Science.gov

Sample records for hot-ion plasma heating

  1. Plasma heating and hot ion sustaining in mirror based hybrids

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  2. SUMMA hot-ion plasma heating research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Patch, R. W.; Lauver, M. R.

    1975-01-01

    The SUMMA superconducting magnetic mirror facility and the associated hot-ion plasma research were described. SUMMA is characterized by intense magnetic fields and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential; and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature.

  3. MHD stability of a hot-ion-mode plasma in the GAMMA 10 tandem mirror

    SciTech Connect

    Inutake, M.; Hattori, K.; Furukawa, S.

    1995-04-01

    Magnetohydrodynamic (MHD) stability of the GAMMA 10 tandem mirror is extensively studied in ICRF-heated, hot ion plasmas. Stability boundary for a flute interchange mode is predicted to depend on a pressure-weighted curvature integrated along the magnetic field line. It is found that the upper limit of the central-cell beta {beta}{sub C} increases linearly with the anchor-cell beta {beta}{sub A}. The critical beta ratio {beta}{sub C}/{beta}{sub A} above which the plasma cannot be sustained strongly depends on the pressure anisotropy P{sub PRP}/P{sub PLL} of hot ions. Stronger anisotropy greatly expands the stable region up to a higher critical beta ratio, owing to the reduction of the pressure weighting in the bad curvature region of the central cell. On both sides of the quadrupole anchor cells, there are flux-tube-recircularizing transition regions where the normal curvature is highly bad. Then the density and ion temperature of the cold plasma in the transition region are measured. Theoretical prediction on the flute stability boundary calculated by using the measured axial pressure profile of the hot-ion and the cold-plasma pressure can explain well the experimental results. 16 refs., 7 figs.

  4. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  5. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  6. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  7. Heat conduction process in tokamak hot-ion plasmas

    SciTech Connect

    Ware, A.A.

    1983-06-01

    The two-component ion distribution observed with active charge-exchange measurements on PDX are explained using the Fokker-Planck drift-kinetic equation and assuming ion self collisions are dominant for energy scattering. The energetic tail of the distribution, which is diffusing outwards in radius and down in energy, must retain an approximately constant effective temperature T/sub H/ = (- par. delta l n f/sub i//mpar. deltaepsilon)/sup -1/. The discontinuity in the slope of ln f/sub i/ is shown to be the boundary between the inward and outward diffusion parts of f/sub i/ and is a form of contact discontinuity. Energy-scattering collisions with electrons or circulating-beam ions, when important, modify the constancy of T/sub H/.

  8. Heat conduction process in Tokamak hot-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ware, A. A.

    1983-06-01

    The two-component ion distribution observed with active charge-exchange measurements on PDX are explained using the Fokker-Planck drift-kinetic equation and assuming ion self collisions are dominant for energy scattering. The energetic tail of the distribution, which is diffusing outwards in radius and down in energy, must retain an approximately constant effective temperature T/sub H/ = (- par. delta 1 n f/sub i//mpar. deltaepsilon) (+1). The discontinuity in the slope of 1n f/sub i/ is shown to be the boundary between the inward and outward diffusion parts of f/sub i/ and is a form of contact discontinuity. Energy-scattering collisions with electrons or circulating-beam ions, when important, modify the constancy of T/sub H/.

  9. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2015-10-01

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG-SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG-SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  10. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  11. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  12. NCSX Plasma Heating Methods

    SciTech Connect

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  13. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K.

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  14. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  15. PLASMA HEATING AND CONFINING DEVICE

    DOEpatents

    Baker, W.R.; Bratenahl, Al.; Kunkel, W.B.

    1962-02-13

    ABS> A device is designed for generating, heating, and containing a very pure electrical plasma. Plasma purity is maintained by preventing the hot plasma from contacting insulators, which are a principal source of impurities in prior constructions. An insulator is disposed at each end of a pair of long coaxial cylinders forming an annular chamber therebetween. High voltage is applied between the cylinders and an axial magnetic field is created therethrough. At a middle position on the inner cylinder, a fastopening valve releases a quantity of gas into the chamber, and before the gas can diffuse to the distant insulators, a discharge occurs between the cylinders and plasma is formed in the central region of the chamber away from the insulators. (AEC)

  16. Heat transfer in plasma spraying

    NASA Astrophysics Data System (ADS)

    Hijikata, Kunio; Mitui, Kenzi

    A Bi2Te3 film was directly coated by a plasma spraying and its heat transfer process was experimentally investigated. A new thermal probe for measuring the temperature field was developed and its accuracy was checked from a structure of coated film. The Seebeck coefficients of Bi2Te3 films made under different ambient conditions were compared, and it was determined that the cooling condition during film deposition had a great effect on the thermoelectric performance of the film, especially of Bi2Te3 films. It was also shown that a thick thermoelectric film is able to be directly coated on the heat transfer pipe, which may bring about a large improvement in the conversion efficiency caused by the contact resistance between the thermoelectric elements and a heat source.

  17. The ion polytropic coefficient in a collisionless sheath containing hot ions

    NASA Astrophysics Data System (ADS)

    Lin, Binbin; Xiang, Nong; Ou, Jing

    2016-08-01

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  18. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  19. Toroidal Rotation in RF Heated JET Plasmas

    SciTech Connect

    Eriksson, L.-G.; Nave, F.; Zastrow, K.-D.

    2007-09-28

    Experiments have been carried out on JET aimed at studying rotation in RF heated plasmas with low external momentum input. Both plasmas with Ion Cyclotron Resonance Frequency (ICRF) heating and Lower Hybrid Current Drive (LHCD) have been investigated. The rotation profiles are measured by Charge Exchange recombination spectroscopy, using short diagnostic Neutral Beam Injection (NBI) pulses. Moreover, the temporal evolution of the central rotation could in some cases be deduced from MHD activity. While most of the measurements were focussed on ICRF heating, the profiles measured in plasmas with LHCD are interesting since they are the first reported from JET in such plasmas. In particular, they allowed for studies of rotation in RF heated plasmas with q>1. The experimental results are presented together with an analysis of the torque from ICRF heated fast ions.

  20. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  1. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  2. Heat flux viscosity in collisional magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  3. Electron heating in capacitively coupled plasmas revisited

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.; Booth, J. P.

    2014-06-01

    We revisit the problem of electron heating in capacitively coupled plasmas (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in plasma simulations. The proposed procedure, based on the electron mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total electron heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of electron heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric plasmas produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with electron inertia.

  4. Plasma protein denaturation with graded heat exposure.

    PubMed

    Vazquez, R; Larson, D F

    2013-11-01

    During cardiopulmonary bypass (CPB), perfusion at tepid temperatures (33-35 °C) is recommended to avoid high temperature cerebral hyperthermia during and after the operation. However, the ideal temperature for uncomplicated adult cardiac surgery is an unsettled question. Typically, the heat exchanger maximum temperature is monitored between 40-42 °C to prevent denaturation of plasma proteins, but studies have not been performed to make these conclusions. Therefore, our hypothesis was to determine the temperature in which blood plasma protein degradation occurs after 2 hours of heat exposure. As a result, blood plasma proteins were exposed to heat in the 37-50 °C range for 2 hours. Plasma protein samples were loaded onto an 8-12% gradient gel for SDS-PAGE and low molecular weight plasma protein degradation was detected with graded heat exposure. Protein degradation was first detected between 43-45 °C of heat exposure. This study supports the practice of monitoring the heat exchanger between 40-42 °C to prevent denaturation of plasma proteins.

  5. Gas heating mechanisms in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Collins, Ken

    2012-10-01

    Capacitively coupled plasma (CCP) tools utilized for plasma etching of dielectric features utilize large amounts of power for processing. As a result, neutral gas heats up significantly during processing. The resulting gas density variations across the reactor can affect reaction rates, radical densities, plasma characteristics and uniformity within the reactor. In this paper, results from a two-dimensional computational investigation of an Ar/CF4 CCP discharge incorporating an energy equation solution for all ions and neutrals are discussed. The dominant neutral gas heating process is identified to be elastic collisions with ions while conduction is found to be the major mechanism of heat transport. Some species such as F and CF3 demonstrate higher temperatures than the feedstock gases owing to additional heating via charge-exchange reactions and/or Franck-Condon heating. Typical process parameters such as pressure, frequency of excitation, power and gas composition are varied to investigate their impact on gas temperature. At higher excitation frequency and/or pressure, increased elastic collisions with ions lead to greater heat generation. The heat generated per molecule of the radicals, however, decreases with increase in pressure leading to a decrease in gas temperature. The increase in neutral collision frequencies with pressure also results in the decrease in temperature difference between species in the plasma. As CF4 fraction increases, both the elastic collision cross-section and Franck-Condon heating sources increase, leading to higher gas temperatures.

  6. APPARATUS FOR HEATING A PLASMA

    DOEpatents

    Stix, T.H.

    1962-01-01

    The system contemplates the use of ion cyclotron motions for transferring energy to a plasma immersed in a confining magnetic field such as is found in thermonuclear reactors of the stellarator class. Oppositely directed windings are provided for producing ion-accelerating fields having a time and spatial periodicity and these have the advantage of producing ion cyclotron motions without the development of space charges which preclude the efficient energy transfer to the plasma. (AEC)

  7. Two-component ion distributions in tokamak hot ion plasmas

    NASA Astrophysics Data System (ADS)

    Ware, A. A.

    1984-05-01

    The two-component ion distribution observed with active charge-exchange measurements on the tokamak PDX are explained using the Fokker-Planck drift-kinetic equation and assuming that ion self-collisions are dominant for energy scattering. The energetic tail of the distribution, which is diffusing outwards in radius and down in energy, must retain an approximately constant effective temperature TH≡(-∂ ln f i/m∂ɛ)-1. The discontinuity in the slope of ln f i is shown to be the boundary between the inward and outward diffusion parts of f i and is a form of contact discontinuity. Energy-scattering collisions with electrons or circulating beam ions, when important, modify the constancy of TH.

  8. Two-component ion distributions in tokamak hot ion plasmas

    SciTech Connect

    Ware, A.A.

    1984-05-01

    The two-component ion distribution observed with active charge-exchange measurements on the tokamak PDX are explained using the Fokker--Planck drift-kinetic equation and assuming that ion self-collisions are dominant for energy scattering. The energetic tail of the distribution, which is diffusing outwards in radius and down in energy, must retain an approximately constant effective temperature T/sub H/equivalent(-partial ln f /sub i//mpartialepsilon)/sup -1/. The discontinuity in the slope of ln f /sub i/ is shown to be the boundary between the inward and outward diffusion parts of f /sub i/ and is a form of contact discontinuity. Energy-scattering collisions with electrons or circulating beam ions, when important, modify the constancy of T/sub H/.

  9. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  10. RF plasma heating improvement with EBG surfaces

    NASA Astrophysics Data System (ADS)

    Guadamuz, Saul; Milanesio, Daniele; Maggiora, Riccardo

    2008-11-01

    High impedance surfaces or electromagnetic band gap (EBG) surfaces have proved themselves to be useful in wireless communications applications due to their unique characteristics such as no propagating surface wave support, no conduction of RF current for a given bandwidth, in-phase electromagnetic reflection and non-inverted image of the electric charge in front of them [1]. These characteristics make possible to design compact antennas achieving better performance in terms of radiation and input impedance. ICRF plasma heating antennas in fusion experiments can take advantage of using EBG surfaces. One of the main issues in ICRF plasma heating is the low power coupling of the plasma facing antenna. The adoption of EBG surfaces in the antenna structure and the advantages offered by a predictive designing tool as TOPICA [2] offer the possibility to improve significantly the coupled power to plasma. [1] IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059--2074, Nov. 1999. [2] Nucl. Fusion, 46 (2006) S476.

  11. Inductance of rf-wave-heated plasmas.

    PubMed

    Farshi, E; Todo, Y

    2003-03-14

    The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.

  12. Laser-heated emissive plasma probe

    SciTech Connect

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-15

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  13. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  14. FREQUENCY CONTROL OF RF HEATING OF GASEOUS PLASMA

    DOEpatents

    Herold, E.W.

    1962-09-01

    This invention relates to the heating of gaseous plasma by radiofrequency ion-cyclotron resonance heating. The cyclotron resonance frequencies are varied and this invention provides means for automatically controlling the frequency of the radiofrequency to maximize the rate of heating. To this end, a servo-loop is provided to sense the direction of plasma heating with frequency and a control signal is derived to set the center frequency of the radiofrequency energy employed to heat the plasma. (AEC)

  15. Radiative heat transport instability in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  16. Resonant Plasma Heating Below the Cyclotron Frequency

    SciTech Connect

    Roscoe White; Liu Chen; Zhihong Lin

    2001-11-26

    Resonant heating of a magnetized plasma by low-frequency waves of large amplitude is considered. It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the existence of the resonances leading to chaos and the generic nature of heating below the cyclotron frequency. First, the classical case of an electrostatic wave of large amplitude propagating across a confining uniform magnetic field, and second, a large amplitude Alfvén wave, propagating obliquely across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are shown to produce significant heating; bringing, in the case of Alfvén waves, particles to speeds comparable to the Alfvén velocity in a few hundred cyclotron periods. Stochastic threshold for heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well as for ion heating in some toroidal confinement fusion devices.

  17. Confinement Studies of Auxiliary Heated NSTX Plasmas

    SciTech Connect

    B.P. LeBlanc; M.G. Bell; R.E. Bell; M.L. Bitter; C. Bourdelle; D.A. Gates; S.M. Kaye; R. Maingi; J.E. Menard; D. Mueller; S.F. Paul; A.L. Roquemore; A. Rosenberg1; S.A. Sabbagh; D. Stutman; E.J. Synakowski; V.A. Soukhanovskii; J.R.Wilson; the NSTX Research Team

    2003-05-06

    The confinement of auxiliary heated NSTX discharges is discussed. The energy confinement time in plasmas with either L-mode or H-mode edges is enhanced over the values given by the ITER97L and ITER98Pby(2) scalings, being up to 2-3 times L-mode and 1.5 times H-mode. TRANSP calculations based on the kinetic profile measurements reproduce the magnetics-based determination of stored energy and the measured neutron production rate. Power balance calculations reveal that, in a high power neutral beam heated H-mode discharge, the ion thermal transport is near neoclassical levels, and well below the electron thermal transport, which is the main loss channel. Perturbative impurity injection techniques indicate the particle diffusivity to be slightly above the neoclassical level in discharges with L-mode edge. High-harmonic fast-wave (HHFW) bulk electron heating is described and thermal transport is discussed. Thermal ion transport is found to be above neoclassical level, but thermal electron transport remains the main loss mechanism. Evidences of an electron thermal internal transport barrier obtained with HHFW heating are presented. A description of H-mode discharges obtained during HHFW heating is presented.

  18. Turbulent expansion during parametric plasma heating

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Iu.

    1983-10-01

    In recent experiments on the parametric heating of the ionosphere, the application of intense electromagnetic radiation in the shortwave range to the ionospheric F layer has been accompanied by comparatively broad-band stimulated radio emission with a central frequency near the frequency of the pump wave. This emission is thought to result from the conversion of plasma waves into electromagnetic radiation during the three-wave interaction with the ion probe, and is observed even after the pump is turned off. Suprathermal electrons accelerated to 25-30 eV have been observed simultaneously. The anomalously long lifetime of the stimulated emission is explained here in terms of the turbulent expansion of a cloud of suprathermal particles in a collisionless plasma.

  19. ICRF heating in reactor grade plasmas

    SciTech Connect

    Jacquinot, J.; Bhatnagar, V.P.; Bures, M.; Cottrell, G.A.; Eriksson, L.G.; Sack, C.H.; Start, D.F.H.; Taroni, A. ); Hellsten, T. ); Koch, R. ); Moreau, D. )

    1990-01-01

    Impurity influxes in JET discharges due to ICRH have been reduced to insignificant levels. This has allowed high quality H-modes to be produced with ICRH alone and has enhanced the density limit which is now the same as the NBI limit. Improvement in the deuterium fuel fraction has led to the generation of 100kW of non thermal {sup 3}He-D fusion power. Alpha-particle simulations using MeV ions created by ICRH show classical energy loss and suggest that {alpha}-heating in a reactor will be highly efficient. A clear demonstration of TTMP damping of the fast wave in high beta plasmas has been achieved. A broadband ICRH system is proposed for NET/ITER which will allow fast wave current drive and central ion heating for burn control and ignition. 10 refs., 6 figs.

  20. Heat flow in a gravitationally confined plasma

    NASA Astrophysics Data System (ADS)

    Dorelli, John Charles

    We study the problem of electron heat flow in a gravitationally confined hilly ionized plasma. Our goal is to determine the conditions under which the classical description of electron heat flow-which requires heat to flow down the local temperature gradient-breaks down. We investigate this question from both a macroscopic (fluid theory) and a microscopic (kinetic theory) point of view. We use fluid conservation laws to demonstrate generally that a nearly isotropic non-Maxwellian electron velocity distribution can have a heat flux vector which points up the local temperature gradient. As a specific example, we demonstrate that electron velocity distributions with high energy power law tails in the solar corona can have a heat flux vector which points up a radially directed temperature gradient. We confirm this result by numerically solving the steady state Fokker-Planck equation describing the electron velocity distribution in the presence of a strong gravitational field. Our conclusions can be summarized as follows: (1)It is possible for a nearly isotropic electron velocity distribution with a weak power law tail near the base of the solar corona to have a heat flux which points up a radially directed temperature gradient, (2)The Spitzer-Harm theory does not give an adequate description of electron heat flow in the solar corona for any finite temperature gradient (no matter how small), (3)If the electron velocity distribution function at the base of the corona does not have a non- Maxwellian tail which connects nearly collisionlessly to the high altitude boundary, then the electron phase space density develops a spatial boundary layer near the low altitude boundary of the system. This spatial boundary layer implies large anisotropies in the electron velocity distribution which cannot be described self consistently by the mathematical model employed in this thesis, (4)If the electron velocity distribution functions at the boundaries of the system have nearly

  1. Cathode heating mechanisms in pseudospark plasma switches

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.; Pak, Hoyoung; Kushner, Mark J.

    1992-10-01

    Pseudosparks, and the back-lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm-2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric-field-enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon-driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2-dimensional computer model is presented that incorporates a photo-induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field-enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large-area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure-electrode spacing product and smallest possible electrode holes).

  2. Plasma heating for containerless and microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Leung, Emily W. (Inventor); Man, Kin F. (Inventor)

    1994-01-01

    A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system.

  3. Theoretical studies on plasma heating and confinement

    SciTech Connect

    Sudan, R.N.

    1993-01-01

    Three principal topics are covered in this final report: Stabilization of low frequency modes of an axisymmetric compact torus plasma confinement system, such as, spheromaks and FRC'S, by a population of large orbit axis encircling energetic ions. Employing an extension of the energy principle' which utilizes a Vlasov description for the energetic 'ion component, it has been demonstrated that short wavelength MHD type modes are stabilized while the long wavelength tilt and precessional modes are marginally stable. The deformation of the equilibrium configuration by the energetic ions results in the stabilization of the tilt mode for spheromaks. Formation of Ion Rings and their coalescence with spheromaks. A two dimensional electromagnetic PIC codes has been developed for the study of ion ring formation and its propagation, deformation and slowing down in a cold plasma. It has been shown that a ring moving at a speed less than the Alfven velocity can merge with a stationary spheromak. Anomalous transport from drift waves in a Tokomak. The Direct Interaction Approximation in used to obtain incremental transport coefficients for particles and heat for drift waves in a Tokomak. It is shown that the transport matrix does not obey Onsager's principle.

  4. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  5. Ignition Regime for Fusion in a Degenerate Plasma

    SciTech Connect

    Son, S.; Fisch, N.J.

    2005-12-01

    We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung.

  6. Laser beat frequency heating of a rippled density plasma

    NASA Astrophysics Data System (ADS)

    Vijay, A.; Tripathi, V. K.

    2016-09-01

    Two collinear laser beams propagating through a rippled density plasma, with their frequency difference close to plasma frequency, resonantly excite a large amplitude plasma wave. The density ripple of suitable wavenumber slows down the plasma wave very significantly, leading to strong electron heating via the Landau damping of the plasma wave. An analytical framework of the process is developed and the electron temperature scaling with plasma density, laser power and laser frequency have been obtained. Its relevance to recent experiments on intense short pulse laser plasma interaction has been discussed.

  7. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  8. Strongly-coupled plasmas formed from laser-heated solids.

    PubMed

    Lyon, M; Bergeson, S D; Hart, G; Murillo, M S

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  9. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  10. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  11. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  12. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  13. Turbulence and Proton–Electron Heating in Kinetic Plasma

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Parashar, Tulasi N.; Wan, Minping; Wu, P.

    2016-08-01

    Analysis of particle-in-cell simulations of kinetic plasma turbulence reveals a connection between the strength of cascade, the total heating rate, and the partitioning of dissipated energy into proton heating and electron heating. A von Karman scaling of the cascade rate explains the total heating across several families of simulations. The proton to electron heating ratio increases in proportion to total heating. We argue that the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales controls the ratio of proton and electron heating. The proposed scaling is consistent with simulations.

  14. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  15. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  16. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  17. Measurement of Heat Propagation in a Laser Produced Plasma

    SciTech Connect

    Gregori, G; Glenzer, S H; Knight, J; Niemann, C; Price, D; Froula, D H; Edwards, J; Town, R P J; Brantov, A; Bychenkov, V Y; Rozmus, W

    2003-08-22

    We present the observation of a nonlocal heat wave by measuring spatially and temporally resolved electron temperature profiles in a laser produced nitrogen plasma. Absolutely calibrated measurements have been performed by resolving the ion-acoustic wave spectra across the plasma volume with Thomson scattering. We find that the experimental electron temperature profiles disagree with flux-limited models, but are consistent with transport models that account for the nonlocal effects in heat conduction by fast electrons.

  18. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  19. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  20. Axial laser heating of three meter theta pinch plasma columns

    NASA Astrophysics Data System (ADS)

    Hoffman, A. L.; Lowenthal, D. D.

    1980-10-01

    A 3-m long plasma column formed and confined by a fast rising solenoidal field was irradiated from one end by a powerful pulsed CO2 laser. It was found that beam trapping density minima could be maintained for the length of the laser pulse if the plasma diameter exceeded about 1.5 cm. The erosion of the density minimum was governed by classical diffusion processes. Three meter long plasmas in 2.6 cm bore plasma tubes could be fairly uniformly heated by 3.0 kJ of CO2 laser irradiation. Best results were obtained when heating began before or during the theta pinch implosion phase and the plasma fill pressure exceeded 1.0 torr H2. Plasma line energies of about 1 kJ/m could be obtained in a magnetic field rising to 6 T in 4.7 microseconds.

  1. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  2. Is collisionless heating in capacitively coupled plasmas really collisionless?

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.

    2015-08-01

    By performing a combination of test-particle and particle-in-cell simulations, we investigate electron heating in single frequency capacitively coupled plasmas (CCPs). In agreement with previous theoretical considerations highlighted in Kaganovich et al (1996 Appl. Phys. Lett. 69 3818), we show that the level of true collisionless/stochastic heating in typical CCPs is significantly smaller than that due to collisional interactions; even at very low pressures and wide gap lengths. Fundamentally electron heating is a collisional phenomenon whereby particle collisions provide the vital phase randomization and stochastization mechanism needed to generate both a local (or ohmic) heating component, and a non-local (or hybrid) heating component.

  3. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  4. Predicting High Harmonic Ion Cyclotron Heating Efficiency in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Berry, L. A.; Chen, G.; Ryan, P. M.; Canik, J. M.; Jaeger, E. F.

    2011-09-01

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (˜kVm-1) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  5. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas.

    PubMed

    Green, D L; Berry, L A; Chen, G; Ryan, P M; Canik, J M; Jaeger, E F

    2011-09-30

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (∼kV m(-1)) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  6. Heat flux measurement in a high enthalpy plasma flow

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Battaglia, Jean-Luc; Gardarein, Jean-Laurent; Jullien, Pierre; van Ootegem, Bruno

    2008-11-01

    It is a widely used approach to measure heat flux in harsh environments like high enthalpy plasma flows, fusion plasma and rocket motor combustion chambers based on solving the inverse heat conduction problem in a semi-infinite environment. This approach strongly depends on model parameters and geometrical aspects of the sensor design. In this work the surface heat flux is determined by solving the inverse heat conduction problem using an identified system as a direct model. The identification of the system is performed using calibration measurements with modern laser technique and advanced data handling. The results of the identified thermo-physical system show that a non-integer model appears most adapted to this particular problem. It is concluded that the new method improves the heat flux sensor significantly and furthermore extend its application to very short measurement times.

  7. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect

    Aslanyan, V.; Tallents, G. J.

    2014-06-15

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  8. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  9. Plasma rotation and rf heating in DIII-D

    SciTech Connect

    DeGrassie, J. S.; Baker, D. R.; Burrell, K. H.; Greenfield, C. M.; Lin-Liu, Y. R.; Luce, T. C.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Rice, B. W.

    1999-09-20

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current.

  10. Plasma rotation and rf heating in DIII-D

    SciTech Connect

    Grassie, J. S. de; Baker, D. R.; Burrell, K. H.; Greenfield, C. M.; Lin-Liu, Y. R.; Luce, T. C.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Rice, B. W.

    1999-09-20

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current. (c) 1999 American Institute of Physics.

  11. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  12. Heat flow diagnostics for helicon plasmas

    SciTech Connect

    Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.; Cassady, Leonard D.; Chancery, William J.

    2008-10-15

    We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.

  13. Strong electron heating in the near-Earth plasma sheet.

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena; Zelenyi, Lev; Kronberg, Elena; Daly, Patrick

    2016-07-01

    Strong perturbations of the Plasma Sheet (PS) magnetic field in the course of magnetic dipolarization are often followed by the generation of magnetic turbulence and plasma heating. Various plasma instabilities and waves can be excited during these processes, which may affect ion and electron velocity distributions in a different way. We have analyzed 70 crossings of the central PS by Cluster spacecraft (s/c) at -19 < X < -8 Re in 2001-2005. We have found that in 32 intervals the ratio of Tion/Tele dropped in the central PS down to <3.0, which denotes significant electron heating. The detailed analysis of these crossings showed that in majority of these events strong magnetic dipolarizations and magnetic turbulence were observed. In the present study we discuss possible mechanisms of such strong electron heating.

  14. Imploded Plasma Heating by Irradiation of Heating Laser through a Cone with a Hole for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Taga, M.; Shiraga, H.; Fujioka, S.; Azechi, H.

    2016-03-01

    It is of great importance for the fast ignition research to investigate the heating properties of the imploded core plasma by injection of the heating laser. The open-end cone was introduced recently. An expanding self-emission of x-ray from the core plasma near the cone tip was observed after the heating laser irradiation through the cone. It indicates that the core plasma was heated by the heating laser.

  15. Auroral hot-ion dynamo model with finite gyroradii

    SciTech Connect

    Lennartsson, O. W.

    2006-07-15

    Discrete auroras have (1) narrow size s(less-or-similar sign)30 km in at least one dimension (e.g., north-south) and (2) often rapid variation of forms, especially where the size is extremely small, s{<=}1 km. These points mesh with spatial and temporal features observed at several Earth radii in earthward flows (bursts) of hot plasma along high-latitude geomagnetic field lines. The flows (include PSBL) usually have some filamentary structure with transverse widths of a few local gyroradii of the hot protons (kT{approx}1-30 keV), i.e., widths that encompass auroral-arc size when scaled by magnetic field-line separation. At these widths, modest density gradients ({delta}n{approx}0.01-0.1 cm{sup -3}) lead to charge separation by differential mirroring of hot protons and electrons and large perpendicular electric fields. Thermal escape of ionspheric electrons into positive charge layer builds up magnetic field-aligned potential difference that accelerates hot electrons from negative charge layer into the ionosphere within auroral arc thickness. As a corollary, the model delineates a mechanism for charge-driven plasma instabilities.

  16. Parallel resistivity and ohmic heating of laboratory dipole plasmas

    SciTech Connect

    Fox, W.

    2012-08-15

    The parallel resistivity is calculated in the long-mean-free-path regime for the dipole plasma geometry; this is shown to be a neoclassical transport problem in the limit of a small number of circulating electrons. In this regime, the resistivity is substantially higher than the Spitzer resistivity due to the magnetic trapping of a majority of the electrons. This suggests that heating the outer flux surfaces of the plasma with low-frequency parallel electric fields can be substantially more efficient than might be naively estimated. Such a skin-current heating scheme is analyzed by deriving an equation for diffusion of skin currents into the plasma, from which quantities such as the resistive skin-depth, lumped-circuit impedance, and power deposited in the plasma can be estimated. Numerical estimates indicate that this may be a simple and efficient way to couple power into experiments in this geometry.

  17. Plasma ion heating of an SO2 atmosphere on Io

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.

    1989-10-01

    The Jovian plasma-ion heating of any atmospheric gas over Io is shown to be important for determining the temperature structure and the location of the exobase and for limiting diffusive separation in Io's atmosphere. This is used, along with the plasma supply rate, to estimate an average column of gas over the trailing hemisphere of about 3 x 10 to the 16th SO2/sq cm with exobase at about 1.4 Io radii.

  18. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Muelle

    1994-05-30

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by [similar to]20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by [alpha] particles created by the D-T fusion reactions.

  19. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  20. Study of plasma heating induced by fast electrons

    NASA Astrophysics Data System (ADS)

    Morace, A.; Magunov, A.; Batani, D.; Redaelli, R.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Casner, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-01

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alisé Laser Facility of CEA/CESTA. The laser system emitted a ˜1 ps pulse with ˜10 J energy at a wavelength of ˜1 μm. Mass limited targets had three layers with thicknesses of 10 μm C8H8, 1 μm C8H7Cl, and 10 μm C8H8 with size of 100×100 μm2. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of ˜250 eV with density of ˜1021 cm-3. The plasma heating is only produced by fast electron transport in the target, being the 10 μm C8H8 overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  1. An RF heated tandem mirror plasma propulsion study

    SciTech Connect

    Yang, T.F.; Yao, X.; Peng, S.; Krueger, W.A.; Chang-Diaz, F.R.

    1989-01-01

    Experimental results on a tandem mirror hybrid plume rocket involving a three-stage system of plasma injection, heating, and subsequent injection through a magnetic nozzle are presented. In the experiments, a plasma is created by breaking down the gas with electron cyclotron resonance heating at 2 kW in the central cell, and the ion species is then heated to high temperatures with ion cyclotron resonance heating at 10 kW in the end cell. A Langmuir probe measured an electron density of 2.5 x 10 to the 16th/cu m and a temperature of 100 eV in the central cell and an ion density of 1.25 x 10 to the 17th/cu m and a temperature of 500 eV in the end cell. 6 refs.

  2. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  3. MHD instabilities of collisionless space plasma with heat fluxes

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.; Dzhalilov, N. S.

    2014-12-01

    Properties of instabilities in a collisionless plasma are considered based on 16-moment MHD equations with allowance for differences between the heat fluxes along the magnetic field due to longitudinal and transverse thermal ion motions. It is shown that the increments and thresholds appreciably depend on these two heat fluxes for all compressible instabilities arising in the MHD approach (second compressible fire-hose, mirror, and thermal instabilities).

  4. Lower hybrid heating and current drive on PLT

    SciTech Connect

    Stevens, J.E.; Bernabei, S.; Bitter, M.

    1983-03-01

    800 MHz lower hybrid waves have been launched into PLT with a six waveguide coupler. Recent improvements have allowed powers up to 400 kW to be launched with good coupling (R approx. 10 to 25%). Experiments at low density (anti n/sub e/ < 7 x 10/sup 12/ cm/sup -3/, i.e., ..omega../..omega../sub LH/ > 2) have demonstrated current drive and plasma heating. Experiments at higher densities have produced hot-ion tails, but so far have shown inefficient body heating. To date, only a limited parameters space has been investigated at high power.

  5. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  6. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.

    PubMed

    Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M

    2015-05-01

    High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241

  7. Mechanisms governing radial heat fluxes in tokamak plasma

    NASA Astrophysics Data System (ADS)

    Razumova, K. A.; Timchenko, N. N.; Dnestrovskij, A. Yu.; Lysenko, S. E.

