Li, Mengmeng; Rao, Man; Chen, Kai; Zhou, Jianye; Song, Jiangping
2017-07-15
Real-time quantitative reverse transcriptase-PCR (qRT-PCR) is a feasible tool for determining gene expression profiles, but the accuracy and reliability of the results depends on the stable expression of selected housekeeping genes in different samples. By far, researches on stable housekeeping genes in human heart failure samples are rare. Moreover the effect of heart failure on the expression of housekeeping genes in right and left ventricles is yet to be studied. Therefore we aim to provide stable housekeeping genes for both ventricles in heart failure and normal heart samples. In this study, we selected seven commonly used housekeeping genes as candidates. By using the qRT-PCR, the expression levels of ACTB, RAB7A, GAPDH, REEP5, RPL5, PSMB4 and VCP in eight heart failure and four normal heart samples were assessed. The stability of candidate housekeeping genes was evaluated by geNorm and Normfinder softwares. GAPDH showed the least variation in all heart samples. Results also indicated the difference of gene expression existed in heart failure left and right ventricles. GAPDH had the highest expression stability in both heart failure and normal heart samples. We also propose using different sets of housekeeping genes for left and right ventricles respectively. The combination of RPL5, GAPDH and PSMB4 is suitable for the right ventricle and the combination of GAPDH, REEP5 and RAB7A is suitable for the left ventricle. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Min; Wang, Qinglian; Zhang, Baohong
2013-11-01
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions. © 2013.
Silver, Nicholas; Cotroneo, Emanuele; Proctor, Gordon; Osailan, Samira; Paterson, Katherine L; Carpenter, Guy H
2008-01-01
Background Real-time PCR is a reliable tool with which to measure mRNA transcripts, and provides valuable information on gene expression profiles. Endogenous controls such as housekeeping genes are used to normalise mRNA levels between samples for sensitive comparisons of mRNA transcription. Selection of the most stable control gene(s) is therefore critical for the reliable interpretation of gene expression data. For the purpose of this study, 7 commonly used housekeeping genes were investigated in salivary submandibular glands under normal, inflamed, atrophic and regenerative states. Results The program NormFinder identified the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative states, and GAPDH in the atrophic state. For normalisation to multiple housekeeping genes, for each individual state, the optimal number of housekeeping genes as given by geNorm was: ACTB/UBC in the normal, ACTB/YWHAZ in the inflamed, ACTB/HPRT in the atrophic and ACTB/GAPDH in the regenerative state. The most stable housekeeping gene identified between states (compared to normal) was UBC. However, ACTB, identified as one of the most stably expressed genes within states, was found to be one of the most variable between states. Furthermore we demonstrated that normalising between states to ACTB, rather than UBC, introduced an approximately 3 fold magnitude of error. Conclusion Using NormFinder, our studies demonstrated the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative groups and GAPDH in the atrophic group. However, if normalising to multiple housekeeping genes, we recommend normalising to those identified by geNorm. For normalisation across the physiological states, we recommend the use of UBC. PMID:18637167
2013-01-01
Background Importance of hereditary factors in the etiology of Idiopathic Scoliosis is widely accepted. In clinical practice some of the IS patients present with positive familial history of the deformity and some do not. Traditionally about 90% of patients have been considered as sporadic cases without familial recurrence. However the exact proportion of Familial and Sporadic Idiopathic Scoliosis is still unknown. Housekeeping genes encode proteins that are usually essential for the maintenance of basic cellular functions. ACTB and GAPDH are two housekeeping genes encoding respectively a cytoskeletal protein β-actin, and glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolysis. Although their expression levels can fluctuate between different tissues and persons, human housekeeping genes seem to exhibit a preserved tissue-wide expression ranking order. It was hypothesized that expression ranking order of two representative housekeeping genes ACTB and GAPDH might be disturbed in the tissues of patients with Familial Idiopathic Scoliosis (with positive family history of idiopathic scoliosis) opposed to the patients with no family members affected (Sporadic Idiopathic Scoliosis). An artificial neural network (ANN) was developed that could serve to differentiate between familial and sporadic cases of idiopathic scoliosis based on the expression levels of ACTB and GAPDH in different tissues of scoliotic patients. The aim of the study was to investigate whether the expression levels of ACTB and GAPDH in different tissues of idiopathic scoliosis patients could be used as a source of data for specially developed artificial neural network in order to predict the positive family history of index patient. Results The comparison of developed models showed, that the most satisfactory classification accuracy was achieved for ANN model with 18 nodes in the first hidden layer and 16 nodes in the second hidden layer. The classification accuracy for positive Idiopathic Scoliosis anamnesis only with the expression measurements of ACTB and GAPDH with the use of ANN based on 6-18-16-1 architecture was 8 of 9 (88%). Only in one case the prediction was ambiguous. Conclusions Specially designed artificial neural network model proved possible association between expression level of ACTB, GAPDH and positive familial history of Idiopathic Scoliosis. PMID:23289769
Filby, Amy L; Tyler, Charles R
2007-01-01
Background Attempts to develop a mechanistic understanding of the effects of environmental estrogens on fish are increasingly conducted at the level of gene expression. Appropriate application of real-time PCR in such studies requires the use of a stably expressed 'housekeeping' gene as an internal control to normalize for differences in the amount of starting template between samples. Results We sought to identify appropriate genes for use as internal controls in experimental treatments with estrogen by analyzing the expression of eight functionally distinct 'housekeeping' genes (18S ribosomal RNA [18S rRNA], ribosomal protein l8 [rpl8], elongation factor 1 alpha [ef1a], glucose-6-phosphate dehydrogenase [g6pd], beta actin [bactin], glyceraldehyde-3-phosphate dehydrogenase [gapdh], hypoxanthine phosphoribosyltransferase 1 [hprt1], and tata box binding protein [tbp]) following exposure to the environmental estrogen, 17α-ethinylestradiol (EE2), in the fathead minnow (Pimephales promelas). Exposure to 10 ng/L EE2 for 21 days down-regulated the expression of ef1a, g6pd, bactin and gapdh in the liver, and bactin and gapdh in the gonad. Some of these effects were gender-specific, with bactin in the liver and gapdh in the gonad down-regulated by EE2 in males only. Furthermore, when ef1a, g6pd, bactin or gapdh were used for normalization, the hepatic expression of two genes of interest, vitellogenin (vtg) and cytochrome P450 1A (cyp1a) following exposure to EE2 was overestimated. Conclusion Based on the data presented, we recommend 18S rRNA, rpl8, hprt1 and/or tbp, but not ef1a, g6pd, bactin and/or gapdh, as likely appropriate internal controls in real-time PCR studies of estrogens effects in fish. Our studies show that pre-validation of control genes considering the scope and nature of the experiments to be performed, including both gender and tissue type, is critical for accurate assessments of the effects of environmental estrogens on gene expression in fish. PMID:17288598
Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan
2013-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736
Functional divergences of GAPDH isoforms during early development in two perciform fish species.
