared PY’n,"’ CtA-817. av 1977. 54. gallard, Harold N., lose M. Z-rna, and Frank P. 140;on, Consultant for Chemical Kinetics, "Ca ru tion of ? , cte

  18. Reynolds stress deflections of the bivane anemometer

    NASA Astrophysics Data System (ADS)

    Chimonas, G.

    1980-03-01

    It is shown that a bivane anemometer or other elevation angle sensing device records a nonzero mean angle when responding to cross-correlated fluctuations in a mean wind. This analysis shows how this mean offset can be used to derive the wind-aligned Reynolds stress directly. This theory is applied to a historical data set and it is shown that the prior derivation of a mean vertical wind component is erroneous, and that reinterpretation of results in terms of the Reynolds stress response is consistent with other aspects of the record.

  19. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  20. Evaluation of the sphere anemometer for atmospheric wind measurements

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2014-11-01

    Our contribution will compare the sphere anemometer and two standard sensors for wind energy and meteorology based on data from a near-shore measurement campaign. We will introduce the characteristics of the sphere anemometer - a drag-based sensor for simultaneous wind speed and direction measurements, which makes use of the highly resolving light pointer principle to detect the velocity-dependent deflection of sphere mounted on a flexible tube. Sphere anemometer, cup anemometer and 3D sonic anemometer were installed at near-shore site in the German Wadden Sea. A comparison of the anemometers was carried out based on several month of high frequency data obtained from this campaign. The measured wind speed and direction data were analyzed to evaluate the capability of the sphere anemometer under real operating conditions, while the sensor characteristics obtained from previous wind tunnel experiments under turbulent conditions served as a reference to assess the durability and to identify challenges of the new anemometer. A characterization of the atmospheric wind conditions at the test site is performed based on the recorded wind data. Wind speed and wind direction averages and turbulence intensities are analyzed as well as power spectra and probability density functions. Supported by the German Ministry of Economics and Energy.

  1. Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition at filament temperatures between 1500 and 1900 °C

    NASA Astrophysics Data System (ADS)

    Brogueira, P.; Conde, J. P.; Arekat, S.; Chu, V.

    1996-06-01

    The optical, electronic and structural properties of thin films deposited by Hot-wire chemical vapor deposition with filament temperatures, Tfil, between 1500 and 1900 °C from silane and hydrogen are studied. The substrate temperature, Tsub, was kept constant at 220 °C. Amorphous silicon films (a-Si:H) are obtained at high filament temperatures, low deposition pressures and low hydrogen-to-silane flow rate ratio (Tfil˜1900 °C, p<30 mTorr and FH2/FSiH4≤1). At these deposition conditions, high growth rates are observed (rd≥10 Ås-1) both with and without hydrogen dilution, and no silicon deposition was observed on the filaments. However, if a lower filament temperature is used (Tfil˜1500 °C) a transition from a-Si:H to microcrystalline silicon (μc-Si:H) occurs as the pressure is decreased from above 0.3 Torr to below 0.1 Torr. The highest dark conductivity and lowest activation energy, of ˜1 Scm-1 and <0.1 eV, respectively, were observed for μc-Si:H deposited at p˜50 mTorr. In this Tfil regime, μc-Si:H growth is achieved without hydrogen dilution, for substrate temperatures as low as ˜150 °C, and for very thin films (˜0.05 μm). Silicon growth on the filaments is observed. For both Tfil regimes, an amorphous to microcrystalline transition is also observed when the hydrogen dilution is increased (FH2/FSiH4≳4). A kinetic growth model is developed, which suggests that the transition from amorphous to microcrystalline can be explained by considering a balance between the concentration of atomic hydrogen and the concentration of the precursor to silicon deposition (SixHz with z≤3x) near the sample. This concentration ratio is shown to be controlled both by the deposition pressure, p, and the filament temperature, Tfil.

  2. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  3. Cup anemometer calibration: effect of flow velocity distribution

    NASA Astrophysics Data System (ADS)

    Piccato, A.; Spazzini, P. G.; Malvano, R.

    2011-10-01

    The effects of different working conditions and specifically of different velocity profiles on the output of a commercial cup anemometer were analysed experimentally. A simple mathematical model is also presented and provides results in line with the experiments. Results show that a cup anemometer with certain geometrical features can be calibrated through a rotating drag rig by correcting for the bias on the instrument output. The increase in uncertainty caused by this systematic correction was evaluated and applied to the results. The correction was validated by checking the compatibility of calibrations of a cup anemometer at the rotating rig and in a wind tunnel.

  4. Calibration and Lag of a Friez Type Cup Anemometer

    NASA Technical Reports Server (NTRS)

    Pinkerton, Robert M

    1930-01-01

    Tests on a Friez type cup anemometer have been made in the variable density wind tunnel of the Langley Memorial Aeronautical Laboratory to calibrate the instrument and to determine its suitability for velocity measurements of wind gusts. The instrument was calibrated against a Pitot-static tube placed directly above the anemometer at air densities corresponding to sea level, and to an altitude of approximately 6000 feet. Air-speed acceleration tests were made to determine the lag in the instrument reading. The calibration results indicate that there should be an altitude correction. It is concluded that the cup anemometer is too sluggish for velocity measurements of wind gusts.

  5. Wind Powering America Anemometer Loan Program: A Retrospective

    SciTech Connect

    Jimenez, T.

    2013-05-01

    This white paper details the history, mechanics, status, and impact of the Native American Anemometer Loan Program (ALP) conducted by the U.S. Department of Energy's Wind Powering America (WPA) initiative. Originally conceived in 2000 and terminated (as a WPA activity) at the end of FY 2011, the ALP has resulted in the installation of anemometers at 90 locations. In addition, the ALP provided support for the installation of anemometers at 38 additional locations under a related ALP administered by the Western Area Power Administration.

  6. Laser Doppler anemometer signal processing for blood flow velocity measurements

    SciTech Connect

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    2015-03-31

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (laser applications and other topics in quantum electronics)

  7. Substrate patterning with NiOx nanoparticles and hot-wire chemical vapour deposition of WO3x and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Houweling, Z. S.

    2011-10-01

    The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to

  8. Aerodynamic Investigation of a Cup Anemometer

    NASA Technical Reports Server (NTRS)

    Hubbard, John D; Brescoll, George P

    1934-01-01

    This thesis presents the results of an investigation wherein the change of the normal force coefficient with Reynolds Number was obtained statically for a 15.5-centimeter hemisphere cup under the following conditions: (1) single cup with no interference; (2) single cup with three-cup interference; (3) four cups. The coefficients found in this research vary with Reynolds Number and are high as compared with those of Eiffel. The effect of interference upon a single cup is to increase the drag and normal force coefficients. The curve resulting from the summation of the coefficients for four cups agrees with the static torque curve of a Robinson type cup anemometer. All tests were carried on in the University of Detroit atmospheric wind tunnel during May 1933.

  9. Development of a MEM Based Satellite Anemometer

    NASA Astrophysics Data System (ADS)

    Manderscheid, Richard

    1998-03-01

    A satellite anemometer was developed by William B. Hanson, et. al. of The University of Texas at Dallas in 1990, for both wind measurement and atittitude control. In conjuction with Dr. Gregory D. Earle, current efforts are the redesign of the bench-proven model to include superior Micro Electro Mechanical (MEM) based sensors in place of current Bayard-Alpert vacuum gauges. MEM systems in general exploit silicon for it's mechanical as well as electrical properties on a very small scale. A photomask was laid out to create an array of microtip-emitter styles in sizes ranging from two to five microns in the UT-Dallas cleanroom facilites. Emitter characteristics must be known to determine future design parameters fo other portions of the transducer.