    2016-09-01

    A method for analyzing the characteristics of turbulence responsible for radial heat transport is proposed. The method is based on the previously proposed hypotheses (to a great extent, confirmed experimentally) concerning the consistency of normalized pressure profiles in tokamak plasmas and the mechanism of internal transport barrier formation. Using the proposed approach, it is shown that, under an external action on the plasma, when the plasma heat flux onto the wall grows, the spectrum of turbulent modes broadens due to the excitation of modes with lower poloidal numbers m. Thus, in contrast to the conventional diffusion approach, the transport coefficient depends on the flux intensity. A mechanism of formation of internal transport barriers is proposed.

  8. Performance predictions of RF heated plasma in EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Wan, B.; Zhang, X.; Budny, R. V.; Guo, Y.; McCune, D.; Xu, P.; Yang, J.; Qian, J.; Shi, Y.; Wang, F.; Kaye, S. M.

    2011-01-01

    Scenario development of high power L- and H-mode plasmas in the Experimental Advanced Superconducting Tokamak (EAST) tokamak is reported. The simulations use PTRANSP in combination with TSC to explore EAST plasmas with various radio frequency (RF) auxiliary heating methods, including ion cyclotron resonant heating (ICRH) and lower hybrid current drive. The GLF23 transport model is found to give a better fit to temperature measurements compared with the MMM95 and MMM08 models. A series of ICRH simulations are performed to optimize parameters of a new ICRH system in EAST. The highest plasma stored energy and other related plasma parameters using the current auxiliary power limits are predicted. The discharge length of high power plasma can be 8-200 s, depending on the volt-second consumption in different scenarios. Various phenomena are reported including the influence of different fractions of RF power on their deposition behavior, and on thermal diffusivity, the linear relation between q0 and LHW power fraction, different behavior of fast ions between L- and H-mode plasmas. The scenario development is predicted to improve the performance of EAST.

  9. In-depth Plasma-Wave Heating of Dense Plasma Irradiated by Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Sherlock, M.; Hill, E. G.; Evans, R. G.; Rose, S. J.; Rozmus, W.

    2014-12-01

    We investigate the mechanism by which relativistic electron bunches created at the surface of a target irradiated by a very short and intense laser pulse transfer energy to the deeper parts of the target. In existing theories, the dominant heating mechanism is that of resistive heating by the neutralizing return current. In addition to this, we find that large amplitude plasma waves are induced in the plasma in the wake of relativistic electron bunches. The subsequent collisional damping of these waves represents a source of heating that can exceed the resistive heating rate. As a result, solid targets heat significantly faster than has been previously considered. A new hybrid model, capable of reproducing these results, is described.

  10. Particle and heat flux measurements in PDX edge plasmas

    NASA Astrophysics Data System (ADS)

    Budny, R.; Manos, D.

    1984-05-01

    This paper describes the use of novel combined Langmuir-calorimeter probes to measure edge plasma conditions near the midplane in PDX. The probes consisted of up to five Langmuir probes and up to two calorimeters. Single and double probe characteristics yield ne and Tc which are compared with results derived from a triple probe analysis. The calorimeters measure heat flux in the electron and ion drift directions. This paper presents time-resolved radial profiles of ne, Te, VF (floating potential),and P (heat flux) during high power neutral beam-heated, single-null discharges and circular scoop limiter discharges. The temporal dependence of these quantities displays the previously observed behavior with respect to gross discharge characteristics; however, an additional dependence on confinement mode has been observed. During the H-mode of energy confinement, a transient depression of ne, Te, and P occur in the scrape-off plasma.

  11. Plasma heating and emission of runaway charged particles in a plasma focus device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2016-03-01

    The required experimental E-field across plasma to generate significant runaway electrons and hard X-rays during the pinch phase and the phase with anomalous resistance has been investigated in a dense plasma focus. The plasma voltage and inductance have been measured in a plasma focus with two different anode tip structures. The results show a significant generation of charged particles and hard X-rays at smaller E-field across the plasma column in the phase of anomalous resistances compared to the pinch phase. Plasma heating process may enhance the rate of runaway-charged-particle generation due to the combined effects of a reduced Dreicer field and the avalanche effects during the phase of anomalous resistance.

  12. Particle Acceleration and Plasma Heating in the Chromosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  13. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Krämer-Flecken, A.; TEXTOR Team; de Bock, M.

    2008-03-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the plasma current, the sawtooth period increases to a maximum before it begins to shorten once more. Results from both magnetohydrodynamic stability modelling including toroidal flows and modelling of the kinetic effects of the fast ions resulting from NBI heating are also presented. This model combining the gyroscopic and kinetic effects upon the stability of the n = 1 internal kink mode—thought to be associated with sawtooth oscillations—qualitatively recovers the sawtooth behaviour exhibited in the experiment. It is proposed that the sawtooth period is minimized in the co-NBI direction at the point at which the stabilization of the kink mode due to rotation is weakest. This occurs when the plasma rotation induced by the NBI balances the intrinsic rotation of the plasma. The sawtooth behaviour in the counter-NBI regime is attributed to a subtle balance of the competing stabilization from the toroidal rotation and destabilization from the presence of energetic ions.

  14. Study of plasma heating induced by fast electrons

    SciTech Connect

    Morace, A.; Batani, D.; Redaelli, R.; Magunov, A.; Fourment, C.; Santos, J. J.; Malka, G.; Boscheron, A.; Nazarov, W.; Vinci, T.; Okano, Y.; Inubushi, Y.; Nishimura, H.; Flacco, A.; Spindloe, C.; Tolley, M.

    2009-12-15

    We studied the induced plasma heating in three different kinds of targets: mass limited, foam targets, and large mass targets. The experiment was performed at Alise Laser Facility of CEA/CESTA. The laser system emitted a approx1 ps pulse with approx10 J energy at a wavelength of approx1 {mu}m. Mass limited targets had three layers with thicknesses of 10 {mu}m C{sub 8}H{sub 8}, 1 {mu}m C{sub 8}H{sub 7}Cl, and 10 {mu}m C{sub 8}H{sub 8} with size of 100x100 {mu}m{sup 2}. Detailed spectroscopic analysis of x rays emitted from the Cl tracer showed that it was possible to heat up the plasma from mass limited targets to a temperature of approx250 eV with density of approx10{sup 21} cm{sup -3}. The plasma heating is only produced by fast electron transport in the target, being the 10 {mu}m C{sub 8}H{sub 8} overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the prepulse. These results demonstrate that with mass limited targets, it is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  15. Interaction of adhered metallic dust with transient plasma heat loads

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-06-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m-2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.

  16. Heat flow in variable polarity plasma arc welds

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1992-01-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  17. Interaction of adhered metallic dust with transient plasma heat loads

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-06-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m‑2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.

  18. Inductively heated plasma waste treatment for energy recovery.

    PubMed

    Herdrich, G; Schmalzriedt, S; Laufer, R; Dropmann, M; Gabrielli, R

    2014-08-01

    An assessment of a decentralized inductively heated plasma waste treatment system for energy recovery has been done. The modular miniaturized high enthalpy plasma source IPG6 is a reference for the system and has been qualified for inert but also chemically aggressive gas compositions. An identification and review of applications were undertaken. Niches of high environmental and societal importance are considered: hospital waste (threshold countries), shipboard waste and marine litter. The wastes are reviewed deriving relevant parameter for a system analysis aiming for the derivation of energy production and efficiencies. The system analysis shows advantageous constellation due to the wastes' energy leading to self-feeding systems.

  19. Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2000-01-01

    Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.

  20. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  1. Fast plasma heating by anomalous and inertial resistivity effects

    NASA Technical Reports Server (NTRS)

    Duijveman, A.; Hoyng, P.; Ionson, J. A.

    1981-01-01

    Fast plasma heating by anomalous and inertial resistivity effects is described. A small fraction of the plasma contains strong currents that run parallel to the magnetic field and are driven by an exponentiating electric field. The anomalous character of the current dissipation is caused by the excitation of electrostatic ion cyclotron and/or ion acoustic waves. The role of resistivity due to geometrical effects is considered. Through the use of a marginal stability analysis, equations for the average electron and ion temperatures are derived and numerically solved. The evolution of the plasma is described as a path in the drift velocity diagram, in which the drift velocity is plotted as a function of the electron to ion temperature ratio.

  2. Heat transfer in a fissioning uranium plasma reactor cavity

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1973-01-01

    Two schemes are investigated by which a fission-heated uranium plasma located in the central cavity of a test reactor could be insulated to keep its temperature above condensation in a neutron flux of 10 to the 15th power neutrons/(sq cm)(sec) or less. The first scheme was to use a mirrored cavity wall to reflect the thermal radiation back into the plasma. The second scheme was to seed the transpirational cavity wall coolant so as to make it opaque to thermal radiation, thus insulating the hot plasma from the cold wall. The analysis showed that a mirrored cavity wall must have a reflectivity of over 95 percent or that seeded argon must be used as the wall coolant to give an acceptable operating margin above fuel condensation conditions.

  3. MHD discontinuities in solar flares: Continuous transitions and plasma heating

    NASA Astrophysics Data System (ADS)

    Ledentsov, L. S.; Somov, B. V.

    2015-12-01

    The boundary conditions for the ideal MHD equations on a plane discontinuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclination angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continuous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the discontinuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near the discontinuity surface, i.e., by the type of the MHD discontinuity. It is shown that the best conditions for heating are carried out in the vicinity of a reconnecting current layer near the areas of reverse currents. The result can be helpful in explaining the temperature distributions inside the active regions in the solar corona during flares observed by modern space observatories in soft and hard X-rays.

  4. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  5. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  6. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2013-07-01

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Zi = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×108 V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  7. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    SciTech Connect

    Dey, R.; Roy, A. C.

    2013-07-15

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  8. Versatile and Rapid Plasma Heating Device for Steel and Aluminum

    SciTech Connect

    Reddy, G.S.

    2006-03-14

    The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized

  9. Transverse ion heating in multicomponent plasmas. [in ionosphere

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.; Kim, S. Y.

    1987-01-01

    A new mechanism is proposed for plasma modes which can occur only in a multicomponent plasma and not in pure electron-ion plasma. The addition of ions creates a new instability near the ion-ion hybrid mode whose frequency is adequate for the wave to interact with oxygen ions. To study heating of ions (such as ionospheric oxygen ions) in presence of auroral electrons, several numerical simulations were carried out using a one-dimensional electrostatic code in a magnetic field. It was found that in the presence of electrons drifting along auroral field lines into the ionosphere, the ion-ion hybrid mode can be driven unstable when the electron drift speed is too small to excite the lower hybrid instability. Since the ion-ion mode has a smaller frequency than that of the lower hybrid waves, it can couple to the heavy ions, resulting in a substantial heating of heavy ions; on the other hand, because of their frequencies, the lower hybrid waves can accelerate only light ion species.

  10. Alpha-Heating and a Burning Plasma State

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Barrios Garcia, M. A.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A.; Milovich, J.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J.; Springer, P. T.; Tommasini, R.

    2014-10-01

    L. R. BENEDETTI, D. BRADLEY, D. FITTINGHOFF, N. IZUMI, S. KHAN, R. TOWN (LLNL) G. GRIM, N. GULER, G. KYRALA, F. MERRILL, C. WILDE, P. VOLEGOV (LANL) High-foot implosions show net fuel gains and significant alpha-heating [Hurricane et al., Nature 506, 343 (2014)] using a per shot analysis of NIF data with a static reconstruction of the implosion energetics [e.g. Cerjan et al., PoP 20 (2013)]. Inference of the alpha-heating contribution to the yield is made using a simulation database of DT implosions and the one-to-one correspondence of yield amplification and normalized Lawson criteria [Patel et al., APS-DPP, (2013); Patel et al. this conf.]. A dynamic semi-analytic model for the DT self-heating rate can be constructed that can more directly be used, with data, to determine the degree of bootstrapping occuring in implosions. Here we propose that the suite of high-foot data demonstrate a scaling of fusion yield performance versus energy absorbed that provides an alternate proof of significant alpha-particle self-heating. This analysis shows that recent high-foot implosions are alpha-heating dominated and thus have achieved a `burning-plasma' state. Work performed under the auspices of U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Localized electron heating and density peaking in downstream helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Barada, K. K.; Chattopadhyay, P. K.; Ghosh, J.; Bora, D.

    2015-06-01

    Localized electron temperature and density peaking at different axial locations in the downstream helicon plasma have been observed in a linear helicon device with both geometrical and magnetic expansion. The discharge is produced with an m=+1 right helical antenna powered by a RF source operating at 13.56 MHz. Axial wave field measurement shows the presence of damped helicon waves with standing wave character folded into it even at low densities (˜ {{10}16} m-3 ). The measured helicon wavelength is just about twice the antenna length and the phase velocity ≤ft({{v}p}\\right) is almost the speed required for electron impact ionization. These experimental observations strongly advocate the Landau damping heating and density production by the helicon waves, particularly in low density plasma such as ours. The electron temperature maximizes at 35-45 cm away from the antenna center in our experiments indicating a local source of heating at those locations. Different mechanisms responsible for this additional heating at a particular spatial location have been discussed for their possible roles. Further downstream from the location of the maximum electron temperature, a density peak located 55-65 cm away from the antenna is observed. This downstream density peaking can be explained through pressure balance in the system.

  12. Particle and heat flux measurements in PDX edge plasmas

    SciTech Connect

    Budny, R.; Manos, D.

    1983-12-01

    This paper describes the use of novel combined Langmuir-calorimeter probes to measure edge plasma conditions near the midplane in PDX. The probes consisted of up to five Langmuir probes and up to two calorimeters. Single and double probe characteristics yield n/sub e/ and T/sub e/ which are compared with that derived from a triple probe analysis. The calorimeters measure heat flux in the electron and ion drift directions. This paper presents time-resolved radial profiles of n/sub e/, T/sub e/, V/sub F/ (floating potential), and P (heat flux) during high power neutral beam-heated, single-null discharges and circular scoop limiter discharges. The temporal dependence of these quantities displays the previous observed behavior with respect to gross discharge characteristics; however, an additional dependence on confinement mode has been observed. During the H-mode of energy confinement, a transient depression of n/sub e/, T/sub e/, and P occurs in the scrape-off plasma.

  13. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  14. Beam-plasma generators of stochastic microwave oscillations used for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    NASA Astrophysics Data System (ADS)

    Mitin, Leonid A.; Perevodchikov, Vladimir I.; Shapiro, A. L.; Zavjalov, M. A.; Bliokh, Yury P.; Fainberg, Ya. B.

    1996-10-01

    The results of theoretical and experimental investigations of generator of stochastic microwave power based on beam- plasma inertial feedback amplifier is discussed to use stochastic oscillation for heating of plasma. The efficiency of heating of plasma in the region of low-frequency resonance in the geometry of `Tokomak' is considered theoretically. It is shown, that the temp of heating is proportional the power multiplied by spectra width of noiselike signal.

  15. Plasma-ion Induced Sputtering and Heating of Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.

    2007-05-01

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmospheric mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the use of Cassini data to determine the present erosion rate of Titan's atmosphere provides an important end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that are used to interpret Cassini data at Titan. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasmadriven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann, "Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003).

  16. Plasma heating and current drive using intense, pulsed microwaves

    SciTech Connect

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  17. Plasma-ion-induced sputtering and heating of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Michael, M.; Tucker, O. J.; Shematovich, V. I.; Luhmann, J. H.; Ledvina, S. A.

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmosphere mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the fact that data from the Cassini spacecraft can be used to determine the present erosion rate of Titan's atmosphere by the plasma trapped in Saturn's magnetosphere provides an exciting end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that can, in principal, be employed in interpreting Cassini data at Titan. It is shown that the globally averaged flux of magnetospheric and pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated and compared to available Cassini data. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasma- driven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175

  18. Accelerating piston action and plasma heating in high-energy density laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Wilks, S. C.; Baring, M. G.

    2013-03-01

    In the field of high-energy density physics (HEDP), lasers in both the nanosecond and picosecond regimes can drive conditions in the laboratory relevant to a broad range of astrophysical phenomena, including gamma-ray burst afterglows and supernova remnants. In the short-pulse regime, the strong light pressure (>Gbar) associated ultraintense lasers of intensity I > 1018 W/cm2 plays a central role in many HEDP applications. Yet, the behavior of this nonlinear pressure mechanism is not well-understood at late time in the laser-plasma interaction. In this paper, a more realistic treatment of the laser pressure 'hole boring' process is developed through analytical modeling and particle-in-cell simulations. A simple Liouville code capturing the phase space evolution of ponderomotively-driven ions is employed to distill effects related to plasma heating and ion bulk acceleration. Taking into account these effects, our results show that the evolution of the laser-target system encompasses ponderomotive expansion, equipartition, and quasi-isothermal expansion epochs. These results have implications for light piston-driven ion acceleration scenarios, and astrophysical applications where the efficiencies of converting incident Poynting flux into bulk plasma flow and plasma heat are key unknown parameters.

  19. Optimizing hot-ion production from a gas-injected washer gun

    NASA Astrophysics Data System (ADS)

    McCarrick, M. J.; Ellis, R. F.; Booske, J. H.; Koepke, M.

    1987-03-01

    This paper reports the results of a study to maximize the ion temperature of the plasma generated by a gas-injected washer gun. We characterize the gun discharge and the plasma output as a function of the controllable gun parameters. For hydrogen we find a maximum ion temperature of 100 eV with typical densities ranging from 2×1011 to 5×1012 cm-3. A primary feature of the pulsed gun discharge is the observation of large amplitude rf fluctuations on the cathode voltage. The fluctuation amplitude varies with discharge current and with the quantity of injected gas. We show that the scaling of the fluctuation level with gun parameters is in agreement with that expected of an unstable beam-plasma system. We find a linear relation between the square of the fluctuation amplitude and the product of the plasma density times the ion temperature of the plasma output nTi, suggesting a stochastic wave-induced heating mechanism.

  20. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  1. Ultra-rapid plasma freezing with halocarbon heat transfer liquids

    SciTech Connect

    Coelho, P.H.; Comerchero, V.

    1988-03-15

    A process of freezing plasma is described comprising the steps of exposing thin wall containers of plasma to be frozen to direct contact with a heat transfer liquid selected from the group consisting of the chlorofluorocarbon 1,1,2 trichloro-1,2,2, trifluoro-ethane (CFC 113) and mixtures of the chlorofluorocarbon 1,1,2 trichloro-1,2,2, trifluoro-ethane (Freon 113) and at least one of the fluorocarbons perfluoropentane (C/sub 5/F/sub 12/), perfluorohexane (C/sub 6/F/sub 14/), perfluoromethylcyclohexane (C/sub 7/F/sub 14/), perfluoroheptane (C/sub 7/F/sub 16/), perfluoromonomethyldimethylcyclohexanes (C/sub 7/F/sub 14/C/sub 8/F/sub 16/), perfluorodecalin isomers (C/sub 10/F/sub 18/), mixed perfluorodecalin and methyldecalin isomers (C/sub 10/F/sub 18/+C/sub 11/F/sub 20/), and perfluorinatd polyethers ((OCF(CF/sub 3/)CF/sub 2/)/sub n/ - (OCF/sub 2/)/sub m/, and maintaining the liquid at a temperature sufficiently low enough to freeze the plasma in the desired amount of time.

  2. ELECTRON HEATING IN A RELATIVISTIC, WEIBEL-UNSTABLE PLASMA

    SciTech Connect

    Kumar, Rahul; Eichler, David; Gedalin, Michael

    2015-06-20

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion–electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  3. Heating and compression of a laser produced plasma in a pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Creel, J. R.; Donnelly, T.; Lunney, J. G.

    2016-08-01

    A pulsed 0.3 T magnetic field was used to heat and compress a low-temperature laser produced copper plasma. The magnetic field was generated using a planar 3-turn coil positioned 10 mm above the ablation spot. The plasma flowing through a central aperture in the coil was strongly focused. Inductive heating of the plasma caused a large enhancement of the overall visible light emission and the appearance of Cu II line emission. The plasma focusing is also evident in the constriction of the spatial distribution of deposited copper. The plasma heating and focusing can be explained in the framework of resistive magnetohydrodynamics.

  4. Plasma heating rate in very intense laser light

    SciTech Connect

    Rashid, S.M.S.

    1982-01-01

    An exact Volkov state solution of the minimally coupled dirac equation is used to calculate the transition rate dR of an electron scattering via a stationary ion in the presence of a very intense laser field. A consistent picture of the scattering is presented in which the electrons' initial and final states are quasi-free states. Accordingly, a modified transition rate dR and a modified Maxwell-Boltzmann distribution are developed. They are used to calculate the heating rate W of a quasi-free plasma in the presence of very intense laser light. In order to simplify the expression for the heating rate W, an important transformation, which changes an infinite sum over Bessel functions into a finite integral, is introdced. It is then shown that the leading term of the heating rate W is similar to the expression of Osborn (with corrections) for intensity I < 10/sup 16/ Watts/cm/sup 2/ Watts/cm/sup 2/ and k/sub B/T < Ike V. A new correction factor is defined to show the effect of very intense laser field when the intensity I > 10/sup 16/ Watts/cm/sup 2/. For k/sub B/T > Ike V, a spin-dependent term of order k/sub B/T/mc/sup 2/ is also discovered. This represents a new term not previously known. It is shown that the effect of this term on the heating rate is substantial and that it is possible to measure its effect with present-day laser systems.

  5. Plasma-ion-induced Sputtering And Heating Of Titan'S Atmosphere

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.

    2006-09-01

    Plasma-ion-induced sputtering and heating of Titan's atmosphere O.J. Tucker (1), R.E. Johnson (1), M. Michael (1), V.I. Shematovich (1,2) J.H. Luhmann (3), S.A. Ledvina (3) (1) University of Virginia, Charlottesville, VA 22904, USA (2) Institute of Astronomy RAS, Moscow 109017, Russia, (3) University of California, Berkeley, CA 94720, USA Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere. Atmospheres equivalent in size similar to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that can be employed in interpreting Cassini data at Titan. It is shown that the globally averaged flux of magnetospheric and pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated and compared to available Cassini data. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., “ The magnetospheric plasma-driven evolution of satellite atmospheres” Astrophys. J. 609, L99-L102 (2004). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann,"Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003). 1

  6. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  7. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  8. Cure of Trypanosoma musculi infection by heat-labile activity in immune plasma.

    PubMed

    Wechsler, D S; Kongshavn, P A

    1984-06-01

    Passive transfer of plasma from a mouse cured of parasitemia to a Trypanosoma musculi-infected host rapidly eliminates parasitemia; this curative activity, presumably mediated by an immunoglobulin, is sensitive to heat treatment (56 degrees C, 30 min). In addition, pretreatment with immune plasma, even after heat treatment, prevents the development of a patent parasitemia in a naive host (protective activity).

  9. Stochastic heating of electrons by a large-amplitude extraordinary wave in plasma

    SciTech Connect

    Krasovitskiy, V. B.; Turikov, V. A.

    2010-12-15

    Stochastic heating of plasma electrons by a large-amplitude electromagnetic wave propagating across a strong external magnetic field is studied theoretically and numerically. An analytic estimate of the threshold wave amplitude at which heating begins is obtained. The dependence of the average electron energy on the magnetic field and plasma density is investigated using particle-in-cell simulations.

  10. Thermodynamics of the interconversion of heat and work via plasma electric fields

    SciTech Connect

    Avinash, K.

    2010-12-15

    Thermodynamics of a system where a group of cold charged particles locally confined in a volume V{sub P} within a warm plasma of temperature T and volume V (V{sub P}plasma. The interconversion of plasma heat and mechanical work via isothermal compression/expansion of plasma electric field (associated with charged particles) in a plasma heat pump and ES heat engine cycle is demonstrated. The efficiency of the plasma heat pump is discussed in terms of its power efficiency {eta}{sub P} and is shown to be close to unity

  11. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  12. LHCD and ICRF heating experiments in H-mode plasmas on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Wan, B. N.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.; Collaboration: EAST Team

    2014-02-12

    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report.

  13. Simulation of Motion, Heating, and Breakup of Molten Metal Droplets in the Plasma Jet at Plasma-Arc Spraying

    NASA Astrophysics Data System (ADS)

    Kharlamov, M. Yu.; Krivtsun, I. V.; Korzhyk, V. N.; Ryabovolyk, Y. V.; Demyanov, O. I.

    2015-04-01

    The mathematical model for the process of plasma-arc wire spraying is proposed, which describes behavior of molten metal droplets in the plasma jet, allowing for the processes of their deformation and gas-dynamic breakup. Numerical analysis of the processes of motion, heating, and breakup of molten metal droplets, detached from the sprayed wire at plasma-arc spraying of coatings, was performed. It is shown that during molten droplets movement in the plasma jet their multiple breakup takes place, leading to formation of sprayed particles with dimensions much smaller than dimensions of initial droplets, detached from the sprayed wire tip.

  14. Radiative cooling in shock-heated hydrogen-helium plasmas. [for planetary entry probe heat shields

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.; Stickford, G. H., Jr.

    1978-01-01

    Axial and off-axis radiative cooling of cylindrical shock-heated hydrogen-helium plasmas is investigated theoretically and experimentally. The coupled fluid dynamic-radiative transfer equations are solved by a combination of approximation techniques aimed at simplifying the computation of the flux divergence term, namely, the quasi-isothermal approximation and the exponential approximation developed for the solid angle integration. The accuracy of the approximation schemes has been assessed and found acceptable for applying the methods to the rapid computation of the radiatively coupled flow problem. Radiative cooling experiments were conducted in a 6-inch annular arc accelerator shock tube (ANAA) for an initial pressure of 1 torr and shock speeds from 35 to 45 Km/sec. The results indicate that the lateral cooling is small compared with the axial cooling, and that better agreement is achieved between the data and the theoretical results by inclusion of the lateral temperature gradient.

  15. Heat flux characteristics in an atmospheric double arc argon plasma jet

    SciTech Connect

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-10-13

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions.

  16. Magnetic mirror trap with electron-cyclotron plasma heating as a source of multiply charged ions

    SciTech Connect

    Golovanivskii, K.S.

    1986-03-01

    This paper presents the physical operating principles of sources of multiply charged ions using electron cyclotron resonance. It is shown that the conditions that must be satisfied for multiple ionization are well matched to the conditions of effective plasma confinement in a magnetic mirror trap when a collision mode of confinement is provided. Plasma stability with hot electrons in the mirror magnetic trap and the mechanisms of plasma heating by highfrequency fields are analyzed. Two sources of multiply charged ions with ECR plasma heating are examined. Evaluations of the future of this area are given.

  17. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  18. Electron heating in radio-frequency capacitively coupled atmospheric-pressure plasmas

    SciTech Connect

    Liu, D. W.; Iza, F.; Kong, M. G.

    2008-12-29

    In atmospheric-pressure plasmas the main electron heating mechanism is Ohmic heating, which has distinct spatial and temporal evolutions in the {alpha} and {gamma} modes. In {gamma} discharges, ionizing avalanches in the sheaths are initiated not only by secondary electrons but also by metastable pooling reactions. In {alpha} discharges, heating takes place at the sheath edges and in contrast with low-pressure plasmas, close to 50% of the power absorbed by the electrons is absorbed at the edge of the retreating sheaths. This heating is due to a field enhancement caused by the large collisionality in atmospheric-pressure discharges.

  19. RF Plasma Heating in the PFRC-2 Device: Motivation, Goals and Methods

    SciTech Connect

    Cohen, S.; Brunkhorst, C.; Glasser, A.; Landsman, A.; Welch, D.

    2011-12-23

    The motivation for using radio frequency, odd-parity rotating magnetic fields for heating field-reversed-configuration (FRC) plasmas is explained. Calculations are presented of the expected electron and ion temperatures in the PFRC-2 device, currently under construction.

  20. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  1. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    SciTech Connect

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  2. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    DOEpatents

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  3. Plasma nanocoated carbon nanotubes for heat transfer nanofluids.

    PubMed

    Kim, Young Jo; Ma, Hongbin; Yu, Qingsong

    2010-07-23

    Multi-wall carbon nanotubes (CNTs) were plasma-treated using glow discharges of argon, oxygen and methane/oxygen mixtures and then dispersed into a base fluid of water. It was found that proper plasma treatments of CNTs using nanoscale plasma coatings significantly improve the dispersion and stabilize the suspension of CNTs in the base fluid. With 0.01 vol% addition of plasma-treated CNTs, a 25% initial increase in thermal conductivity was achieved and a stabilized 20% increase was observed with the resulting nanofluids after 5 days' settling. It should particularly be pointed out that such a large increase in thermal conductivity was achieved when plasma-treated CNTs were stably dispersed in water without adding any dispersing agents or surfactants. Surface modification of the CNTs was confirmed by Raman spectroscopy and ultra-thin (approximately 2 nm) plasma nanocoatings were noted on the treated CNT surfaces by transmission electron microscopy (TEM). PMID:20585176

  4. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding

    NASA Astrophysics Data System (ADS)

    van Eden, G. G.; Morgan, T. W.; Aussems, D. U. B.; van den Berg, M. A.; Bystrov, K.; van de Sanden, M. C. M.

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants.

  5. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding.

    PubMed

    van Eden, G G; Morgan, T W; Aussems, D U B; van den Berg, M A; Bystrov, K; van de Sanden, M C M

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants. PMID:27081983

  6. Density and temperature scaling of disorder-induced heating in ultracold plasmas

    SciTech Connect

    Bergeson, S. D.; Denning, A.; Lyon, M.; Robicheaux, F.

    2011-02-15

    We report measurements and simulations of disorder-induced heating in ultracold neutral plasmas. Fluorescence from plasma ions is excited using a detuned probe laser beam while the plasma relaxes from its initially disordered nonequilibrium state. This method probes the wings of the ion velocity distribution. The simulations yield information on time-evolving plasma parameters that are difficult to measure directly and make it possible to connect the fluorescence signal to the rms velocity distribution. The disorder-induced heating signal can be used to estimate the electron and ion temperatures {approx}100 ns after the plasma is created. This is particularly interesting for plasmas in which the electron and ion temperatures are not known.

  7. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  8. Numerical simulation of ultracold plasmas: how rapid intrinsic heating limits the development of correlation.

    PubMed

    Kuzmin, S G; O'Neil, T M

    2002-02-11

    In recent experiments, ultracold plasmas were produced by photoionizing small clouds of laser-cooled atoms. It has been suggested that the low initial temperature of these novel plasmas leads directly to strong correlation and order. In contrast, we argue that rapid intrinsic heating raises the electron temperature to the point where strong correlation cannot develop. The argument is corroborated by a molecular-dynamics simulation of the early-time plasma evolution.

  9. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  10. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  11. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  12. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Zawaideh, Emad; Kim, N. S.; Najmabadi, Farrokh

    1988-11-01

    A new set of two-fluid heat-transport equations for heat conduction in collisional to weakly collisional plasmas was derived on the basis of gyrokinetic equations in flux coordinates. In these equations, no restrictions on the anisotropy of the ion distribution function or the collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation of Spitzer and Haerm (1953), while in the weakly collisional limit, they describe a saturated heat flux. Numerical examples comparing these equations with conventional heat transport equations are presented.

  13. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  14. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  15. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  16. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium–deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5–10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  17. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  18. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Tan, Chang; Han, Xianwei; Tan, Yonghua

    2012-02-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  19. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  20. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust–dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  1. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    PubMed Central

    Fonseca, S.F.; Mendonça, V.A.; Teles, M.C.; Ribeiro, V.G.C.; Tossige-Gomes, R.; Neves, C.D.C.; Rocha-Vieira, E.; Leite, L.H.R.; Soares, D.D.; Coimbra, C.C.; Lacerda, A.C.R.

    2016-01-01

    Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response. PMID:26840715

  2. Heating of a three-component current-free plasma by Alfven waves in the Uragan-2 stellarator

    SciTech Connect

    Shvets, O.M.; Kalinichenko, S.S.; Lysoivan, A.I.; Nazarov, N.I.; Slavnyi, A.S.; Stepanov, K.N.; Tarasenko, V.F.