Sarropoulou, Elena; Nousdili, Dimitra; Kotoulas, Georgios; Magoulas, Antonios
2011-12-01
Glyceraldehyde-3-phospate dehydrogenase (GAPDH) is involved in basic cell catabolic processes and, as it is thought to be continuously expressed, belongs to the group of housekeeping genes. Thus, it is frequently used as an internal control in quantitative gene expression studies. However, the evidence of different expression patterns in a broad range of organisms and tissues, as well as the occurrence of different isoforms, shows that GAPDH has to be reevaluated as an internal control in qPCR studies, and its annotation has to be enriched. GAPDH has been shown to be involved in the pathway of energy and carbon molecule supply as well as in transcription and apoptosis. In the present study, we isolated the two isoforms, GAPDH-1 and GAPDH-2, of the gilthead sea bream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). We inferred the phylogenetic relationships to ten other fish species and gave the gene structure of both genes. We further investigated gene expression analysis in both species for different developmental stages showing divergent gene expression of the two isoforms and the possible function of GAPDH-1 as a maternal gene.
Dang, Wei; Sun, Li
2011-02-01
In recent years, quantitative real time reverse transcriptase-PCR (qRT-PCR) has been used frequently in the study of gene expression in turbot (Scophthalmus maximus) in relation to bacterial infection. However, no investigations on appropriate qRT-PCR reference genes have been documented. In this report, we determined the potential of eight housekeeping genes, i.e. β-actin (ACTB), ribosomal protein L17 (RPL17), α-tubulin (TUBA), elongation factor-1-α(EF1A), β-2-Microglobulin (B2M), RNA polymerase II subunit D (RPSD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 18S ribosomal RNA (18S rRNA), as internal standards for qRT-PCR analysis of gene expression in turbot as a function of bacterial infection. For this purpose, the expression of the eight housekeeping genes in seven turbot tissues was determined by qRT-PCR before and after bacterial challenge, and the data were analyzed with the geNorm and NormFinder algorisms. The results showed that the expression of all the examined genes exhibited tissue-dependent variations both before and after bacterial challenge. Before bacterial challenge, geNorm and NormFinder identified RPSD as the gene that showed least tissue specific expression. At 12 h post-bacterial infection, geNorm ranked ACTB/GAPDH, 18S rRNA/ACTB, ACTB/GAPDH, 18S rRNA/ACTB, RPL17/TUBA, RPSD/GAPDH, and RPSD/B2M, respectively, as the most stably expressed genes in liver, spleen, kidney, gill, heart, muscle, and brain. Comparable ranking orders were produced by NormFinder. Similar results were obtained at 24 h post-bacterial infection. Taken together, these results indicate that RPSD is the most stable gene across tissue types under normal physiological conditions and that, during bacterial infection, ACTB might be used as an internal standard for the normalization of gene expression in immune relevant organs; however, no single gene or single pair of genes in the examined set of housekeeping genes can serve as a universal reference across all tissue types under the condition of bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Barsalobres-Cavallari, Carla F; Severino, Fábio E; Maluf, Mirian P; Maia, Ivan G
2009-01-01
Background Quantitative data from gene expression experiments are often normalized by transcription levels of reference or housekeeping genes. An inherent assumption for their use is that the expression of these genes is highly uniform in living organisms during various phases of development, in different cell types and under diverse environmental conditions. To date, the validation of reference genes in plants has received very little attention and suitable reference genes have not been defined for a great number of crop species including Coffea arabica. The aim of the research reported herein was to compare the relative expression of a set of potential reference genes across different types of tissue/organ samples of coffee. We also validated the expression profiles of the selected reference genes at various stages of development and under a specific biotic stress. Results The expression levels of five frequently used housekeeping genes (reference genes), namely alcohol dehydrogenase (adh), 14-3-3, polyubiquitin (poly), β-actin (actin) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) was assessed by quantitative real-time RT-PCR over a set of five tissue/organ samples (root, stem, leaf, flower, and fruits) of Coffea arabica plants. In addition to these commonly used internal controls, three other genes encoding a cysteine proteinase (cys), a caffeine synthase (ccs) and the 60S ribosomal protein L7 (rpl7) were also tested. Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. The obtained results revealed significantly variable expression levels of all reference genes analyzed, with the exception of gapdh, which showed no significant changes in expression among the investigated experimental conditions. Conclusion Our data suggests that the expression of housekeeping genes is not completely stable in coffee. Based on our results, gapdh, followed by 14-3-3 and rpl7 were found to be homogeneously expressed and are therefore adequate for normalization purposes, showing equivalent transcript levels in different tissue/organ samples. Gapdh is therefore the recommended reference gene for measuring gene expression in Coffea arabica. Its use will enable more accurate and reliable normalization of tissue/organ-specific gene expression studies in this important cherry crop plant. PMID:19126214
Mogal, Ashish; Abdulkadir, Sarki A
2006-04-01
In quantitative RT-PCR (qRT-PCR), analysis of gene expression is dependent on normalization using housekeeping genes such as 18S rRNA, GAPDH and beta actin. However, variability in their expression has been reported to be caused by factors like drug treatment, pathological states and cell-cycle phase. An emerging area of cancer research focuses on identifying the role of epigenetic alterations such as histone modifications and DNA methylation in the initiation and progression of cancer. Histone acetylation is the best studied modification so far and has been probed through the use of histone deacetylase inhibitors (HDACi). Further, modulation of histone acetylation is currently being explored as a therapeutic strategy in the treatment of cancer and HDACis have shown promise in inhibiting tumorigenesis and metastasis. Trichostatin-A (TSA) is the most widely used HDACi. Therefore, we were driven to identify a suitable internal control for RT-PCR following TSA treatment. We performed quantitative RT-PCR analysis using mouse prostate tissue explants, human prostate cancer (LNCaP) cells and human breast cancer (T-47D and ZR-75-1) cells following TSA treatment. Expression of housekeeping genes including 18S rRNA, beta actin, GAPDH and ribosomal highly-basic 23-kDa protein (rb 23-kDa, RPL13A) were compared in vehicle versus TSA treated samples. Our results showed marked variations in 18S rRNA, beta actin mRNA and GAPDH mRNA levels in mouse prostate explants and a human prostate cancer (LNCaP) cell line following TSA treatment. Furthermore, in two human breast cancer cell lines (T-47D and ZR-75-1) 18S rRNA, beta actin mRNA and GAPDH mRNA levels varied significantly. However, RPL13A mRNA levels remained constant in all the conditions tested. Therefore, we recommend use of RPL13A as a standard for normalization during TSA treatment.