  10. Fast-response cup anemometer features cosine response

    NASA Technical Reports Server (NTRS)

    Frenzen, P.

    1968-01-01

    Six-cup, low-inertia anemometer combines high resolution and fast response with a unique ability to sense only the horizontal component of the winds fluctuating rapidly in three dimensions. Cup assemblies are fabricated of expanded polystyrene plastic.

  11. Removal of pedestals and directional ambiguity of optical anemometer signals.

    PubMed

    Durst, F; Zaré, M

    1974-11-01

    Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle's velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180 degrees , resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

  12. Wire stripper

    NASA Technical Reports Server (NTRS)

    Economu, M. A. (Inventor)

    1978-01-01

    An insulation stripper is described which is especially useful for shielded wire, the stripper including a first pair of jaws with blades extending substantially perpendicular to the axis of the wire, and a second pair of jaws with blades extending substantially parallel to the axis of the wire. The first pair of jaws is pressed against the wire so the blades cut into the insulation, and the device is turned to form circumferential cuts in the insulation. Then the second pair of jaws is pressed against the wire so the blades cut into the insulation, and the wire is moved through the device to form longitudinal cuts that permit easy removal of the insulation. Each of the blades is located within the concave face of a V-block, to center the blades on the wire and to limit the depth of blade penetration.

  13. Comparison of sonic anemometer performance under foggy conditions

    NASA Astrophysics Data System (ADS)

    El-Madany, Tarek; Griessbaum, Frank; Fratini, Gerardo; Juang, Jehn-Yih; Chang, Shih-Chieh; Klemm, Otto

    2013-04-01

    A sonic anemometer comparison was performed at a mountain cloud forest site in Taiwan to evaluate the effect of fog on sonic anemometer performance, with particular emphasis to their employment in eddy-covariance applications. Four sonic anemometers (Campbell CSAT3, Gill R3-50, METEK USA-1, and R.M. Young 81000VRE) were tested for 15 consecutive days with an overall fog duration of 86 hours. Three aspects were analyzed: (1) spike statistics during foggy and non-foggy conditions, (2) spectral and co-spectral analyses before, during, and after 16 fog events, and (3) correlations between turbulence characteristics of wind and temperature. All sonic anemometers produce more spikes when the visibility is below 1000 m, compared to conditions with visibilities above 1000 m. However, the overall number of spikes caused by fog is generally low and therefore of no concern for any of the tested sonic anemometers. Spectral analyses showed that for most anemometers fog mostly affects spectra of the sonic temperature. Here, the high frequency range is either damped or amplified. These effects worsen with increasing duration and density of fog. In case of the 81000VRE and the USA-1, all three wind components, sonic temperature spectra as well as the co-spectra of w'T' and w'u' show noise in the high frequency range in dense fog. The CSAT3 shows noise only in the high frequency range of the sonic temperature and the co-spectra of w'T'. Smallest sensitivity to fog was observed for the R3-50. It seems to be suited best for eddy covariance measurements under dense foggy conditions because also the high frequency part of the transporting turbulence elements can be measured. Differences between 1) the sonic anemometers and 2) foggy and non-foggy situations are usually not systematically but parametrically dependent. Differences of up to 34 % were found for the variance of vertical wind speed between the sonic anemometers. When comparing average daytime fluxes (including fog events) the

  14. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  15. Fourier analysis of the aerodynamic behavior of cup anemometers

    NASA Astrophysics Data System (ADS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-06-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force.

  16. Laser anemometer measurements in a transonic axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.; Powell, J. A.

    1979-01-01

    A laser anemometer system employing an efficient data acquisition technique was used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.

  17. Dynamic behavior of a beam drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1980-01-01

    A cantilevered beam with strain gages attached to the fixed ends and the minimax technique were used in an experiment conducted to determine the dynamic behavior of a drag-force anemometer in high frequency, unsteady flow. In steady flow the output of the anemometer is proportional to stream velocity head and flow angle. Fluid mechanics suggests that, in unsteady flow, the output would also be proportional to the rate of change of fluid velocity. It was determined that effects due to the rate of change of fluid velocity are negligible for the probe geometry and frequencies involved.

  18. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  19. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  20. Improved analytical method to study the cup anemometer performance

    NASA Astrophysics Data System (ADS)

    Pindado, Santiago; Ramos-Cenzano, Alvaro; Cubas, Javier

    2015-10-01

    The cup anemometer rotor aerodynamics is analytically studied based on the aerodynamics of a single cup. The effect of the rotation on the aerodynamic force is included in the analytical model, together with the displacement of the aerodynamic center during one turn of the cup. The model can be fitted to the testing results, indicating the presence of both the aforementioned effects.

  1. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  2. The cup anemometer, a fundamental meteorological instrument for the wind energy industry. Research at the IDR/UPM Institute.

    PubMed

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-11-12

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

  3. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    PubMed Central

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-01-01

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies. PMID:25397921

  4. Hot film anemometry. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-08-01

    The principles of hot film anemometer operation are summarized; wind tunnel and laboratory tests are described; flow field dynamics are discussed involving turbulence, boundary layers, separation, shock waves, and stresses; mathematical models and analysis are presented; computer techniques are outlined; and a number of applications are given. This updated bibliography contains 58 citations, 3 of which are new entries to the previous edition.

  5. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  6. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  7. Use of Optical Microscopy to Examine Crystallite Nucleation and Growth in Thermally Annealed Plasma Enhanced Chemical Vapor Deposition and Hot Wire Chemical Vapor Deposition a-Si:H Films

    SciTech Connect

    Mahan, A. H.; Dabney, M. S.; Reedy, Jr R. C.; Molina, D.; Ginley, D. S.

    2012-05-15

    We report a simple method to investigate crystallite nucleation and growth in stepwise, thermally annealed plasma enhanced chemical vapor deposition and hot wire chemical vapor deposition a-Si:H films. By confining film thicknesses to the range 500-4000 {angstrom}, optical microscopy in the reflection mode can be used to readily detect crystallites in the thermally annealed a-Si:H lattice. Measurements of the crystallite density versus annealing time for identically prepared films of different thickness show that the crystallite nucleation rate is smaller for thinner films, suggesting that crystallite nucleation is homogeneous, in agreement with previous results. A comparison of film nucleation rates with those obtained by other methods on identically prepared films shows excellent agreement, thus establishing the validity of the current technique. The potential effect of impurity (oxygen) incorporation during the stepwise annealing in air is shown not to affect crystallite nucleation and growth, in that SIMS oxygen profiles for stepwise versus continuous annealing show not only similar impurity profiles but also similar bulk impurity densities.

  8. Method for fabricating thin californium-containing radioactive source wires

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-08-22

    A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.

  9. Wire diameter dependence in the catalytic decomposition of H2

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu

    2014-01-01

    Jansen et al. have demonstrated that the dissociaiton rate of H2 molecules on hot wire surfaces, normalized per unit surface area, depends on the wire diameter based on the electrical power consumption measurements [J. Appl. Phys. 66, 5749 (1989)]. Mathematical modeling calculations have also been presented to support their experimental results. In the present paper, it is shown that such a wire diameter dependence cannot be observed and that the H-atom density normalized by the wire surface area depends little on the wire diameter. Modeling calculations also show that the wire diameter dependence of the dissociation rate cannot be expected under typical decomposition conditions.