    1981-11-20

    A hydrogen-deuterium plasma has been heated at ion cyclotron resonance. An anomalously rapid heating of nonresonant ions has been observed. A dense (> or approx. =10/sup 13/ cm/sup -3/), current-free plasma can be produced and heated through the simultaneous use of two rf oscillators at different frequencies.

  3. Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas

    SciTech Connect

    Kortshagen, Uwe R.

    2014-08-15

    The focus of this award was to understand the interactions of nanometer-sized particles with ionized gases, also called plasmas. Plasmas are widely used in the fabrication of electronic circuits such as microprocessors and memory devices, in plasma display panels, as well as in medical applications. Recently, these ionized gases are finding applications in the synthesis of advanced nanomaterials with novel properties, which are based on nanometer-sized particulate (nanoparticles) building blocks. As these nanoparticles grow in the plasma environment, they interact with the plasmas species such as electrons and ions which critically determines the nanoparticle properties. The University of Minnesota researchers conducting this project performed numerical simulations and developed analytical models that described the interaction of plasma-bound nanoparticles with the plasma ions. The plasma ions bombard the nanoparticle surface with substantial energy, which can result in the rearrangement of the nanoparticles’ atoms, giving them often desirable structures at the atomic scale. Being able to tune the ion energies allows to control the properties of nanoparticles produced in order to tailor their attributes for certain applications. For instance, when used in high efficiency light emitting devices, nanoparticles produced under high fluxes of highly energetic ions may show superior light emission to particles produced under low fluxes of less energetic ions. The analytical models developed by the University of Minnesota researchers enable the research community to easily determine the energy of ions bombarding the nanoparticles. The researchers extensively tested the validity of the analytical models by comparing them to sophisticated computer simulations based on stochastic particle modeling, also called Monte Carlo modeling, which simulated the motion of hundreds of thousands of ions and their interaction with the nanoparticle surfaces. Beyond the scientific

  4. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  5. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  6. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  7. The evolution of interstellar clouds in a streaming hot plasma including heat conduction

    NASA Astrophysics Data System (ADS)

    Vieser, W.; Hensler, G.

    2007-09-01

    Context: The interstellar medium contains warm clouds that are embedded in a hot dilute gas produced by supernovae. Because both gas phases are in contact, an interface forms where mass and energy are exchanged. Whether heat conduction leads to evaporation of these clouds or whether condensation dominates has been analytically derived. Both phases behave differently dynamically so that their relative motion has to be taken into account. Aims: Real clouds in static conditions that experience saturated heat conduction are stabilized against evaporation if self-gravity and cooling play a role. Here, we investigte to what extent heat conduction can hamper the dynamical disruption of clouds embedded in a streaming hot plasma. Methods: To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Results: Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the streaming plasma and the cloud, so that the timescale for the onset of KH instabilities increases, and the surface of the cloud becomes less susceptible to KH instabilities. The stabilisation effect of heat conduction against KH

  8. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    SciTech Connect

    Timofeev, A. V.

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  9. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  10. Predictions of Alpha Heating in ITER L-mode and H-mode Plasmas

    SciTech Connect

    R.V. Budny

    2011-01-06

    Predictions of alpha heating in L-mode and H-mode DT plasmas in ITER are generated using the PTRANSP code. The baseline toroidal field of 5.3 T, plasma current ramped to 15 MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance, and electron cyclotron resonance are assumed to start half-way up the density ramp. The time evolution of plasma temperatures and, for some cases, toroidal rotation are predicted assuming GLF23 and boundary parameters. Significant toroidal rotation and flow-shearing rates are predicted by GLF23 even in the L-mode phase with low boundary temperatures, and the alpha heating power is predicted to be significant if the power threshold for the transition to H-mode is higher than the planned total heating power. The alpha heating is predicted to be 8-76 MW in L-mode at full density. External heating mixes with higher beam injection power have higher alpha heating power. Alternatively if the toroidal rotation is predicted assuming that the ratio of the momentum to thermal ion energy conductivity is 0.5, the flow-shearing rate is predicted to have insignificant effects on the GLF23- predicted temperatures, and alpha heating is predicted to be 8-20 MW. In H-mode plasmas the alpha heating is predicted to depend sensitively on the assumed pedestal temperatures. Cases with fusion gain greater than 10 are predicted to have alpha heating greater than 80 MW.

  11. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  12. Rapid heating of a strongly coupled plasma at the solid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Jensen, M. J.; Hasegawa, T.; Bollinger, J. J.; Dubin, D. H. E.

    2004-11-01

    Between 10^4 and 10^6 ^9Be^+ ions are trapped in a 4.5 Tesla Penning trap and laser-cooled to ˜1 mK, where the ions form a crystalline plasma with an interparticle spacing of ˜20 μm. This system is a realization of a strongly coupled one-component plasma. Using Doppler laser spectroscopy on a single-photon transition, we measured the temperature and heating rate of this plasma when not being laser-cooled. We measured a slow heating rate of ≤ 100 mK/s due to residual gas collisions for the first 100-200 ms after turning off the cooling laser. This slow heating is followed by a rapid heating to 1-2 K in 100 ms as the plasma undergoes the solid-liquid phase transition at T=10 mK (Γ ˜ 170). We will present evidence that this rapid heating is due to a sudden release of energy from weakly cooled degrees of freedom involving the cyclotron motion of trapped impurity ions. We will also discuss the prospects for observing the latent heat associated with the phase transition.

  13. Heat loads in inboard limited L-mode plasmas in TCV

    NASA Astrophysics Data System (ADS)

    Nespoli, F.; Labit, B.; Furno, I.; Canal, G. P.; Fasoli, A.

    2015-08-01

    Infrared thermography is used in TCV to measure the heat flux deposited onto the graphite tiles of the inner wall. The heat flux radial profile is found to be well described by the sum of a main parallel component and a non negligible cross-field component. The latter accounts for about 20% of the deposited heat flux. The parallel component shows an enhancement around the contact point in all discharges under consideration. Main plasma parameters, such as density, current, elongation and triangularity have been varied, allowing for empirical scalings of the heat fluxes.

  14. Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma

    SciTech Connect

    Tanabe, M; Nishimura, H; Ohnishi, N; Fournier, K B; Fujioka, S; Iwamae, A; Hansen, S B; Nagai, K; Girard, F; Primout, M; Villette, B; Brebion, D; Mima, K

    2009-02-23

    The propagation of a laser-driven heat-wave into a Ti-doped aerogel target was investigated. The temporal evolution of the electron temperature was derived by means of Ti K-shell x-ray spectroscopy, and compared with two-dimensional radiation hydrodynamic simulations. Reasonable agreement was obtained in the early stage of the heat-wave propagation. In the later phase, laser absorption, the propagation of the heat wave, and hydrodynamic motion interact in a complex manner, and the plasma is mostly re-heated by collision and stagnation at the target central axis.

  15. Heat transfer modelling of first walls subject to plasma disruption

    SciTech Connect

    Fillo, J.A.; Makowitz, H.

    1981-01-01

    A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile.

  16. A Low-Voltage Heated-Cathode Discharge Device for Nonlocal Control of Plasma Properties

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Schweigert, I.; Kaganovich, I.; Mustafaev, A. S.; Adams, S. F.; Koepke, M. E.

    2012-10-01

    In this research a low-voltage gas discharge device with heated cathode has been used for demonstration of controlling plasma properties by means of regulation of nonlocal energetic electrons. The discharge is formed between a heated cathode and an anode. A special molybdenum diaphragm, the control electrode, is placed between cathode and anode. Experiments and modeling of the device suggest the presence of two dramatically different modes, which are dependent on the diaphragm voltage. The transition between modes leads to a significant variation in plasma properties. It is experimentally shown that increasing the gas pressure (which leads to transition from plasma with nonlocal electron energy distribution (EDF) to plasma with local EDF) will eventually terminate this effect and for higher pressure there is only one mode in the discharge. Modeling for different radii of the diaphragm opening allows demonstrate modification of the effect.

  17. Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating.

  18. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  19. Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels

    NASA Astrophysics Data System (ADS)

    Takali, S.; Fabry, F.; Rohani, V.; Cauneau, F.; Fulcheri, L.

    2014-11-01

    Most thermal power plants need an auxiliary power source to (i) heat-up the boiler during start up phases before reaching autonomy power and (ii) sustain combustion at low load. This supplementary power is commonly provided with high LHV fossil fuel burners which increases operational expenses and disables the use of anti-pollutant filters. A Promising alternative is under development and consists in high temperature plasma assisted AC electro-burners. In this paper, the development of a new 100 kW three phase plasma torch with graphite electrodes is detailed. This plasma torch is working at atmospheric pressure with air as plasma gas and has three-phase power supply and working at 680 Hz. The nominal air flow rate is 60 Nm3.h-1 and the outlet gas temperature is above 2 500 K. At the beginning, graphite electrodes erosion by oxidizing medium was studied and controlling parameters were identified through parametric set of experiments and tuned for optimal electrodes life time. Then, a new 3-phase plasma torch design was modelled and simulated on ANSYS platform. The characteristics of the plasma flow and its interaction with the environing elements of the torch are detailed hereafter.

  20. Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E.

    2012-12-10

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high pressure downstream region.

  1. Production of high transient heat and particle fluxes in a linear plasma device

    SciTech Connect

    De Temmerman, G.; Zielinski, J. J.; Meiden, H. van der; Melissen, W.; Rapp, J.

    2010-08-23

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70x10{sup 20} m{sup -3} and 6 eV corresponding to a surface power density of about 400 MW m{sup -2}.

  2. Collisionless electron heating in periodic arrays of inductively coupled plasmas

    SciTech Connect

    Czarnetzki, U.; Tarnev, Kh.

    2014-12-15

    A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.

  3. Control of ITBs in Fusion Self-Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  4. Development of fast steering mirror control system for plasma heating and diagnostics

    SciTech Connect

    Okada, K. Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.; Nishiura, M.

    2014-11-15

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  5. Alpha Heating in ITER L-mode and H-mode Plasma

    SciTech Connect

    R.V. Budny

    2011-07-18

    There are many uses of predictions of ITER plasma performance. One is assessing requirements of different plasma regimes. For instance, what current drive and control are needed for steady state. The heating, current drive, and torque systems planned for initial DT operation are negative ion neutral beam injection (NB), ion cyclotron resonance (IC), and electron cyclotron resonance (EC). Which combinations of heating are optimal. What are benefits of the torques, current drive, and fueling using NB. What are the shine-through power and optimum voltage for the NB? What are optimal locations and aiming of the EC launchers? Another application is nuclear licensing (e.g. System integrity, how many neutrons).

  6. Development of fast steering mirror control system for plasma heating and diagnostics

    NASA Astrophysics Data System (ADS)

    Okada, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.

    2014-11-01

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  7. Development of fast steering mirror control system for plasma heating and diagnostics.

    PubMed

    Okada, K; Nishiura, M; Kubo, S; Shimozuma, T; Yoshimura, Y; Igami, H; Takahashi, H; Tanaka, K; Kobayashi, S; Ito, S; Mizuno, Y; Ogasawara, S

    2014-11-01

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  8. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  9. Heat Transfer Between a Plasma Jet and a Metal Surface in a Cut Cavity

    NASA Astrophysics Data System (ADS)

    Veremeichik, A. N.; Sazonov, M. I.; Khvisevich, V. M.; Tsyganov, D. L.

    2015-11-01

    Investigations are presented of the formation of a plasma jet and of the current-density and heat-flux distributions in the process of metal cutting along the cut cavity with direct and reverse polarities of the plasmatron connection. The study of the specific features of heat transfer of the arc with the surface of the cut cavity was carried out on the basis of the developed plasma unit which makes it possible to model the technological process of separating metal cutting. A sectional cut model is proposed which can be used to work out and optimize the methods of determination of cutting parameters.

  10. PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Siarkowski, M. E-mail: rudawy@astro.uni.wroc.pl

    2011-05-20

    In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

  11. Quasi-linear heating and acceleration in bi-Maxwellian plasmas

    SciTech Connect

    Hellinger, Petr; Trávníček, Pavel M.

    2013-12-15

    Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

  12. Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Underwood, J. H.; Brown, C. M.; Feldman, U.; Seely, John F.

    1988-01-01

    An experimental method is described in which a grazing incidence spectrograph is used to obtain spatially resolved spectra of laser heated plasmas in the 6-370-A region. In the experiment, small target spheres were irradiated by tightly focused laser beams. A tilted grazing incidence elliptical mirror placed 1.3 m from the target focuses the plasma radiation on the spectrograph slit at a distance of 0.7 m producing a useful degree of spatial resolution in the recorded spectral lines. The spectrum from a copper target is presented together with an X-ray pinhole camera image of the plasma.

  13. Measurements of Fast Ion Distribution in ICRF Heated Plasmas

    SciTech Connect

    Bader, A.; Sears, J.; Bonoli, P.; Granetz, R.; Parker, R.; Wukitch, S.

    2009-11-26

    Alcator C-Mod uses ICRF for the bulk auxiliary heating and relies primarily on hydrogen minority heating scenarios. Measuring the resulting hydrogen ion distribution provides an opportunity to validate upgraded ICRF simulation capability that includes non-Maxwellian ions. The Compact Neutral Particle Analyzer (CNPA) is a diagnostic employed on Alcator C-Mod to measure this fast ion distribution function. The diagnostic can measure the energy distribution of the fast ion tail, serving as a benchmark for simulation results and allowing for an assessment of the simulation algorithm and physics kernel. In this poster, we will present results from the detector in the most recent campaigns. We will discuss the calculation of the fast ion distribution from the measured CNPA distribution and the resulting effective temperature from applying a Stix fit to this distribution.

  14. Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma

    SciTech Connect

    Parashar, T. N.; Shay, M. A.; Cassak, P. A.; Matthaeus, W. H.

    2009-03-15

    The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. At large length scales, the evolution of the hybrid simulations is very similar to MHD, with magnetic power spectra displaying scaling similar to a Kolmogorov scaling of -5/3. At small scales, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field. The magnetic energy spectrum of the hybrid simulation shows a break where linear theory predicts that the Hall term in Ohm's law becomes significant, leading to dispersive kinetic Alfven waves. A key result is that protons are heated preferentially in the plane perpendicular to the mean magnetic field, creating a proton temperature anisotropy of the type observed in the corona and solar wind.

  15. Dissipative structures in a plasma with volume heat evolution

    SciTech Connect

    Pavlov, G.A.; Shiryaev, A.A.

    1983-11-01

    We analyzed the system of parabolic equations with a nonlinear and nondiagonal transport-coefficient matrix and with a linear vector-function source. This system of equations corresponds, for example, to an interaction of multicomponent diffusion processes with the volume heat evolution in the cavity of a gas-phase nuclear reactor, a topic which has not been studied previously. This reactor holds promise for the development of power plants. (AIP)

  16. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 < 5 × 1014Wcm-2, v ei versus T e also exhibits so far unnoticed identical anomalous increase as v ei versus Io, even if the conventional k max ∝ v2 th, or k max ∝ v th is chosen. However, for higher T e > 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the

  17. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  18. Minority and mode conversion heating in (3He)-H JET plasmas

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Ye; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

    2012-07-01

    Radio frequency (RF) heating experiments have recently been conducted in JET (3He)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (3He)-H plasmas at full field, with fundamental cyclotron heating of 3He as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the 3He concentration were observed and mode conversion (MC) heating proved to be as efficient as 3He minority heating. The unwanted presence of both 4He and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the 3He concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[3He]: (i) a regime at low concentration (X[3He] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[3He] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at 3He concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[3He] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their

  19. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  20. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  1. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    SciTech Connect

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  2. Heat treatment for endocrinological investigations on plasma positive for human immunodeficiency virus (HIV).

    PubMed Central

    Hancock, M R; Knapp, M L; Ghany, H C; Mayne, P D

    1987-01-01

    The effects of heat treatment of serum samples on the hormone analyses used in this laboratory were studied. Total T4, testosterone, progesterone, and growth hormone were not systematically affected by heat treatment over the whole range of analyte concentrations studied; for thyroid stimulating hormone, no effect was noted on serum samples with concentrations of less than 10 mU/l. Significant changes occurred in total T3, cortisol, follicle stimulating hormone, luteinizing hormone, and prolactin. It is suggested that with appropriate preliminary study, heat treated plasma samples may be used in endocrinological investigations without adversely affecting the diagnostic validity of the results. PMID:3108328

  3. Hot-ion Bernstein wave with large k{sub parallel}

    SciTech Connect

    Ignat, D.W.; Ono, M.

    1995-01-01

    The complex roots of the hot plasma dispersion relation in the ion cyclotron range of frequencies have been surveyed. Progressing from low to high values of perpendicular wave number k{perpendicular} we find first the cold plasma fast wave and then the well-known Bernstein wave, which is characterized by large dispersion, or large changes in k{perpendicular} for small changes in frequency or magnetic field. At still higher k{perpendicular} there can be two hot plasma waves with relatively little dispersion. The latter waves exist only for relatively large k{parallel}, the wave number parallel to the magnetic field, and are strongly damped unless the electron temperature is low compared to the ion temperature. Up to three mode conversions appear to be possible, but two mode conversions are seen consistently.

  4. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers. PMID:25793819

  5. Simulation of High Power ICRF Wave Heating in the ITER Burning Plasma

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Barrett, R. F.; D'Azevedo, E. F.

    2007-11-01

    ITER relies on Ion-cyclotron Radio Frequency (ICRF) power to heat the plasma to fusion temperatures. To heat effectively, the waves must couple efficiently to the core plasma. Recent simulations using AORSA [1] on the 120 TF Cray XT-4 (Jaguar) at ORNL show that the waves propagate radially inward and are rapidly absorbed with little heating of the plasma edge. AORSA has achieved 87.5 trillion calculations per second (87.5 teraflops) on Jaguar, which is 73 percent of the system's theoretical peak. Three dimensional visualizations show ``hot spots'' near the antenna surface where the wave amplitude is high. AORSA simulations are also being used to study how to best use ICRF to drive plasma currents for optimizing ITER performance and pulse length. Results for Scenario 4 show a maximum current of 0.54 MA for 20 MW of power at 57 MHz. [1] E.F. Jaeger, L.A. Berry, E. D'Azevedo, et al., Phys. Plasmas. 8, 1573 (2001).

  6. Extreme Degree of Ionization in Homogenous Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyaptsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520 -μ m -diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm-2 greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe28 + , while xenon impurities in hydrogen discharges reach Xe30 + . The unique characteristics of these hot, ˜300 :1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  7. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1981-01-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and RF heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreased rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (less than or equal to 10/sup 16/D/cm/sup 2/s) at the positions sampled.

  8. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1982-04-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and rf heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreases rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on, about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (< or approx. =10/sup 16/ D/cm/sup 2/s) at the positions sampled.

  9. Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.

    2014-10-01

    We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.

  10. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    SciTech Connect

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  11. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently. PMID:26172803

  12. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    SciTech Connect

    Zare, S.; Sadighi-Bonabi, R. Anvari, A.; Yazdani, E.; Hora, H.

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  13. ITER-relevant transient heat loads on tungsten exposed to plasma and beryllium

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Doerner, R. P.; Dittmar, T.; Höschen, T.; Schwarz-Selinger, T.; Baldwin, M. J.

    2014-04-01

    Tungsten (W) is presently the most attractive plasma facing material for future fusion reactors. Off-normal transient events such as edge localized modes and disruptions are simulated with a pulsed laser system in the PISCES-B facility, providing pulses with 1-10 ms duration with absorbed heat flux factors up to ˜90 MJ m-2 s-1/2. This paper characterizes surface morphology changes and damage thresholds under transient heating on W exposed to He plasma or D plasma with and without Be coatings. W is damaged in the form of grain growth, surface roughening, melting and cracking. With a Be coating on the order of μm thick, the laser pulse produces a variety of Be surface changes including Be-W alloying, vaporization of the Be layer, melting and delamination.

  14. Heat diffusion across magnetic islands and ergodized plasma regions in realistic tokamak geometry

    SciTech Connect

    Hoelzl, M.; Guenter, S.

    2008-07-15

    Heat diffusion in magnetized plasmas is investigated numerically for tokamak geometry and realistic plasma parameters. Heat transport across single and overlapping magnetic islands is studied. As an application, the influence of an (n+1,m+1) helical perturbation onto the temperature perturbation caused by an (n,m) neoclassical tearing mode is examined. It is shown that the resulting ergodization of the magnetic field structure is able to reduce the resonant bootstrap current perturbation of a neoclassical tearing mode. This might explain the drop in the mode amplitude observed in the frequently interrupted regime. Furthermore, the influence of edge ergodization as generated by external perturbation coils onto the electron temperature is studied. It is shown that ergodization of the plasma boundary can decrease the pedestal temperature gradient significantly. This effect might be one element in the mitigation effects of edge-localized modes achieved by external resonant perturbation fields.

  15. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  16. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    SciTech Connect

    Sizyuk, V. Hassanein, A.

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  17. Ballooning Instability: A Possible Mechanism for Impulsive Heating of Plasma Trapped in a Loop

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2015-12-01

    Plasma confined in curved magnetic field are unstable when the plasma beta (= gas pressure / magnetic pressure) exceeds a critical value determined mainly by the loop geometry (~ loop thickness / curvature radius). In TOKAMAK (one type of fusion experiment device), sudden disruption of confined plasma are observed when plasma beta is high and is called high-beta disruption. The main cause of the disruption is ballooning instability (or localized interchange instability). This instability can happen also in the solar atmosphere when conditions are satisfied. Not only high gas pressure but also plasma flow along curved magnetic field triggers ballooning instability. The most probable location of the instability is around the loop top where the magnetic field is the weakest. Impulsive heating of confined plasma and particle acceleration can be expected by discharge process of the space charge which is created by drift motion of plasma particles perpendicular to the magnetic field. Associated with disruption, shock waves and turbulences will be generated due to sudden expansion of plasma. Recent high-resolution, high-cadence and multiple wavelength (visible-UV-EUV) observations by SDO show many of these events.

  18. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NASA Astrophysics Data System (ADS)

    Den Harder, N.; Schram, D. C.; Goedheer, W. J.; De Blank, H. J.; Van de Sanden, M. C. M.; Van Rooij, G. J.

    2015-04-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1-5 × 1020 m-3) low temperature (˜3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center, vibrational temperatures reached 1 eV. Rotational temperatures obtained from the Q(v = 1) branch were systematically ˜0.1 eV lower than the Q(v = 0) branch temperatures, which were in the range of 0.4-0.8 eV, typically 60% of the translational temperature (determined from the width of the same spectral lines). The latter is attributed to preferential excitation of translational degrees of freedom in collisions with ions on the timescale of their in-plasma residence time. Doppler shifts revealed co-rotation of the molecules with the plasma at an angular velocity an order of magnitude lower, confirming that the Fulcher emission connects to background molecules. A simple model estimated a factor of 90 rarefaction of the molecular density at the center of the plasma column compared to the residual gas density. Temperature and density information was combined to conclude that ion-conversion molecular assisted recombination dominates plasma recombination at a rate of 1 × 10-15 m3 s-1. The observations illustrate the general significance of rapid molecule heating in high density hydrogen plasma for estimating molecular processes and how this affects Fulcher spectroscopy.

  19. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  20. Study of material response on simulated ITER disruptive plasma heat load with variable duration

    SciTech Connect

    Litunovsky, V.N.; Ovchinnikov, I.B.; Drozdov, A.A.; Kuznetsov, V.E.; Ljublin, B.V.; Titov, V.A.

    1995-12-31

    The damage of divertor elements during off-normal events (disruptions and giant ELMs) will determine sufficiently the life-time of ITER divertor. The strategy of the solution of a problem of the reliable prediction of divertor components disruptive damages is contained in collection of information on both natural disruptions in existing Tokamaks and simulated ones, and also development of codes for modelling of the experiments and divertor life-time damage. Some results of the study of material response on plasma high heat flux load are given in the report. High power long pulse plasma accelerator of VIKA facility is used as source of plasma high heat flux (w{sub p} {le} 30 MJ/m{sup 2}). The peculiarity of described experiments in variation of rectangular like pulse duration of plasma stream ({tau}{sub p} = 0.09; 0.18; 0.27; 0.36 ms). Some data of plasma parameters in a plasma-material interaction zone are given. The growth of both mass losses and crater depth with irradiation increase is fixed for Al and Cu. As a preliminary result one can mark a tendency to decreasing both crack length for hot (T = 300 C) irradiated Al sample and mass losses for W irradiated at T = 1,000 C.

  1. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  2. Heating of solar chromosphere by electromagnetic wave absorption in a plasma slab model

    SciTech Connect

    Tsiklauri, D.; Pechhacker, R.

    2011-04-15

    The heating of solar chromospheric internetwork regions by means of the absorption of electromagnetic (EM) waves that originate from the photospheric blackbody radiation is studied in the framework of a plasma slab model. The absorption is provided by the electron-neutral collisions in which electrons oscillate in the EM wave field and electron-neutral collisions damp the EM wave. Given the uncertain nature of the collision cross-section due to the plasma microturbulence, it is shown that for plausible physical parameters, the heating flux produced by the absorption of EM waves in the chromosphere is between 20% and 45% of the chromospheric radiative loss flux requirement. It is also established that there is an optimal value for the collision cross-section, 5x10{sup -18} m{sup 2}, which produces the maximal heating flux of 1990 W m{sup -2}.

  3. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  4. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Takenaga, H.; Ida, K.; Isayama, A.; Tamura, N.; Takizuka, T.; Shimozuma, T.; Kamada, Y.; Kubo, S.; Miura, Y.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; LHD Experimental Group; JT-60 Team

    2006-01-01

    Transient transport experiments are performed in plasmas with and without internal transport barriers (ITB) on LHD and JT-60U. The dependence of χe on the electron temperature, Te, and on the electron temperature gradient, ∇Te, is analysed with an empirical non-linear heat transport model. In plasmas without an ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation: the χe depends on Te and ∇Te in JT-60U, while the ∇Te dependence is weak in LHD. Inside the ITB region, there is none or weak ∇Te dependence both in LHD and JT-60U. Growth of the cold pulse driven by the negative Te dependence of χe is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U).

  5. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  6. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  7. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  8. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    SciTech Connect

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.; Goldston, R.J.; Grek, B.; Hill, K.W.; Johnson, D.W.; McGuire, K.; Ramsey, A.T.; Stauffer, F.J.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period.

  9. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices

    NASA Astrophysics Data System (ADS)

    Murphy, D.; Sparkes, B. M.

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability.

  10. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices.

    PubMed

    Murphy, D; Sparkes, B M

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability. PMID:27627236

  11. Inter-conversion of Work and Heat With Plasma Electric Fields

    SciTech Connect

    Avinash, K.

    2010-11-23

    Thermodynamics of a model system where a group of cold charged particles locally confined in a volume V{sub P} within a warm plasma of temperature T and fixed volume V (V{sub P}<plasma. Finally, the direct conversion of plasma heat into mechanical work is demonstrated via a Striling like engine cycle involving ES isothermal compression of plasma electric fields.

  12. Development of neutral beams for fusion plasma heating

    SciTech Connect

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  13. Growth enhancement effects of radish sprouts: atmospheric pressure plasma irradiation vs. heat shock

    NASA Astrophysics Data System (ADS)

    Sarinont, T.; Amano, T.; Kitazaki, S.; Koga, K.; Uchida, G.; Shiratani, M.; Hayashi, N.

    2014-06-01

    We compare growth enhancement effects due to atmospheric air dielectric barrier discharge plasma irradiation and heat shock to seeds of radish sprouts (Raphanus sativus L.). Interactions between radicals and seeds in a short duration of 3 min. lead to the growth enhancement of radish sprouts in a long term of 7 days and the maximum average length is 3.7 times as long as that of control. The growth enhancement effects become gradually weak with time, and hence the ratio of the average length for plasma irradiation to that for control decreases from 3.7 for the first day to 1.3 for 7 day. The average length for heat shock of 60°C for 10 min. and 100°C for 3 min. is longer than that for control, and the maximum average length is 1.3 times as long as that of control. Heat shock has little contribution to the growth enhancement due to plasma irradiation, because the maximum temperature due to plasma irradiation is less than 60°C.

  14. Study of improved confinement by a stepwise increase of the input heating power for tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Mohamed, Mabruka; Kim, Eun-Jin

    2016-09-01

    This paper is an extension of the brief study by Sarah Douglas et al. [Phys. Plasmas 20 (2013) 114504] where in the study a sinusoidal perturbation of the heating power has been studied. In this paper a stepwise increase of the heating power and its influence on the L-H transition are studied. Using a function, Atanh(t/T) for the transition of input heating power for tokamak plasmas, i.e. the addition of the perturbation, Atanh(t/T), to constant power q0 is shown to promote the confinement, leading to the L-H transition at a lower value of q0, as compared to the case of constant q0 without the Atanh(t/T) perturbation. It is seen that the input heating power Q that consists of constant part q0 in addition to a function Atanh(t/T) provides the L-H transition for relatively small A and much wider range values of 1/T as compared to Sarah Douglas et al. [Phys. Plasmas 20 (2013) 114504].

  15. Design of TFTR movable limiter blades for ohmic and neutral-beam-heated plasmas

    SciTech Connect

    Doll, D.W.; Ulrickson, M.A.; Cecchi, J.L.; Citrolo, J.C.; Weissenburger, D.; Bialek, J.

    1981-10-01

    A new set of movable limiter blades has been designed for TFTR that will meet both the requirements of the 4 MW ohmic heated and the 33 MW neutral beam heated plasmas. This is accomplished with three limiter blades each having and elliptical shape along the toroidal direction. Heat flux levels are acceptable for both ohmic heated and pre-strong compression plasmas. The construction consists of graphite tiles attached to cooled backing plates. The tiles have an average thickness of approx. 4.7 cm and are drawn against the backing plate with spring loaded fasteners that are keyed into the graphite. The cooled backing plate provides the structure for resisting disruption and fault induced loads. A set of rollers attached to the top and bottom blades allow them to be expanded and closed in order to vary the plasma surface for scaling experiments. Water cooling lines penetrate only the mid-plane port cover/support plate in such a way as to avoid bolted water connections inside the vacuum boundary and at the same time allow blade movement. Both the upper and lower blades are attached to the mid-plane limiter blade through pivots. Pivot connections are protected against arcing with an alumina coating and a shunt bar strap. Remote handling is considered throughout the design.

  16. Electron residual energy due to stochastic heating in field-ionized plasma

    SciTech Connect

    Khalilzadeh, Elnaz; Yazdanpanah, Jam Chakhmachi, Amir; Jahanpanah, Jafar; Yazdani, Elnaz

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  17. Heat and Mass Transfer Within an Evaporating Solution Droplet in a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang; Hu, Yuan

    2012-06-01

    Solution precursors have been injected into the plasma gases to produce finely structured ceramic coatings with nano- and sub-micrometric features. The trajectory history and heat and mass transfer within individual solution droplets play a very important role in determining the coating microstructure. A mathematical model is developed to analyse the thermal behavior of individual precursor droplets travelling in the high temperature plasma jet. This model involves the motion and evaporation of the precursor droplet in a DC plasma jet and the heat and mass transfer within the evaporating droplet. The influence of Stefan flow, as well as the variable thermo-physical properties of the solution and the plasma gas, is considered. The internal circulation due to the relative velocity between the droplet and the plasma jet, which may be approximated by the Hill vortex, is considered as well. The trajectory, temporal droplet surface temperature, and radius variation are predicted. The temporal temperature and concentration distributions within the evaporating droplet are presented for different injection parameters.

  18. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  19. The role of electron equation of state in heating partition of protons in a collisionless plasma

    SciTech Connect

    Parashar, Tulasi N.; Vasquez, Bernard J.; Markovskii, Sergei A.

    2014-02-15

    One of the outstanding questions related to the solar wind is the heating of solar wind plasma. Addressing this question requires a self consistent treatment of the kinetic physics of a collisionless plasma. A hybrid code (with particle ions and fluid electrons) is one of the most convenient computational tools, which allows us to explore self consistent ion kinetics, while saving us computational time as compared to the full particle in cell codes. A common assumption used in hybrid codes is that of isothermal electrons. In this paper, we discuss the role that the equation of state for electrons could potentially play in determining the ion kinetics.

  20. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  1. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    SciTech Connect

    Zawaideh, E.; Kim, N.S.; Najmabadi, F.