Critical protein GAPDH and its regulatory mechanisms in cancer cells
Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun
2015-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described. PMID:25859407
2005-01-01
the Selected Genes Sense Antisense Product length (bp) G3PDH 5=-TCCTGCACCACCAACTGCTTAG-3= 5=-TGCTTCACCACCTTCTTGATGTC-3= 341 iNOS 5...GAPDH, as a housekeeping gene, was not affected significantly by the hemorrhage protocol. The results showed that mRNA levels of all enzymes and
Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio
2002-10-15
Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.
Rocha-Martins, Maurício; Njaine, Brian; Silveira, Mariana S
2012-01-01
Housekeeping genes have been commonly used as reference to normalize gene expression and protein content data because of its presumed constitutive expression. In this paper, we challenge the consensual idea that housekeeping genes are reliable controls for expression studies in the retina through the investigation of a panel of reference genes potentially suitable for analysis of different stages of retinal development. We applied statistical tools on combinations of retinal developmental stages to assess the most stable internal controls for quantitative RT-PCR (qRT-PCR). The stability of expression of seven putative reference genes (Actb, B2m, Gapdh, Hprt1, Mapk1, Ppia and Rn18s) was analyzed using geNorm, BestKeeper and Normfinder software. In addition, several housekeeping genes were tested as loading controls for Western blot in the same sample panel, using Image J. Overall, for qRT-PCR the combination of Gapdh and Mapk1 showed the highest stability for most experimental sets. Actb was downregulated in more mature stages, while Rn18s and Hprt1 showed the highest variability. We normalized the expression of cyclin D1 using various reference genes and demonstrated that spurious results may result from blind selection of internal controls. For Western blot significant variation could be seen among four putative internal controls (β-actin, cyclophilin b, α-tubulin and lamin A/C), while MAPK1 was stably expressed. Putative housekeeping genes exhibit significant variation in both mRNA and protein content during retinal development. Our results showed that distinct combinations of internal controls fit for each experimental set in the case of qRT-PCR and that MAPK1 is a reliable loading control for Western blot. The results indicate that biased study outcomes may follow the use of reference genes without prior validation for qRT-PCR and Western blot.
Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua
2014-01-01
Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.
Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W
2011-08-01
To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.
Sinha, Pallavi; Singh, Vikas K.; Suryanarayana, V.; Krishnamurthy, L.; Saxena, Rachit K.; Varshney, Rajeev K.
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions. PMID:25849964
Sinha, Pallavi; Singh, Vikas K; Suryanarayana, V; Krishnamurthy, L; Saxena, Rachit K; Varshney, Rajeev K
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.
Hoque, Tafazzal; Bhogal, Meetu; Boghal, Meetu; Webb, Rodney A
2007-12-01
The non-invasive parasitic cestode Hymenolepis diminuta induces hypertrophy, hyperplasia and other changes in cell activity in the intestine of rats which are indicated in the expression of mRNA. We have investigated various house-keeping genes (GAPDH, beta-actin, 18S and HPRT) and other internal controls (total RNA/unit biomass, total RNA/unit length of intestine) to validate gene expression in the rat intestine after cestode infection and drug-induced neuromodulation. Variation in GAPDH, beta-actin, 18S and HPRT expression was observed in rat jejunal tissue according to treatment. Total RNA/unit length of intestine was found to be the most suitable internal control for normalizing target gene mRNA expression in both infected and/or drug-induced rat intestine. This normalization method may be applied to studies of gene expression levels in intestinal tissue where hypertrophy, hyperplasia, rapid growth and cell differentiation generally occur.
Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.
Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter
2017-10-01
To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) < PP2A < GAPDH. For local infection by TMV, the most stable genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH < PP2A < UCE. Using two of the most stable and the two least stable validated reference genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.
Ferrante, Jason; Hunter, Margaret; Wellehan, James F.X.
2018-01-01
Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees (Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α, and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher (P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.
Ferrante, Jason A; Hunter, Margaret E; Wellehan, James F X
2018-04-01
Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees ( Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α; and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida, US. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher ( P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.
Harrison, Oliver J; Moorjani, Narain; Torrens, Christopher; Ohri, Sunil K; Cagampang, Felino R
2016-01-01
Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue.
López-Landavery, Edgar A; Portillo-López, Amelia; Gallardo-Escárate, Cristian; Del Río-Portilla, Miguel A
2014-10-10
The red abalone Haliotis rufescens is one of the most important species for aquaculture in Baja California, México, and despite this, few gene expression studies have been done in tissues such as gill, head and gonad. For this purpose, reverse transcription and quantitative real time PCR (RT-qPCR) is a powerful tool for gene expression evaluation. For a reliable analysis, however, it is necessary to select and validate housekeeping genes that allow proper transcription quantification. Stability of nine housekeeping genes (ACTB, BGLU, TUBB, CY, GAPDH, HPRTI, RPL5, SDHA and UBC) was evaluated in different tissues of red abalone (gill, head and gonad/digestive gland). Four-fold serial dilutions of cDNA (from 25 ngμL(-1) to 0.39 ngμL(-1)) were used to prepare the standard curve, and it showed gene efficiencies between 0.95 and 0.99, with R(2)=0.99. geNorm and NormFinder analysis showed that RPL5 and CY were the most stable genes considering all tissues, whereas in gill HPRTI and BGLU were most stable. In gonad/digestive gland, RPL5 and TUBB were the most stable genes with geNorm, while SDHA and HPRTI were the best using NormFinder. Similarly, in head the best genes were RPL5 and UBC with geNorm, and GAPDH and CY with NormFinder. The technical variability analysis with RPL5 and abalone gonad/digestive gland tissue indicated a high repeatability with a variation coefficient within groups ≤ 0.56% and between groups ≤ 1.89%. These results will help us for further research in reproduction, thermoregulation and endocrinology in red abalone. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Lulu; Su, Jiaqi; Wang, Zhaoping; Yan, Xiwu; Yu, Ruihai
2017-12-01
Quantitative real-time polymerase chain reaction (qRT-PCR) is a rapid and reliable technique which has been widely used to quantifying gene transcripts (expression analysis). It is also employed for studying heterosis, hybridization breeding and hybrid tolerability of oysters, an ecologically and economically important taxonomic group. For these studies, selection of a suitable set of housekeeping genes as references is crucial for correct interpretation of qRT-PCR data. To identify suitable reference genes for oysters during low temperature and low salinity stresses, we analyzed twelve genes from the gill tissue of Crassostrea sikamea (SS), Crassostrea angulata (AA) and their hybrid (SA), which included three ribosomal genes, 28S ribosomal protein S5 ( RPS5), ribosomal protein L35 ( RPL35), and 60S ribosomal protein L29 ( RPL29); three structural genes, tubulin gamma ( TUBγ), annexin A6 and A7 ( AA6 and AA7); three metabolic pathway genes, ornithine decarboxylase ( OD), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH) and glutathione S-transferase P1 ( GSP); two transcription factors, elongation factor 1 alpha and beta ( EF1α and EF1β); and one protein synthesis gene (ubiquitin ( UBQ). Primers specific for these genes were successfully developed for the three groups of oysters. Three different algorithms, geNorm, NormFinder and BestKeeper, were used to evaluate the expression stability of these candidate genes. BestKeeper program was found to be the most reliable. Based on our analysis, we found that the expression of RPL35 and EF1α was stable under low salinity stress, and the expression of OD, GAPDH and EF1α was stable under low temperature stress in hybrid (SA) oyster; the expression of RPS5 and GAPDH was stable under low salinity stress, and the expression of RPS5, UBQ, GAPDH was stable under low temperature stress in SS oyster; the expression of RPS5, GAPDH, EF1β and AA7 was stable under low salinity stress, and the expression of RPL35, EF1α, GAPDH and EF1β was stable under low temperature stress in AA oyster. Furthermore, to evaluate their suitability, the reference genes were used to quantify six target genes. In conclusion, we have successfully developed primers appropriate for the expression analysis in SS, SA and AA.