  10. Hot film wall shear instrumentation for compressible boundary layer transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1992-01-01

    Experimental and analytical studies of hot film wall shear instrumentation were performed. A new hot film anemometer was developed and tested. The anemometer performance was not quite as good as that of commercial anemometers, but the cost was much less and testing flexibility was improved. The main focus of the project was a parametric study of the effect of sensor size and substrate material on the performance of hot film surface sensors. Both electronic and shock-induced flow experiments were performed to determine the sensitivity and frequency response of the sensors. The results are presented in Michael Moen's M.S. thesis, which is appended. A condensed form of the results was also submitted for publication.

  11. Capture of instantaneous temperature in oscillating flows: use of constant-voltage anemometry to correct the thermal lag of cold wires operated by constant-current anemometry.

    PubMed

    Berson, Arganthaël; Poignand, Gaëlle; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2010-01-01

    A new procedure for the instantaneous correction of the thermal inertia of cold wires operated by a constant-current anemometer is proposed for oscillating flows. The thermal inertia of cold wires depends both on the wire properties and on the instantaneous incident flow velocity. Its correction is challenging in oscillating flows because no relationship between flow velocity and heat transfer around the wire is available near flow reversal. The present correction procedure requires neither calibration data for velocity nor thermophysical or geometrical properties of the wires. The method relies on the splitting of the time lag of cold wires into two factors, which are obtained using a constant-voltage anemometer in the heated mode. The first factor, which is intrinsic to the wire, is deduced from time-constant measurements performed in a low-turbulence flow. The second factor, which depends on the instantaneous flow velocity, is acquired in situ. In oscillating flows, data acquisition can be synchronized with a reference signal so that the same wire is alternatively operated in the cold mode by a constant-current anemometer and in the heated mode by a constant-voltage anemometer. Validation experiments are conducted in an acoustic standing-wave resonator, for which the fluctuating temperature field along the resonator axis is known independently from acoustic pressure measurements, so that comparisons can be made with cold-wire measurements. It is shown that despite the fact that the wire experiences flow reversal, the new procedure recovers accurately the instantaneous temperature of the flow.

  12. The Sphere Anemometer - A Fast Alternative to Cup Anemometry

    NASA Astrophysics Data System (ADS)

    Heißelmann, Hendrik; Hölling, Michael; Peinke, Joachim

    The main problem of cup anemometry is the different response time for increasing and decreasing wind velocities due to its moment of inertia. This results in an overestimation of wind speed under turbulent wind conditions, the so-called over-speeding. Additionally, routine calibrations are necessary due to the wear of bearings. Motivated by these problems the sphere anemometer, a new simple and robust sensor for wind velocity measurements without moving parts, was developed at the University of Oldenburg. In contrast to other known thrust-based sensors, the sphere anemometer uses the light pointer principle to detect the deflection of a bending tube caused by the drag force acting on a sphere mounted at its top. This technique allows the simultaneous determination of wind speed and direction via a two-dimensional position sensitive detector.

  13. All semiconductor laser Doppler anemometer at 1.55 microm.

    PubMed

    Hansen, René Skov; Pedersen, Christian

    2008-10-27

    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

  14. Method of Assembling a Silicon Carbide High Temperature Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2004-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  15. Method of Assembling a Silicon Carbide High Temperature Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2004-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  16. Calibration data for improved correction of UVW propeller anemometers

    NASA Astrophysics Data System (ADS)

    Connell, J. R.; Morris, V. R.

    1991-10-01

    Wind turbine test programs sponsored by the US DOE in the late 1980s called for measurement of three-dimensional turbulent wind with an accuracy not previously required. The Pacific Northwest Laboratory identified the need for more complete, more highly resolved, and more accurate calibrations to provide the new level of measurement capability. The UVW propeller anemometer, became the object of a unique calibration effort at a large wind tunnel at Colorado State University. A UVW anemometer, with all three propellers active, was installed in the wind tunnel on a digitally stepped two-axis rotary platform placed just below the tunnel floor. The azimuth and elevation of the anemometer in a steady wind at each of a selected set of speeds was stepped through a complete test program using a digital computer as controller and a digital data acquisition system to sample and filter the data. Tests were run using polypropylene and carbon fiber propellers. In addition, the effects of attaching 'shaft extensions' to the polypropylene propellers were measured. Calibrations for the polypropylene four-blade propeller provide an improved level of detail and repeatability. The UVW propeller anemometer is quite accurate at all wind angles and speeds to be experienced in wind energy studies, including winds blowing at right angles to the axis of rotation of a propeller. The new correction factors derived from these data eliminate previous difficulties in accuracy and speed of data reduction from voltages to wind speed components. Calibration data for a carbon fiber thermoplastic propeller are presented with resolution similar to that for the polypropylene propellers.

  17. Calibration data for improved correction of uvw propeller anemometers

    SciTech Connect

    Connell, J.R. ); Morris, V.R. )

    1991-10-01

    Wind turbine test programs sponsored by the US DOE in the late 1980s called for measurement of three-dimensional turbulent wind with an accuracy not previously required. The Pacific Northwest Laboratory identified the need for more complete, more highly resolved, and more accurate calibrations to provide the new level of measurement capability. The uvw propeller anemometer, became the object of a unique calibration effort at a large wind tunnel at Colorado State University. A uvw anemometer, will all three propellers active, was installed in the wind tunnel on a digitally stepped two-axis rotary platform placed just below the tunnel floor. The azimuth and elevation of the anemometer in a steady wind at each of a selected set of speeds was stepped through a complete test program using a digital computer as controller and a digital data acquisition system to sample and filter the data. Tests were run using polypropylene and carbon fiber propellers. In addition, the effects of attaching shaft extensions'' to the polypropylene propellers were measured. Calibrations for the polypropylene four-blade propeller provide an improved level of detail and repeatability. The uvw propeller anemometer is quite accurate at all wind angles and speeds to be experienced in wind energy studies, including winds blowing at right angles to the axis of rotation of a propeller. The new correction factors derived from these data eliminate previous difficulties in accuracy and speed of data reduction from voltages to wind speed components. Calibration data for a carbon-fiber thermoplastic propeller are presented with resolution similar to that for the polypropylene propellers. 8 refs., 15 figs., 1 tab.

  18. Experimental Investigation of the Robinson-Type Cup Anemometer

    NASA Technical Reports Server (NTRS)

    Brevoort, M J; Joyner, U T

    1936-01-01

    This report presents the results of wind tunnel tests on a Robinson-type anemometer. The investigation covered force measurements on individual cups, as well as static and dynamic torque measurements and calibrations on complete cup wheels. In the tests on individual cups 5 cup forms were used and in the measurements on complete cup wheels 4 cup wheels with 3 arm lengths for each cup wheel were tested. All the results are presented in graphical form.

  19. Wind speed statistics for Goldstone, California, anemometer sites

    NASA Technical Reports Server (NTRS)

    Berg, M.; Levy, R.; Mcginness, H.; Strain, D.

    1981-01-01

    An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.

  20. Effects of Turbulence and Flow Inclination on the Performance of Cup Anemometers in the Field

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.H.; Stefantos, N.C.; Paulsen, U.S.; Morfiadakis, E.

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean windspeed reading between the anemometers was as much as 2% for wind directions where the mean flow was horizontal. This difference was large enough to be attributed to the well-known overspeeding effect related to the differing distance constant (ranging from 1.7 to 5 m) of the cup anemometers. The application of a theoretical model of the cup-anemometer behaviour in athree-dimensional turbulent wind field proved successful in explaining theobserved differences.Additional measurements were taken with the anemometers tilted at known angles into and out of the incident wind flow. Thus, a field-derived angular response curve is constructed for each anemometer and the deviations from publishedwind-tunnel results are discussed.