    1988-11-01

    A new set of two-fluid heat transport equations that is valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates, a set of moment equations describing plasma energy transport along the field lines of a space- and time-dependent magnetic field is derived. No restrictions on the anisotropy of the ion distribution function or collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation (e.g., Spitzer and Haerm or Braginskii), while in the weakly collisional limit, they describe a saturated heat flux (flux limited). Numerical examples comparing these equations with conventional heat transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the temperature gradient L/sub T/ approaches zero, there is no significant difference between the solutions of the new and conventional heat transport equations. As lambda/L/sub T/..-->..1, the conventional heat conduction equation contains a significantly larger error than (lambda/L/sub T/)/sup 2/. The error is found to be O(lambda/L)/sup 2/, where L is the smallest of the scale lengths of the gradient in the magnetic field, or the macroscopic plasma parameters (e.g., velocity scale length, temperature scale length, and density scale length). The accuracy of the flux-limited model depends significantly on the value of the flux limit parameter which, in general, is not known. The new set of equations shows that the flux-limited parameter is a function of the magnetic field and plasma parameter profiles.

  2. Viscous effects on motion and heating of electrons in inductively coupled plasma reactors

    SciTech Connect

    Chang, C.H.; Bose, D.

    1999-10-01

    A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor.

  3. Measurements of plasma sheath heat flux in the Alcator C-Mod divertor

    NASA Astrophysics Data System (ADS)

    Brunner, Dan; Labombard, Brian; Terry, Jim; Reinke, Matt

    2010-11-01

    Heat flux is one of the most important parameters controlling the lifetime of first-wall components in fusion experiments and reactors. The sheath heat flux coefficient (γ) is a parameter relating heat flux (from a plasma to a material surface) to the electron temperature and ion saturation current. Being such a simple expression for a kinetic process, it is of great interest to plasma edge fluid modelers. Under the assumptions of equal ion and electron temperatures, no secondary electron emission, and no net current to the surface the value of γ is approximately 7 [1]. Alcator C-Mod provides a unique opportunity among today's experiments to measure reactor-relevant heat fluxes (100's of MW/m^2 parallel to the magnetic field) in reactor-like divertor geometry. Motivated by the DoE 2010 joint milestone to measure heat flux footprints, the lower outer divertor of Alcator has been instrumented with a suite of Langmuir probes, novel surface thermocouples, and calorimeters in tiles purposefully ramped to eliminate shadowing; all within view of an IR camera. Initial results indicate that the experimentally inferred values of γ are found to agree with simple theory in the sheath limited regime and diverges to lower values as the density increases.

  4. On the role of stochastic heating in experiments with complex plasmas

    SciTech Connect

    Marmolino, C.; De Angelis, U.; Ivlev, A. V.; Morfill, G. E.

    2009-03-15

    Stochastic heating of dust particles resulting from dust charge fluctuations is considered in some laboratory situations, where high kinetic temperatures of dust particles have been suggested or could be observed. A particular case, in the conditions of the scrape-off layer in tokamak plasmas, is also considered and it is shown that kinetic energies corresponding to velocities of {approx_equal}km/s can be reached in times of order {approx_equal}1 ms by micron-size particles interacting with a background of stochastically heated nanosize particles.

  5. ELM behaviour and linear MHD stability of edge ECRH heated ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Burckhart, A.; Dunne, M.; Wolfrum, E.; Fischer, R.; McDermott, R.; Viezzer, E.; Willensdorfer, M.; the ASDEX Upgrade Team

    2016-05-01

    In order to test the peeling–ballooning ELM model, ECRH heating was applied to the edge of ASDEX Upgrade type-I ELMy H-mode plasmas to alter the pedestal pressure and current density profiles. The discharges were analysed with respect to ideal MHD stability. While the ELM frequency increased and the pedestal gradients relaxed with edge ECRH, the MHD stability boundary did not change. The results indicate that the peeling–ballooning model is insufficient to fully explain the triggering of ELM instabilities in the presence of edge ECRH heating.

  6. Impact of Stationary Direct Current in the Central Solenoidal Coil on Tokamak Plasma Formation by Non-induction Heating

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu

    2016-09-01

    Stationary direct current in the central solenoidal coil (DCCS) of tokamak devices can reduce the non-induction heating energy necessary for tokamak plasma formation. The magnetic field energy in the inner region of the central solenoidal coil (CS region) is expelled during the tokamak plasma formation, because the vertical magnetic field intensity generated by the central solenoidal coil and poloidal field coils is partly cancelled by the increase in the toroidal plasma current. Because this magnetic field energy expelled from the CS region is distributed to the tokamak plasma in accordance with the mutual inductance, this expelled energy can drive the toroidal plasma current inductively. This energy expulsion in the CS region can be enhanced by the DCCS without the modification of the tokamak plasma configuration, when the CS coil current has negligible leakage magnetic field in the plasma area. Because the drive of the toroidal plasma current by non-induction heating can be assisted by this inductive current drive mechanism, the non-induction heating energy necessary for the tokamak plasma formation can be reduced by the DCCS. If the non-induction heating is constant, the tokamak plasma formation time can be shorted by the DCCS.

  7. Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin.

    PubMed

    Klemsdal, T O; Gjesdal, K; Bredesen, J E

    1992-01-01

    19 healthy volunteers wore a nitroglycerin patch releasing 10 mg per 24 h for 2 h. Subsequently, the skin area surrounding the patch was exposed to 15 min of local heating with an infrared bulb (Group A, n = 10), or local cooling with an ice-pack (Group B, n = 9). The patch was protected by an insulating shield (Styrofoam). After 10 min of heating, the median (Walsh) plasma nitroglycerin level increased from 3.1 to 7.6 nmol.l-1. Body temperature remained constant. After 15 min of cooling the median plasma level had dropped from 2.1 to 1.4 nmol.l-1. The results demonstrate that changes in skin temperature may cause extensive short-term changes in the bioavailability of nitroglycerin. Presumably, a subcutaneous or cutaneous reservoir builds up during transdermal treatment, and changes in regional cutaneous blood flow affect the rate of drainage from the reservoir into the systemic circulation.

  8. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering. PMID:27386287

  9. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-01

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. PMID:26851364

  10. Advances in High Harmonic Fast Wave Heating of NSTX H-mode Plasmas

    SciTech Connect

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.; Bonoli, P.; Chen, Guangye; Green, David L; Harvey, R. W.; Hosea, J.; Jaeger, Erwin Frederick; Kaye, S.; LeBlanc, B; Maingi, Rajesh; Phillips, Cynthia; Podesta, M.; Taylor, G.; Wilgen, John B; Wilson, J. R.

    2010-01-01

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths and during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal

  11. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Nishida, K.; Mochizuki, S.; Mattei, S.; Lettry, J.; Hatayama, A.; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F.

    2016-02-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  12. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source.

    PubMed

    Shibata, T; Nishida, K; Mochizuki, S; Mattei, S; Lettry, J; Hatayama, A; Ueno, A; Oguri, H; Ohkoshi, K; Ikegami, K; Takagi, A; Asano, H; Naito, F

    2016-02-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna. PMID:26932010

  13. Study of selective heating at ion cyclotron resonance for the plasma separation process

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  14. Study of selective heating at ion cyclotron resonance for the plasma separation process

    SciTech Connect

    Compant La Fontaine, A.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, {ital Proceedings} {ital of} {ital the} 2{ital nd} {ital Workshop} {ital on} {ital Separation} {ital Phenomena} {ital in} {ital Liquids} {ital and} {ital Gases}, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d`Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii {ital et} {ital al}., Plasma Phys. Rep. {bold 19}, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number {ital k}{sub {ital z}} is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the {ital k}{sub {ital z}} spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field {ital B}{sub 0}, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope {sup 44}Ca heating measurements, made with an energy analyzer. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. On heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas

    NASA Technical Reports Server (NTRS)

    Cuperman, S.; Dryer, M.

    1985-01-01

    A generalized expression for the steady-state heat flux in multicomponent, moderately non-Maxwellian spherically symmetric plasmas is presented and discussed. The work was motivated by the inability of the simple, Fourier-type formula for the thermal conductivity to explain the observed correlations in the solar wind. The results hold for situations not far from local thermodynamic equilibrium. The generalized expression includes not only correlations that have been observed but also correlations not sought for previously.

  16. Stochastic heating and acceleration of electrons in colliding laser fields in plasma.

    PubMed

    Sheng, Z-M; Mima, K; Sentoku, Y; Jovanović, M S; Taguchi, T; Zhang, J; Meyer-Ter-Vehn, J

    2002-02-01

    We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.

  17. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating

    SciTech Connect

    Michel, P.; Williams, E. A.; Divol, L.; Berger, R. L.; Glenzer, S. H.; Callahan, D. A.; Rozmus, W.

    2013-05-15

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing the plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.

  18. Ion heating in a dusty plasma due to the dust/ion acoustic instability

    SciTech Connect

    Winske, D.; Gary, S.P.; Jones, M.E.

    1995-08-01

    The drift of plasma ions relative to charged grains in a dusty plasma can give rise to a dust/ion acoustic instability. The authors investigate the linear properties of the instability by numerically solving an appropriate linear dispersion equation and examine the nonlinear behavior through one-dimensional electrostatic particle simulations, in which the plasma and dust ions are treated as discrete particles and the electrons are modeled as a Boltzmann fluid. The instability is slightly weaker when the dust particles have a range of sizes, and corresponding range of charges and masses. It is argued that due to dust particles that comprise planetary rings, this process can contribute to ion heating and diffusion observed in the linear magnetosphere of Saturn. 14 refs., 4 figs.

  19. Diagnosis of Ultrafast Laser-Heated Metal Surfaces and Plasma Expansion with Absolute Displacement Interferometry

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.; Clarke, S. A.; Taylor, A. J.; Forsman, A.

    2004-07-01

    We report on the development of a novel technique to measure the critical surface displacement in intense, ultrashort, laser-solid target experiments. Determination of the critical surface position is important for understanding near solid density plasma dynamics and transport from warm dense matter systems, and for diagnosing short scale length plasma expansion and hydrodynamic surface motion from short pulse, laser-heated, solid targets. Instead of inferring critical surface motion from spectral power shifts using a time-delayed probe pulse or from phase shifts using ultrafast pump-probe frequency domain interferometry (FDI), this technique directly measures surface displacement using a single ultrafast laser heating pulse. Our technique is based on an application of a Michelson Stellar interferometer to microscopic rather than stellar scales, and we report plasma scale length motion as small as 10 nm. We will present results for motion of plasmas generated from several target materials (Au, Al, Au on CH plastic) for a laser pulse intensity range from 1011 to 1016 W/cm2. Varying both, the pulse duration and the pulse energy, explores the dependence of the expansion mechanism on the energy deposited and on the peak intensity. Comparisons with hydrocodes reveal the applicability of hydrodynamic models.

  20. Kinetic Energy Oscillations during Disorder Induced Heating in an Ultracold Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; McQuillen, Patrick; Strickler, Trevor; Pohl, Thomas; Killian, Thomas

    2015-05-01

    Ultracold neutral plasmas of strontium are generated by photoionizing laser-cooled atoms at temperature TMOT ~ 10 mK and density n ~1016 m-3 in a magneto-optical trap (MOT). After photoionization, the ions heat to ~ 1 K by a mechanism known as Disorder Induced Heating (DIH). During DIH kinetic energy oscillations (KEO) occur at a frequency ~ 2ωpi , where ωpi is the plasma frequency, indicating coupling to collective modes of the plasma. Electron screening also comes into play by changing the interaction from a Coulomb to a Yukawa interaction. Although DIH has been previously studied, improved measurements combined with molecular dynamics (MD) simulations allow us to probe new aspects. We demonstrate a measurement of the damping of the KEO due to electron screening which agrees with the MD simulations. We show that the MD simulations can be used to fit experimental DIH curves for plasma density n, resulting in very accurate density measurements. Finally, we discuss how ion temperature measurements are affected by the non-thermal distribution of the ions during the early stages of DIH. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), the Air Force Office of Scientific Research (FA9550- 12-1-0267), the Shell Foundation, and the Department of Defense (NDSEG Fellowship)

  1. Probe measurements of the PDX divertor plasma in ohmic and neutral beam heated discharges

    NASA Astrophysics Data System (ADS)

    Owens, D. K.; Kaye, S. M.; Fonck, R. J.; Schmidt, G. L.

    1984-05-01

    A graphite-shielded probe was recently installed in the divertor region of PDX to continuously monitor local electron temperature, electron density (from the ion saturation current), and plasma floating potential throughout divertor discharges. In ohmically heated deuterium plasmas, the electron temperature near the separatrix was 6 to 12 eV; these values confirm the low Te inferred from the density dependence of Balmer line emission from the divertor plasmas. During neutral beam heating, PDX divertor discharges were characterized by a sharp transition at which time the main chamber plasma density increased rapidly, the divertor H α emission dropped, and the global energy confinement increased abruptly. At later times, edge relaxation oscillations, characterized by spikes in the H α emission, occurred and were accompanied by a clamp in the density rise and lower confinement time. Limited scans of the temperature and density measured by the divertor probe indicated that these parameters changed with discharge conditions primarily near the separatrix. With the onset of neutral beam injection the temperature and density rose by a factor of 1.5 and 2-4 respectively. Transient drops in Te to values as low as 2 eV and concomitant rises in ne were sometimes observed near the time of the transition into the high confinement mode. Later in the discharge, the values returned to their pre-H-mode level. TV camera observations of the divertor probe revealed a "shadow" along the field lines indicating a well-defined flow in the vicinity of the separatrix.

  2. Net sputtering rate due to hot ions in a Ne-Xe discharge gas bombarding an MgO layer

    SciTech Connect

    Ho, S.; Tamakoshi, T.; Ikeda, M.; Mikami, Y.; Suzuki, K.

    2011-04-15

    An analytical method is developed for determining net sputtering rate for an MgO layer under hot ions with low energy (<100 eV) in a neon-xenon discharge gas at near-atmospheric pressure. The primary sputtering rate is analyzed according to spatial and energy distributions of the hot ions with average energy, E{sup h}{sub i}, above a threshold energy of sputtering, E{sub th,i}, multiplied by a yield coefficient. The threshold energy of sputtering is determined from dissociation energy required to remove an atom from MgO surface multiplied by an energy-transfer coefficient. The re-deposition rate of the sputtered atoms is calculated by a diffusion simulation using a hybridized probabilistic and analytical method. These calculation methods are combined to analyze the net sputtering rate. Maximum net sputtering rate due to the hot neon ions increases above the partial pressure of 4% xenon as E{sup h}{sub Ne} becomes higher and decreases near the partial pressure of 20% xenon as ion flux of neon decreases. The dependence due to the hot neon ions on partial pressure and applied voltage agrees well with experimental results, but the dependence due to the hot xenon ions deviates considerably. This result shows that the net sputtering rate is dominated by the hot neon ions. Maximum E{sup h}{sub Ne} (E{sup h}{sub Ne,max} = 5.3 - 10.3 eV) is lower than E{sub th,Ne} (19.5 eV) for the MgO layer; therefore, weak sputtering due to the hot neon ions takes place. One hot neon ion sputters each magnesium and each oxygen atom on the surface and distorts around a vacancy. The ratio of the maximum net sputtering rate is approximately determined by number of the ions at E{sup h}{sub i,max} multiplied by an exponential factor of -E{sub th,i}/E{sup h}{sub i,max}.

  3. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    PubMed

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  4. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  5. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  6. The effect of plasma heating on sublimation-driven flow in Io's atmosphere

    NASA Technical Reports Server (NTRS)

    Wong, Mau C.; Johnson, Robert E.

    1995-01-01

    The atmospheric flow on Io is numerically computed in a flat 2-D axisymmetric geometry for a sublimation atmosphere on the trailing hemisphere subjected to plasma bombardment, UV heating, and IR cooling. Calculations are performed for subsolar vapor pressures of approximately 6.5 x 10(exp -3) Pa (approximately 3 x 10(exp 18) SO2/sq cm) and 6.8 x 10(exp -4) Pa (approximately 4 x 10(exp 17) SO2/sq cm); the latter approximates the vapor pressure of F. P. Fanale et al. (1982). The amount of plasma energy deposited in the atmosphere is 20% of the plasma flow energy due to corotation (J. A. Linker et al., 1988). It is found that plasma heating significantly inflates the upper atmosphere, increasing both the exobase altitude and the amount of surface covered by more than an exospheric column of gas. This in turn controls the supply of the Io plasma torus (M. A. McGrath and R. E. Johnson, 1987). The horizontal flow of mass and energy is also important in determining the exobase altitude; and it is shown that IR cooling can be important, although our use of the equilibrium, cool-to-space approximation for a pure SO2 gas (E. Lellouch et al., 1992) may overestimate this effect. The calculated exobase altitudes are somewhat lower than those suggested by McGrath and Johnson (1987) for supplying the torus, indicating the details of the plasma energy deposition and sputter ejection rate near the exobase, as well as the IR emission from this region need to be examined. In addition, the molecules sublimed (or sputtered) from the surface are transported to the exobase in times short compared to the molecular photodissociation time. Therefore, the exobase is dominated by molecular species and the exobase is supplied by a small region of the surface.

  7. Ion Dynamics and ICRH Heating in the Exhaust Plasma of The VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Chang-Díaz, F. R.; Squire, J. P.; Jacobson, V.; Ilin, A.; Winter, D. S.; Bengtson, R. D.; Gibson, J. N.; Glober, T. W.; Brukardt, M.; Rodriguez, W.

    2002-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by an integrated helicon discharge. However, the bulk of the plasma energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. A laboratory simulation of the 25 kW proof of concept VASIMIR engine has been under development and test at NASA-JSC for several years. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen, Deuterium, Argon and Xenon. This paper will review the plasma diagnostic results obtained in 2000-2002 in a continuing series of performance optimization and design development studies. Available plasma diagnostics include a triple probe, a Mach probe, a bolometer, a television monitor, an H- photometer, a spectrometer, neutral gas pressure and flow measurements, several gridded energy analyzers (retarding potential analyzer or RPA), a surface recombination probe system, an emission probe, a directional, steerable RPA and other diagnostics. Reciprocating Langmuir and Mach probes are the primary plasma diagnostics. The Langmuir probe measures electron density and temperature profiles while the Mach probe measures flow profiles. Together this gives total plasma particle flux. An array of thermocouples provides a temperature map of the system. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. During 2000-2002, we have performed a series of experiments on the VASIMR apparatus with several objectives, to explore the parameter space that

  8. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.

    2016-09-01

    Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.

  9. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  10. Heat flux in a non-Maxwellian plasma. [in realistic solar coronal loop

    NASA Technical Reports Server (NTRS)

    Ljepojevic, N. N.; Macneice, P.

    1989-01-01

    A hybrid numerical scheme is applied to solve the Landau equation for the electron distribution function over all velocity space. Evidence is presented for the first time of the degree and character of the failure of the classical Spitzer-Haerm heat flux approximation in a realistic solar coronal loop structure. In the loop model used, the failure is so severe at some points that the role of the heat flux in the plasma's energy balance is completely misinterpreted. In the lower corona the Spitzer-Haerm approximation predicts that the heat flux should act as an energy source, whereas the more accurate distribution functions calculated here show this to be an energy sink.

  11. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  12. Self-gravitational instability of rotating anisotropic heat-conducting plasma

    SciTech Connect

    Prajapati, R. P.; Parihar, A. K.; Chhajlani, R. K.

    2008-01-15

    The self-gravitational instability of rotating anisotropic heat-conducting plasma with modified Chew-Goldberger-Low equations is investigated. The general dispersion relation is obtained using normal mode analysis by constructing the linearized set of equations. This dispersion relation is further reduced for propagation parallel and perpendicular to the direction of magnetic field. These conditions are discussed for axis of rotation along and perpendicular to the magnetic field. It is found that the heat flux vector does not influence the transverse mode of propagation for both cases of rotation and Jeans condition remains unchanged. In case of propagation parallel to the magnetic field with axis of rotation perpendicular to the magnetic field, we get the dispersion relation, which shows the joint effect of rotation and heat flux vector. The two separate modes of propagation are obtained in terms of rotation and heat flux vector for rotation parallel to the magnetic field. It is demonstrated that the Alfven wave and the associated firehose instability are not affected by the presence of heat flux corrections and rotation also. The numerical analysis is performed to show the effect of rotation, pressure anisotropy, and heat flux parameter on the condition of instability in the spiral arms of galaxy. The Jeans condition of gravitational instability is obtained for both the cases of propagation.

  13. Interphase Momentum and Heat Exchange in Turbulent Dust-Laden Plasma Jet under Continuous Radial Powder Injection

    SciTech Connect

    Solonenko, Oleg P.; Smirnov, Audrey V.

    2006-05-05

    Potential possibilities of an advanced approach based on the usage of DC cascade torch providing an axially symmetric plasma jet outflow, and continuous radial injection of powder into a plasma flow are discussed. Comparison is made of the results, obtained using two models of interphase heat and momentum exchange between polydisperse alumina particles and air plasma jet, other factors being the same. The widely used model of gradientless particles' heating was applied for computing the two-phase plasma jets' temperature and velocity fields. The model is compared with corresponding model of gradient particle heating computed by using an efficient numerical method developed. Calculations were conducted under different scales of dense loading conditions to estimate the maximum productivity of plasma spray process.

  14. Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet

    NASA Astrophysics Data System (ADS)

    Zhu, Yifei; Wu, Yun; Jia, Min; Liang, Hua; Li, Jun; Li, Yinghong

    2015-02-01

    The influence of positive slopes on the energy coupling and hydrodynamic responses in an atmospheric nanosecond-pulsed plasma synthetic jet (PSJ) was investigated using a validated dry air plasma kinetics model. Based on a 1D simulation of the energy transfer mechanism in ultrafast gas heating, and with reasonable simplification, a 2D model of a PSJ was developed to investigate the discharge characteristics and hydrodynamic responses under different rise times. In the 1D simulation, a shorter voltage rise time results in a higher electric field in less time, reduces the time of ionization front propagation and produces stronger ionization. The energy transfer efficiency of ultrafast heating is approximately 60% but a steeper positive slope could raise local heating power density and make input energy 77% higher at the cost of 2.4% lower energy transfer efficiency under the same voltage amplitude and pulse width. The quench heating power density is always 27-30 times higher than that of ion collision in most discharge regions, while ion collision heating power density is 10-103 times higher in the sheath region. In 2D PSJ simulation, spatial-temporal distribution of electron density, reduced electric field and deposited energy were calculated for the first time. Heating energy increases sharply with voltage rise time decrease in the time scale of 20-50 ns. Jet velocity increases by 100 m s-1 when the rise time is reduced by 20 ns. A shorter voltage rise time also leads to higher orifice pressure and temperature, but their peak values are limited by the structure of the orifice and the discharge cavity.

  15. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  16. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  17. A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator

    SciTech Connect

    McCarthy, Kieran J.; Carmona, J. M.; Balbin, R.

    2008-10-22

    We summarize the TJ-II stellarator device give an outline of a vacuum ultraviolet spectrometer used for performing spectral surveys specialized plasma studies. Next, we report the main impurities observed in hot plasmas created maintained by electron cyclotron resonance neutral beam injection heating with lithium coated wall conditioning. Finally, we report broad emission structures that have been observed close to strong oxygen emission lines during neutral beam injection heating phases we elucidate their possible origin.

  18. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  19. ELM simulation experiments using transient heat and particle load produced by a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Shoda, K.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    It is considered that thermal transient events such as type I edge-localized modes (ELMs) and disruptions will limit the lifetime of plasma-facing components (PFCs) in ITER. It is predicted that the heat load onto the PFCs during type I ELMs in ITER is 0.2-2MJ/m2 with pulse length of ~0.1-1ms. We have investigated interaction between transient heat and particle load and the PFCs by using a magnetized coaxial plasma gun (MCPG) at University of Hyogo. In the experiment, a pulsed plasma with duration of ~0.5ms, incident ion energy of ~30eV, and surface absorbed energy density of ~0.3-0.7MJ/m2 was produced by the MCPG. However, no melting occurred on a tungsten surface exposed to a single plasma pulse of ~0.7MJ/m2, while cracks clearly appeared at the edge part of the W surface. Thus, we have recently started to improve the performance of the MCPG in order to investigate melt layer dynamics of a tungsten surface such as vapor cloud formation. In the modified MCPG, the capacitor bank energy for the plasma discharge is increased from 24.5 kJ to 144 kJ. In the preliminary experiments, the plasmoid with duration of ~0.6 ms, incident ion energy of ~ 40 eV, and the surface absorbed energy density of ~2 MJ/m2 was successfully produced at the gun voltage of 6 kV.

  20. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  1. Two-dimensional hybrid models of H+-He++ expanding solar wind plasma heating

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Viñas, A. F.; Maneva, Y.

    2014-06-01

    Preferential heating and acceleration of the solar wind He++ ions compared to protons in fast solar wind streams have been known for decades, thanks to in situ spacecraft measurements at 0.29-5 AU. Turbulent magnetic field fluctuations with approximate power law spectra have been observed as well. However, the exact causes of these processes are still not known due to the lack of detailed information on the magnetic field fluctuations and ion velocity distributions in the acceleration region of the solar wind. Here the collisionless heating processes in expanding solar wind plasma are investigated using 2-D hybrid modeling with parameters appropriate to the heliocentric distance of 10 RS. In this study the ion dynamics is described kinetically, while electrons are treated as a background massless fluid in an expanding solar wind model. The source of free energy for the heating is introduced through an initial nonequilibrium state of the plasma with large He++ ion temperature anisotropy or with super-Alfvénic relative ion drift. We also employ an externally imposed spectrum of magnetic fluctuations in the frequency range below the proton gyroresonant frequency to heat the He++ ions. We investigate the effects of solar wind radial expansion by modeling several values of the expansion rate in a parametric study. We find that the preferential ion heating is attained in both nonexpanding and expanding solar wind models. Thus, the expansion has little effect on the preferential He++ ion heating by the processes considered here. Moreover, the expansion leads to faster evolution of the magnetosonic drift instability, reducing the drift velocity to lower values sooner, and the corresponding generation of the magnetic fluctuations that heat the ions, compared to the nonexpanding case. This is due to the reduction of the perpendicular particle velocities in the expanding (inflated) frame. For cases with little proton perpendicular heating, the solar wind expansion leads to

  2. Impurity transport studies of intrinsic Mo and injected Ge in high temperature ECRH heated FTU tokamak plasmas

    SciTech Connect

    Bracco, F; Crisanti, M; Finkenthal, M; Fournier, K; Gabellieri, G; Granucci, G; Leigheb, L; Marinucci, O; Mattioli, M; May, M; Pacella, D; Zerbini, M

    1999-06-01

    FTU plasmas reached a peak electron temperature up to 11 keV with ECRH heating during the current ramp up phase. For these plasmas X-ray emission of highly ionized molybdenum, the dominant intrinsic impurity, are presented in section II, and VUV spectra of injected germanium are presented in section III. In section IV the conclusions are discussed.

  3. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    NASA Astrophysics Data System (ADS)

    Huang, L. G.; Kluge, T.; Cowan, T. E.

    2016-06-01

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. A simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.

  4. Plasma corticosterone response in continuous versus discontinuous chronic heat exposure in rat.

    PubMed

    Cure, M

    1989-06-01

    Effects of chronic exposure (25 days) to continuous (CHE) or discontinuous (DHE) hot environment (34 degrees C) on growth rate, food intake and cortico-adrenal function were studied in adult male rats. Growth rate and food intake were 40 and 31% less respectively in CHE and 7 and 9% less respectively in DHE than in control (CE) animals. The adrenal response to heat (40 degrees C) was reduced by 54 and 82% in CHE and DHE rats respectively but the plasma corticosterone (B) response to exogenous ACTH and ether stress was not altered by chronic heat. The plasma B rhythm was altered only in CHE rats which exhibited a 40% decrease in amplitude and a delayed nocturnal recession of plasma B values. These results indicate that 1) CHE induced major alterations of behavior specially during the nocturnal period of the L-D cycle, 2) that the altered circadian B rhythm of CHE rats could be linked to changes in feeding behavior and to reduced metabolic activity, 3) and that CHE induced a poorer adaptation than DHE.

  5. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  6. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    SciTech Connect

    Park, Hyeon, K.; Sabbagh, S.A.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  7. Accounting of the Power Balance for Neutral-beam-heated H-Mode Plasmas in NSTX

    SciTech Connect

    S.F. Paul; R. Maingi; V. Soukhanovskii; S.M. Kaye; H. Kugel; the NSTX Research Team

    2004-08-09

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  8. Kinetic effects and nonlinear heating in intense x-ray-laser-produced carbon plasmas.

    PubMed

    Sentoku, Y; Paraschiv, I; Royle, R; Mancini, R C; Johzaki, T

    2014-11-01

    The x-ray laser-matter interaction for a low-Z material, carbon, is studied with a particle-in-cell code that solves the photoionization and x-ray transport self-consistently. Photoionization is the dominant absorption mechanism and nonthermal photoelectrons are produced with energy near the x-ray photon energy. The photoelectrons ionize the target rapidly via collisional impact ionization and field ionization, producing a hot plasma column behind the laser pulse. The radial size of the heated region becomes larger than the laser spot size due to the kinetic nature of the photoelectrons. The plasma can have a temperature of more than 10 000 K (>1eV), an energy density greater than 10^{4} J/cm^{3}, an ion-ion Coulomb coupling parameter Γ≥1, and electron degeneracy Θ≥1, i.e., strongly coupled warm dense matter. By increasing the laser intensity, the plasma temperature rises nonlinearly from tens of eV to hundreds of eV, bringing it into the high energy density matter regime. The heating depth and temperature are also controllable by changing the photon energy of the incident laser light.

  9. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  10. Streaked optical pyrometer for measuring surface temperature of ion heated plasma

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; Wagner, C.; Bernstein, A.; Ditmire, T.; Hegelich, B. M.; Albright, B. J.; Fernandez, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.

    2015-11-01

    The evolution of the interface between a light and heavy material isochorically heated to warm dense matter conditions is important to the understanding of electrostatic effects on the usual hydrodynamic understanding of fluid mixing. In recent experiments at the Trident laser facility in Los Alamos National Laboratory, the target, containing a high Z and a low Z material, is heated to several eV by laser accelerated aluminum ions. We fielded a streaked optical pyrometer to measure surface temperature. The pyrometer images the back surface of a heated target on a sub-nanosecond timescale with 400nm light from the plasma. This poster presents the details of the experimental setup and pyrometer design, as well as initial results of ion heating of aluminum targets. The interface between heated diamond and gold is also observed. Work supported by NNSA cooperative agreement DE-NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  11. Local electron heating in the Io plasma torus associated with Io: the HISAKI observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Kagitani, M.; Yamazaki, A.; Kasaba, Y.; Sakanoi, T.; Yoshikawa, I.; Nozawa, H.

    2014-12-01

    Io-correlated brightness change in Io plasma torus (IPT) has been discovered by Voyager and show an evidence of local electron heating around Io. However, the amount of observation data is still limited to investigate its detail properties. In addition, the clear Io-correlated change has not been detected by EUVE and Cassini observations. Cause of the Io-correlated effect is still open issue. The HISAKI satellite was launched on Sep. 14, 2013 and started observation of IPT and Jovian aurora for more than two months since the end of Dec. 2013. EUV spectrograph onboard the HISAKI satellite covers wavelength range from 55 to 145 nm, a wide slit which had a field of view of 400 x 140 arc-second was chosen to measure radial distribution and time variation of IPT. Observation of IPT with HISAKI showed clear Io-correlated brightness change since the Voyager observation. The amplitude of the periodic variation associated with Io's orbital period was found. It also showed long-term variation during the HISAKI's observation period. Through the observation period, the amplitude was larger in the short wavelength than in long wavelength. The wavelength dependence suggests significant electron heating and/or hot electron production. The Io phase dependence shows that bright region is located just downstream of Io. These are evidence of local electron heating around/downstream of Io and consistent with the Voyager result. The brightness also depends on system-III longitude and has local maximum around 120 and 300 degrees. Based on an empirical model of IPT, electron density at Io also shows maxima around the same longitudes. This suggests that the electron heating process is related with plasma density at Io. Candidate mechanisms which are responsible for the electron heating will be discussed.