Transdermal Delivery of siRNA through Microneedle Array
NASA Astrophysics Data System (ADS)
Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao
2016-02-01
Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.
Song, Hao; Dang, Xin; He, Yuan-Qiu; Zhang, Tao; Wang, Hai-Yan
2017-01-01
The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa . For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1 α ( EF-1α ), α -actin ( ACT ), cytochrome c oxidase subunit 1 ( COX1 ), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex subunit 7 ( NDUFA7 ), 60S ribosomal protein L5 ( RL5 ), 60S ribosomal protein L28 ( RL28 ), glyceraldehyde 3-phosphate dehydrogenase ( GAPDH ), β -tubulin ( TUBB ), 40S ribosomal protein S25 ( RS25 ), 40S ribosomal protein S8 ( RS8 ), ubiquitin-conjugating enzyme E2 ( UBE2 ), histone H3 ( HH3 ), and peptidyl-prolyl cis-trans isomerase A ( PPIA ). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α , RL5 , and NDUFA7 for liver , GAPDH , PPIA , and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene in all developmental stages measured, and COX1 and RL5 were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, PPIA , RS25 , and RL28 for stage 1, RL5 and RL28 for stage 2 and 5, RL28 and NDUFA7 for stage 3, and PPIA and TUBB for stage 4. Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of R. venosa in the future.
Carrol, Enitan D; Salway, Fiona; Pepper, Stuart D; Saunders, Emma; Mankhambo, Limangeni A; Ollier, William E; Hart, C Anthony; Day, Phillip
2007-01-01
Background The challenge of gene expression studies is to reliably quantify levels of transcripts, but this is hindered by a number of factors including sample availability, handling and storage. The PAXgene™ Blood RNA System includes a stabilizing additive in a plastic evacuated tube, but requires 2.5 mL blood, which makes routine implementation impractical for paediatric use. The aim of this study was to modify the PAXgene™ Blood RNA System kit protocol for application to small, sick chidren, without compromising RNA integrity, and subsequently to perform quantitative analysis of ICAM and interleukin-6 gene expression. Aliquots of 0.86 mL PAXgene™ reagent were put into microtubes and 0.3 mL whole blood added to maintain the same recommended proportions as in the PAXgene™ evacuated tube system. RNA quality was assessed using the Agilent BioAnalyser 2100 and an in-house TaqMan™ assay which measures GAPDH transcript integrity by determining 3' to 5' ratios. qPCR analysis was performed on an additional panel of 7 housekeeping genes. Three reference genes (HPRT1, YWHAZ and GAPDH) were identified using the GeNORM algorithm, which were subsequently used to normalising target gene expression levels. ICAM-1 and IL-6 gene expression were measured in 87 Malawian children with invasive pneumococcal disease. Results Total RNA yield was between 1,114 and 2,950 ng and the BioAnalyser 2100 demonstrated discernible 18s and 28s bands. The cycle threshold values obtained for the seven housekeeping genes were between 15 and 30 and showed good consistency. Median relative ICAM and IL-6 gene expression were significantly reduced in non-survivors compared to survivors (ICAM: 3.56 vs 4.41, p = 0.04, and IL-6: 2.16 vs 6.73, p = 0.02). Conclusion We have successfully modified the PAXgene™ blood collection system for use in small children and demonstrated preservation of RNA integrity and successful quantitative real-time PCR analysis. PMID:17850649
Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei
2012-01-01
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. PMID:22938136
Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei
2012-01-01
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Płachetka-Bożek, Anna; Augustyniak, Maria
2017-08-21
Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUBα and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, such as experimental conditions. The difference in gene expression underlies a range of biological processes, including development, reproduction and behavior. The aim of this study was to show the problems associated with using reference genes in the qPCR technique, in a study on inbred strains of Spodoptera exigua selected toward cadmium resistance. We present and discuss our results and observations, and give some recommendations concerning the use and limitations of housekeeping genes as internal standards, especially in research on insects. Our results suggest that holometabolism and poikilothermia, as well as time since metamorphosis and the level of exposure to the selective factor (cadmium in this case), have a significant effect on the expression of reference genes.