  1. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  2. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  3. Turbulence Measurements in the Atmospheric Surface Layer by Means of an Ultrasonic Anemometer and Thermometer

    DTIC Science & Technology

    2006-02-01

    C., 1981: Cup , propeller, vane, and sonic anemometers in turbulence research. Annual Review of Fluid Mechanics, 13, 399–423, doi:10.1146/annurev.fl.13.010181.002151. 91 ...REPORT Turbulence measurements in the atmospheric surface layer by means of an ultrasonic anemometer and thermometer 14. ABSTRACT 16. SECURITY...ultrasonic anemometer /thermometers ("sonics"). The system performance was quantified by comparing observed turbulence spectra with inertial-range

  4. Experimental investigation of flow over a backward facing step-progress report

    NASA Technical Reports Server (NTRS)

    Browne, L. W. B.

    1989-01-01

    The sizes and arrangement of the wind tunnel used for the experimentation are described. The specifications for the cold-wire anemometers, hot-wire anemometers, cold-wire rakes, and miniature 3-wire probe are proveded. The results of the experiment are briefly discussed.

  5. Application of laser induced electron impact ionization to the deposition chemistry in the hot-wire chemical vapor deposition process with SiH4-NH3 gas mixtures.

    PubMed

    Eustergerling, Brett; Hèden, Martin; Shi, Yujun

    2007-11-01

    The application of a laser-induced electron impact (LIEI) ionization source in studying the gas-phase chemistry of the SiH(4)/NH(3) hot-wire chemical vapor deposition (HWCVD) system has been investigated. The LIEI source is achieved by directing an unfocused laser beam containing both 118 nm (10.5 eV) vacuum ultraviolet (VUV) and 355 nm UV radiations to the repeller plate in a time-of-flight mass spectrometer. Comparison of the LIEI source with the conventional 118 nm VUV single-photon ionization (SPI) method has demonstrated that the intensities of the chemical species with ionization potentials (IP) above 10.5 eV, e.g., H(2), N(2) and He, have been significantly enhanced with the incorporation of the LIEI source. It is found that the SPI source due to the 118 nm VUV light coexists in the LIEI source. This allows simultaneous observations of parent ions with enhanced intensity from VUV SPI and their "fingerprint" fragmentation ions from LIEI. It is, therefore, an effective tool to diagnose the gas-phase chemical species involved with both NH(3) and SiH(4) in the HWCVD reactor. In using the LIEI source to SiH(4), NH(3) and their mixtures, it has been shown that the NH(3) decomposition is suppressed with the addition of SiH(4) molecules. Examination of the NH(3) decomposition percentage and the time to reach the N(2) and H(2) steady-state intensities for various NH(3)/SiH(4) mixtures suggests that the extent of the suppression is enhanced with more SiH(4) content in the mixture. With increasing filament temperatures, the negative effect of SiH(4) becomes less important.

  6. Experimental study of temperature, pressure, humidity, and/or density effects on vane anemometers

    SciTech Connect

    Finaish, F.; George, R.; Sauer, H.J.; Howell, R.H.

    1995-12-31

    Experimental investigations of velocity measurements were performed on three vane anemometers in steady variable-density flows. Measurements of velocity variations as a function of flow temperature, pressure, and humidity have been collected by an electronic vane anemometer (EVA), a rotating vane anemometer (RVA), and a deflecting vane anemometer (DVA). The study aimed at measuring the effects of density changes on velocity measurements taken by the three anemometers and determining how well the available theoretical models correspond to the corrections produced by experimental data. The results indicate significant effects of temperature and pressure on the velocity measurements acquired by the three anemometers. In general, the humidity effects are small and therefore are of minor influence on the response of all vane anemometers. The collected data were compared with the theoretical predictions addressed in the first phase of ASHRAE Research Project RP-698. For the propeller and revolving vane anemometers (EVA and RVA), the theoretical and experimental corrections are in close agreement. However, the experimental measurements indicate that the DVA experimental corrections deviate considerably from the corresponding theoretical predictions. This paper may serve as a reference on the correction of velocity measurements acquired by commonly used vane anemometers where flow test conditions of temperature, pressure, humidity, and/or density deviate from standard values.

  7. Precise Wireless Triggering System for Anemometers with Long-Baseline Acoustic Probes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Naoto; Kinjo, Shin; Takarada, Jun; Mizutani, Koichi

    2010-07-01

    A wireless triggering system for acoustic anemometers using an acoustic probe with a long baseline is investigated. Acoustic probes for measuring micrometeorologic parameters, such as temperature and wind velocity, are used as noncontact and nondestructive methods. The acoustic probe with a long baseline was previously proposed by the authors and investigated to form a sensing grid system for micrometeorologic measurement. The authors have also partially investigated a wireless sensing grid using a wireless local-area network (LAN). However, because of the synchronization problem between sensor nodes, the trigger line has been left wired. In this paper, the problem of synchronization is solved by investigating a wireless triggering system using frequency modulated (FM) radio waves. The primitive triggering system of FM radio waves has some instability on time synchronization depending on such the communication environment as signal-to-noise ratio (SNR). To overcome the influence of the instability, a cross-correlation method is adopted to the triggering system. As a result, the time synchronization errors of the trigger system were reduced by up to one tenth. In addition, not only the instability problem but also other larger errors are compensated by the proposed system in an experimental wind velocity measurement.

  8. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  9. Fabrication of terahertz wire-grid polarizers.

    PubMed

    Partanen, Anni; Väyrynen, Juha; Hassinen, Sami; Tuovinen, Hemmo; Mutanen, Jarkko; Itkonen, Tommi; Silfsten, Pertti; Pääkkönen, Pertti; Kuittinen, Markku; Mönkkönen, Kari; Venäläinen, Tapani

    2012-12-10

    Wire-grid polarizers for terahertz region were fabricated by manufacturing triangular grating using a ruling-based, ultraprecision diamond machining process and replicating the pattern into polymethylpentene (TPX) and cyklo-olefin copolymer (COC) sheets using hot embossing. On top of the imprinted structures, aluminum was evaporated in an oblique angle, forming an aluminum wire grid. The achieved extinction rate was over 150 for TPX polarizers and near 1000 for COC polarizers.

  10. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  11. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  12. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  13. Laser Doppler anemometer measurements using nonorthogonal velocity components: error estimates.

    PubMed

    Orloff, K L; Snyder, P K

    1982-01-15

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  14. Laser Doppler anemometer measurements using nonorthogonal velocity components - Error estimates

    NASA Technical Reports Server (NTRS)

    Orloff, K. L.; Snyder, P. K.

    1982-01-01

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  15. Laser anemometer measurements in a transonic axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.; Powell, J. A.

    1980-01-01

    A laser anomometer system employing an efficient data acquisition technique has been used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.

  16. Comparing the sphere anemometer to standard sensors for 2D wind measurements

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Hoelling, Michael; Peinke, Joachim

    2011-11-01

    The cup anemometers commonly used for wind energy applications are fairly robust, but suffer from several drawbacks like their limited temporal resolution, a systematic overestimation of the wind speed in turbulent flows and the inability to measure the wind direction. While sonic anemometers can measure the wind vector at a higher temporal resolution, they are more fragile and significantly more expensive. Therefore, we propose the sphere anemometer as a robust and highly-resolving alternative to standard anemometers. Designed without wearing parts, the sphere anemometer provides simultaneous wind speed and direction measurements as needed for wind turbine operation especially under challenging conditions such as offshore installation. In our contribution, we introduce the setup of the sphere anemometer which is based on the velocity-dependent deflection of a flexible tube with a sphere mounted atop. The deflection is measured in two dimensions using a light pointer, which allows for the simultaneous determination of wind speed and direction via calibration. Experimental results from wind tunnel measurements with sonic anemometer and sphere anemometer are presented, as well as first comparative measurements from the operation on the nacelle of a near-shore wind turbine.