  12. Coronal Heating Driven by a Magnetic Gradient Pumping Mechanism in Solar Plasmas

    NASA Astrophysics Data System (ADS)

    Tan, Baolin

    2014-11-01

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s-1 in the chromosphere and about 130 km s-1 in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  13. Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas

    SciTech Connect

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Angioni, C.; Strintzi, D.

    2009-01-15

    Recent developments in the gyrokinetic theory have shown that, in a toroidal device, the Coriolis drift associated with the background plasma rotation significantly affects the small scale instabilities [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. The later study, which focuses on the effect of the Coriolis drift on toroidal momentum transport is extended in the present paper to heat and particle transport. It is shown numerically using the gyrokinetic flux-tube code GKW[A. G. Peeters and D. Strintzi, Phys. Plasmas 11, 3748 (2004)], and supported analytically, that the Coriolis drift and the parallel dynamics play a similar role in the coupling of density, temperature, and velocity perturbations. The effect on particle and heat fluxes increases with the toroidal rotation (directly) and with the toroidal rotation gradient (through the parallel mode structure), depends on the direction of propagation of the perturbation, increases with the impurity charge number and with the impurity mass to charge number ratio. The case of very high toroidal rotation, relevant to spherical tokamaks, is investigated by including the effect of the centrifugal force in a fluid model. The main effect of the centrifugal force is to decrease the local density gradient at the low field side midplane and to add an extra contribution to the fluxes. The conditions for which the inertial terms significantly affect the heat and particle fluxes are evidenced.

  14. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    SciTech Connect

    Tan, Baolin

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  15. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  16. An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating

    NASA Astrophysics Data System (ADS)

    Díaz, F. R. Chang

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH). Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. The physics and engineering of this device have been under study since the late 1970s. A NASA-led, research effort, involving several terms in the United States, continues to explore the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen and Deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Theoretically, the dynamics of the magnetized plasma are being studied from kinetic and fluid perspectives. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A conceptual point design for an early space demonstrator on the International Space Station has been defined

  17. Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Ding, Siye; Wan, Baonian; Wang, Lu; Ti, Ang; Zhang, Xinjun; Liu, Zixi; Qian, Jinping; Zhong, Guoqiang; Duan, Yanmin

    2014-09-01

    Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST.

  18. Microwave heating power distribution in electron-cyclotron resonance processing plasmas, experiment and theory

    SciTech Connect

    Douglass, S.R.; Eddy, C. Jr.; Lampe, M.; Joyce, G.; Slinker, S.; Weber, B.V.

    1995-12-31

    The authors are currently investigating the mechanisms of microwave power absorption in an ECR plasma. The microwave electric field is detected with an antenna at the end of a shielded co-ax cable, connected to a bolometer for power measurements. Initial measurements have been 1-D along the axis of the plasma chamber. Later, 3-D profiles will be made of the microwave heating power distribution. A comparison of the experimental results with the theoretical microwave absorption are presented. A ray tracing analysis of the propagating right hand wave are given, including both collisional and collisionless absorption. Mode conversion effects are studied to explain why most of the power is absorbed at the entry window, especially the L wave power.

  19. MW-scale ICRF plasma heating using IGBT switches in a multi-pulse scheme

    NASA Astrophysics Data System (ADS)

    Be'ery, I.; Kogan, K.; Seemann, O.

    2015-06-01

    Solid-state silicon switches are cheap and reliable option for 1-10 MHz RF power sources, required for plasma ion cyclotron RF heating (ICRF). The large `on' resistance of MOSFET and similar devices limits their power delivery to a few tens of kW per switch. Low resistivity devices, such as IGBT, suffer from large `off' switching time, which limits their useful frequency range and increases the power dissipated in the switch. Here we demonstrate more than 0.8 MW circulated RF power at 2 MHz using only three high voltage IGBT switches. The circuit uses the fast `on' switching capability of the IGBTs to generate high-Q pulse train. This operation mode also simplifies the measurement of RF coupling between the antenna and the plasma.

  20. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  1. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  2. Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature

    NASA Astrophysics Data System (ADS)

    Loewenhoff, Th.; Bardin, S.; Greuner, H.; Linke, J.; Maier, H.; Morgan, T. W.; Pintsuk, G.; Pitts, R. A.; Riccardi, B.; De Temmerman, G.

    2015-11-01

    The influence of recrystallization on thermal shock resistance has been identified as an issue that may influence the long term performance of ITER tungsten (W) divertor components. To investigate this issue a unique series of experiments has been performed on ITER divertor W monoblock mock-ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). To simulate ITER mitigated edge localised modes, heat fluxes between 0.11 and 0.6 GW m-2 were applied for Δt  <  1 ms. Two different base temperatures, Tbase  =  1200 °C and 1500 °C, were chosen on which ~18 000/100 000 transient events were superimposed representing several full ITER burning plasma discharges in terms of number of transients and particle fluence. An increase in roughening for both e-beam and plasma loaded surfaces was observed when loading during or after recrystallization and when loading at higher temperature. However, regarding the formation of cracks and microstructural modifications the response was different for e-beam and plasma loaded surfaces. The samples loaded in Magnum-PSI did not crack nor show any sign of recrystallization, even at Tbase  =  1500 °C. This could be a dynamic hydrogen flux effect, because pre-loading of samples with hydrogen neutrals (GLADIS) or without hydrogen (e-beam JUDITH 2) did not yield this result. These results show clearly that the loading method used when investigating and qualifying the thermal shock performance of materials for ITER and future fusion reactors can play an important role. This should be properly accounted for and in fact should be the subject of further R&D.

  3. Investigating the laser heating of underdense plasmas at conditions relevant to MagLIF

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, Adam

    2015-11-01

    The magnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on Sandia's Z Facility by imploding a cylindrical liner filled with D2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial field Bz = 10 T. The challenge of fuel preheating in MagLIF is to deposit several kJ's of energy into an underdense (ne/ncrit<0.1) fusion fuel over ~ 10 mm target length efficiently and without introducing contaminants that could contribute to unacceptable radiative losses during the implosion. Very little experimental work has previously been done to investigate laser heating of gas at densities, scale lengths, modest intensities (Iλ2 ~ 1014 watts- μm2 /cm2) and magnetization parameters (ωceτe ~ 10) necessary for MagLIF. In particular, magnetization of the preheated plasma suppresses electron thermal conduction, which can modify laser energy coupling. Providing an experimental dataset in this regime is essential to not only understand the dynamics of a MagLIF implosion and stagnation, but also to validate magnetized transport models and better understand the physics of laser propagation in magnetized plasmas. In this talk, we present data and analysis of several experiments conducted at OMEGA-EP and at Z to investigate laser propagation and plasma heating in underdense D2 plasmas under a range of conditions, including densities (ne = 0.05-0.1 nc) and magnetization parmaters (ωceτe ~ 0-10). The results show differences in the electron temperature of the heated plasma and the velocity of the laser burn wave with and without an applied magnetic field. We will show comparisons of these experimental results to 2D and 3D HYDRA simulations, which show that the effect of the magnetic field on the electron thermal conduction needs to be taken into account when modeling laser preheat. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration

  4. High-density plasma-arc heating studies of FePt thin films

    NASA Astrophysics Data System (ADS)

    Cole, Amanda; Thompson, Gregory B.; Harrell, J. W.; Weston, J.; Ott, Ronald

    2006-06-01

    The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1→L10 phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L10 phase.

  5. Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings.

    PubMed

    Shi, Liping; Li, Wenxue; Zhou, Hui; Ding, Liang'en; Zeng, Heping

    2013-02-15

    We demonstrate impact ionization and dissociative recombination of neon (Ne) atoms by means of seeded-electron heating and subsequent electron-atom collisions in an ultraviolet plasma grating, allowing for a substantial fraction of the neutral Ne atomic population to reside in high-lying excited states. A buffer gas with relatively low ionization potential (nitrogen or argon) was used to provide high-density seed electrons. A three-step excitation model is verified by the fluorescence emission from the impact excitation of Ne atoms.

  6. Quantum Efficiency and Topography of Heated and Plasma-Cleaned Copper Photocathode Surfaces

    SciTech Connect

    Palmer, Dennis T.; Kirby, R.E.; King, F.K.; /SLAC

    2005-08-04

    We present measurements of photoemission quantum efficiency (QE) for copper photocathodes heated and cleaned by low energy argon and hydrogen ion plasma. The QE and surface roughness parameters were measured before and after processing and surface chemical composition was tracked in-situ with x-ray photoelectron spectroscopy (XPS). Thermal annealing at 230 C was sufficient to improve the QE by 3-4 orders of magnitude, depending on the initial QE. Exposure to residual gas slowly reduced the QE but it was easily restored by argon ion cleaning for a few minutes. XPS showed that the annealing or ion bombardment removed surface water and hydrocarbons.

  7. Saturable Absorption of an X-Ray Free-Electron-Laser Heated Solid-Density Plasma

    NASA Astrophysics Data System (ADS)

    Wark, J. S.; Rackstraw, D. S.; Ciricosta, O.; Vinko, S. M.; Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Barbrel, B.; Engelhorn, K.; Cho, B.-I.; Chung, H.-K.; Dakovski, G.; Krzywinski, J.; Heimann, P.; Holmes, M.; Turner, J.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2015-11-01

    High-intensity ~1017 Wcm-2, short duration (100 fsec) x-ray pulses from the LCLS x-ray free-electron laser, with photon energies ranging from below to above the K-edge of cold Al (1560 eV), are used to generate and probe a solid-density aluminum plasma. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, with the increased transmission being due to the K-edge energy of the dominant ion species shifting in time as the solid-density target is heated, in good agreement with atomic-kinetics simulations.

  8. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  9. Simulation Studies of Plasma Heating and Nonlinear Evolutions of Electrostatic and Electromagnetic Instabilities in a Field-Aligned Counter-Streaming Plasma

    NASA Astrophysics Data System (ADS)

    Tsai, T.; Chang, C.; Lyu, L.

    2006-12-01

    Nonlinear evolutions of electrostatic (ES) and electromagnetic (EM) instabilities in a field-aligned counter- streaming plasma are studied by means of a full particle code simulation and a Vlasov simulation. Our simulation results show that field-aligned counter-streaming plasma can lead to fast growing electrostatic two- stream instability to heat electrons along the background magnetic field directions. If the background magnetic field is not strong enough, the field-aligned heating can easily make the system unstable to the electromagnetic fire-hose instability. The nonlinear kinetic Alfven waves generated by the fire-hose instability can isotropize the electron pressure and heat ions by both ion-cyclotron instability and non-adiabatic ion gyro- reflections. Additional instabilities generated by the gyro-reflecting events can heat the plasma in a very efficient way. The importance of the cross-scale coupling between the ES instabilities and the EM instabilities in the space plasmas with counter-streaming plasma flows will be discussed.

  10. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  11. Heat Transfer In Sub- And Supersonic Nonequilibrium Jets Of Carbon Dioxide Plasmas

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. F.; Gordeev, A. N.; Vasilevskii, S. A.

    2011-05-01

    Subsonic high-enthalpy carbon dioxide flows are realized by using the 100-kW high-frequency inductive plasmatron IPG-4 at the pressures 37 and 96 hPa and enthalpies 16.4 and 16.2MJ/kg. The free stream parameters of the subsonic equilibrium carbon dioxide flow are rebuilt through CFD modeling with use of the data for stagnation point heat flux to silver and stagnation pressure. At the above pressures and enthalpies the catalytic efficiencies of silica-based thermal protection tile coating and sintered SiC surface are predicted in the temperature range 1453 - 1480 K and 1426 - 1536 K correspondingly and compared with our previous data [1] (stagnation pressure 60 - 140hPa, surface temperature 1600 - 1630K) and with results of actinometry and optical emission spectroscopy techniques for O-atoms recombination on β-cristobalite [2] at pressure 2 hPa and surface temperature 1600 K. In general the pressure and temperature ranges for catalytic efficiencies for both materials are expanded and the new and previous data are found to be in good agreement. Supersonic under-expanded jets of carbon dioxide plasma are obtained by using sonic nozzles of different throat diameters (D = 30 and 16 mm). Stagnation point heat fluxes and pressures on water-cooled cylindrical 20-mm diameter model in supersonic carbon dioxide plasma flows are measured. Dependences of the stagnation point heat flux to water-cooled copper wall and stagnation pressure versus distance from exit of the sonic nozzle are obtained for different ground pressure in the test chamber. The maximum of heat flux of 840 W/cm2 and maximum stagnation pressure of 142 hPa are realized using the sonic nozzle with 16-mm throat diameter, gas mass flow rate of 4.6g/s and generator anode power of 72 kW.

  12. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    SciTech Connect

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-10-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called {open_quotes}hollow atoms{close_quotes} must be taken into account for adequate description of plasma radiation.

  13. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  14. Development of injection gas heating system for introducing large droplets to inductively coupled plasma.

    PubMed

    Kaburaki, Yuki; Nomura, Akito; Ishihara, Yukiko; Iwai, Takahiro; Miyahara, Hidekazu; Okino, Akitoshi

    2013-01-01

    We developed an injection gas heating system for introducing large droplets, because we want to effectively to measure elements in a single cell. This system was applied to ICP-atomic emission spectrometry (ICP-AES), to evaluate it performance. To evaluate the effect of the emission intensity, the emission intensity of Ca(II) increased to a maximum of tenfold at 147°C and the peak was shifted upstream of the plasma. To investigate in detail the effect of an injection gas heating system, we studied different conditions of the injection gas temperature and droplet volume. When the injection gas temperature was 89°C, smaller droplets were easily ionized. At 147°C, the emission intensity ratio and the absolute amount of the sample including the droplet exhibited close agreement. These results show the advantages of the injection gas heating system for large droplet introduction, and the sufficient reduction in the solvent load. The solvent load could be reduced by heating to 147°C using the system.

  15. Cathodic cleaning and heat input in variable polarity plasma arc welding of aluminum

    SciTech Connect

    Fuerschbach, P.W.

    1998-02-01

    For variable polarity plasma arc welding (VPPAW) of 1,100 Al, it was found that the net heat input to the aluminum workpiece did not decrease as independent changes in polarity balance enabled the tungsten electrode to become the predominant anode in the alternating current arc. For the thin sheet edge welds made in this study, the independent parameters used to vary the arc current polarity balance were very effective in delivering a wide range of actual arc power polarity balance. The ratio of electrode positive polarity arc energy to the total arc energy ranged from as little as 0.03 to as high as 0.99. Despite this pronounced difference in arc polarity, no significant variation in the average arc efficiency (net heat input/arc energy) of 0.51 was found. Substantial heating of the workpiece during electrode positive polarity was attributed to field type emission of electrons from the low boiling point aluminum cathode. Unlike thermionic emission at the tungsten, field emission electrons do not cool the cathode. While the actual arc efficiency were relatively constant, there were significant differences in the measured heat input, the weld size, and the effectiveness of the cathodic cleaning.

  16. Parametric instabilities and electron heating in ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Mora, P.; Adam, J. C.; Héron, A.; Guérin, S.; Laval, G.; Quesnel, B.

    1998-02-01

    The general dispersion relation for electron parametric instabilities of an ultra-intense circularly polarized laser wave is established for arbitrary plasma density. It corresponds to a generalization of the stimulated Raman scattering instability, the relativistic modulational instability, the relativistic filamentation instability, and the two plasmons decay instability. In the relativistic regime the generalized instability is characterized by a wide extent of the unstable region in the wave vector space, with growth rates reaching a fraction of the laser frequency, and a strong harmonic generation. One-dimensional and two-dimensional particle-in-cell simulations confirm these results. In particular a systematic study of the propagation of very intense laser pulses through slabs of plasma of several tens of microns are presented. The instability leads to a rapid longitudinal and transverse electron heating, and to filamentary structures which progressively merge in a nonlinear stage. The heating results in highly energetic electrons with energy of several tens of MeV. Correlatively, a strong attenuation rate of the electromagnetic wave is observed.

  17. Plasma Heating Inside Interplanetary Coronal Mass Ejections by Alfvénic Fluctuations Dissipation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Chi; He, Jiansen; Zhang, Lingqian; Richardson, John D.; Belcher, John W.; Tu, Cui

    2016-11-01

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  18. Filament Channels: Isolated Laboratories of Plasma Heating in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M.

    2015-12-01

    Solar filament channels are complex systems comprising photospheric, chromospheric and coronal components. These components include magnetic neutral lines, supergranule cells, fibrils (spicules), filaments (prominences when observed on the limb), coronal cells, filament cavities and their overlying coronal arcades. Filaments are very highly structured and extend in height from the photosphere to the corona. Filament cores have chromospheric temperatures - 10,000 K (even at coronal heights ~ 100 Mm), surrounded by hotter plasma with temperature up to ~50,000 K. The whole filament is isolated from the rest of the solar corona by an envelope - the filament channel cavity - with temperatures of about 2,000,000 K. The filament channel cavity is even hotter than the solar corona outside the filament channel arcade. The compactness and big temperature variations make filament channels unique ready-to-go laboratories of coronal plasma heating and thermodynamics. In this work we discuss possible sources and mechanisms of heating in the filament channel environment. In particular, we address the mechanisms of magnetic canceling and current sheet dissipation.

  19. Impurity production and plasma performance in ASDEX discharges with ohmic and auxiliary heating

    NASA Astrophysics Data System (ADS)

    Fussmann, G.; ASDEX Team; NI Team; Icrh Team; Hofmann, J.; Janeschitz, G.; Lenoci, M.; Mast, F.; McCormick, K.; Murmann, H.; Poschenrieder, W.; Roth, J.; Setzensack, C.; Staudenmaier, G.; Steuer, K.-H.; Taglauer, E.; Verbeek, H.; Wagner, F.; Becker, G.; Bosch, H. S.; Brocken, H.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Clock, E.; Gruber, O.; Haas, G.; Izvozchikov, A.; Karger, F.; Kaufmann, M.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Mertens, V.; Müller, E. R.; Neuhauser, J.; Niedermeyer, H.; Noterdaeme, J.-M.; Pietrzyk, Z. A.; Rapp, H.; Riedler, H.; Röhr, H.; Ryter, F.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F. X.; Speth, E.; Steinmetz, K.; Tsois, N.; Ugniewski, S.; Vollmer, O.; Wesner, F.; Zasche, D.

    1987-02-01

    A review is given on investigations in the ASDEX Tokamak on impurities in ohmically, NI and ICRH heated plasmas. For ohmic discharges in H 2 and D 2 it is found that iron release from the wall can be explained by sputtering due to neutral charge exchange (CX) atoms. In the case of He, however, significant contributions caused by ion sputtering are inferred. Comparing discharges with C limiters in He and D 2 suggests that in the case of hydrogen chemical processes are involved in C sputtering. By means of wall carbonization the concentrations of metal ions in the plasma could be substantially reduced. This achievement is of particular importance for NI counter-injection and ICRH, where under non-carbonized conditions severe impurity problems occur. We studied impurity confinement in the case of various heating scenarios by means of the laser injection technique. The poorest confinement is found for the L-phase of NI. Metal injection into the high confinement H-phase generally causes temporary suppression of the edge localized modes (ELM's). With respect to ICRH we conclude that enhanced wall erosion — probably due to the production of high energy ions in the boundary — together with a slightly increased impurity confinement is the dominant reason for the increase of the metallic concentrations. Impurity sputtering as an alternative strong erosion process was experimentally ruled out.

  20. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  1. Heating of ions by high frequency electromagnetic waves in magnetized plasmas

    SciTech Connect

    Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2013-07-15

    The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be

  2. Neutron emission from JET DT plasmas with RF heating on minority hydrogen

    NASA Astrophysics Data System (ADS)

    Henriksson, H.; Conroy, S.; Ericsson, G.; Gorini, G.; Hjalmarsson, A.; Källne, J.; Tardocchi, M.; EFDA-JET Workprogramme, contributors to the

    2002-07-01

    The neutron emission spectrum from d+t→α+n reactions has been measured as a means to study the plasma response to radio frequency (RF) power coupled to hydrogen and deuteron minority components (through fundamental and second harmonic, respectively) in a tritium discharge at JET. The spectrum was measured with the magnetic proton recoil spectrometer and was analysed in terms of two spectral components due to thermal (TH) and high-energy (HE) deuterons interacting with the bulk ion population of thermal tritons. The results were used to derive information on the deuteron population in terms of temperatures (TTH and THE) as well as corresponding particle and kinetic energy densities of the plasma; the bulk ion temperature (Ti = TTH) was determined both before (with Ohmic heating only) and during the RF pulse. Similar information on protons was derived from other measurements in order to estimate the different RF effects on protons and deuterons. This paper illustrates qualitatively the type of empirical ion kinetic information that can be obtained from neutron emission spectroscopy; the data serves as a basis for comparison with results of predictive and interpretative models on RF effects in plasmas.

  3. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  4. Particle Heating and Energization During Magnetic Reconnection Events in MST Plasmas

    NASA Astrophysics Data System (ADS)

    Dubois, Ami M.; Almagri, A. F.; Anderson, J. K.; den Hartog, D. J.; Forest, C.; Nornberg, M.; Sarff, J. S.

    2015-11-01

    Magnetic reconnection plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In MST reversed field pinch plasmas, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field, resulting in non-collisional ion heating. However, Thomson Scattering measures a decrease in the thermal electron temperature. Recent fast x-ray measurements show an enhancement in the high energy x-ray flux during reconnection, where the coupling between edge and core tearing modes is essential for enhanced flux. A non-Maxwellian energetic electron tail is generated during reconnection, where the power law spectral index (γ) decreases from 4.3 to 1.8 and is dependent on density, plasma current, and the reversal parameter. After the reconnection event, γ increases rapidly to 5.8, consistent with the loss of energetic electrons due to stochastic thermal transport. During the reconnection event, the change in γ is correlated with the change in magnetic energy stored in the equilibrium field, indicating that the released magnetic energy may be an energy source for electron energization. Recent experimental and computational results of energetic electron tail formation during magnetic reconnection events will be presented. This work is supported by the U.S. DOE and the NSF.

  5. High density experiments in TCV ohmically heated and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kirneva, N. A.; Behn, R.; Canal, G. P.; Coda, S.; Duval, B. P.; Goodman, T. P.; Labit, B.; Mustafin, N. A.; Karpushov, A. N.; Pochelon, A.; Porte, L.; Sauter, O.; Silva, M.; Tal, B.; Vuille, V.

    2015-02-01

    Recent experiments have been performed on the Tokamak à configuration variable (TCV) to investigate the confinement properties of high density plasmas and the mechanism behind the density limit. In a limiter configuration with plasma elongation κ =1.3-1.4 and triangularity δ =0.2- 0.3 the operational density range has been extended up to 0.65 of the Greenwald density at {{I}\\text{p}}=200  kA ({{q}95}=3.7 ) and even to the Greenwald value at low plasma current {{I}\\text{p}}=110  kA ({{q}95}=7 ). A transition from the linear to the saturated ohmic confinement regime is observed at high density ˜ 0.4{{n}\\text{GW}} . A further density increase leads to sawtooth stabilization and is accompanied by a decrease of the energy and particle confinement times. The development of the disruption at the density limit was preceded by sawtooth stabilization. It is shown that electron cyclotron heating leads to the prevention of sawtooth stabilization and then to the increase of the density limit value.

  6. Experimental study of radiation power flux on the target surface during high heat plasma irradiation

    NASA Astrophysics Data System (ADS)

    Litunovsky, V. N.; Ovchinnikov, I. B.; Titov, V. A.

    2001-03-01

    Some new data of the experimental study of visible radiation from the plasma shielding layer (SL) on the target surface during high heat plasma-material interaction are given in the report. The experiments were performed on the VIKA facility. Long pulse ( τp=0.36 ms) high power ( Pirr˜100 GW m -2 plasma streams were used for irradiation of graphite and tungsten samples. The target inclination ( α=0° normal irradiation; 45°; 70°) and magnetic field ( B=0 to 3 T) were varied in experiments. It is shown that the values of ( Δλ≈400 to 700 nm) visible radiation power flux (VRPF) on the target surface can be characterised by the level of PR˜1 GW m -2 for normal irradiation in the presence of a magnetic field B=2 to 3 T. Inclination of targets leads to the reduction of this flux in conformity with the corresponding decrease of the irradiation power. The material of the target does not influence sufficiently on the level of the incident radiation power flux in the performed experiments.

  7. Plasma column development in the CO2 laser-heated solenoid

    NASA Astrophysics Data System (ADS)

    Tighe, W.; Offenberger, A. A.; Capjack, C. E.

    1987-08-01

    Axial and radial plasma dynamics in the CO2 laser-heated solenoid have been studied experimentally and numerically. The axial behavior is found to be well described by a self-regulated bleaching wave model. The radial expansion is found to be strongly dependent on the focusing ratio of the input laser beam. With a fast focus ( f/5), the early radial expansion rate is twice that found with a slower focusing arrangement ( f/15). The faster focusing ratio also results in a significantly wider plasma column. On the other hand, no significant dependence of f/♯ on the axial propagation was found. A finite ionization time and the rapid formation of a density minimum on axis are observed and verify earlier experimental results. Detailed comparisons are made with a 2-D magnetohydrodynamic (MHD) and laser propagation code. The axial and radial plasma behavior and, in particular, the dependence of the radial behavior on the focal ratio of the laser are reasonably well supported by the simulation results. Computational results are also in good agreement with experimental measurements of temperature and density using stimulated scattering (Brillouin, Raman) and interferometry diagnostic techniques.

  8. Performance of a New Ion Source for KSTAR Tokamak Plasma Heating

    NASA Astrophysics Data System (ADS)

    Tae-Seong, Kim; Seung, Ho Jeong; Doo, Hee Chang; Kwang, Won Lee; Sang-Ryul, In

    2014-06-01

    In the experimental campaign of 2010 and 2011 on KSTAR, the NBI-1 system was equipped with one prototype ion source and operated successfully, providing a neutral beam power of 0.7-1.6 MW to the tokamak plasma. The new ion source planned for the 2012 KSTAR campaign had a much more advanced performance compared with the previous one. The target performance of the new ion source was to provide a neutral deuterium beam of 2 MW to the tokamak plasma. The ion source was newly designed, fabricated, and assembled in 2011. The new ion source was then conditioned up to 64 A/100 keV over a 2-hour beam extraction and performance tested at the NB test stand (NBTS) at the Korea Atomic Energy Research Institute (KAERI) in 2012. The measured optimum perveance at which the beam divergence is a minimum was about 2.5 μP, and the minimum beam divergent angle was under 1.0° at 60 keV. These results indicate that the 2.0 MW neutral beam power at 100 keV required for the heating of plasma in KSTAR can be delivered by the installation of the new ion source in the KSTAR NBI-1 system.

  9. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  10. Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    NASA Astrophysics Data System (ADS)

    Horacek, J.; Pitts, R. A.; Adamek, J.; Arnoux, G.; Bak, J.-G.; Brezinsek, S.; Dimitrova, M.; Goldston, R. J.; Gunn, J. P.; Havlicek, J.; Hong, S.-H.; Janky, F.; LaBombard, B.; Marsen, S.; Maddaluno, G.; Nie, L.; Pericoli, V.; Popov, Tsv; Panek, R.; Rudakov, D.; Seidl, J.; Seo, D. S.; Shimada, M.; Silva, C.; Stangeby, P. C.; Viola, B.; Vondracek, P.; Wang, H.; Xu, G. S.; Xu, Y.; Contributors, JET

    2016-07-01

    As in many of today’s tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, {{q}||} in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as {{q}||}={{q}0}\\text{exp} ~≤ft(-r/λ q\\text{omp}\\right) , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, λ q\\text{omp} . The initial choice of λ q\\text{omp} , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R=\\text{0}\\text{.4--2}\\text{.8} \\text{m}, {{B}0}=\\text{1}\\text{.2--7}\\text{.5} \\text{T}, {{I}\\text{p}}=\\text{9--2500} \\text{kA}. Measurements of λ q\\text{omp} in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar

  11. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  12. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy: Eveidence for Enhanced Osteoinductive Properties

    PubMed Central

    Rapuano, Bruce E.; Singh, Herman; Boskey, Adele L.; Doty, Stephen B.; MacDonald, Daniel E.

    2013-01-01

    It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. PMID:23494951

  13. Local electron heating in the Io plasma torus associated with Io from HISAKI satellite observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Fuminori; Kagitani, Masato; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Nozawa, Hiromasa; Kasaba, Yasumasa; Sakanoi, Takeshi; Uemizu, Kazunori; Yoshikawa, Ichiro

    2015-12-01

    Io-correlated brightness change in the Io plasma torus (IPT) was discovered by the Voyager spacecraft, showing evidence of local electron heating around Io. However, its detailed properties and the cause of electron heating are still open issues. The extreme ultraviolet spectrograph on board the HISAKI satellite continuously observed the IPT from the end of December 2013 to the middle of January 2014. The variation in the IPT brightness showed that clear periodicity associated with Io's orbital period (42 h) and that the bright region was located downstream of Io. The amplitude of the periodic variation was larger at short wavelengths than at long wavelengths. From spectral analyses, we found that Io-correlated brightening is caused by the increase in the hot electron population in the region downstream of Io. We also found that the brightness depends on the system III longitude and found primary and secondary peaks in the longitude ranges of 100-130° and 250-340°, respectively. Io's orbit crosses the center of the IPT around these longitudes. This longitude dependence suggests that the electron heating process is related to the plasma density around Io. The total radiated power from the IPT in January 2014 was estimated to be 1.4 TW in the wavelength range from 60 to 145 nm. The Io-correlated component produced 10% of this total radiated power. The interaction between Io and the IPT continuously produces a large amount of energy around Io, and 140 GW of that energy is immediately converted to hot electron production in the IPT.

  14. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  15. Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia

    2015-11-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.

  16. Effect of heat stress and drinking water salt supplements on plasma electrolytes and aldosterone concentration in broiler chickens

    NASA Astrophysics Data System (ADS)

    Deyhim, F.; Teeter, R. G.

    1995-12-01

    An experiment was conducted to evaluate the effects of supplementing drinking water with isomolar (0.067 mol/l) KCl or NaCl on mass gain, food and water consumption, rectal temperature, and plasma concentrations of aldosterone, Na+, and K+ in broiler chickens reared in thermoneutral and cycling heat stressing environments. Heat stress decreased ( P≤0.05) mass gain, food consumption, and plasma concentrations of Na+ and K+, while increases ( P≤0.05) in plasma concentrations of aldosterone, rectal temperature, and water consumption were observed. Drinking water supplemented with either KCl or NaCl increased ( P≤0.05) broiler mass gain and water consumption, but had no effect ( P>0.1) on the other variables evaluated. The results of this study indicate that broiler chickens in a heat stress environment are under osmotic stress and supplementing drinking water with 0.067 mol/1 KCl or NaCl does not lessen this stress.

  17. A Proposal for a Novel H- Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Kurennoy, S.

    2009-03-01

    A design for a novel H- ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE111 eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H- ion beam is further "self-extracted" through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H- ion current, beam emittance and duty factor of the novel source are estimated.

  18. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  19. Experimental Investigation of RF Sheath Rectification in ICRF and LH Heated Plasmas on Alcator C-Mod

    SciTech Connect

    Ochoukov, R.; Whyte, D. G.; Faust, I.; LaBombard, B.; Lipschultz, B.; Meneghini, O.; Wallace, G.; Wukitch, S.; Myra, J.

    2011-12-23

    Radio frequency (RF) rectification of the plasma sheath is being actively studied on C-Mod as a likely mechanism that leads to prohibitively high molybdenum levels in the plasma core of ion cyclotron RF (ICRF) heated discharges. We installed emissive, ion sensitive, Langmuir, and 3-D B-dot probes to quantify the plasma potentials ({Phi}{sub P}) in ICRF and lower hybrid (LH) heated discharges. Two probe sets were mounted on fixed limiter surfaces and one set of probes was mounted on a reciprocating (along the major radius) probe. Initial results showed that RF rectification is strongly dependent on the local plasma density and not on the local RF fields. The RF sheaths had a threshold-like appearance at the local density of {approx}10{sup 16} m-{sup 3}. Radial probe scans revealed that the RF sheaths peaked in the vicinity of the ICRF limiter surface, agreeing with a recent theory. The highest {Phi}{sub P}'s were observed on magnetic field lines directly mapped to the active ICRF antenna. Measurements in LH heated plasmas showed a strong {Phi}{sub P} dependence on the parallel index of refraction n{sub ||} of the launched LH waves: {Phi}{sub P} is greater at lower n{sub ||}. Little dependence was observed on the local plasma density.