Song, Hao; Dang, Xin; He, Yuan-qiu
2017-01-01
Background The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa. For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. Methods In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1α (EF-1α), α-actin (ACT), cytochrome c oxidase subunit 1 (COX1), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1α subcomplex subunit 7 (NDUFA7), 60S ribosomal protein L5 (RL5), 60S ribosomal protein L28 (RL28), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-tubulin (TUBB), 40S ribosomal protein S25 (RS25), 40S ribosomal protein S8 (RS8), ubiquitin-conjugating enzyme E2 (UBE2), histone H3 (HH3), and peptidyl-prolyl cis-trans isomerase A (PPIA). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Results Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α, RL5, and NDUFA7 for liver, GAPDH, PPIA, and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene in all developmental stages measured, and COX1 and RL5 were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, PPIA, RS25, and RL28 for stage 1, RL5 and RL28 for stage 2 and 5, RL28 and NDUFA7 for stage 3, and PPIA and TUBB for stage 4. Discussion Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of R. venosa in the future. PMID:28584723
Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus
2017-09-01
Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT
Ren, Shengwei; Zhang, Feng; Li, Changyou; Jia, Changkai; Li, Siyuan; Xi, Haijie; Zhang, Hongbo; Yang, Lingling; Wang, Yiqiang
2010-06-11
To evaluate the suitability of common housekeeping genes (HKGs) for use in quantitative reverse transcription PCR (qRT-PCR) assays of the cornea in various murine disease models. CORNEAL DISEASE MODELS STUDIED WERE: 1) corneal neovascularization (CorNV) induced by suture or chemical burn, 2) corneal infection with Candida albicans or Aspergillus fumigatus by intrastromal injection of live spores, and 3) perforating corneal injury (PCI) in Balb/c mice or C57BL/6 mice. Expression of 8 HKGs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], beta-actin [ACTB], lactate dehydrogenase A [LDHA], ribosomal protein L5 [RPL5], ubiquitin C [UBC], peptidylprolyl isomerase A [PPIA], TATA-box binding protein [TBP1], and hypoxanthine guanine phosphoribosyl transferase [HPRT1]) in the cornea were measured at various time points by microarray hybridization or qRT-PCR and the data analyzed using geNorm and NormFinder. Microarray results showed that under the CorNV condition the expression stability of the 8 HKGs decreased in order of PPIA>RPL5>HPRT1>ACTB>UBC>TBP1>GAPDH>LDHA. qRT-PCR analyses demonstrated that expression of none of the 8 HKGs remained stable under all conditions, while GAPDH and ACTB were among the least stably expressed markers under most conditions. Both geNorm and NormFinder analyses proposed best HKGs or HKG combinations that differ between the various models. NormFinder proposed PPIA as best HKG for three CorNV models and PCI model, as well as UBC for two fungal keratitis models. geNorm analysis demonstrated that a similar model in different mice strains or caused by different stimuli may require different HKGs or HKG pairs for the best normalization. Namely, geNorm proposed PPIA and HRPT1 and PPIA and RPL5 pairs for chemical burn-induced CorNV in Balb/c and C57BL/6 mice, respectively, while UBC and HPRT1 and UBC and LDHA were best for Candida and Aspergillus induced keratitis in Balb/c mice, respectively. When qRT-PCR is designed for studies of gene expression in murine cornea, preselection of situation-specific reference genes is recommended. In the absence of knowledge about situation-specific HKGs, PPIA and UBC, either alone or in combination with HPRT1 or RPL5, can be employed.
Wu, Keke; Liu, Wenwen; Mar, Thithi; Liu, Yan; Wu, Yunfeng; Wang, Xifeng
2014-01-01
The bird cherry-oat aphid (Rhopalosiphum padi), an important pest of cereal crops, not only directly sucks sap from plants, but also transmits a number of plant viruses, collectively the yellow dwarf viruses (YDVs). For quantifying changes in gene expression in vector aphids, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a touchstone method, but the selection and validation of housekeeping genes (HKGs) as reference genes to normalize the expression level of endogenous genes of the vector and for exogenous genes of the virus in the aphids is critical to obtaining valid results. Such an assessment has not been done, however, for R. padi and YDVs. Here, we tested three algorithms (GeNorm, NormFinder and BestKeeper) to assess the suitability of candidate reference genes (EF-1α, ACT1, GAPDH, 18S rRNA) in 6 combinations of YDV and vector aphid morph. EF-1α and ACT1 together or in combination with GAPDH or with GAPDH and 18S rRNA could confidently be used to normalize virus titre and expression levels of endogenous genes in winged or wingless R. padi infected with Barley yellow dwarf virus isolates (BYDV)-PAV and BYDV-GAV. The use of only one reference gene, whether the most stably expressed (EF-1α) or the least stably expressed (18S rRNA), was not adequate for obtaining valid relative expression data from the RT-qPCR. Because of discrepancies among values for changes in relative expression obtained using 3 regions of the same gene, different regions of an endogenous aphid gene, including each terminus and the middle, should be analyzed at the same time with RT-qPCR. Our results highlight the necessity of choosing the best reference genes to obtain valid experimental data and provide several HKGs for relative quantification of virus titre in YDV-viruliferous aphids. PMID:24810421
Rhinn, Hervé; Marchand-Leroux, Catherine; Croci, Nicole; Plotkine, Michel; Scherman, Daniel; Escriou, Virginie
2008-01-01
Background Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models. Results We have compared five potential reference genes as well as total cDNA level monitored using Oligreen reagent in order to determine the best normalizing factors for quantitative RT-PCR expression studies in the early phase (0–48 h post-trauma (PT)) of a murine model of diffuse brain injury. The levels of 18S rRNA, and of transcripts of β-actin, glyceraldehyde-3P-dehydrogenase (GAPDH), β-microtubulin and S100β were determined in the injured brain region of traumatized mice sacrificed at 30 min, 3 h, 6 h, 12 h, 24 h and 48 h post-trauma. The stability of the reference genes candidates and of total cDNA was evaluated by three different methods, leading to the following rankings as normalization factors, from the most suitable to the less: by using geNorm VBA applet, we obtained the following sequence: cDNA(Oligreen); GAPDH > 18S rRNA > S100β > β-microtubulin > β-actin; by using NormFinder Excel Spreadsheet, we obtained the following sequence: GAPDH > cDNA(Oligreen) > S100β > 18S rRNA > β-actin > β-microtubulin; by using a Confidence-Interval calculation, we obtained the following sequence: cDNA(Oligreen) > 18S rRNA; GAPDH > S100β > β-microtubulin > β-actin. Conclusion This work suggests that Oligreen cDNA measurements, 18S rRNA and GAPDH or a combination of them may be used to efficiently normalize qRT-PCR gene expression in mouse brain trauma injury, and that β-actin and β-microtubulin should be avoided. The potential of total cDNA as measured by Oligreen as a first-intention normalizing factor with a broad field of applications is highlighted. Pros and cons of the three methods of normalization factors selection are discussed. A generic time- and cost-effective procedure for normalization factor validation is proposed. PMID:18611280
Polymer-based microfluidic chips for isothermal amplification of nucleic acids
NASA Astrophysics Data System (ADS)
Posmitnaya, Y. S.; Rudnitskaya, G. E.; Tupik, A. N.; Lukashenko, T. A.; Bukatin, A. C.; Evstrapov, A. A.