  17. High-speed laser anemometer system for intrarotor flow mapping in turbomachinery

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Strazisar, A. J.; Seasholtz, R. G.

    1982-01-01

    A fringe-type laser anemometer with innovative features is described. The innovative features include: (1) rapid, efficient data acquisition processes, (2) detailed graphic display of data being accumulated, and (3) input laser-beam positioning that allows greater optical access to the intrarotor region. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor.

  18. High-speed laser anemometer system for intrarotor flow mapping in turbomachinery

    NASA Astrophysics Data System (ADS)

    Powell, J. A.; Strazisar, A. J.; Seasholtz, R. G.

    1982-02-01

    A fringe-type laser anemometer with innovative features is described. The innovative features include: (1) rapid, efficient data acquisition processes, (2) detailed graphic display of data being accumulated, and (3) input laser-beam positioning that allows greater optical access to the intrarotor region. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor.

  19. Investigation of the frequency response of constant voltage anemometers in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sadeghi Hassanlouei, Atabak

    A commercially available anemometer system considered as a prototype, the constant voltage anemometer (CVA), is presented and its working principle is studied and analyzed. We detail the different procedures and corrections that have to be applied to voltage signals to deduce corresponding velocity signals, including the effect of the thermal inertia of the sensor. Results are compared to another anemometer system widely used in research and industry, the constant temperature anemometer (CTA), for validation requirements. Measurements are performed in the turbulent region of a subsonic axisymmetric jet and include mean velocities, root-mean-square (rms) values of velocity fluctuations and power spectral densities. In the same range of operation, we show that the two instruments give similar results. The CVA anemometer slightly underestimates the rms velocity values given by the CTA anemometer which is attributed to a non-linear effect. We show that the cut-off frequency of the CVA system is higher than the more commonly used CTA system, and that the electronic noise level is lower. The constant voltage anemometer is thus an excellent alternative to the constant temperature anemometer for low turbulent flows with rich frequency content, such as supersonic and hypersonic flows.

  20. A three-dimensional ultrasonic anemometer for indoor environmental applications

    NASA Astrophysics Data System (ADS)

    Sun, Jinwei; Loo Carbajal, Luis G.; Wei, Guo

    2013-08-01

    When faced with the task of monitoring the indoor environment of a coal mine shaft, obtaining air velocity measurements is beneficial in considerations such as environmental impact, energy consumption and safety. To fulfill this demand, our research focuses on the design, construction and characterization of an economical three-dimensional ultrasonic anemometer, as well as the evaluation of its performance in combination with a Kalman filter algorithm. Our instrument was characterized using a wind tunnel in a process that included sixteen runs to both examine the distortion of the measurements caused by the sensor structure, and then to calibrate its response to changes in speed and direction of the incoming airflow, and three runs to assess the performance of the calibrated instrument. The results showed the instrument capable of obtaining wind velocity at a maximum frequency of 20Hz, with measurement accuracy of ±(5° ± 1% FS) in orientation and ±(0.8 m/s ± 4% FS) in wind speed, under reference conditions of 9 m/s wind speed and up to 15° from the horizontal wind incidence. The implementation of the Kalman filter resulted in improved accuracy of the wind direction measurement and enabled the anemometer to recursively extract the average velocity of highly-turbulent air currents.

  1. Development of fiber-based laser anemometer for SSME application

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Fan, Robert

    1989-01-01

    A recent study by Rocketdyne for NASA identified laser anemometry, using a compact optical head, as a feasible diagnostic instrument for the Space Shuttle Main Engine (SSME) Model Verification experiments. Physical Research, Inc. (PRI) is presently under contract from NASA Lewis to develop and deliver such a laser anemometer system. For this application, it is desired to place the laser at a remote distance from the engine, and use single mode polarization preserving fiber optics for the transmission of the laser light to and from the measurement head. Other requirements are given. Analytical and experimental tools are being used to develop the technologies required for the laser anemometer. These include finite element analysis of the optical head and vibration tests for various optical and mechanical components. Design of the optical head and the fiber optic connectors are driven by the temperature and vibration requirements for the measurement environment. Results of the finite element analysis and the vibration tests of the components are included. Conceptual design of the fiber optic launcher and the optical probe has also been complete. Detailed design of the probe as well as the fabrication and assembly of the components is in progress.

  2. Wire Retrieves Broken Pin

    NASA Technical Reports Server (NTRS)

    Burow, G. H.

    1984-01-01

    Safety wire retains pieces of broken tool. Retrieval wire running through shaft of tool used to pull pieces of tool out of hole, should tool break during use. Safety wire concept suitable for pins subject to deflection or breakage.

  3. Automated wire preparation system

    NASA Astrophysics Data System (ADS)

    McCulley, Deborah J.

    The first step toward an automated wire harness facility for the aerospace industry has been taken by implementing the Wire Vektor 2000 into the wire harness preparation area. An overview of the Wire Vektor 2000 is given, including the facilities for wire cutting, marking, and transporting, for wire end processing, and for system control. Production integration in the Wire Vektor 2000 system is addressed, considering the hardware/software debug system and the system throughput. The manufacturing changes that have to be made in implementing the Wire Vektor 2000 are discussed.

  4. Field intercomparison of six different three-dimensional sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias

    2017-04-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty were derived from these results. We find that biases and regression intercepts are generally very small for all sensors and all computed variables, except for the temperature measurements of the two Gill sonic anemometers (HS and R3), which are known to suffer from a transducer-temperature dependence of the sonic temperature measurement. The comparability of the instruments is not always as good, which means that there is some scatter but the errors compensate at least

  5. Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Strazisar, A. J.; Seasholtz, R. G.

    1979-01-01

    A fringe type laser anemometer is described. Features of the anemometer include; a rapid and efficient data acquisition process; a detailed real time graphic display of the data being accumulated; and input laser beam positioning that maximizes the size of the intrarotor region being mapped. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial flow compressor rotor. A velocity profile, derived from 30,000 measurements along 1000 sequential circumferential positions covering 20 blade passages, was obtained in 30 seconds. The use of fluorescent seed particles allowed flow measurements near the rotor hub and the casing window.

  6. Laser Doppler anemometer studies in unsteady ventricular flows.

    PubMed

    Phillips, W M; Furkay, S S; Pierce, W S

    1979-01-01

    The laser Doppler technique was employed to obtain intraventricular velocity distributions on the basis of in vivo confirmation of previous in vitro flow visualization predictions. The quasi-steady assumption required for quantification of flow visualization results is unsatisfactory in regions of high acceleration and fluctuating velocities are unavailable via such techniques. Mean and fluctuating velocity profiles were obtained in a pneumatically driven prosthetic ventricle with the laser Doppler anemometer and stress levels estimated. The preliminary data presented here illustrates that the technique can be applied to such flows. The measurement and data reduction schemes are applicable to a wide range of simulated cardiovascular flows. The particular application to prosthetic ventricle design should minimize the number of in vivo experiments required to develop a satisfactory blood pump and aid in tailoring pump actuation protocols for minimum thromboembolic complications.