  20. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  1. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  2. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of Candida albicans.

    PubMed

    Pan, Hong; Wang, Guomin; Pan, Jie; Ye, Guopin; Sun, Ke; Zhang, Jue; Wang, Jing

    2015-01-01

    Atmospheric-pressure cold plasma was applied to process the surface of heat-polymerized acrylic resin. Changes to the physical properties and early adherence of Candida albicans were investigated. Alternating current cold plasma with Ar/O2 as working gas was used. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to study the possible mechanism. Experimental results showed that after plasma treatment, the contact angle of acrylic resin significantly decreased. There were no significant differences in roughness, flexural strength and elasticity modulus, but microhardness was significant improved in the treated group. More importantly, the early adherence of Candida albicans on the surface was reduced after plasma treatment. Cold plasma seemed to be a promising and convenient strategy of preventing the early adherence of Candida albicans on acrylic resins, which would greatly benefit potential dental applications.

  3. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.

    PubMed

    Piper, P W; Ortiz-Calderon, C; Holyoak, C; Coote, P; Cole, M

    1997-03-01

    Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.

  4. Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans.

    PubMed

    Shibasaki, Manabu; Aoki, Ken; Morimoto, Keiko; Johnson, John M; Takamata, Akira

    2009-12-01

    Plasma hyperosmolality delays the response in skin blood flow to heat stress by elevating the internal temperature threshold for cutaneous vasodilation. This elevation could be because of a delayed onset of cutaneous active vasodilation and/or to persistent cutaneous active vasoconstriction. Seven healthy men were infused with either hypertonic (3% NaCl) or isotonic (0.9% NaCl) saline and passively heated by immersing their lower legs in 42 degrees C water for 60 min (room temperature, 28 degrees C; relative humidity, 40%). Skin blood flow was monitored via laser-Doppler flowmetry at sites pretreated with bretylium tosylate (BT) to block sympathetic vasoconstriction selectively and at adjacent control sites. Plasma osmolality was increased by approximately 13 mosmol/kgH(2)O following hypertonic saline infusion and was unchanged following isotonic saline infusion. The esophageal temperature (T(es)) threshold for cutaneous vasodilation at untreated sites was significantly elevated in the hyperosmotic state (37.73 +/- 0.11 degrees C) relative to the isosmotic state (36.63 +/- 0.12 degrees C, P < 0.001). A similar elevation of the T(es) threshold for cutaneous vasodilation was observed between osmotic conditions at the BT-treated sites (37.74 +/- 0.18 vs. 36.67 +/- 0.07 degrees C, P < 0.001) as well as sweating. These results suggest that the hyperosmotically induced elevation of the internal temperature threshold for cutaneous vasodilation is due primarily to an elevation in the internal temperature threshold for the onset of active vasodilation, and not to an enhancement of vasoconstrictor activity.

  5. Theoretical studies on plasma heating and confinement. Final report, May 4, 1984--May 13, 1988

    SciTech Connect

    Sudan, R.N.

    1993-01-01

    Three principal topics are covered in this final report: Stabilization of low frequency modes of an axisymmetric compact torus plasma confinement system, such as, spheromaks and FRC`S, by a population of large orbit axis encircling energetic ions. Employing an extension of the `energy principle` which utilizes a Vlasov description for the energetic `ion component, it has been demonstrated that short wavelength MHD type modes are stabilized while the long wavelength tilt and precessional modes are marginally stable. The deformation of the equilibrium configuration by the energetic ions results in the stabilization of the tilt mode for spheromaks. Formation of Ion Rings and their coalescence with spheromaks. A two dimensional electromagnetic PIC codes has been developed for the study of ion ring formation and its propagation, deformation and slowing down in a cold plasma. It has been shown that a ring moving at a speed less than the Alfven velocity can merge with a stationary spheromak. Anomalous transport from drift waves in a Tokomak. The Direct Interaction Approximation in used to obtain incremental transport coefficients for particles and heat for drift waves in a Tokomak. It is shown that the transport matrix does not obey Onsager`s principle.

  6. Petawatt laser heating of uniformly imploded plasmas and thermal neutron enhancement

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yoneyoshi; Akamatsu, Shin; Sakamoto, Wataru; Tanaka, Kazuo; Kodama, Ryosuke; Nishimura, Hiroaki; Fujita, Hisanori; Norimatsu, Takayoshi; Sunahara, Atsushi; Sentoku, Yasuhiko

    2003-10-01

    Directly illuminating the PW laser onto a CD shell target, we have enhanced thermal neutrons from 1× 10^6 to 4 × 10^6. The target used here is a CD shell sphere of 501 ±12 μ m in diameter and 6.9± 0.62 μ m in thickness with no gas filling. The green GEKKO XII laser of 2341 ± 452 J in 1.3 ns super Gaussian imploded the core up to a 100 times the solid density. The PW laser, 1 μ m wavelength of 312 ±67 J in 500 ˜ 700 fs, was focused at the cutoff density layer, which is typically 220 μ m far from the target center with an off-axial parabola of F number of 7.6. We have varied the PW laser timing from the GXII intensity peak ( t = -800 ps) through the first bounce of the centripetal shock (t = 0 ps) after the compression. At 80 ps and 180 ps, we have found two strong enhancement peaks of thermal neutrons. The streaked intensity of 2-3 keV X-ray XSS from the imploded core plasma shows similar feature as the thermal neutrons. Hot electrons were ejected into the core plasma at 10^o cone angle to the laser axis direction, much narrower than the preliminary predicted 30^o cone angle. It seems that the so narrow hot electron emission has effectively heated the core and enhanced thermal neutrons.

  7. Diagnosis of x-ray heated Mg/Fe opacity research plasmas

    SciTech Connect

    Bailey, J. E.; Rochau, G. A.; Chandler, G. A.; Nash, T. J.; Nielsen, D. S.; Lake, P. W.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Pain, J. C.; Gilleron, F.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2008-11-15

    Understanding stellar interiors, inertial confinement fusion, and Z pinches depends on opacity models for mid-Z plasmas in the 100-300 eV temperature range. These models are complex and experimental validation is crucial. In this paper we describe the diagnosis of the first experiments to measure iron plasma opacity at a temperature high enough to produce the charge states and electron configurations that exist in the solar interior. The dynamic Hohlraum x-ray source at Sandia National Laboratories' Z facility was used to both heat and backlight Mg/Fe CH tamped foils. The backlighter equivalent brightness temperature was estimated to be T{sub r}{approx}314 eV{+-}8% using time-resolved x-ray power and imaging diagnostics. This high brightness is significant because it overwhelms the sample self-emission. The sample transmission in the 7-15.5 A range was measured using two convex potassium acid phthalate crystal spectrometers that view the backlighter through the sample. The average spectral resolution over this range was estimated to be {lambda}/{delta}{lambda}{approx}700 by comparing theoretical crystal resolution calculations with measurements at 7.126, 8.340, and 12.254 A. The electron density was determined to be n{sub e}=6.9{+-}1.7x10{sup 21} cm{sup -3} using the Stark-broadened Mg He{beta}, He{gamma}, and He{delta} lines. The temperature inferred from the H-like to He-like Mg line ratios was T{sub e}=156{+-}6 eV. Comparisons with three different spectral synthesis models all have normalized {chi}{sup 2} that is close to unity, indicating quantitative consistency in the inferred plasma conditions. This supports the reliability of the results and implies the experiments are suitable for testing iron opacity models.

  8. Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas

    SciTech Connect

    Becoulet, A.; Gambier, D.J.; Samain, A. )

    1991-01-01

    The question of heating a tokamak plasma by means of electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is considered in the perspective of large rf powers and in the low collisionality regime. In such a case, the quasilinear theory (QLT) is validated by the Hamiltonian dynamics of the wave--particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows derivation of the rf diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker--Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. The Fokker--Planck equation is then given a variational form from which a solution is derived in the form of a semianalytical trial function of three parameters: the percentage of resonant particles contained in the tail, an isotropic width {Delta}{ital T}, and an anisotropic width {Delta}{ital P}. This solution is successfully tested against real experimental observations. It is shown that in the case of the JET tokamak (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that from a bounce-averaged prediction. This may actually be an advantage for machines like JET (Plasma Phys. Controlled Fusion {bold 30}, 1467 (1988)) considering the energy range required to simulate the {alpha}-particle behavior in a relevant fusion reactor.

  9. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  10. Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steels

    SciTech Connect

    Figueroa, C. A.; Alvarez, F.; Mitchell, D. R. G.; Collins, G. A.; Short, K. T.

    2006-09-15

    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI{sup 3}) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the {alpha}{sup '}-martensite is degraded to{alpha}-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of Cr{sub x}C during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 deg. ) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 {mu}m)

  11. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility.

    PubMed

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Liu, Jinsong; Yuan, Xiao; Jin, Fengtao

    2009-04-01

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH(2)OH)(4) (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code. PMID:19405658

  12. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Liu, Jinsong; Yuan, Xiao; Jin, Fengtao

    2009-04-01

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH2OH)4 (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code.

  13. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility

    SciTech Connect

    Zhao Yang; Yang Jiamin; Zhang Jiyan; Liu Jinsong; Yuan Xiao; Jin Fengtao

    2009-04-15

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH{sub 2}OH){sub 4} (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code.

  14. Plasma Sprayed Ni-Al Coatings for Safe Ending Heat Exchanger Tubes

    SciTech Connect

    Allen, M.L.; Berndt, C.C.; Otterson, D.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AlB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand.

  15. The influence of heating rate on superconducting characteristics of MgB2 obtained by spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    Aldica, G.; Burdusel, M.; Popa, S.; Enculescu, M.; Pasuk, I.; Badica, P.

    2015-12-01

    Superconducting bulks of MgB2 were obtained by the Spark Plasma Sintering (SPS) technique. Different heating rates of 20, 100, 235, 355, and 475 °C/min were used. Samples have high density, above 95%. The onset critical temperature Tc, is about 38.8 K. There is an optimum heating rate of ∼100 °C/min to maximize the critical current density Jc0, the irreversibility field Hirr, the product (Jc0 x μ0Hirr), and to partially avoid formation of undesirable flux jumps at low temperatures. Significant microstructure differences were revealed for samples processed with low and high heating rates in respect to grain boundaries.

  16. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy Promote Bone Formation and Osseointegration

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Vyas, Parth; Lane, Joseph M.; Meyers, Kathleen; Wright, Timothy

    2013-01-01

    Orthopedic and dental implants manifest increased failure rates when inserted into low density bone. We determined whether chemical pretreatments of a titanium alloy implant material stimulated new bone formation to increase osseointegration in vivo in trabecular bone using a rat model. Titanium alloy rods were untreated or pretreated with heat (600°C) or radiofrequency plasma glow discharge (RFGD). The rods were then coated with the extracellular matrix protein fibronectin (1 nM) or left uncoated and surgically implanted into the rat femoral medullary cavity. Animals were euthanized 3 or 6 weeks later, and femurs were removed for analysis. The number of trabeculae in contact with the implant surface, surface contact between trabeculae and the implant, and the length and area of bone attached to the implant were measured by histomorphometry. Implant shear strength was measured by a pull-out test. Both pretreatments and fibronectin enhanced the number of trabeculae bonding with the implant and trabeculae-to-implant surface contact, with greater effects of fibronectin observed with pretreated compared to untreated implants. RFGD pretreatment modestly increased implant shear strength, which was highly correlated (r2 = 0.87 – 0.99) with measures of trabecular bonding for untreated and RFGD-pretreated implants. In contrast, heat pretreatment increased shear strength 3 to 5-fold for both uncoated and fibronectin-coated implants at 3 and 6 weeks, suggesting a more rapid increase in implant-femur bonding compared to the other groups. In summary, our findings suggest that the heat and RFGD pretreatments can promote the osseointegration of a titanium alloy implant material. PMID:23649564

  17. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  18. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus Experiment.

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J; Paul, S F; Raman, R; Roquemore, A L; Bell, R E; Bush, C; Kaita, R

    2008-09-22

    Experiments conducted in high-performance 1.0-1.2 MA 6 MW NBI-heated H-mode plasmas with a high flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub p} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the lower single null configuration with higher-end elongation 2.2-2.4 and triangularity 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using high magnetic flux expansion and partial detachment of the outer strike point at several D{sub 2} injection rates, while good core confinement and pedestal characteristics were maintained. The partially detached divertor regime was characterized by a 30-60% increase in divertor plasma radiation, a peak heat flux reduction by up to 70%, measured in a 10 cm radial zone, a five-fold increase in divertor neutral pressure, and a significant volume recombination rate increase.

  19. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  20. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  1. In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy.

    PubMed

    Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas

    2016-04-28

    In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process. PMID:27055060

  2. Vlasov-Fokker-Planck modeling of plasma near hohlraum walls heated with nanosecond laser pulses calculated using the ray tracing equations

    NASA Astrophysics Data System (ADS)

    Joglekar, Archis; Thomas, Alec

    2013-10-01

    Here, we present 2D numerical modeling of near critical density plasma using a fully implicit Vlasov-Fokker-Planck code, IMPACTA, which includes self-consistent magnetic fields as well as anisotropic electron pressure terms in the expansion of the distribution function, as well as an implementation of the Boris CYLRAD algorithm through a ray tracing add-on package. This allows to model inverse brehmsstrahlung heating as a laser travels through a plasma by solving the ray tracing equations. Generated magnetic fields (eg. the Biermann battery effect) as well as field advection through heat fluxes from the laser heating is shown. Additionally, perturbations in the plasma density profile arise as a result of the high pressures and flows in the plasma. These perturbations in the plasma density affect the path of the laser traveling through the plasma and modify the heating profile accordingly. The interplay between these effects is discussed in this study.

  3. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-20

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He{sup ++} - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  4. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle.

    PubMed

    Gaughan, J B; Bonner, S L; Loxton, I; Mader, T L

    2013-01-01

    Sixty Angus steers (449.2±11.0 kg) with implanted body temperature (BT) transmitters were used in a 110-d study to determine the effect of chronic stress (housing, diet, and climate) on extracellular heat shock protein 70 (eHsp70) concentration in plasma. The steers were a subset of a larger study involving 164 steers. Before the start of the study (d -31), 63 steers were implanted with a BT transmitter between the internal abdominal muscle and the peritoneum at the right side flank. Steers were housed in 20 pens (10 with shade and 10 without). Within each pen, 3 steers had a transmitter, and BT was recorded at 30-min intervals throughout the study. On d 0, 30, 60, 90, and 110, steers were weighed, BCS assessed (1 to 9 scale in which 1=emaciated and 9=obese), and 10 mL of blood from the coccygeal vein was collected for determination of inducible heat shock protein 70 (Hsp70) concentration by ELISA. Climatic variables (ambient temperature, relative humidity, solar radiation, black globe temperature, and wind speed) were obtained every 30 min from an on-site weather station. The relationship between the climatic variables and Hsp70 concentration were examined. As we failed to detect an effect of shade, all data were pooled. Mean BT over the duration of the study was 39.6±0.10°C. Mean BT was lowest (38.7±0.10°C) on d 0 and highest on d 110 (40.2°C±0.10). The Hsp70 concentration was least on d 0 (2.33±0.47 ng/mL) and greatest on d 30 (8.08±0.78 ng/mL). The Hsp70 concentration decreased from d 30 but remained above the d-0 concentrations on d 60, 90, and 110. There was a strong relationship between Hsp70 concentration and ambient temperature (r2=0.86; P<0.0001) and Hsp70 concentration and photoperiod (r2=0.94; P<0.0001) and no relationship with BT (r2=0.06; P<0.0001). When assessed with both BCS and BT, the relationship was moderate (r2=0.48; P<0.001). The relationship between Hsp70 and change in BT (BTΔ) above 38.6°C was also moderate (r2=0.54; P<0

  5. Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations

    SciTech Connect

    Wingen, A.; Schmitz, O.; Evans, T. E.; Spatschek, K. H.

    2014-01-15

    The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts. This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show different drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q{sub 95}. This analysis provides evidence for the dominate effect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line, while low-energy ions can travel into the striated magnetic topology.

  6. Simulation experiment of interaction of plasma facing materials and transient heat loads in ITER divertor by use of magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Nakatsuka, M.; Ando, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    Interaction of plasma facing materials and transient head loads such as type I ELMs is one of the critical issues in ITER divertor. The heat load to the ITER divertor during type I ELMs is estimated to be 0.5-3 MJ/m^2 with a pulse length of 0.1-0.5 ms. We have developed a magnetized coaxial plasma gun (MCPG) for the simulation experiment of transient heat load during type I ELMs in ITER divertor. The MCPG has inner and outer electrodes made of stainless steel 304. In addition, the inner electrode is covered with molybdenum so as to suppress the release of impurities from the electrode during the discharge. The diameters of inner and outer electrodes are 0.06 m and 0.14 m, respectively. The power supply for the MCPG is a capacitor bank (7 kV, 1 mF, 25 kJ). The plasma velocity estimated by the time of flight measurement of the magnetic fields was about 50 km/s, corresponding to the ion energy of 15 eV (H) or 30 eV (D). The absorbed energy density of the plasma stream was measured a calorimeter made of graphite. It was found that the absorbed energy density was 0.9 MJ/m^2 with a pulse width of 0.5 ms at the distance of 100 mm from the inner electrode. In the conference, experimental results of plasma exposure on the plasma facing materials in ITER divertor will be shown.

  7. Effect of deuteron temperature on iron forbidden line intensities in rf-heated tokamak plasmas

    SciTech Connect

    Sato, K.; Suckewer, S.; Wouters, A.

    1987-05-01

    Two line ratios, the forbidden line at 845.5 A (2s/sup 2/2p /sup 2/P/sub 1/2/ - 2s/sup 2/2p /sup 2/P/sub 3/2/) to the allowed line at 135.7 A (2s/sup 2/2p /sup 2/P/sub 1/2/ - 2s2p/sup 2/ /sup 2/D/sub 3/2/) in Fe XXII and the forbidden line at 592.1 A (2s/sup 2/2p/sup 4/ /sup 3/P/sub 2/ - 2s/sup 2/2p/sup 4/ /sup 1/D/sub 2/) to the forbidden line at 1118.2 A (2s/sup 2/2p/sup 4/ /sup 3/P/sub 2/ - 2s/sup 2/2p/sup 4/ /sup 3/P/sub 1/) in Fe XIX, have been measured as the ion temperature-sensitive line ratios during rf heating in the Princeton Large Torus. The results indicate that deuteron collisions in plasmas of high deuteron temperature have a noticeable effect on the intensity of the forbidden lines. Measured relative intensities are compared with values from level population calculations, which include deuteron collisional excitation between the levels of the ground configuration. The agreement between the observed and calculated ratios is within 30%. A method for deuteron (or proton) temperature measurement in tokamak plasmas is discussed. 37 refs.

  8. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    SciTech Connect

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with

  9. Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: Simulation and proposed experiment

    SciTech Connect

    Cameron, S.M.; Camacho, J.F.

    1995-12-01

    The authors propose an experiment in which the collective Thomson scattering lineshape obtained from ion acoustic waves is used to infer the spatial structure of local heat transport parameters and collisionality in a laser-produced plasma. The peak-height asymmetry in the ion acoustic wave spectrum will be used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift velocity. This drift arises from temperature gradients in the plasma. The local heat flux, which is proportional to the drift, can then be estimated, and the electron thermal conductivity will be inferred from the relationship between the calculated heat flux and the experimentally determined temperature gradient. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity, and its visibility is a direct measure of the ion-ion mean free path. The authors also propose to measure thermal transport parameters under dynamic conditions in which the plasma is heated impulsively by a laser beam on a fast ({approximately}50 ps) time scale. This technique will enable the authors to study heat transport in the presence of the large temperature gradients that are generated by this local heating mechanism. Deviations of the inferred local thermal conductivity from its Spitzer-Haerm value can be used to study the transition to the nonlocal heat transport regime. The authors have constructed a simple numerical model of this proposed experiment and present the results of a simulation. 41 refs., 9 figs.

  10. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  11. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  12. The heating and acceleration actions of the solar plasma wave by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    solar plasma will left-right separate by Lorentz force and by the feedback mechanism of Lorentz force the positive - negative charge will left-right vibrate. The plasma on the move will accompany with up-down and left-right vibrating and become the wave. Though the frequent of the plasma wave is not high, but its heating and acceleration actions will be not less then that of the microwave and laser because of its mass and energy far large then that of the microwave and laser.

  13. The Impact of Nonequilibrium Ionization on SDO/AIA and Hinode/EIS Observations of Impulsively Heated Plasmas

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Bradshaw, Stephen J.

    2011-01-01

    Most plasma diagnostics assume the emitting material is in a state of ionization equilibrium. For example, the AIA temperature response functions have been derived on this basis. The assumption is reasonable whenever the plasma is evolving slowly or is very dense, but these are not the conditions that apply during impulsive heating events. It is now widely believed that many coronal loops are bundles of unresolved strands that are heated quasi-randomly by nanoflares. Full blown flares are thought to have similar sub-structure. We have studied the importance of nonequilibrium effects in these circumstances by modeling nanoflare-heated loops and simulating their observation by AIA and the EIS spectrometer on Hinode. We find that the intensities of hot emission lines can be highly suppressed and that the net emission from the loop tends to be dominated by strands that have entered a slow cooling phase, well after the impulsive energy release has ended. The hottest strands are relatively invisible, both because they are tenuous and because they cool rapidly by thermal conduction. Thus, AIA channels that are normally thought of as being sensitive to hot plasma, such 131 and 94, are in fact frequently not able to detect the hot plasma that is present. The magnitude of the effect is case dependent. Great care must be exercised when using the standard temperature response functions in situations where nonequilibrium ionization is likely to be important.

  14. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    SciTech Connect

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.; Pacher, H.D.; Smid, I.

    1995-12-31

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.

  15. High βp plasma formation using off-axis ECCD in Ohmic heated plasma in the spherical tokamak QUEST

    NASA Astrophysics Data System (ADS)

    Mishra, Kishore; Zushi, H.; Idei, H.; Hasegawa, M.; Hanada, K.

    2015-03-01

    High poloidal beta (ɛβp ~ 1) operation in steady state condition in tokamaks is of great interest and has previously been demonstrated using NBI, LHCD and low current (Ip) plasma for a short time (<0.5 s). A very few experiments however, have been performed towards the investigation of highest obtainable βp in tokamak plasma. In this work we report the first result of high βp production and its sustainment though an off axis ECCD at two different frequencies (fundamental and second harmonic) in Ohmic (OH) target plasma. With application of ECCD, plasma βp increased to encounter an equilibrium limit and the standard limiter configuration is transformed to an Inboard Poloidal field Null (IPN) configuration. Both off-axis and on-axis ECCD is studied and found to have some distinctive features, which are discussed in this paper.

  16. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGESBeta

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  17. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  18. X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating

    NASA Astrophysics Data System (ADS)

    Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; Rosmej, F.; Silvert, V.; Soullié, G.; Villette, B.

    2015-12-01

    X-ray transmission spectra of copper, nickel and aluminum laser produced plasmas were measured at the LULI2000 laser facility with an improved target design of indirect heating. Measurements were performed in plasmas close to local thermodynamic equilibrium at temperatures around 25 eV and densities between 10-3g/cm3 and 10-2 g/cm3. This improved design provides several advantages, which are discussed in this paper. The sample is a thin foil of mid-Z material inserted between two gold cavities heated by two 300J, 2ω, nanosecond laser beams. A third laser beam irradiates a gold foil to create a spectrally continuous X-ray source (backlight) used to probe the sample. We investigate 2p-3d absorption structures in Ni and Cu plasmas as well as 1s-2p transitions in an additional Al plasma layer to infer the in-situ plasma temperature. Geometric and hydrodynamic calculations indicate that the improved geometry reduces spatial gradients during the transmission measurements. Experimental absorption spectra are in good agreement with calculations from the hybrid atomic physics code SCO-RCG.

  19. Self-induced transparency scenario revisited via beat-wave heating induced by Doppler shift in overdense plasma layer

    SciTech Connect

    Ghizzo, A.; Del Sarto, D.; Reveille, T.; Besse, N.; Klein, R.

    2007-06-15

    Maxwell-fluid simulations on a flat-topped moderately overdense plasma slab (typically n{sub 0}/n{sub c}=1-2) by Berezhiani et al. [Phys. Plasmas 66, 062308 (2005)] (see also the previous work of Tushentsov et al. [Phys. Rev. Lett. 87, 275002 (2001)]) were seen to lead to dynamic penetration of an ultrahigh intensity laser pulse into an overdense plasma. Two qualitatively different scenarios for the penetration of laser pulse into the overdense plasma were presented depending on the background density. In the first one, the penetration of laser energy occurs by soliton-like structures moving into the plasma. In the last one, electron cavitation occurs and the penetration is possible over a finite length only. A kinetic extension is made in this paper using Vlasov-Maxwell simulations. Vlasov simulations revealed a rich variety of new phenomena associated with the trapped particle dynamics, which cannot be described in fluid models. Most notably is the observation, during the penetration phase of the pump electromagnetic wave, of a beat-wave heating scenario induced by the Doppler shift on the reflected wave at the (moving) wave front. This beat-wave generates low-frequency acoustic-like electron modes characterized by coherent trapping-type structures in phase space leading to an efficient (nonstochastic) heating process.

  20. Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux

    SciTech Connect

    Guo Zehua; Tang Xianzhu

    2012-06-15

    In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.

  1. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  2. Extending the collisional fluid equations into the long mean-free-path regime in toroidal plasmas. III. Parallel heat conduction

    SciTech Connect

    Shaing, K. C.

    2006-09-15

    It is illustrated that plasma transport processes in the direction of the magnetic field are local in the vicinity of the magnetic island in the long mean-free-path regime where the collisionality parameter {nu}{sub *} is larger than 10{sup -2}, and the width of the island is about 3% of the minor radius or smaller. This is because the plasma temperature variation on the magnetic surface that results from the magnetic reconnection is gentle. Both the electron and the ion parallel transport fluxes including parallel heat flow in the banana regime where {nu}{sub *}<1 are calculated using a model Coulomb collision operator that conserves momentum.

  3. Parameter Study of Plasma-Induced Atmospheric Sputtering and Heating at Mars

    NASA Astrophysics Data System (ADS)

    Williamson, Hayley N.; Johnson, Robert E.; Leblanc, Francois

    2014-11-01

    Atoms and molecules in Mars’ upper atmosphere are lost predominately through sputtering, caused by the impact of ions into the exosphere, dissociative recombination, and thermal escape. While all three processes are thought to occur on Mars, a detailed understanding must ascertain the relative importance of each process, due to time variations in pick-up and solar wind ions. In this project, using case studies of an oxygen atmosphere modeled with Direct Simulation Monte Carlo techniques, we have endeavored to categorize when the momentum transfer or thermal escape is more likely to occur. To do this, we vary the incident plasma flux and energy based on models of the interaction of the solar wind with the Martian atmosphere. We first repeat the heating and sputtering rates due to a flux of pick-up O+ examined previously (Johnson et al. 2000; Michael and Johnson 2005; Johnson et al 2013). We have used multiple examples of particle fluxes for various solar wind conditions, from steady solar wind conditions (Luhmann et al. 1992; Chaufray et al. 2007) to more extreme cases (Fang et al. 2013; Wang et al. 2014), which are thought to increase escape by several orders of magnitude. The goal is to explore the escape parameter space in preparation for the expected data from MAVEN on hot atoms and molecules in the Martian exosphere.

  4. Anisotropic electron-distribution function in inverse-bremsstrahlung-heated plasmas.

    PubMed

    Bendib, A; Bendib-Kalache, K; Cros, B; Maynard, G

    2016-04-01

    The electron-distribution function in homogeneous plasmas heated by a high-frequency laser field is calculated in velocity space from the Vlasov-Landau equation. The kinetic model is valid for moderate laser intensity defined by the relevant parameter α=v_{0}^{2}/v_{t}^{2}<0.5 where v_{0} and v_{t} are the peak velocity of oscillation in the high-frequency electric field and the thermal velocity, respectively. The results obtained constitute an improvement of the results reported in the literature devoted to weak electric field intensities. The electron-distribution function is calculated solving the kinetic equation with the use of the Legendre polynomial expansion within the laser field dipole approximation. It results in an infinite set of equations for the isotropic component f_{0}(v) and the anisotropic components f_{n≥1}(v) that we have solved numerically with appropriate truncation. For the second anisotropy f_{2}(v), we found that its maximum increases from the weak electric field intensity (α<0.01) to a moderate one (α=0.5) by a factor f_{2max}(α=0.5)/f_{2max}(α=0.01)≈48. Applications to the radiation pressure, electromagnetic instabilities, and photoabsorption are also considered.

  5. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  6. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  7. Using xRage to Model Heat Flow for Experiments to Measure Opacities in HED Plasmas

    NASA Astrophysics Data System (ADS)

    Elgin, L.; Vandervort, R.; Keiter, P.; Drake, R. P.; Mussack, K.; Orban, C.

    2015-11-01

    We are developing a NIF proposal to measure opacities of C, N and O at temperatures and densities relevant to the base of the solar convection zone. Our proposed experiments would provide the first opacity measurements for these elements within this HED regime. A critical feature of our experimental platform is a super-sonic radiation front propagating within the targets. Under these conditions, density remains constant across the radiation front for a couple nanoseconds, enabling a window during which the opacities of the hot and cold target may be measured simultaneously. Afterwards, hydrodynamic effects create temperature and density gradients, which would obfuscate analysis of opacity data. We are using xRage to simulate heat flow within our targets in order to estimate the time scale over which temperature and density gradients evolve. These simulations will better inform our target design and diagnostic requirements. If successful, our experiments could yield the data necessary to validate existing opacity models or provide physical insights to inform the development of new opacity models. Accurate opacity models are essential to the understanding of radiation transport within HED systems, with applications ranging from astrophysics to ICF. U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant #DE-NA0001840. Los Alamos National Laboratory, LA-UR-15-25490.

  8. Anisotropic electron-distribution function in inverse-bremsstrahlung-heated plasmas.

    PubMed

    Bendib, A; Bendib-Kalache, K; Cros, B; Maynard, G

    2016-04-01

    The electron-distribution function in homogeneous plasmas heated by a high-frequency laser field is calculated in velocity space from the Vlasov-Landau equation. The kinetic model is valid for moderate laser intensity defined by the relevant parameter α=v_{0}^{2}/v_{t}^{2}<0.5 where v_{0} and v_{t} are the peak velocity of oscillation in the high-frequency electric field and the thermal velocity, respectively. The results obtained constitute an improvement of the results reported in the literature devoted to weak electric field intensities. The electron-distribution function is calculated solving the kinetic equation with the use of the Legendre polynomial expansion within the laser field dipole approximation. It results in an infinite set of equations for the isotropic component f_{0}(v) and the anisotropic components f_{n≥1}(v) that we have solved numerically with appropriate truncation. For the second anisotropy f_{2}(v), we found that its maximum increases from the weak electric field intensity (α<0.01) to a moderate one (α=0.5) by a factor f_{2max}(α=0.5)/f_{2max}(α=0.01)≈48. Applications to the radiation pressure, electromagnetic instabilities, and photoabsorption are also considered. PMID:27176419

  9. Simulation of tungsten plasma transport along magnetic field under ELM-like heat loads

    NASA Astrophysics Data System (ADS)

    Pestchanyi, S.; Arkhipov, N.; Landman, I.; Poznyak, I.; Safronov, V.; Toporkov, D.

    2013-07-01

    Tungsten plasma transport along the magnetic field calculated with the TOKES code has been validated using dedicated experiment in a plasma gun under the ELM-like conditions. The plasma velocity is in a good agreement with the measured one. The ion composition of the simulated tungsten plasma is in a qualitative agreement with the one reconstructed from the measured spectrum of the tungsten plasma, probably because of rather incomplete database for tungsten ions radiation. Nevertheless, it has been identified the radiation from cold and hot tungsten plasma regions with ion composition maxima at W7+-W8+ and W13+-W16+ correspondingly.