2017-11-01
Creation of low-cost compact devices based on microfluidic platforms for biological and medical research depends on the degree of development and enhancement of prototyping technologies. Two designs of polymer and hybrid microfluidic devices fabricated by soft lithography and intended for isothermal amplification and polymerase chain reaction are presented in this paper. The digital helicase-dependent isothermal amplification was tested in the device containing a droplet generator. Polymerase chain reaction was carried out in the hybrid microfluidic device having ten reaction chambers. A synthesized cDNA fragment of GAPDH housekeeping gene was used as a target.
Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae.
Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang
2016-01-01
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest.
Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae
Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang
2016-01-01
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest. PMID:27570487
Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N
2015-01-01
In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location.
Saad, N; Urdaci, M; Vignoles, C; Chaignepain, S; Tallon, R; Schmitter, J M; Bressollier, P
2009-12-01
The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.
Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping; Xu, Ruihua; Huang, Peng
2012-02-01
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1-10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy.
Nguewa, Paul A; Agorreta, Jackeline; Blanco, David; Lozano, Maria Dolores; Gomez-Roman, Javier; Sanchez, Blas A; Valles, Iñaki; Pajares, Maria J; Pio, Ruben; Rodriguez, Maria Jose; Montuenga, Luis M; Calvo, Alfonso
2008-01-01
Background The accurate normalization of differentially expressed genes in lung cancer is essential for the identification of novel therapeutic targets and biomarkers by real time RT-PCR and microarrays. Although classical "housekeeping" genes, such as GAPDH, HPRT1, and beta-actin have been widely used in the past, their accuracy as reference genes for lung tissues has not been proven. Results We have conducted a thorough analysis of a panel of 16 candidate reference genes for lung specimens and lung cell lines. Gene expression was measured by quantitative real time RT-PCR and expression stability was analyzed with the softwares GeNorm and NormFinder, mean of |ΔCt| (= |Ct Normal-Ct tumor|) ± SEM, and correlation coefficients among genes. Systematic comparison between candidates led us to the identification of a subset of suitable reference genes for clinical samples: IPO8, ACTB, POLR2A, 18S, and PPIA. Further analysis showed that IPO8 had a very low mean of |ΔCt| (0.70 ± 0.09), with no statistically significant differences between normal and malignant samples and with excellent expression stability. Conclusion Our data show that IPO8 is the most accurate reference gene for clinical lung specimens. In addition, we demonstrate that the commonly used genes GAPDH and HPRT1 are inappropriate to normalize data derived from lung biopsies, although they are suitable as reference genes for lung cell lines. We thus propose IPO8 as a novel reference gene for lung cancer samples. PMID:19014639
Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping
2012-01-01
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver meta-static tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1–10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy. PMID:22350014
Christou, Anastasis; Georgiadou, Egli C; Filippou, Panagiota; Manganaris, George A; Fotopoulos, Vasileios
2014-03-01
Strawberry plant tissues and particularly fruit material are rich in polysaccharides and polyphenolic compounds, thus rendering the isolation of nucleic acids a difficult task. This work describes the successful modification of a total RNA extraction protocol, which enables the isolation of high quantity and quality of total RNA from small amounts of strawberry leaf, root and fruit tissues. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of GAPDH housekeeping gene from isolated RNA further supports the proposed protocol efficiency and its use for downstream molecular applications. This novel procedure was also successfully followed using other fruit tissues, such as olive and kiwifruit. In addition, optional treatment with RNase A following initial nucleic acid extraction can provide sufficient quality and quality of genomic DNA for subsequent PCR analyses, as evidenced from PCR amplification of housekeeping genes using extracted genomic DNA as template. Overall, this optimized protocol allows easy, rapid and economic isolation of high quality RNA from small amounts of an important fruit crop, such as strawberry, with extended applicability to other recalcitrant fruit crops. Copyright © 2013 Elsevier B.V. All rights reserved.
Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping
2016-03-16
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.
Du, Yishuai; Zhang, Linlin; Xu, Fei; Huang, Baoyu; Zhang, Guofan; Li, Li
2013-03-01
Hatchery-reared larvae of the Pacific oyster (Crassostrea gigas) often suffer from massive mortality induced by Ostreid herpesvirus 1 (OsHV-1) infection, indicating the importance of better understanding of oyster immune defense systems. The accuracy of measurements of gene expression levels based on quantitative real-time PCR assays relies on the use of housekeeping genes as internal controls; however, few studies have focused on the selection of such internal controls. In this study, we conducted a comprehensive investigation of internal control genes during oyster development in virus-infected and uninfected samples. Transcriptome data for 38 developmental stages were downloaded and the gene expression patterns were classified into 30 clusters. A total of 317 orthologs of classical housekeeping genes in the oyster genome were annotated. After combining the expression profiles and oyster housekeeping gene dataset, 14 candidate internal controls were selected for further investigation: Elongation factor-1α (EF-1α), 18S rRNA (18S), 28S rRNA (28S), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin (ACT), Ribosomal protein L7 (RL7), Ribosomal protein L27 (RL27), Ribosomal protein L36 (RL36), Ribosomal protein S18 (RS18), Heterogeneous nuclear ribonucleoprotein A2/B1 (RO21), Eukaryotic translation elongation factor 2 (EF2), Ubiquitin-conjugating enzyme E2D2 (UBCD1), S-phase kinase-associated protein 1 (SKP1) and Heterogeneous nuclear ribonucleoprotein Q (HNRPQ). RNA was extracted from oyster larvae infected with OsHV-1 (group A; GA), and OsHV-1 free larvae (group B; GB). The expression levels of the 14 candidate internal controls were studied in GA and GB larvae by real-time PCR. Their expression stabilities were further analyzed using the GeNorm program. RL7 and RS18 were the most stable genes in both OsHV-1 infected (GA) and uninfected (GB) larvae. These results suggest that RL7 and RS18 could be used as internal controls for studying gene expression in normal growing oyster larvae and in OsHV-1 infected larvae. These high quality internal controls will be a valuable resource in future studies of oyster larval mortality. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098
Espínola, Sergio Martin; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo
2014-01-01