  7. Laser anemometer signals: visibility characteristics and application to particle sizing.

    PubMed

    Adrian, R J; Orloff, K L

    1977-03-01

    The signal visibility characteristics of a dual beam laser anemometer operated in a backscatter mode have been investigated both experimentally and analytically. The analysis is based on Mie's electromagnetic scattering theory for spherical particles and is exact within the limitations of the scattering theory. It is shown that the signal visibility is a function of the ratio of the particle diameter to the fringe spacing in a certain, restricted case; but more generally it also depends on the Mie scattering size parameter, refractive index, the illuminating beam polarization, and the size, shape, and location of the light collecting aperture. The character of backscatter signal visibility differs significantly from the forward scatter case, and it is concluded that backscatter measurements of particle diameters using the visibility sizing technique may not always be possible. Restrictions on the forward scatter application of the visibility sizing method are also discussed.

  8. Measurements of enlarged blood pump models using Laser Doppler Anemometer.

    PubMed

    Chua, L P; Yu, S C; Leo, H L

    2000-01-01

    In an earlier study (Chua et al., 1998, 1999a), a 5:1 enlarged model of the Kyoto-NTN Magnetically Suspended Centrifugal Blood Pump (Akamatsu et al., 1995) with five different impeller blade profiles was designed and constructed. Their respective flow characteristics with respect to (1) the three different blade profile designs: forward, radial, and backward, (2) the number of blades used, and (3) the rotating speed were investigated. Among the five impeller designs, the results obtained suggested that impellers A and C designs should be adopted if higher head is required. Impellers A and C therefore were selected for the flow in between their blades to be measured using Laser Doppler Anemometer (LDA), so as to have a better understanding of the flow physics with respect to the design parameters.

  9. Response of phase Doppler anemometer systems to nonspherical droplets.

    PubMed

    Damaschke, N; Gouesbet, G; Gréhan, G; Mignon, H; Tropea, C

    1998-04-01

    The Phase Doppler Anemometer (PDA) technique measures particle diameter assuming sphericity. A means for detecting nonsphericity has usually been implemented in commercial PDA systems to avoid sizing errors if the sphericity assumption is not valid. In the present research the response of standard and planar PDA systems is examined experimentally in more detail by passing nonspherical droplets of known shape through the measurement volume. The effectiveness of nonsphericity detection schemes can be evaluated, and furthermore the influence of the droplet oscillations on the frequency and phase evolution of individual signals can be quantified. The light scattering from such particles has been simulated by using geometric optics, and the computed response of standard and planar PDA systems agrees well with the experimental observations. We conclude with some remarks concerning the possibilities of characterizing the nonsphericity with PDA systems.

  10. Measurements of Flow Distortion within the CSAT3 Sonic Anemometer

    NASA Astrophysics Data System (ADS)

    Horst, T. W.; Dellwik, E.; Mann, J.; Angelou, N.

    2014-12-01

    We have measured flow distortion within the CSAT3 sonic anemometer using two quite different techniques. One method compares three adjacent, differently-aligned CSAT3 sonics to each other, using a data analysis technique similar to that of Kochendorfer et al.~(2012). The two 'outside' sonics are upright references while the central, test sonic is oriented with its v-axis vertical, so that fluctuations of wind direction are surrogates for variations in the vertical wind component. The second technique compares CSAT3 measurements to independent velocity measurements with a 3-component Doppler LIDAR. The LIDAR is focused at a distance of 0.8 m in front of the sonic and is thus a flow-distortion-free reference. Here we compare the results of the two techniques to each other, as well as to a transducer-shadowing model for CSAT3 flow distortion. On the basis of these measurements, recommendations are made for correction of CSAT3 flow distortion.

  11. 3-D laser anemometer measurements in a labyrinth seal

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The flow field inside a seven cavity labyrinth seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the first, third, fifth, and seventh cavities of the seal. There was one large recirculation region present in the cavity for the flow condition tested, Re = 28,000 and Ta = 7,000. The axial and radial mean velocities as well as all of the Reynolds stress term became cavity independent by the third cavity. The azimuthal mean velocity varied from cavity to cavity with its magnitude increasing as the flow progressed downstream.

  12. Filter induced errors in laser anemometer measurements using counter processors

    NASA Technical Reports Server (NTRS)

    Oberle, L. G.; Seasholtz, R. G.

    1985-01-01

    Simulations of laser Doppler anemometer (LDA) systems have focused primarily on noise studies or biasing errors. Another possible source of error is the choice of filter types and filter cutoff frequencies. Before it is applied to the counter portion of the signal processor, a Doppler burst is filtered to remove the pedestal and to reduce noise in the frequency bands outside the region in which the signal occurs. Filtering, however, introduces errors into the measurement of the frequency of the input signal which leads to inaccurate results. Errors caused by signal filtering in an LDA counter-processor data acquisition system are evaluated and filters for a specific application which will reduce these errors are chosen.

  13. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. Trolley wires, trolley feeder wires, and bare signal wires shall be insulated...

  14. Field Intercomparison of Six Sifferent Three-dimensional Sonic Anemometers

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Mauder, M.

    2016-12-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty, such as bias and comparability are derived from these results.

  15. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  16. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  17. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  18. A suspended anemometer system for measuring true airspeed on low-speed airplanes

    NASA Technical Reports Server (NTRS)

    Kershner, D. D.

    1977-01-01

    A suspended anemometer system for calibrating pitot-static systems on low speed research airplanes is described. The anemometer measures true airspeed when suspended beneath the airplane on a long cable in regions of undisturbed air. The electrical output of the propeller driven tachometer is a sine wave, the frequency of which is proportional to true airspeed. The anemometer measures true airspeed over a range from 20 to 60 m/sec at altitudes to 3000 m, with an accuracy of + or - 0.5 percent of full scale range. This accuracy is exclusive of errors in the recording system. The stability of the suspended system was investigated and was found adequate in the airspeed range. For the purpose of determining the location of the anemometer relative to the airplane, a method is given for calculating the shape assumed by the deployed cable.

  19. Zoom lens compensator for a cylindrical window in laser anemometer uses.

    PubMed

    Wernet, M P; Seasholtz, R G

    1987-11-01

    In laser anemometer systems, the flow fields under study are typically enclosed by a window. Aberration of a flat window can be corrected by a shift of the object distance. A zooming correction lens eliminates the astigmatism caused by a thick cylindrical window and yields diffraction-limited performance for a monochromatic laser anemometer system. The effects of residual anamorphic distortion are discussed, and procedures for correcting these effects are presented.

  20. Zoom lens compensator for a cylindrical window in laser anemometer uses

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Seasholtz, Richard G.

    1987-01-01

    In laser anemometer systems, the flow fields under study are typically enclosed by a window. Aberration of a flat window can be corrected by a shift of the object distance. A zooming correction lens elimates the astigmatism caused by a thick cylindrical window and yields diffraction-limited performance for a monochromatic laser anemometer system. The effects of residual anamorphic distortion are discussed, and procedures for correcting these effects are presented.

  1. Zoom lens compensator for a cylindrical window in laser anemometer uses

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Seasholtz, Richard G.

    1987-01-01

    In laser anemometer systems, the flow fields under study are typically enclosed by a window. Aberration of a flat window can be corrected by a shift of the object distance. A zooming correction lens elimates the astigmatism caused by a thick cylindrical window and yields diffraction-limited performance for a monochromatic laser anemometer system. The effects of residual anamorphic distortion are discussed, and procedures for correcting these effects are presented.