  10. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    SciTech Connect

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories.

  11. A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour

    SciTech Connect

    Kazakov, Ye. O.; Ongena, J.; Van Eester, D.; Lerche, E.; Messiaen, A.; Dumont, R.; Mantsinen, M.

    2015-08-15

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radio frequency (RF) heating of {sup 3}He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra {sup 3}He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  12. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  13. Effect of heat flux on Alfvén ballooning modes in isotropic Hall-MHD plasmas

    NASA Astrophysics Data System (ADS)

    Ma, John Z. G.; Hirose, Akira; Liu, William W.

    2014-12-01

    The magnetosphere undergoes a transition from a dipole-like to taillike structure in the antisunward direction. In this region, Alfvén ballooning instability has been considered as a leading candidate to be responsible for the onset and expansion phase of observed impulsive substorms. We apply the generalized Ohm's law in isotropic Hall-MHD equations and study the effect of heat flux on the ballooning modes under substorm circumstances. The set of partial differential equations is obtained for a general ballooning dispersion relation from which all classical Alfvén waves and fundamental ballooning modes are recovered, e.g., the decoupled shear Alfvén and magnetosonic modes, the classical ballooning instability in incompressible plasmas. In the absence of the heat flux, the ballooning mode is featured by the coupling of the two modes by the superposition of the independent Hall effect and the independent plasma inhomogeneity effect. By contrast, heat flux exerts its influence on the ballooning mode by updating the coefficients of the terms in the dispersion relation. The results expose that the growth rate (γBM) has two branches. If kp is β free, one branch shifts versus β, while the other branch is damped substantially by the heat flux, leading to a more stable ballooning mode; if kc is β free, one branch shifts little versus β, but the other one has higher γBM driven by the heat flux, leading to a more unstable ballooning mode.

  14. Microstructural study of as sprayed and heat treated Ni3Al coatings deposited by air plasma spraying technique

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Rauf, M. M.

    2016-08-01

    Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After plasma spraying the coatings were heat treated at different temperatures i.e. 500 °C to 800 °C for 10 to 100 hours. The characterization tools such as, X-Ray diffraction analysis, optical and scanning electron microscopy were used. By comparing the XRD scan data of as sprayed and heat treated coating, it was observed that the formation of NiO increases drastically with time and temperature. Due to the formation of NiO, hardness was also enhanced. The oxidation behavior was observed by using optical microscope and when it was studied that the oxidation was increasing with time and temperature. Further, the SEM tool was utilized to study the detail microstructural behavior such as shrinkage cavity and oxide particles. The other phases like alumina and spinel phases were determined by using Energy dispersive spectrometer method.

  15. On the effect of BUM generation enhancement revealed using the scheme of additional heating of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Erukhimov, L. M.; Komrakov, G. P.; Sergeev, E. N.; Thidé, B.; Bernhardt, P. A.; Wagner, L. S.; Goldstein, J. A.; Selcher, G.

    1997-05-01

    We present measured characteristics of the artificial ionospheric radio emission (AIRE), which were obtained experimentally using additional heating of the ionospheric F-region by O-polarized waves. It is shown that the observed enhancement of intensity of the broad upshifted maximum (BUM) of the AIRE can result from the influence of electrons accelerated in the plasma: esonance region on its generation. An empirical model of the phenomenon observed is developed. It is concluded from experimental results that the BUM has a complex structure and only one of its components produces the above emission enhancement. We show the possibility of using the AIRE in additional heating of ionospheric plasma for diagnostics of artificial ionospheric turbulence and investigation of the features of perturbation propagation along the geomagnetic field lines.

  16. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    SciTech Connect

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-12-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an "X-point" reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic.

  17. Stability and variations of plasma parameters in the L-2M stellarator during excitation of the induction current in the regime of ECR plasma heating

    SciTech Connect

    Akulina, D. K.; Batanov, G. M.; Berezhetskii, M. S.; Vasil'kov, D. G.; Vafin, I. Yu.; Voronov, G. S.; Voronova, E. V.; Gladkov, G. A.; Grebenshchikov, S. E.; Grishina, I. A.; Knyazev, A. V.; Kovrizhnykh, L. M.; Kolik, L. V.; Kuznetsov, A. B.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Malykh, N. I.; Meshcheryakov, A. I.; Nechaev, Yu. I.

    2008-12-15

    Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of {approx}200 kW ({approx}1 MW m{sup -3}) and an average plasma density of (1-2) x 10{sup 19} m{sup -3}. The current direction was chosen to reduce the net rotational transform (the so-called 'negative' current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a {<=} 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the

  18. Construction of a 100kW Electron Cyclotron Resonant Heating (ECRH) system on the Madison Plasma Dynamo Experiment (MPDX)

    NASA Astrophysics Data System (ADS)

    Clark, M. M.; Milhone, J.; Nonn, P.; Wallace, J. P.; Forest, C. B.; WiPAL Team

    2015-11-01

    A system of five 20 kW magnetrons is being installed for the Madison Plasma Dynamo Experiment (MPDX) to produce and heat the plasma with RF energy. Each magnetron will receive 2.5A of 14kV DC power. The source of the DC power is from a 240V three phase line which is transformed to high voltage, rectified, and processed through a series modulator regulator circuit. The RF is transmitted to the vessel via WR284 waveguide. The actions taken to develop the DC power source will be discussed and illustrated. The vessel of MPDX is a 3 meter diameter sphere comprised of two nearly identical hemispherical shells of 1.25'' thick cast aluminum. 36 Rings of SmCo magnets attached to the inner vessel surface create a cusp field to contain the plasma and provide a resonance surface for the RF.

  19. The first experimental campaign on the Laser Megajoule Facility: characterization of plasma transparency in radiatively-heated slots

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Dulieu, Andre; Courtois, Cedric; Casner, Alexis; Rosch, Rudolf; Caillaud, Tony; Trosseille, Clement; Henry, Olivier; Seguineau, Frederic; Durut, Frederic

    2015-11-01

    The Laser Megajoule Facility has been commissioned in October 2014 with performing the first experimental campaign. The goal of this first experimental campaign was to study the evolution of the plasma transparency in slots machined within radiatively-heated samples. The plasma was produced using a radiation hohlraum drive. The evolution of the plasma transparency was radiographed with a 2D time-resolved imager consisting in grazing incidence X-ray microscopes and pinholes coupled to an X-ray framing camera. We have conducted a series of experiments to study the effect of the slot width, the material thickness and the material nature (either tantalum-oxide aerogel or gold). Experimental results will be compared with 2D and 3D radiation hydrodynamics codes.

  20. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  1. Towards including finite orbit effects in self-consistent calculations of ion cyclotron heating in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Berry, L. A.; Jaeger, E. F.; Choi, M.

    2008-11-01

    In burning plasma experiments, the combination of neutral beam injection, high power electromagnetic heating and fusion products give rise to significant non-thermal ion populations. The resulting non-Maxwellian plasma affects ICRF wave propagation and heating. Self-consistent simulation of these effects has been achieved by an iterative coupling of a full-wave electromagnetic solver with a bounce-averaged Fokker-Planck (F-P) code under the zero banana width approximation. Investigating the effects of finite width particle orbits is possible by iterating with a Monte-Carlo calculation of the ion distribution function in place of the F-P code. Here we present progress towards coupling the all-orders global wave solver AORSA with the ORBIT-RF Monte-Carlo code. ORBIT-RF solves the Hamiltonian guiding center equations under coulomb collisions and ICRF quasi-linear (QL) heating taking the QL diffusion coefficients calculated from the AORSA wave fields as inputs. However, completing the self-consistent, time dependent calculation requires adapting the resulting Monte-Carlo particle list to a distribution function suitable for input to AORSA. Issues associated with calculating the differentiable bounce-averaged distribution function from discrete particle data will be discussed. E. F. Jaeger, et al., Phys. of Plasmas, 13, 056101-1, 2006

  2. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    SciTech Connect

    Conn, R.W.

    1986-10-01

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6.

  3. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited).

    PubMed

    Mascali, D; Gammino, S; Celona, L; Ciavola, G

    2012-02-01

    Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collective to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.

  4. Heat flux and plasma flow in the scrape off layer on the spherical tokamak QUEST with inboard poloidal field null configuration

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Zushi, Hideki; Mishra, Kishore; Hanada, Kazuaki; Idei, Hiroshi; Nakamura, Kazuo; Fujisawa, Akihide; Nagashima, Yoshihiko; Hasegawa, Makoto; Kuzmin, Arseny; Nagaoka, Kenichi; QUEST Team

    2014-10-01

    Heat flux and plasma flow in the scrape off layer (SOL) are examined in the inboard poloidal null (IPN) configuration on the spherical tokamak (ST) QUEST. In the ST, trapped energetic electrons on the low field side are widely excursed from the last closed flux surface to SOL so that significant heat loss occurs. Interestingly, plasma flows in the core and the SOL are also observed in IPN though no inductive force like ohmic heating is applied. High heat flux (>1 MW/m2) and sonic flow (M > 1) in far-SOL arise in current ramp-up phase. In quasi-steady state, sawtooth-like oscillation of plasma current with 20 Hz has been observed. Heat flux and subsonic plasma flow in far-SOL are well correlated to plasma current oscillation. The toroidal Mach number largely increases from Mφ ~ 0.1 to ~ 0.5 and drops although the amplitude of plasma current is about 10% of that. Note that such flow modification occurs before plasma current crash, there may be some possibility that phenomena in the SOL or the edge trigger reactions in the core plasma. This work is supported by Grants-in-aid for Scientific Research (S24226020), NIFS Collaboration Research Program (NIFS12KUTR081), and the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University.

  5. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. PMID:26302662

  6. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  7. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect

    Shurygin, R. V. Morozov, D. Kh.

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of

  8. An alternative estimation of the RF-enhanced plasma temperature during SPEAR artificial heating experiments: Early results

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Baddeley, L.

    2011-11-01

    RF heating of the F region plasma at high latitudes has long been known to produce electron temperature increases that can vary from tens to hundreds of percent above the background, unperturbed level. In contrast, artificial ionospheric modification experiments conducted using the Space Plasma Exploration by Active Radar (SPEAR) heating facility on Svalbard have often failed to produce obvious enhancements in the electron temperatures when measured using the European Incoherent Scatter Svalbard radar (ESR), colocated with the heater. Contamination of the ESR ion line spectra by the zero-frequency purely growing mode (PGM) feature is known to persist at varying amplitudes throughout SPEAR heating, and such spectral features can lead to significant temperature underestimations when the incoherent scatter spectra are analyzed using conventional methods. In this study, we present the first results of applying a recently developed technique to correct the PGM-contaminated spectra to SPEAR-enhanced ESR spectra and derive an alternative estimate of the SPEAR-heated electron temperature. We discuss how the effectiveness of the spectrum corrections can be affected by the data variance, estimated over the integration period. The subsequent electron temperatures, inferred from corrected spectra, range from a few tens to a few hundred Kelvin above the average background temperature. These temperatures are found to be in reasonable agreement with the theoretical “enhanced” temperature, calculated for the peak of the stationary temperature perturbation profile, when realistic absorption effects are accounted for.

  9. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  10. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.

    PubMed

    MacDonald, Daniel E; Rapuano, Bruce E; Schniepp, Hannes C

    2011-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy's surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy's surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography.

  11. Hepatic heat shock protein 70 and plasma cortisol levels in rainbow trout after tagging with a passive integrated transponder

    USGS Publications Warehouse

    Feldhaus, J.W.; Heppell, S.A.; Mesa, M.G.; Li, H.

    2008-01-01

    This study examined the potentially stressful effects of tagging juvenile rainbow trout Oncorhynchus mykiss with passive integrated transponder (PIT) tags by measuring short-term (<120-h) changes in plasma concentrations of cortisol and hepatic heat shock protein 70 (hsp70). In a laboratory experiment, plasma cortisol levels were measured in fish before they were tagged (0 h) and at 2, 6, 24, and 120 h after being tagged. Hepatic hsp70 levels were measured at 0, 24, and 120 h. All results were compared with those for fish that were handled but not tagged. Plasma cortisol levels were significantly higher in both treatment groups (tagged and handled but not tagged) at 2 h than in the pretreatment groups (0 h). Plasma cortisol levels in the treatment groups returned to near pretreatment levels by 6 h. However, there was a significant difference in plasma cortisol levels between treatment groups at 6 h. There were no significant differences in hepatic hsp70 levels among the two treatment groups, and hepatic hsp70 levels did not change through time. Our results suggest that PIT tagging is a low-impact tagging procedure for juvenile salmonids. ?? Copyright by the American Fisheries Society 2008.

  12. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    SciTech Connect

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  13. Self-shielding of a plasma-exposed surface during extreme transient heat loads

    SciTech Connect

    Zielinski, J. J.; Meiden, H. J. van der; Morgan, T. W.; Hoen, M. H. J. 't; De Temmerman, G.; Schram, D. C.

    2014-03-24

    The power deposition on a tungsten surface exposed to combined pulsed/continuous high power plasma is studied. A study of the correlation between the plasma parameters and the power deposition on the surface demonstrates the effect of particle recycling in the strongly coupled regime. Upon increasing the input power to the plasma source, the energy density to the target first increases then decreases. We suggest that the sudden outgassing of hydrogen particles from the target and their subsequent ionization causes this. This back-flow of neutrals impedes the power transfer to the target, providing a shielding of the metal surface from the intense plasma flux.

  14. Antenna-plasma coupling theory for ICRF heating of large tokamaks

    SciTech Connect

    Ram, A.; Bers, A.

    1982-03-01

    The coupling characteristics of antenna structure are studied by analyzing a model where a thin current sheet is placed between a fully conducting wall and a sheet of anisotropic conductivity representing the screen. The inhomogeneous plasma in the shadow of the limiter is assumed to extend from the screen onwards away from the antenna. The excitation of the fields inside the plasma are found by analyzing the radiation properties of this current sheet antenna. We assume that the current distribution of the antenna is given and that the fields excited inside the plasma are absorbed in a single pass. In all experiments to-date the cross-sectional plasmas are relatively small so that the rf conductor is a half-loop around the plasma in the poloidal direction. However, for reactor size plasmas this cannot be done and the antenna dimensions will be small compared to the plasma cross-sections. We, thus, assume an antenna of finite poloidal and toroidal extent with dimensions small compared to the plasma minor radius. We further approximate the coupling geometry by a slab model. The x-axis is taken to be along the plasma inhomogeneity, the y-axis along the poloidal direction and the x-axis along the toroidal magnetic field.

  15. The effect of heat- or ultra violet ozone-treatment of titanium on complement deposition from human blood plasma.

    PubMed

    Linderbäck, Paula; Harmankaya, Necati; Askendal, Agneta; Areva, Sami; Lausmaa, Jukka; Tengvall, Pentti

    2010-06-01

    Titanium (Ti) is a well known metallic biomaterial extensively used in dental, orthopaedic-, and occasionally also in blood contacting applications. It integrates well to bone and soft tissues, and is shown upon blood plasma contact to activate the intrinsic pathway of coagulation and bind complement factor 3b. The material properties depend largely on those of the nm-thick dense layer of TiO(2) that becomes rapidly formed upon contact with air and water. The spontaneously formed amorphous Ti-oxide has a pzc approximately 5-6 and its water solubility is at the order of 1-2 micromolar. It is often subjected to chemical- and heat treatments in order to increase the anatase- and rutile crystallinity, to modify the surface topography and to decrease the water solubility. In this work, we prepared sol-gel derived titanium and smooth PVD titanium surfaces, and analysed their oxide and protein deposition properties in human blood plasma before and after annealing at 100-500 degrees C or upon UVO-treatment for up to 96 hours. The blood plasma results show that complement deposition vanished irreversibly after heat treatment at 250-300 degrees C for 30 minutes or after UVO exposure for 24 hours or longer. XPS and infrared spectroscopy indicated change of surface water/hydroxyl binding upon the heat- and UVO treatments, and increased Ti oxidation. XRD analysis confirmed an increased crystallinity and both control (untreated) and annealed smooth titanium displayed low XRD-signals indicating some nanocrystallinity, with predominantly anatase phase. The current results show that the behaviour of titanium dioxide in blood contact can be controlled through relatively simple means, such as mild heating and illumination in UV-light, which both likely irreversibly change the stoichiometry and structure of the outmost layers of titanium dioxide and its OH/H(2)O binding characteristics.

  16. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  17. Ion cyclotron range of frequencies heating of plasma with small impurity production

    DOEpatents

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  18. Plasma Heating in Solar Flares and their Soft and Hard X-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  19. Plasma heating in solar flares and their soft and hard X-ray emissions

    SciTech Connect

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  20. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    SciTech Connect

    Tsytovich, Vadim; Gusein-zade, Namik; Ignatov, Alexander

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  1. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  2. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect

    Minami, R. Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  3. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror.

    PubMed

    Minami, R; Imai, T; Kariya, T; Numakura, T; Eguchi, T; Kawarasaki, R; Nakazawa, K; Kato, T; Sato, F; Nanzai, H; Uehara, M; Endo, Y; Ichimura, M

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  4. Axial heating and temperature of RF-excited non-neutral plasmas in Penning-Malmberg traps

    NASA Astrophysics Data System (ADS)

    Maero, G.; Pozzoli, R.; Romé, M.; Chen, S.; Ikram, M.

    2016-09-01

    Electro-magnetostatic traps have been used for decades to provide long-term storage of charged particle samples or non-neutral plasmas. The dynamics and equilibrium states of these ideally simple systems can be strongly diverted from the usual working conditions (i.e. single-species, quiescent samples) in the presence of oppositely charged particles or external electric field perturbations. Both these conditions occur when the plasma is generated by means of a radio-frequency (RF) excitation continuously applied on a trap electrode. The application of RF drives of some volts over periods larger than typical collisional time scales leads to residual-gas ionization and to the accumulation of an electron plasma, a process that has previously been exploited as an alternative to thermionic or photoemission electron sources. The analysis of the axial energy distribution shows a deviation of the continuously excited final state from maxwellianity dependent on the radial position and the subsequent relaxation to equilibrium after the interruption of the drive. Systematic measurements also indicate the high sensitivity to the residual gas pressure of both the total confined charge and of the attainable densities and plasma profiles. The results are compared to the information obtained from a very simple one-dimensional electron heating model and show the validity of its most basic features together with its shortcomings.

  5. K-shell transition absorption measurement of radiatively heated Al plasma

    NASA Astrophysics Data System (ADS)

    Yang, Jiamin; Zhang, Jiyang; Ding, Yaonan; Peng, Yonglun; Li, Jiaming; Zheng, Zhijian; Yang, Guohong; Zhang, Wenhai; Li, Jun

    2003-12-01

    High temperature aluminum plasmas have been produced by irradiating the layered Au-Al foils with the smoothed high power laser at the Xingguang II laser facility. High-resolution transmission spectrum of the Al plasma has been measured by using penta-erythritol tetrakis (hydroxymethy) methane C(CH2OH)4 crystal spectrometer. Absorption lines of the aluminum ion transition 1s-np(n=3,4,5) in the region of 0.61-0.70 nm, have been observed and identified. The unresolved transition array model has been introduced to calculate the transmission spectra of aluminum plasma. The measured transmission spectrum has been compared with those calculated.

  6. Probing the Complicated Atmospheres of Cepheids with HST-COS: Plasma Dynamics, Shock Energetics and Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Guinan, Edward

    2012-10-01

    Classical Cepheids, although well studied in terms of their cosmologically important Period-Luminosity Law, are proving to be increasingly complex and astrophysically intriguing in terms of the atmospheric energetics. This proposal expands Cycle 17/18 programs to probe Cepheid atmospheres and understand the mechanisms by which they are heated. Our previous COS spectra revealed a wealth of 10,000-300,000K plasma emission lines {far beyond what previous IUE data show due to severe scattered light contamination}, phase-locked with the Cepheid pulsation periods, indicating that a pulsation-driven heating mechanism is at work. We propose multiple observations of selected Cepheids {delta Cep, beta Dor and l Car} with HST-COS through the G130M & G160M gratings, to provide comprehensive and detailed diagnostics of the atmospheric plasmas of Cepheids with a range of periods and pulsation types, and give the best look yet at how large-scale, radial pulsations affect the upper atmospheres of supergiants. The phase constraints placed on some of the visits will allow phase-lags between the emission lines to be detailed, giving important additional information on the heating mechanism and extents of the atmospheres. Numerous emission lines are covered by the G130M and G160M wavelength range { 1150-1750A}, including N V 1240, O I, C IV 1550 and He II 1640. When combined with our approved and future proposed X-ray observations of Cepheids, the HST-COS data will allow us to construct an understanding of Cepheid atmospheric plasmas with temperatures of tens of thousands to millions of degrees - the most thorough atmospheric study to date for this important class of pulsating stars.

  7. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-01

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  8. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    SciTech Connect

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  9. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  10. Chord integrated neutral particle diagnostic data analysis for neutral beam injection and ion cyclotron radio frequency heated plasma in a complex Large Helical Device geometry

    SciTech Connect

    Veshchev, E. A.; Goncharov, P. R.; Ozaki, T.; Sudo, S.; Lyon, J. F.

    2006-10-15

    Energy and angle-resolved measurements of charge exchange neutral particle fluxes from the plasma provide information about T{sub i}, as well as non-Maxwellian substantially anisotropic ion distribution tails due to neutral beam injection (NBI) and ion cyclotron radio frequency (ICRF) heating. The measured chord integral neutral flux calculation scheme for the Large Helical Device magnetic surface geometry is given. Calculation results are shown for measurable atomic energy spectra corresponding to heating-induced fast ion distributions from simplified Fokker-Planck models. The behavior of calculated and experimental suprathermal particle distributions from NBI and ICRF heated plasma is discussed in the context of the experimental data interpretation.

  11. Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator

    SciTech Connect

    Laqua, H.; Erckmann, V.; Hartfuss, H.; Laqua, H.; ECRH Group, W.T.

    1997-05-01

    The extension of the experimentally accessible plasma densities with electron cyclotron heating beyond the plasma cutoff density and the removal of the restriction to a resonant magnetic field, both via mode conversion heating from an O-wave to an X-wave and, finally, to an electron Bernstein (O-X-B) wave, was investigated and successfully demonstrated at the W7-AS stellarator. In addition to the heating effect, clear evidence for both mode conversion steps was detected for the first time. {copyright} {ital 1997} {ital The American Physical Society}

  12. Observation of High-Field-Side Crash and Heat Transfer during Sawtooth Oscillation in Magnetically Confined Plasmas

    SciTech Connect

    Park, H.K.; Mazzucato, E.; Luhmann, N.C. Jr.; Domier, C.W.; Xia, Z.; Donne, A.J.H.; Classen, I.G.J.; Pol, M.J. van de; Munsat, T.

    2006-05-19

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study the crash process and heat transfer in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to a small poloidally localized puncture in the magnetic surface at both the low and the high field sides of the poloidal plane. This observation closely resembles the 'fingering event' of the ballooning mode model with the high-m mode only predicted at the low field side.

  13. Ion heating and thermonuclear neutron production from high-intensity subpicosecond laser pulses interacting with underdense plasmas.

    PubMed

    Fritzler, S; Najmudin, Z; Malka, V; Krushelnick, K; Marle, C; Walton, B; Wei, M S; Clarke, R J; Dangor, A E

    2002-10-14

    Thermonuclear fusion neutrons produced by D(d,n)3He reactions have been measured from the interaction of a high-intensity laser with underdense deuterium plasmas. For an input laser energy of 62 J, more than (1.0+/-0.2)x10(6) neutrons with a mean kinetic energy of (2.5+/-0.2) MeV were detected. These neutrons were observed to have an isotropic angular emission profile. By comparing these measurements with those using a secondary solid CD2 target it was determined that neutrons are produced from direct ion heating during this interaction.

  14. Sodium Replacement and Plasma Sodium Drop During Exercise in the Heat When Fluid Intake Matches Fluid Loss

    PubMed Central

    Anastasiou, Costas A; Kavouras, Stavros A; Arnaoutis, Giannis; Gioxari, Aristea; Kollia, Maria; Botoula, Efthimia; Sidossis, Labros S

    2009-01-01

    Context: Sodium replacement during prolonged exercise in the heat may be critically important to maintaining fluid and electrolyte balance and muscle contractility. Objective: To examine the effectiveness of sodium-containing sports drinks in preventing hyponatremia and muscle cramping during prolonged exercise in the heat. Design: Randomized crossover study. Patients or Other Participants: Thirteen active men. Intervention(s): Participants completed 4 trials of an exercise protocol in the heat (30°C) consisting of 3 hours of exercise (alternating 30 minutes of walking and cycling at a heart rate of 130 and 140 beats per minute, respectively); a set of standing calf raises (8 sets of 30 repetitions); and 45 minutes of steep, brisk walking (5.5 km⋅h−1 on a 12% grade). During exercise, participants consumed fluids to match body mass loss. A different drink was consumed for each trial: carbohydrate-electrolyte drink containing 36.2 mmol/L sodium (HNa), carbohydrate-electrolyte drink containing 19.9 mmol/L sodium (LNa), mineral water (W), and colored and flavored distilled water (PL). Main Outcome Measure(s): Serum sodium, plasma osmolality, plasma volume changes, and muscle cramping frequency. Results: During both HNa and LNa trials, serum sodium remained relatively constant (serum sodium concentration at the end of the protocol was 137.3 mmol/L and 136.7 mmol/L, respectively). However, a clear decrease was observed in W (134.5 ± 0.8 mmol/L) and PL (134.4 ± 0.8 mmol/L) trials compared with HNa and LNa trials (P < .05). The same trends were observed for plasma osmolality (P < .05). Albeit not significant, plasma volume was preserved during the HNa and LNa trials, but a reduction of 2.5% was observed in the W and PL trials. None of the volunteers experienced cramping. Conclusions: The data suggest that sodium intake during prolonged exercise in the heat plays a significant role in preventing sodium losses that may lead to hyponatremia when fluid intake matches

  15. Anisotropic ion heating and tail generation during tearing mode magnetic reconnection in a high-temperature plasma.

    PubMed

    Magee, R M; Den Hartog, D J; Kumar, S T A; Almagri, A F; Chapman, B E; Fiksel, G; Mirnov, V V; Mezonlin, E D; Titus, J B

    2011-08-01

    Complementary measurements of ion energy distributions in a magnetically confined high-temperature plasma show that magnetic reconnection results in both anisotropic ion heating and the generation of suprathermal ions. The anisotropy, observed in the C(+6) impurity ions, is such that the temperature perpendicular to the magnetic field is larger than the temperature parallel to the magnetic field. The suprathermal tail appears in the majority ion distribution and is well described by a power law to energies 10 times the thermal energy. These observations may offer insight into the energization process.

  16. Ion heating and short wavelength fluctuations in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Carr, J.; Galante, M.; Magee, R. M.; Hardin, R.

    2013-03-01

    For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped "helicon" wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperatures observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.

  17. Applications of the SCENIC code package to the minority ion-cyclotron heating in Wendelstein 7-X plasmas

    SciTech Connect

    Faustin, J. M. Cooper, W. A.; Graves, J. P.; Pfefferlé, D.; Geiger, J.

    2015-12-10

    We present SCENIC simulations of a W7X 4He plasma with 1% H minority and with an antenna model close to the design foreseen for the W7X ICRF antenna [1, 2]. A high mirror and a standard equilibrium are considered. The injected wave frequency is fixed at 33.8 MHz and 39.6MHz respectively and only fundamental minority heating is considered. Included in this calculation is a new realistic model of the antenna, where it is found that the localization of the antenna geometry tends to break the five-fold periodicity of the system. We assess the heat transfer through the toroidal periods via Coulomb collisions.

  18. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhi; Zhang, Le; Zhang, Jian; Liu, Peng; Zhou, Tianyuan; Zhang, Hongxiang; Gong, Dongmei; Tang, Dingyuan; Shen, Deyuan

    2015-12-01

    Transparent ZnS ceramics were fabricated at a lower temperature (840 °C) by optimizing the heating rate in the spark plasma sintering (SPS) process. The phase composition, microstructure and the optical properties of the ceramics were investigated by XRD, SEM and FTIR. Under the optimized heating rate of 5 °C/min, ZnS ceramics with the best optical qualities was obtained, and the transmittance reached above 60% in the range of 5.0-12.0 μm and it was higher than 40% in the range of 2.0-3.0 μm. Meanwhile, the content of hexagonal phase was controlled to be lower than 7.5%.

  19. von Kármán Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Wu, P.; Wan, M.; Matthaeus, W. H.; Shay, M. A.; Swisdak, M.

    2013-09-01

    Decay in time of undriven weakly collisional kinetic plasma turbulence in systems large compared to the ion kinetic scales is investigated using fully electromagnetic particle-in-cell simulations initiated with transverse flow and magnetic disturbances, constant density, and a strong guide field. The observed energy decay is consistent with the von Kármán hypothesis of similarity decay, in a formulation adapted to magnetohydrodyamics. Kinetic dissipation occurs at small scales, but the overall rate is apparently controlled by large scale dynamics. At small turbulence amplitudes the electrons are preferentially heated. At larger amplitudes proton heating is the dominant effect. In the solar wind and corona the protons are typically hotter, suggesting that these natural systems are in the large amplitude turbulence regime.

  20. Von Kármán energy decay and heating of protons and electrons in a kinetic turbulent plasma.

    PubMed

    Wu, P; Wan, M; Matthaeus, W H; Shay, M A; Swisdak, M

    2013-09-20

    Decay in time of undriven weakly collisional kinetic plasma turbulence in systems large compared to the ion kinetic scales is investigated using fully electromagnetic particle-in-cell simulations initiated with transverse flow and magnetic disturbances, constant density, and a strong guide field. The observed energy decay is consistent with the von Kármán hypothesis of similarity decay, in a formulation adapted to magnetohydrodyamics. Kinetic dissipation occurs at small scales, but the overall rate is apparently controlled by large scale dynamics. At small turbulence amplitudes the electrons are preferentially heated. At larger amplitudes proton heating is the dominant effect. In the solar wind and corona the protons are typically hotter, suggesting that these natural systems are in the large amplitude turbulence regime.

  1. Applications of the SCENIC code package to the minority ion-cyclotron heating in Wendelstein 7-X plasmas

    NASA Astrophysics Data System (ADS)

    Faustin, J. M.; Cooper, W. A.; Geiger, J.; Graves, J. P.; Pfefferlé, D.

    2015-12-01

    We present SCENIC simulations of a W7X 4He plasma with 1% H minority and with an antenna model close to the design foreseen for the W7X ICRF antenna [1, 2]. A high mirror and a standard equilibrium are considered. The injected wave frequency is fixed at 33.8 MHz and 39.6MHz respectively and only fundamental minority heating is considered. Included in this calculation is a new realistic model of the antenna, where it is found that the localization of the antenna geometry tends to break the five-fold periodicity of the system. We assess the heat transfer through the toroidal periods via Coulomb collisions.

  2. Plasma Simulation for the SHIP Experiment at GDT

    SciTech Connect

    Anikeev, A.V.; Bagryansky, P.A.; Collatz, S.; Noack, K

    2005-01-15

    The concept of the Synthesized Hot Ion Plasmoid (SHIP) experiment at the gas dynamic trap (GDT) facility of the Budker Institute Novosibirsk was presented at the 29{sup th} EPS Conference. During the last year several numerical simulations were made by means of the Integrated Transport Code System (ITCS) to determine the best experimental scenario for getting high plasma parameters. This contribution presents important results of the recent numerical simulations of SHIP by means of the ITCS modules.

  3. Ionospheric Plasma Outflow in Response to Transverse Ion Heating: Self-Consistent Macroscopic Treatment

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1995-01-01

    During the grant period starting July 1, 1994, our major effort has been on the following two problems: (1) Temporal behavior of heavy Oxygen ion outflow in response to a transverse heating event; and (2) Continued effort on ion heating by lower hybrid waves. We briefly describe here the research performed under these topics.