In recent years, a significant amount of sequence data (both genomic and transcriptomic) for Echinococcus spp. has been published, thereby facilitating the analysis of genes expressed during a specific stage or involved in parasite development. To perform a suitable gene expression quantification analysis, the use of validated reference genes is strongly recommended. Thus, the aim of this work was to identify suitable reference genes to allow reliable expression normalization for genes of interest in Echinococcus granulosus sensu stricto (s.s.) (G1) and Echinococcus ortleppi upon induction of the early pre-adult development. Untreated protoscoleces (PS) and pepsin-treated protoscoleces (PSP) from E. granulosus s.s. (G1) and E. ortleppi metacestode were used. The gene expression stability of eleven candidate reference genes (βTUB, NDUFV2, RPL13, TBP, CYP-1, RPII, EF-1α, βACT-1, GAPDH, ETIF4A-III and MAPK3) was assessed using geNorm, Normfinder, and RefFinder. Our qPCR data showed a good correlation with the recently published RNA-seq data. Regarding expression stability, EF-1α and TBP were the most stable genes for both species. Interestingly, βACT-1 (the most commonly used reference gene), and GAPDH and ETIF4A-III (previously identified as housekeeping genes) did not behave stably in our assay conditions. We propose the use of EF-1α as a reference gene for studies involving gene expression analysis in both PS and PSP experimental conditions for E. granulosus s.s. and E. ortleppi. To demonstrate its applicability, EF-1α was used as a normalizer gene in the relative quantification of transcripts from genes coding for antigen B subunits. The same EF-1α reference gene may be used in studies with other Echinococcus sensu lato species. This report validates suitable reference genes for species of class Cestoda, phylum Platyhelminthes, thus providing a foundation for further validation in other epidemiologically important cestode species, such as those from the Taenia genus. PMID:25014071
Espínola, Sergio Martin; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo
2014-01-01
In recent years, a significant amount of sequence data (both genomic and transcriptomic) for Echinococcus spp. has been published, thereby facilitating the analysis of genes expressed during a specific stage or involved in parasite development. To perform a suitable gene expression quantification analysis, the use of validated reference genes is strongly recommended. Thus, the aim of this work was to identify suitable reference genes to allow reliable expression normalization for genes of interest in Echinococcus granulosus sensu stricto (s.s.) (G1) and Echinococcus ortleppi upon induction of the early pre-adult development. Untreated protoscoleces (PS) and pepsin-treated protoscoleces (PSP) from E. granulosus s.s. (G1) and E. ortleppi metacestode were used. The gene expression stability of eleven candidate reference genes (βTUB, NDUFV2, RPL13, TBP, CYP-1, RPII, EF-1α, βACT-1, GAPDH, ETIF4A-III and MAPK3) was assessed using geNorm, Normfinder, and RefFinder. Our qPCR data showed a good correlation with the recently published RNA-seq data. Regarding expression stability, EF-1α and TBP were the most stable genes for both species. Interestingly, βACT-1 (the most commonly used reference gene), and GAPDH and ETIF4A-III (previously identified as housekeeping genes) did not behave stably in our assay conditions. We propose the use of EF-1α as a reference gene for studies involving gene expression analysis in both PS and PSP experimental conditions for E. granulosus s.s. and E. ortleppi. To demonstrate its applicability, EF-1α was used as a normalizer gene in the relative quantification of transcripts from genes coding for antigen B subunits. The same EF-1α reference gene may be used in studies with other Echinococcus sensu lato species. This report validates suitable reference genes for species of class Cestoda, phylum Platyhelminthes, thus providing a foundation for further validation in other epidemiologically important cestode species, such as those from the Taenia genus.
Yang, Haowen; Liu, Ming; Zhou, Bingcong; Deng, Yan; He, Nongyue; Jiang, Hesheng; Guo, Yafen; Lan, Ganqiu; Jiang, Qinyang; Yang, Xiurong; Li, Zhiyang
2016-06-01
Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.
2010-01-01
Background Due to the limited number of species specific antibodies against fish proteins, differential gene expression analyses are vital for the study of host immune responses. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most powerful tools for this purpose. Nevertheless, the accuracy of the method will depend on the careful selection of genes whose expression are stable and can be used as internal controls for a particular experimental setting. Findings The expression stability of five commonly used housekeeping genes [beta-actin (ACTB), elongation factor 1-alpha (EF1A), ubiquitin (UBQ), glyceraldehyd-3-phosphate dehydrogenase (GAPDH) and tubulin alpha (TUBA)] were monitored in salmonid cell lines CHSE-214 and RTS11 after infection with two of the most fastidious fish pathogens, the facultative bacterium Piscirickettsia salmonis and the aquabirnavirus IPNV (Infectious Pancreatic Necrosis Virus). After geNorm analysis, UBQ and EF1A appeared as the most stable, although EF1A was slightly upregulated at late stages of P. salmonis infection in RTS11. ACTB instead, showed a good performance in each case, being always considered within the three most stable genes of the panel. In contrast, infection-dependent differential regulation of GAPDH and TUBA was also demonstrated. Conclusion Based on the data presented here with the cell culture models CHSE-214 and RTS11, we suggest the initial choice of UBQ, ACTB and EF1A as reference genes in qRT-PCR assays for studying the effect of P. salmonis and IPNV on the host immune response. PMID:20398263
Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas)
Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Wu, Yeong-Huey; Li, Tsung-Hsien; Leu, Ming-Yih; Chang, Wen-Been
2016-01-01
Reverse transcription quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct results. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from four beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have the potential to serve as an important approach to evaluating cetacean health influenced by environmental insults. PMID:26998411
Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas).
Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Wu, Yeong-Huey; Li, Tsung-Hsien; Leu, Ming-Yih; Chang, Wen-Been; Yang, Wei Cheng
2016-01-01
Reverse transcription quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct results. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from four beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have the potential to serve as an important approach to evaluating cetacean health influenced by environmental insults.
Pusterla, N; Wilson, W D; Conrad, P A; Barr, B C; Ferraro, G L; Daft, B M; Leutenegger, C M
2006-09-09
This study was designed to determine the relative levels of gene transcription of selected pathogens and cytokines in the brain and spinal cord of 12 horses with equine protozoal myeloencephalitis (EPM), 11 with equine herpesvirus type 1 (EHV-1) myeloencephalopathy, and 12 healthy control horses by applying a real time pcr to the formalin-fixed and paraffin-embedded tissues. Total rna was extracted from each tissue, transcribed to complementary dna (cDNA) and assayed for Sarcocystis neurona, Neospora hughesi, EHV-1, equine GAPDH (housekeeping gene), tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-8, IL-10 AND IL-12 p40. S neurona cdna was detected in the neural tissue from all 12 horses with EPM, and two of them also had amplifiable cDNA of N hughesi. The relative levels of transcription of protozoal cdna ranged from 1 to 461 times baseline (mean 123). All the horses with ehv-1 myeloencephalopathy had positive viral signals by PCR with relative levels of transcription ranging from 1 to 1618 times baseline (mean 275). All the control horses tested negative for S neurona, N hughesi and EHV-1 cdna. The cytokine profiles of each disease indicated a balance between pro- and anti-inflammatory markers. In the horses with epm the pro-inflammatory Th1 cytokines (IL-8, TNF-alpha and IFN-gamma) were commonly expressed but the anti-inflammatory Th2 cytokines (IL-4, IL-6 AND IL-10) were absent or rare. In the horses with ehv-1 the proinflammatory cytokine IL-8 was commonly expressed, but IL-10 and IFN-gamma were not, and TNF-alpha was rare. Tissue from the control horses expressed only the gene GAPDH.