  2. Development of Artificial Haircell Sensors

    DTIC Science & Technology

    2005-04-01

    generation artificial haircell sensor has been combined with hotwire anemometers to form a sensor pixel, which is directly integrated on top of semiconductor...integrated circuit substrates with existing signal processing units. In fact, the hot wire anemometer offers better sensitivity than the haircell...shown in Figure 9. The dashed line shows the size of a single die. Two types of sensors were fabricated in the same process, the hot-wire anemometer and

  3. Transition to Turbulence in the Separated Shear Layers of Yawed Circular Cylinders

    DTIC Science & Technology

    2010-04-15

    where her hot - wire anemometer measurements found their streamwise appearance (after separation) to be inversely proportional to the cylinder Reynolds...Smith (1986) conducted hot - wire anemometer measurements where they reported expo- nents b = 0.87 and b = 0.773, respectively, for the Bloor power- law...measured when using anemometry . Prasad and Wil- liamson (1996) compiled their anemometer measurements along with those of Bloor as well as Wei and

  4. Which are more accurate, orthogonal or non-orthogonal sonic anemometers?

    NASA Astrophysics Data System (ADS)

    Massman, W. J.; Frank, J. M.; Swiatek, E.; Zimmerman, H.; Ewers, B. E.

    2013-12-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy, ecosystem carbon, and water balance. Recent studies have shown the potential underestimation of the vertical wind fluctuations among the most commonly encountered anemometer models, but thus far testing has been focused on non-orthogonal sonic anemometer designs. We hypothesize that these underestimates are systematic to the non-orthogonal design and not attributable to a single manufacturer. If so, orthogonal measurements of vertical wind should be more accurate. We tested this by conducting an experiment to measure the relative consistency between vertical and horizontal wind measurements for three sonic anemometer designs: orthogonal, non-orthogonal, and quasi-orthogonal. Both the orthogonal and non-orthogonal models were from a single manufacturer (K-probe and A-probe, Applied Technologies, Inc.) while the quasi-orthogonal design featured non-orthogonal u- and v-axes but with an orthogonal w-axis (CSAT3V, Campbell Scientific, Inc.). We conducted a 12-week experiment, testing four sonic anemometers relative to a control (CSAT3, Campbell Scientific, Inc.), each week randomly selecting at least one of each model from a pool of twelve instruments (three of each model) and randomly locating the test anemometers around the control. Half-way through the week the test anemometers were re-mounted in a horizontal position. Work was done at the GLEES AmeriFlux site (southeastern Wyoming, USA) which experiences large, uni-directional wind and turbulence. Results are discussed.

  5. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    NASA Astrophysics Data System (ADS)

    Yahaya, S.; Frangi, J.

    2004-10-01

    This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance) with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers).

  6. The Hybrid Orthodontic Treatment System (HOTS).

    PubMed

    Ikegami, Tomio; Wong, Ricky Wing-Kit; Hägg, Urban; Lee, Wilson; Hibino, Kyoko

    2010-01-01

    This paper describes the Hybrid Orthodontic Treatment System (HOTS), an innovative method used in first premolar extraction cases. It comprises the following three components: (1) a miniscrew, (2) dual-dimension wires, and (3) multiloop edgewise archwires. HOTS consists of four clearly defined treatment steps: (1) setup, (2) leveling, (3) separate but simultaneous anterior and canine teeth retraction, and (4) final adjustment. HOTS achieves a predictable treatment outcome with a shorter treatment time.

  7. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  8. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  9. Base Information Transport Infrastructure Wired (BITI Wired)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management ...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information

  10. Investigation of the Operating Properties of the Leakage Current Anemometer

    NASA Technical Reports Server (NTRS)

    Fucks, Wilhelm

    1947-01-01

    Freedom from inertia, erosion of electrodes, and reaction make the leakage current particularly appropriate for the measurement of flow velocities in gases. Apparatus previously described has now been improved by reducing the size of the electrodes by one -thousandth, as is necessary aerodynamically, and by increasing the magnitude of the current from 1000 to 10,000 times; the latter result was obtained.by use of mercury high-pressure lamps set up at the one focal point of an ellipsoidal reflector with the cathodes arranged at the other focal point or by use of suitable X-ray radiation. Families of calibration curves were taken with a number of vivid tests conditions of the greatest variety and the operating properties of the instrument were widely elucidated by calculation of the sensitivity to fluctuation; this was done at first for operation at stationary conditions only; due to the freedom from inertia the instationary conditions were thus also given. Accordingly, the leakage current anemometer ought to be appropriate for investigations of turbulence,

  11. Parametric study of beam refraction problems across laser anemometer windows

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1986-01-01

    The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cyclinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the R-theta plane of the lens. A number of empirical correlations were deduced to aid the interested reader in determining the movement, uncrossing, and change in crossing angle for a particular situation.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  14. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  15. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  16. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  17. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  18. Symposium on thermal anemometry

    SciTech Connect

    Stock, D.E.

    1987-01-01

    These proceedings collect papers given at a symposium on thermal anemometry. Topics include: wind turbines x-probe measurements in turbine wakes, air flow metering, fluid flow, and hot-film and hot-wire anemometers.

  19. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  20. EMF wire code research

    SciTech Connect

    Jones, T.

    1993-11-01

    This paper examines the results of previous wire code research to determines the relationship with childhood cancer, wire codes and electromagnetic fields. The paper suggests that, in the original Savitz study, biases toward producing a false positive association between high wire codes and childhood cancer were created by the selection procedure.

  1. Development and calibration of buried wire gages for wall shear stress measurements in fluid flow

    NASA Technical Reports Server (NTRS)

    Murthy, Sreedhara V.; Steinle, Frank W.

    1988-01-01

    Special methods were developed to arrange 'Buried Wire Gage' inserts flush to the contoured flow surfaces of instrument plugs of a boundary-layer flow apparatus. The fabrication process was aimed at producing proper bonding of the sensor wire to the substrate surface, without causing excessive surface waviness. A large number of gages were built and first calibrated for the resistance-temperature characteristics. The gages were then installed in a flow calibration apparatus and operated from a constant temperature anemometer system for a series of flow settings to derive the calibration constants of each of the gages. The flow settings included a range of subsonic freestream Mach numbers in order to help establish the gage calibration characteristics for compressible flow fields. This paper provides a description of the buried wire gage technique, an explanation of the method evolved for making proper gages, the procedure for calibrating the gages and the results of measurements performed for determining the calibration constants.

  2. Flicking-wire drag tensioner

    NASA Technical Reports Server (NTRS)

    Dassele, M. A.; Fairall, H.

    1978-01-01

    Wire-drag system improves wire profile and applies consistent drag to wire. Wire drag is continuously adjustable from zero drag to tensile strength of wire. No-sag wire drag is easier to thread than former system and requires minimal downtime for cleaning and maintenance.

  3. Hot Flashes

    MedlinePlus

    ... are due to menopause — the time when menstrual periods become irregular and eventually stop. In fact, hot flashes are the most common symptom of the menopausal transition. How often hot flashes occur varies among women ...

  4. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  5. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    NASA Astrophysics Data System (ADS)

    Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.

    2014-12-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.

  6. Laboratory Study of Wind Effect on Runup over Fringing Reefs. Report 1. Data Report

    DTIC Science & Technology

    2007-07-01

    Cup -style anemometer ............................................................................................................. 10 Figure 10...the wind speed in the flume. A cup -style anemometer (Figure 9) was installed near the air intake, and a hot-wire anemometer was installed over the...reef flat. The cup anemometer was an Oregon Scientific Electronic Weather Station Model WM918 with an adver- tised accuracy of 0.18 m/sec or 0.4 mph

  7. Hot microswimmers

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  8. Hot Flashes

    MedlinePlus

    Diseases and Conditions Hot flashes By Mayo Clinic Staff Hot flashes are sudden feelings of warmth, which are usually most intense over the ... skin may redden, as if you're blushing. Hot flashes can also cause profuse sweating and may ...

  9. A computer controlled signal preprocessor for laser fringe anemometer applications

    NASA Technical Reports Server (NTRS)

    Oberle, Lawrence G.