  4. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    SciTech Connect

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm/sup 2/, has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm/sup 2/ occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  5. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ogasawara, S.; Makino, R.; Mutoh, T.; Yamada, H.; Komori, A.

    2013-02-01

    To realize an excitation of electron Bernstein waves (EBW) via mode conversion from X-mode waves injected from the high magnetic field side (HFS), new inner-vessel mirrors were installed close to a helical coil in the large helical device (LHD). 77 GHz electron cyclotron (EC) wave beams injected from an existing EC-wave injection system toward the new mirror are reflected on the mirror so that the beams are injected to plasmas from HFS. Evident increases in the electron temperature at the plasma core region and the plasma stored energy were observed by the HFS beam injection to the plasmas with the line-average electron density of 7.5×1019 m-3, which is slightly higher than the plasma cut-off density of 77 GHz EC-waves, 7.35×1019 m-3. The heating efficiency evaluated from the changes in the time derivative of the plasma stored energy reached ~70%. Although so far it is not clear which is the main cause of the heating effect, the mode-converted EBW or the X-mode wave itself injected from the HFS, an effective heating of high-density plasma over the plasma cut-off of EC-wave was successfully demonstrated.

  6. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  7. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGESBeta

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  8. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  9. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    SciTech Connect

    Gus’kov, S. Yu.; Nicolai, Ph.; Ribeyre, X.; Tikhonchuk, V. T.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.

  10. Auxiliary ECR heating system for the gas dynamic trap

    SciTech Connect

    Shalashov, A. G.; Gospodchikov, E. D.; Smolyakova, O. B.; Malygin, V. I.; Bagryansky, P. A.; Thumm, M.

    2012-05-15

    Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The key physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N{sub Double-Vertical-Line Double-Vertical-Line} in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.

  11. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  12. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  13. Ion Heating Arising from the Damping of Short Wavelength Fluctuations at the Edge of a Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Magee, Richard; Galante, Matthew; Hardin, Robert

    2012-10-01

    In previous studies, the appearance of substantial ion heating at the specific combinations of driving antenna frequency and magnetic field strength that result in the equivalence of the driving antenna frequency with the lower hybrid frequency provided strong, but indirect, evidence of the damping of short wavelength, ``slow'' wave fluctuations in the edge of helicon sources. For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped ``helicon'' wave, and the strongly damped, slow wave. Internal magnetic field measurements routinely demonstrate the existence of wave fields consistent with fast waves in helicon sources. However, measurement of the slow wave is considerably more difficult given its extremely short wavelength and evanescent nature. Here we present two direct measurements of spatially localized, few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the time evolution of the ion temperature and fluctuation profiles provide additional confirmation of the ion heating through wave damping hypothesis.

  14. High-harmonic Fast Wave Heating and Current Drive Results for Deuterium H-mode Plasmas in the National Spherical Torus Experiment

    SciTech Connect

    G. Taylor, P.T. Bonoli, R.W. Harvey, J.C. hosea, E.F. Jaeger, B.P. LeBlanc, C.K. Phillisp, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2012-07-25

    A critical research goal for the spherical torus (ST) program is to initiate, ramp-up, and sustain a discharge without using the central solenoid. Simulations of non-solenoidal plasma scenarios in the National Spherical Torus Experiment (NSTX) [1] predict that high-harmonic fast wave (HHFW) heating and current drive (CD) [2] can play an important roll in enabling fully non-inductive (fNI {approx} 1) ST operation. The NSTX fNI {approx} 1 strategy requires 5-6 MW of HHFW power (PRF) to be coupled into a non-inductively generated discharge [3] with a plasma current, Ip {approx} 250-350 kA, driving the plasma into an HHFW H-mode with Ip {approx} 500 kA, a level where 90 keV deuterium neutral beam injection (NBI) can heat the plasma and provide additional CD. The initial approach on NSTX has been to heat Ip {approx} 300 kA, inductively heated, deuterium plasmas with CD phased HHFW power [2], in order to drive the plasma into an H-mode with fNI {approx} 1.

  15. Energy transport by energetic electrons released during solar flares. II - Current filamentation and plasma heating

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    Two-dimensional electrostatic particle simulations are performed in order to investigate energy transport associated with the propagation of energetic electrons through a flaring flux tube. Results indicate that as the energetic electrons flow outward, a return current of ambient plasma electrons is drawn inward (to maintain quasi-neutrality) which can be spatially separate from the primary current carried by the energetic electrons. Return current electrons are shown to accumulate on either side of the acceleration region of the energetic electrons, and depletions of ambient plasma electrons develop in the return current regions. Plasma ions accelerate across the field lines to produce current closure or charge neutralization, achieving energies comparable to those of the energetic electrons.

  16. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; contributors, JET

    2016-03-01

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass  <  A  >  weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher  <  A  >, and significant scaling of T i, T e, and total stored energy with  <  A  >  were observed. The higher T i led to increased ion-electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  17. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  18. Vacuum ultraviolet line radiation measurements of a shock-heated nitrogen plasma

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O.

    1972-01-01

    Line radiation, in the wavelength region from 1040 to 2500 A from nitrogen plasmas, was measured at conditions typical of those produced in the shock layer in front of vehicles entering the earth's atmosphere at superorbital velocities. The radiation was also predicted with a typical radiation transport computer program to determine whether such calculations adequately model plasmas for the conditions tested. The results of the comparison show that the radiant intensities of the lines between 1040 and 1700 A are actually lower than are predicted by such computer models.

  19. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology

    NASA Astrophysics Data System (ADS)

    Vladoiu, Rodica; Mandes, Aurelia; Dinca Balan, Virginia; Prodan, Gabriel; Kudrna, Pavel; Tichý, Milan

    2015-06-01

    The aim of this paper is to report on magnesium plasma diagnostics and to investigate the properties of thin Mg films deposited on Si and glass substrates by using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and powerful electron gun system (up to 600 W) for the growth of thin films from solid precursors under a vacuum of 10-6Torr. Due to the comparatively high deposition rate as well as comparatively high plasma potential—around 0.5 kV—plasma diagnostics were carried out by a heated probe that prevents layer deposition on the probe surface. The estimated value of electron density was in the order of 1.0  ×  1016m-3 and the electron temperature varied between 4  ×  104 and 1.2  ×  105 K (corresponding to two different discharge conditions). The thin Mg films were investigated using SEM images and TEM analyses provided with HR-TEM and SAED facilities. According to the SAED patterns the structure of the films can be indexed as two forms: hexagonal structure for Mg and cubic structure for MgO; the peak value of grain size distribution was 91.29 nm in diameter for Mg TVA/Si and 61.06 nm for Mg TVA/Gl.

  20. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    SciTech Connect

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10/sup 5/ kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10/sup 3/ operating hours.

  1. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: evidence [corrected] for enhanced osteoinductive properties.

    PubMed

    Rapuano, Bruce E; Singh, Herman; Boskey, Adele L; Doty, Stephen B; MacDonald, Daniel E

    2013-08-01

    It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2-4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy.

  2. Hot bubbles of planetary nebulae with hydrogen-deficient winds. I. Heat conduction in a chemically stratified plasma

    NASA Astrophysics Data System (ADS)

    Sandin, C.; Steffen, M.; Schönberner, D.; Rühling, U.

    2016-02-01

    Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium- and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also compare differences in the resulting X-ray temperature and luminosity observables of the two descriptions. The improved equations show that the heat conduction in our representative model of a hydrogen-deficient PN is nearly as efficient with the chemistry-dependent description; a lower value on the diffusion coefficient is compensated by a slightly steeper temperature gradient. The bubble becomes somewhat hotter with the improved equations, but differences are otherwise minute. The observable properties of the bubble in terms of the X-ray temperature and luminosity are seemingly unaffected.

  3. Measurement of effect of electron cyclotron heating in a tandem mirror plasma using a semiconductor detector array and an electrostatic energy analyzer

    NASA Astrophysics Data System (ADS)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Uehara, M.; Tsumura, K.; Ebashi, Y.; Kajino, S.; Endo, Y.; Nakashima, Y.

    2016-11-01

    Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.

  4. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  5. Inverse bremsstrahlung heating beyond the first Born approximation for dense plasmas in laser fields

    NASA Astrophysics Data System (ADS)

    Moll, M.; Schlanges, M.; Bornath, Th; Krainov, V. P.

    2012-06-01

    Inverse bremsstrahlung (IB) heating, an important process in the laser-matter interaction, involves two different kinds of interaction—the interaction of the electrons with the external laser field and the electron-ion interaction. This makes analytical approaches very difficult. In a quantum perturbative approach to the IB heating rate in strong laser fields, usually the first Born approximation with respect to the electron-ion potential is considered, whereas the influence of the electric field is taken exactly in the Volkov wave functions. In this paper, a perturbative treatment is presented adopting a screened electron-ion interaction potential. As a new result, we derive the momentum-dependent, angle-averaged heating rate in the first Born approximation. Numerical results are discussed for a broad range of field strengths, and the conditions for the applicability of a linear approximation for the heating rate are analyzed in detail. Going a step further in the perturbation series, we consider the transition amplitude in the second Born approximation, which enables us to calculate the heating rate up to the third order of the interaction strength.

  6. Reflection and backscattering of microwaves under doubling of the plasma density and displacement of the gyroresonance region during electron cyclotron resonance heating of plasma in the l-2M stellarator

    NASA Astrophysics Data System (ADS)

    Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Vafin, I. Yu.; Petrov, A. E.; Sarksyan, K. A.; Sakharov, A. S.; Stepakhin, V. D.; Kharchev, N. K.

    2016-08-01

    Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength ( k ⊥ ≈ 30 cm-1) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence is discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.

  7. Model of a laser heated plasma interacting with walls arising in laser keyhole welding

    NASA Astrophysics Data System (ADS)

    Tix, C.; Simon, G.

    1994-07-01

    In laser welding with laser intensities of approximately 1011 W/m2, a hole, called a keyhole, is formed in the material. In this keyhole a plasma is detected, which is characterized by high pressure as well as being influenced by the boundary of the keyhole. Experimental data on plasma parameters are rare and difficult to obtain [W. Sokolowski, G. Herziger, and E. Beyer, in High Power Lasers and Laser Machining Technology, edited by A. Quenzer, SPIE Proc. Vol. 1132 (SPIE, Bellingham, WA, 1989), pp. 288-295]. In a previous paper [C. Tix and G. Simon, J. Phys. D 26, 2066 (1993)] we considered just a simple plasma model without excited states and with constant ion-neutral-atom temperature. Therefore we neglected radiative transport of excitations and underestimated the ion-neutral-atom temperature and the ionization rate. Here we extend our previous model for a continuous CO2 laser and iron and take into account radiative transfer of excitations and a variable ion-neutral-atom temperature. We consider singly charged ions, electrons, and three excitation states of neutral atoms. The plasma is divided in plasma bulk, presheath, and sheath. The transport equations are solved with boundary conditions mainly determined through the appearance of walls. Some effort is made to clarify the energy transport mechanism from the laser beam into the material. Dependent on the incident laser power, the mean electron temperature and density are obtained to be 1.0-1.3 eV and 2.5×1023-3×1023 m-3. Radiative transport of excitations does not contribute significantly to the energy transport.

  8. Streaked optical pyrometry of ion heated compound targets in the study of plasma mix at high density interfaces

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Roycroft, Rebecca; Wagner, Craig; Bernstein, Aaron; Ditmire, Todd; Hegelich, B. Manuel; Albright, Brian; Fernández, Juan; Bang, Woosuk; Bradley, Paul; Gautier, D. Cort; Hamilton, Christopher; Palaniyappan, Sasi; Santiago Cordoba, Miguel; Vold, Erik; Lin, Yin

    2015-11-01

    The interaction and mixing of different species of plasma at high energy density is of fundamental interest for HED physics and relevant to inertial confinement fusion. An ongoing campaign is underway at the Trident laser facility to study the dynamics at the interface of high and low atomic number materials under warm dense matter conditions. The experiments utilize laser-accelerated ions, such as aluminum, to flash heat solid targets to temperatures >1 eV. We report on streaked pyrometry measurements made in a recent experimental run, which shed light on the dynamics of heating induced in various target materials by these ion sources. Timescale as well as spatial extent of the heating can vary greatly depending on the dominant ion species and spectra. This work was supported by NNSA cooperative agreement DE-NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06.

  9. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  10. Ionospheric plasma outflow in response to transverse ion heating: Self-consistent macroscopic treatment

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    We examined the various likely processes for creating the cavities and found that the mirror force acting on the transversely heated ions is the most likely mechanism. The pondermotive force causing the wave collapse was found to be a much weaker force than the mirror force on the transversely heated ions observed inside the cavities along with the lower hybrid waves. Using a hydrodynamic model for the polar wind we modeled the cavity formation and found that for the heating rate obtained from the observed waves, the mirror force does create cavities with depletions as observed. Some initial results from this study were published in a recent Geophysical Research Letters and were reported in the Fall AGU meeting in San Francisco. We have continued this investigation using a large-scale semikinetic model.

  11. Electron heating enhancement due to plasma series resonance in a capacitively coupled RF discharge: Electrical modeling and comparison to experimental measurements

    NASA Astrophysics Data System (ADS)

    Cao, Minglu; Lu, Yijia; Cheng, Jia; Ji, Linhong

    2016-09-01

    The electron heating enhancement due to the self-excitation of the plasma series resonance in capacitively coupled plasmas is revisited by a combination of an equivalent circuit model and experiments. To improve the model accuracy, measured voltage waveforms at the powered electrode are used instead of prescribing a sinusoidal voltage supply in series with a bias capacitance. The results calculated from the electrical model are consistent with the experimental measurements performed by a Langmuir probe with verification of a microwave interferometer, at pressures of 0.2 and 0.3 Torr. High harmonics occurring in the discharge currents agree with observations in previous research. The nonlinear plasma series resonance effect is found to have a notable contribution to both ohmic and stochastic heating evaluated by the electron heating efficiencies.

  12. Non-Spitzer heat flow in a steadily ablating laser-produced plasma

    SciTech Connect

    Bell, A.R.

    1985-06-01

    Electron energy transport in a laser-produced ablating plasma is modeled by the Vlasov--Fokker--Planck equation for electrons and the fluid equations for cold ions. These equations are solved using approximations which maintain good accuracy but allow faster computational solution than was previously possible. It is found that the spatial profiles for temperature and density in planar geometry differ very little from those calculated from the Spitzer conductivity. At high laser intensities, the plasma flow diverges as it flows away from the solid target and the effects of nonplanar flow are important. This is modeled by the adoption of spherical geometry, and it is found that the Spitzer conductivity breaks down and the temperature and density profiles differ significantly from those calculated using the Spitzer conductivity.

  13. Characteristics of heat-annealed silicon homojunction infrared photodetector fabricated by plasma-assisted technique

    NASA Astrophysics Data System (ADS)

    Hammadi, Oday A.

    2016-09-01

    In this work, the effect of thermal annealing on the characteristics of silicon homojunction photodetector was studied. This homojunction photodetector was fabricated by means of plasma-induced etching of p-type silicon substrate and plasma sputtering of n-type silicon target in vacuum. The electrical and spectral characteristics of this photodetector were determined and optimized before and after the annealing process. The maximum surface reflectance of 1.89% and 1.81%, the maximum responsivity of 0.495 A/W and 0.55 A/W, the ideality factor of 1.80 and 1.99, the maximum external quantum efficiency of 76% and 83.5%, and the built-in potential of 0.79 V and 0.72 V were obtained before and after annealing, respectively.

  14. Edge Recycling and Heat Fluxes in L- and H-mode NSTX Plasmas

    SciTech Connect

    V.A. Soukhanovskii; R. Maingi; R. Raman; H. Kugel; B. LeBlanc; A.L. Roquemore; C.J. Lasnier; the NSTX Research Team

    2003-08-05

    Introduction Edge characterization experiments have been conducted in NSTX to provide an initial survey of the edge particle and heat fluxes and their scaling with input power and electron density. The experiments also provided a database of conditions for the analyses of the NSTX global particle sources, core fueling, and divertor operating regimes.

  15. Characterization of Dusty Plasmas in the Earth's Mesosphere Using Radiowave Heating

    SciTech Connect

    Scales, Wayne; Chen, Chen

    2008-09-07

    Recently it has become evident that significant diagnostic information may be available to characterize charged sub-visible mesospheric dust layers from the temporal behavior of the associated electron irregularities during radiowave heating which ultimately modifies the mesospheric electron temperature. Particularly important time periods of the irregularity temporal behavior are during the turn-on and turn-off of the radio wave heating. The objective of this work is to first consider the physical processes that control the evolution of electron irregularities associated with mesospheric dust layers during radio wave heating. It is shown that two dominant processes are dust charging and ambipolar diffusion. In particular, it will be shown that a fundamental parameter that controls the temporal behavior is the ratio of the dust charging to ambipolar diffusion time during the turn-on and turn-off period. Both computational and analytical models are described that may be used to directly investigate the electron irregularity temporal evolution with particular emphasis placed on modeling the electron irregularity temporal evolution during the time periods when the radio wave heating is turned on and off. The models results may then be used to obtain diagnostic information on the characteristics of the charged dust layer, such as dust density and radius. Predictions of the models are used to describe possibilities for new experiments that may provide further diagnostic information on charged mesospheric dust layers.

  16. Diffusion permeability of yttrium-based heat-resistant ion-plasma coatings

    NASA Astrophysics Data System (ADS)

    Goncharov, V. S.; Goncharov, M. V.; Vasil'ev, E. V.

    2016-09-01

    The diffusion permeability of yttrium-containing ion-plasma coatings on substrates made of the low-alloy chromium-based Cr-0.7V-0.17La alloy has been studied. It has been found that protective coatings of this type have a strong barrier effect on diffusion fluxes in the substrate-coating-environment system and that YCr + YCrO3 coatings ensure the best protection of the substrates against gas saturation.

  17. Solutions and reductions for radiative energy transport in laser-heated plasma

    SciTech Connect

    Broadbridge, P.; Ivanova, N. M.

    2015-01-15

    A full symmetry classification is given for models of energy transport in radiant plasma when the mass density is spatially variable and the diffusivity is nonlinear. A systematic search for conservation laws also leads to some potential symmetries and to an integrable nonlinear model. Classical point symmetries, potential symmetries, and nonclassical symmetries are used to effect variable reductions and exact solutions. The simplest time-dependent solution is shown to be stable and relevant to a closed system.

  18. Observation of neoclassical impurity transport in Ohmically heated plasmas of CDX-U low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Finkenthal, M.; Moos, H. W.; Stutman, D.; Munsat, T.; Jones, B.; Hoffman, D.; Kaita, R.; Majeski, R.

    2002-11-01

    High β, good confinement and stability properties of the low aspect ratio tokamaks, or spherical tori (ST), have been predicted theoretically and preliminarily confirmed in several large experiments recently. This paper reports on impurity transport experiments carried out in ohmically heated plasmas of the small spherical torus CDX-U with the aspect ratio of A≃1.5. Vacuum ultraviolet and soft x-ray multichannel spectroscopic diagnostics are used to measure intrinsic carbon, oxygen and radiated power radial brightness profiles in plasmas with Te(0)≃60-80 eV and ne(0)≃2×1013 cm-3. The measurements are performed in both magnetohydrodynamically dominated and quiescent phase of the plasmas. The properties of the observed low m/n modes, sawtooth oscillations, and ST-specific reconnection events are discussed in the context of particle transport. The measured impurity profiles are modelled using one-dimensional impurity transport code MIST and a collisional-radiative package CRMLIN. Impurity diffusion of 0.2 m2 s-1≤D≤0.6 m2 s-1 and convection velocity of v≃4-6 m s-1 are inferred from the modelling. These transport coefficients are very close to the neoclassical theory predictions obtained with the FORCEBAL code, which uses analytical plasma viscosity expressions valid for an arbitrary aspect ratio geometry. Neoclassical analysis indicates that both carbon and oxygen are in the collisional regime, and the Pfirsch-Schluter flux is the major fraction of the impurity flux. The causes of the observed strong non-diffusive transport are discussed, and it is concluded that the ∇ni/ni term, resulting from highly peaked ion density profile, makes the largest contribution to the inward pinch. Present analysis suggests that drift wave turbulence is reduced in CDX-U ohmically heated discharges within at least r/a≤0.4, however more refined measurements are needed to interpret the results in the framework of ST ion transport.

  19. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    SciTech Connect

    Lopatin, I. V. Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)

  20. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics.

    PubMed

    Lopatin, I V; Akhmadeev, Yu H; Koval, N N

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa).

  1. High frequency core localized modes in neutral beam heated plasmas on TFTR

    SciTech Connect

    Nazikian, R.; Chang, Z.; Fredrickson, E.D.

    1995-11-01

    A band of high frequency modes in the range 50--150 kHz with intermediate toroidal mode numbers 4 < n < 10 are commonly observed in the core of supershot plasmas on TFTR. Two distinct varieties of MHD modes are identified corresponding to a flute-like mode predominantly appearing around the q = 1 surface and an outward ballooning mode for q > 1. The flute-like modes have nearly equal amplitude on the high field and low field side of the magnetic axis and are mostly observed in moderate performance supershot plasmas with {tau}{sub E} < 2{tau}{sub L} while the ballooning-like modes have enhanced amplitude on the low field side of the magnetic axis and tend to appear in higher performance supershot plasmas with {tau}{sub E} > 2{tau}{sub L}, where {tau}{sub L} is the equivalent L-mode confinement time. The modes propagate in the ion diamagnetic drift direction and are highly localized with radial widths {Delta}r {approximately} 5--10 cm, fluctuation levels {tilde n}/n, {tilde T}{sub e}/T{sub e} < 0.01, and radial displacements {zeta}{sub r} {approximately} 0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR, these modes are typically much weaker, more benign, and may be indicative of kinetic ballooning modes destabilized by resonant circulating neutral beam ions.

  2. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons

    SciTech Connect

    Ribeyre, X.; Feugeas, J.-L.; Nicolaï, Ph.; Tikhonchuk, V. T.; Gus'kov, S.

    2013-06-15

    Process of shock ignition in inertial confinement fusion implies creation of a high pressure shock with a laser spike having intensity of the order of a few PW/cm{sup 2}. However, the collisional (Bremsstrahlung) absorption at these intensities is inefficient and a significant part of laser energy is converted in a stream of energetic electrons. The process of shock formation in a dense plasma by an intense electron beam is studied in this paper in a planar geometry. The energy deposition takes place in a fixed mass target layer with the areal density determined by the electron range. A self-similar isothermal rarefaction wave of a fixed mass describes the expanding plasma. Formation of a shock wave in the target under the pressure of expanding plasma is described. The efficiency of electron beam energy conversion into the shock wave energy depends on the fast electron energy and the pulse duration. The model is applied to the laser produced fast electrons. The fast electron energy transport could be the dominant mechanism of ablation pressure creation under the conditions of shock ignition. The shock wave pressure exceeding 1 Gbar during 200–300 ps can be generated with the electron pulse intensity in the range of 5–10 PW/cm{sup 2}. The conclusions of theoretical model are confirmed in numerical simulations with a radiation hydrodynamic code coupled with a fast electron transport module.

  3. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    NASA Astrophysics Data System (ADS)

    Lopatin, I. V.; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ˜0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa).

  4. Nature of turbulence, dissipation, and heating in space plasmas: From Alfvén waves to kinetic Alfvén waves

    NASA Astrophysics Data System (ADS)

    Wu, D. J.; Feng, H. Q.; Li, B.; He, J. S.

    2016-08-01

    The nature of turbulence, dissipation, and heating in plasma media has been an attractive and challenge problem in space physics as well as in basic plasma physics. A wide continuous spectrum of Alfvénic turbulence from large MHD-scale Alfvén waves (AWs) in the inertial turbulence regime to small kinetic-scale kinetic AWs (KAWs) in the dissipation turbulence regime is a typical paradigm of plasma turbulence. The incorporation of current remote observations of AWs in the solar atmosphere, in situ satellite measurements of Alfvénic turbulence in the solar wind, and experimental investigations of KAWs on large plasma devices in laboratory provides a chance synthetically to study the physics nature of plasma turbulence, dissipation, and heating. A session entitled "Nature of Turbulence, Dissipation, and Heating in Space Plasmas: From Alfvén Waves to Kinetic Alfvén Waves" was held as a part of the twelfth Asia Oceania Geosciences Society Annual Meeting, which took place in Singapore between 2 and 7 August 2015. This special section is organized based on the session.

  5. Heat flux and plasma flow in the far scrape-off layer of the inboard poloidal field null configuration in QUEST

    SciTech Connect

    Onchi, T.; Zushi, H.; Hanada, K.; Idei, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Kuzmin, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Watanabe, O.; Mishra, K.; Mahira, Y.; Tashima, S.; Banerjee, S.; Nagaoka, K.

    2015-08-15

    Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (I{sub p}) ramp-up phase, high heat flux (>1 MW/m{sup 2}) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of I{sub p} at 20 Hz is observed. Heat flux and subsonic plasma flow in the far-SOL are modified corresponding to the I{sub p}-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-I{sub p} phase. Modification of plasma flow in the far SOL occurs earlier than the I{sub p} crash. The M–I{sub p} curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core–SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of I{sub p} in the IPN configuration.

  6. Heat flux and plasma flow in the far scrape-off layer of the inboard poloidal field null configuration in QUEST

    NASA Astrophysics Data System (ADS)

    Onchi, T.; Zushi, H.; Mishra, K.; Mahira, Y.; Nagaoka, K.; Hanada, K.; Idei, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Tashima, S.; Banerjee, S.; Kuzmin, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Watanabe, O.

    2015-08-01

    Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (Ip) ramp-up phase, high heat flux (>1 MW/m2) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of Ip at 20 Hz is observed. Heat flux and subsonic plasma flow in the far-SOL are modified corresponding to the Ip-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-Ip phase. Modification of plasma flow in the far SOL occurs earlier than the Ip crash. The M-Ip curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core-SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of Ip in the IPN configuration.

  7. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak.

    PubMed

    Mitarai, O; Xiao, C; McColl, D; Dreval, M; Hirose, A; Peng, M

    2015-03-01

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. This result suggests a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. The effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments in the STOR-M tokamak.

  8. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas

    SciTech Connect

    Schachter, L. Dobrescu, S.; Stiebing, K. E.

    2014-02-15

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  9. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    SciTech Connect

    Goudon, Thierry; Parisot, Martin

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  10. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2014-02-01

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  11. Characterization of heat transport and radiation hydrodynamics in collisional laser plasmas using collective Thomson scattering

    SciTech Connect

    Cameron, S.M.

    1993-10-01

    The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.

  12. Two frequency ICRF heating of D-T plasmas on TFTR

    SciTech Connect

    Rogers, J.H.; Majeski, R.; Wilson, J.R.; Hosea, J.C.; Schilling, G.; Stevens, J.; Ho, Y.L.; Raman, S.; Rasmussen, D.A.

    1993-11-01

    Modifications have been made to allow two of the ICRF antennas (bays L and M) on TFTR to operate at either of two frequencies, 43 MHz or 64 MHz. This was accomplished by lengthening the resonant loops feeding the antennas (2{lambda} at 43 MHz, 3{lambda} at 64 MHz) and replacing the conventional quarter wave impedance transformers with a tapered impedance design. The other two antennas (bays K and N) will operate at a fixed frequency, 43 MHz. The two frequency operation allows a combination of {sup 3}He-minority (or T second harmonic) and H-minority heating at full toroidal field on TFIR. Multiple frequency operation may also be useful in direct electron heating and current drive experiments. Other modifications have been made which are expected to permit arbitrary phasing between the current straps on bays M and L. The system design of the antenna, resonant loops and impedance matching system as well as preliminary TFTR results are discussed.

  13. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    SciTech Connect

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Iwamae, A; Ohnishi, N; Fournier, K B; Girard, F; Primout, M; Villette, B; Tobin, M; Mima, K

    2008-06-12

    We have observed supersonic heat wave propagation in a low-density aerogel target ({rho} {approx} 3.2 mg/cc) irradiated at the intensity of 4 x 10{sup 14} W/cm{sup 2}. The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation.

  14. Simulations of Electron Bernstein Wave Heating in Field-Reversed Configuration Plasmas

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Ceccherini, Francesco; Galeotti, Laura

    2015-11-01

    It is extremely challenging to use microwaves to heat electrons effectively in high-beta Field-Reversed Configurations (FRCs) such as the C-2U experiment. For a fixed two dimensional profile of C-2U equilibrium field, electron density and temperature, feasibility studies of electron Bernstein wave (EBW) heating via O-X-B mode conversion, have recently been conducted with use of the Genray ray-tracing code for six selected frequencies which cover the frequency range from fundamental electron cyclotron resonance (ECR) up to more than 20 harmonics of ECR. Very promising and also physically interesting simulation results, which are strongly related to the unique C-2U configuration, will be presented in detail

  15. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    SciTech Connect

    MacFarlane, Joseph John; Rochau, Gregory Alan; Bailey, James E.

    2005-06-01

    High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.

  16. Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in Experimental Advanced Superconducting Tokomak

    NASA Astrophysics Data System (ADS)

    Zhang, X. J.; Wan, B. N.; Zhao, Y. P.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Wukitch, S.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.

    2014-06-01

    An ion cyclotron range of frequencies (ICRF) system with power up to 6.0 MW and a lower hybrid current drive (LHCD) system up to 4 MW have been applied for heating and current drive experiments in Experimental Advanced Superconducting Tokomak (EAST). Significant progress has been made with ICRF heating and LHCD for realizing the H-mode plasma operation in EAST. During 2010 and 2012 experimental campaigns, ICRF heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H minority heating (H-MH) mode. The H-MH mode produced good plasma performance, and realized H-mode using ICRF power alone in 2012. In 2010, H-modes were generated and sustained by LHCD alone, where lithium coating and gas puffing near the mouth of the LH launcher were applied to improve the LHCD power coupling and penetration into the core plasmas of H-modes. In 2012, the combination of LHCD and ICRH power extended the H-mode duration up to over 30 s. H-modes with various types of edge localized modes (ELMs) have been achieved with HIPB98(y, 2) ranging from 0.7 to over unity. A brief overview of LHCD and ICRF Heating experiment and their application in achieving H-mode operation during these two campaigns will be presented.

  17. Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in Experimental Advanced Superconducting Tokomak

    SciTech Connect

    Zhang, X. J.; Wan, B. N. Zhao, Y. P.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.

    2014-06-15

    An ion cyclotron range of frequencies (ICRF) system with power up to 6.0 MW and a lower hybrid current drive (LHCD) system up to 4 MW have been applied for heating and current drive experiments in Experimental Advanced Superconducting Tokomak (EAST). Significant progress has been made with ICRF heating and LHCD for realizing the H-mode plasma operation in EAST. During 2010 and 2012 experimental campaigns, ICRF heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H minority heating (H-MH) mode. The H-MH mode produced good plasma performance, and realized H-mode using ICRF power alone in 2012. In 2010, H-modes were generated and sustained by LHCD alone, where lithium coating and gas puffing near the mouth of the LH launcher were applied to improve the LHCD power coupling and penetration into the core plasmas of H-modes. In 2012, the combination of LHCD and ICRH power extended the H-mode duration up to over 30 s. H-modes with various types of edge localized modes (ELMs) have been achieved with H{sub IPB98}(y, 2) ranging from 0.7 to over unity. A brief overview of LHCD and ICRF Heating experiment and their application in achieving H-mode operation during these two campaigns will be presented.

  18. The merits of ion cyclotron resonance heating schemes for sawtooth control in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Graves, J. P.; Lennholm, M.; Faustin, J.; Lerche, E.; Johnson, T.; Tholerus, S.; Tholerus

    2015-12-01

    > or dipole) has a destabilising effect on the sawteeth, meaning that dipole phasing can be employed, since this is preferable due to less plasma wall interaction from Resonant Frequency (RF) sheaths. Secondly, the resonance position of the low-field side ICRH does not have to be very accurately placed to achieve sawtooth control, relaxing the requirement for real-time control of the RF frequency. These empirical observations have been confirmed by hybrid kinetic-magnetohydrodynamic modelling, and suggest that the ICRH antenna design for ITER is well positioned to provide a control actuator capable of having a significant effect on the sawtooth behaviour.

  19. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  20. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546