    1987-01-01

    The operation of most commercially available laser fringe anemometer (LFA) counter-processors assumes that adjustments are made to the signal processing independent of the computer used for reducing the data acquired. Not only does the researcher desire a record of these parameters attached to the data acquired, but changes in flow conditions generally require that these settings be changed to improve data quality. Because of this limitation, on-line modification of the data acquisition parameters can be difficult and time consuming. A computer-controlled signal preprocessor has been developed which makes possible this optimization of the photomultiplier signal as a normal part of the data acquisition process. It allows computer control of the filter selection, signal gain, and photo-multiplier voltage. The raw signal from the photomultiplier tube is input to the preprocessor which, under the control of a digital computer, filters the signal and amplifies it to an acceptable level. The counter-processor used at Lewis Research Center generates the particle interarrival times, as well as the time-of-flight of the particle through the probe volume. The signal preprocessor allows computer control of the acquisition of these data.Through the preprocessor, the computer also can control the hand shaking signals for the interface between itself and the counter-processor. Finally, the signal preprocessor splits the pedestal from the signal before filtering, and monitors the photo-multiplier dc current, sends a signal proportional to this current to the computer through an analog to digital converter, and provides an alarm if the current exceeds a predefined maximum. Complete drawings and explanations are provided in the text as well as a sample interface program for use with the data acquisition software.

  10. Linear Time-Invariant Compensation of Cup Anemometer and Vane Inertia

    NASA Astrophysics Data System (ADS)

    Hristov, Tihomir S.; Miller, Scott D.; Friehe, Carl A.

    We propose a method to compensate for the phase lag and the amplitudeattenuation in the cup anemometer signal. These two effects, caused by theinstrument's inertia, are the major flaws of the cup anemometer in additionto over-speeding. Since the instrument's response is invariant in wavenumber (not frequency) representation, we transform the signals to becompensated from the time domain to the spatial domain by using Taylor'shypothesis. In the spatial domain we apply a linear time-invariant filterto eliminate the phase lag and the amplitude attenuation. The proposedprocedure improves instrument performance down to spatial scales equal toor smaller than the distance constant of the anemometer. The method for cupanemometer compensation is presented in detail and later adapted for vanes.

  11. Visual modeling of laser Doppler anemometer signals by moiré fringes.

    PubMed

    Durst, F; Stevenson, W H

    1976-01-01

    This report describes the employment of moiré patterns to model visually interference phenomena in general and laser Doppler anemometer signals in particular. The modeling includes signals created in dual beam and reference beam anemometers by both single particles and particle pairs. The considerations are extended to visual modeling of multiparticle signals and the decay of signal quality in the presence of many particles. The fringe model of the laser Doppler anemometer is also considered, and moiré patterns are employed to demonstrate the interference fringes in the crossover region of two intersecting laser beams. Gaussian beam properties are taken into account to allow the effects of improperly designed optical systems to be studied. Instructions for using computer generated transparencies to produce the different moiré patterns are provided to allow the reader to study in detail the various interference phenomena described.

  12. Direct measurement of the spectral transfer function of a laser based anemometer.

    PubMed

    Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael; Courtney, Michael

    2012-03-01

    The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based on the properties of the probe volume of a focused Gaussian laser beam. Parameters such as fluctuations of the wind direction, as well as the overestimation of the laser Doppler spectrum threshold, were found to affect the calculation of the spectral transfer function by introducing high frequency noise.

  13. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  14. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Treesearch

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  15. A Bayesian model to estimate the true 3-D shadowing correction in sonic anemometers

    NASA Astrophysics Data System (ADS)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2015-12-01

    Sonic anemometers are the principal instruments used in micrometeorological studies of turbulence and ecosystem fluxes. Recent studies have shown the most common designs underestimate vertical wind measurements because they lack a correction for transducer and structural shadowing; there is no consensus describing a true correction. We introduce a novel Bayesian analysis with the potential to resolve the three-dimensional (3-D) correction by optimizing differences between anemometers mounted simultaneously vertical and horizontal. The analysis creates a geodesic grid around the sonic anemometer, defines a state variable for the 3-D correction at each point, and assigns each a prior distribution based on literature with ±10% uncertainty. We use the Markov chain Monte Carlo (MCMC) method to update and apply the 3-D correction to a dataset of 20-Hz sonic anemometer measurements, calculate five-minute standard deviations of the Cartesian wind components, and compare these statistics between vertical and horizontal anemometers. We present preliminary analysis of the CSAT3 anemometer using 642 grid points (±4.5° resolution) from 423 five-minute periods (8,964,000 samples) collected during field experiments in 2011 and 2013. The 20-Hz data was not equally distributed around the grid; half of the samples occurred in just 8% of the grid points. For populous grid points (weighted by the abundance of samples) the average correction increased from prior to posterior (+5.4±10.0% to +9.1±9.5%) while for desolate grid points (weighted by the sparseness of samples) there was minimal change (+6.4±10.0% versus +6.6±9.8%), demonstrating that with a sufficient number of samples the model can determine the true correction is ~67% higher than proposed in recent literature. Future adaptions will increase the grid resolution and sample size to reduce the uncertainty in the posterior distributions and more precisely quantify the 3-D correction.

  16. A laser fluorescence anemometer system for the Langley 16- by 24-inch water tunnel

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Orngard, Gary M.; Neuhart, Dan H.

    1991-01-01

    A laser fluorescence anemometer which comprises a three-component laser Doppler velocimeter system with a fourth channel to measure fluorescent dye concentration has been installed in the NASA Langley 16- by 24-in water tunnel. The system includes custom designed optics, data acquisition, and traverse control instruments and a custom software package. Feasibility studies demonstrated how water tunnels can be used in conjunction with advanced optical techniques to provide nonintrusive detailed flow field measurements of complex fluid flows with a minimum of expense. The measurements show that the laser fluorescence anemometer can provide new insight into the structure, entrainment, control and of mixing vortical and shear layer flows.

  17. A laser fluorescence anemometer system for the Langley 16- by 24-inch water tunnel

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Orngard, Gary M.; Neuhart, Dan H.

    1991-01-01

    A laser fluorescence anemometer which comprises a three-component laser Doppler velocimeter system with a fourth channel to measure fluorescent dye concentration has been installed in the NASA Langley 16- by 24-in water tunnel. The system includes custom designed optics, data acquisition, and traverse control instruments and a custom software package. Feasibility studies demonstrated how water tunnels can be used in conjunction with advanced optical techniques to provide nonintrusive detailed flow field measurements of complex fluid flows with a minimum of expense. The measurements show that the laser fluorescence anemometer can provide new insight into the structure, entrainment, control and of mixing vortical and shear layer flows.

  18. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic

  19. Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Ling; Lee, Chung-Fen; Li, Chai-Ming; Chiang, Tsai-Ching; Hsiao, Ying-Li

    2012-07-01

    This work demonstrates a sensitive directional anemometer that is based on a pendulum-type of anisotropic flat-clad tapered fiber Michelson interferometer (AFCTFMI). The AFCTFMI is fabricated by tapering an anisotropic flat-cladding fiber to establish structural anisotropy, and enables the sensing of the direction and magnitude of flowing air (wind). Wavelength shifts and fringes visibility of the measured interference fringes are correlated with the magnitude and furthermore the direction of the wind. Experimental results agree closely with the theoretical analysis. The directional anemometer can simultaneously and effectively indicate the direction, and sensitively measure the magnitude of wind.

  20. Feasibility study of transit photon correlation anemometer for Ames Research Center unitary wind tunnel plan

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.; Smart, A. E.

    1979-01-01

    A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.