Validation of endogenous internal real-time PCR controls in renal tissues.
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal
2009-01-01
Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.
Karataylı, Ersin; Altunoğlu, Yasemin Çelik; Karataylı, Senem Ceren; Yurdaydın, Cihan; Bozdayı, A Mithat
2014-10-01
Internal controls (ICs), are the main components of any real-time PCR based amplification methods, which are co-purified and co-amplified with the actual target. The existence of free circulating nucleic acids in plasma and serum (CNAPS) has been known for many years. The aim of this study was to verify whether CNAPS can be used as ICs in real-time PCR based detection and quantification of DNA or RNA targets in plasma and serum samples. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene, was chosen at random as CNAPS to serve as an intrinsic internal control in two different real-time PCR based quantification models in plasma and serum. Viral loads of hepatitis B virus (HBV) DNA and hepatitis delta virus (HDV) RNA were quantified as actual targets in parallel to GAPDH as IC in a total of 519 serum or plasma samples including 21 healthy controls, 202 positive chronic hepatitis delta patients, 37 chronic hepatitis C patients, 168 chronic hepatitis B patients, 52 patients with hepatocellular carcinoma, and 39 patients with non-alcoholic steatohepatitis/non-alcoholic fatty liver disease. GAPDH levels did not show significant variance in different patient groups and yielded positive signals in all 519 patients with persistent cycle threshold (CT) values 27.85±1.57 (mean±standard deviation (SD)). Reproducibility of the GAPDH amplification in HDV RNA and HBV DNA quantifications was shown with a SD value of CT ranging from 0.42 to 2.14 (mean SD; 1.18) and 0.24 to 1.75 (mean SD; 1.03), respectively. In conclusion, the freely circulating nucleic acids can clearly be used as internal controls for real-time PCR based detection and quantification of any RNA and mainly DNA targets (pathogens) in serum or plasma and this simply excludes the compulsory external addition of any IC molecules into the reaction. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Xuguo; Gao, Xiwu
2014-01-01
Finding a suitable reference gene is the key for qRT-PCR analysis. However, none of the reference gene discovered thus far can be utilized universally under various biotic and abiotic experimental conditions. In this study, we further examine the stability of candidate reference genes under a single abiotic factor, insecticide treatment. After being exposed to eight commercially available insecticides, which belong to five different classes, the expression profiles of eight housekeeping genes in the sweetpotato whitefly, Bemisia tabaci, one of the most invasive and destructive pests in the world, were investigated using qRT-PCR analysis. In summary, elongation factor 1α (EF1α), α-tubulin (TUB1α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified as the most stable reference genes under the insecticide treatment. The initial assessment of candidate reference genes was further validated with the expression of two target genes, a P450 (Cyp6cm1) and a glutathione S-transferase (GST). However, ranking of reference genes varied substantially among intra- and inter-classes of insecticides. These combined data strongly suggested the necessity of conducting custom reference gene selection designed for each and every experimental condition, even when examining the same abiotic or biotic factor. PMID:24498122
Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang
2012-01-01
Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant–pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions. PMID:23029521
Tian, Lu; Li, Wenyu; Huang, Xinmei; Tian, Di; Liu, Jianhua; Yang, Xinchao; Liu, Lianrui; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui; Song, Xiaokai
2017-01-01
Coccidiosis is an intestinal disorder of poultry and often caused by simultaneous infections of several Eimeria species. GAPDH is one of the immunogenic common antigens among Eimeria tenella, E. acervulina, and E. maxima identified in our previous study. The present study was performed to further evaluate its immunogenicity and protective efficacy. The genes of GAPDH cloned from E. acervulina and E. maxima were named as EaGAPDH and EmGAPDH, respectively. The immunogenicity of recombinant proteins of EaGAPDH and EmGAPDH were analyzed by Western blot. The transcription and expression of pVAX-EaGAPDH and pVAX-EmGAPDH in the injected muscles were detected by reverse transcription PCR (RT-PCR) and Western blot, respectively. GAPDH-induced changes of T lymphocytes subpopulation, cytokines production, and antibody were determined using flow cytometry, quantitative real-time PCR (qPCR), and ELISA, respectively. Finally, the protective efficacies of pVAX-EaGAPDH and pVAX-EmGAPDH were evaluated by vaccination and challenge experiments. The results revealed that the recombinant GAPDH proteins reacted with the corresponding chicken antisera. The EaGAPDH genes were successfully transcribed and expressed in the injected muscles. Vaccination with pVAX-EaGAPDH and pVAX-EmGAPDH significantly increased the proportion of CD4+ and CD8+ T lymphocytes, the cytokines productions of IFN-γ, IL-2, IL-4 et al., and IgG antibody levels compared to controls. The vaccination increased the weight gains, decreased the oocyst outputs, alleviate the enteric lesions compared to controls, and induced moderate anti-coccidial index (ACI). In conclusion, the coccidial common antigen of GAPDH induced significant humoral and cellular immune response and effective protection against E. tenella, E. acervulina, E. maxima, and mixed infection of the three Eimeria species. PMID:28769877
Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang
2013-10-10
Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.
Lai, Y C; Fujikawa, T; Ando, T; Kitahara, G; Koiwa, M; Kubota, C; Miura, N
2017-06-01
Our aim was to identify a suitable microRNA housekeeping gene for real-time PCR analysis of bovine mastitis-related microRNA in milk. We identified , , and as housekeeping gene candidates on the basis of previous Solexa sequencing results. Threshold cycle (CT) values for , , and did not differ between milk from control cows and milk from mastitis-affected cows. NormFinder software identified as the most stable single housekeeping gene. We evaluated the suitability of the housekeeping gene candidates by using them to assess expression levels of the inflammation-related gene . Regardless of the housekeeping gene candidates used for normalization, relative expression levels of were significantly higher in mastitis-affected samples than in control samples. However, of all the housekeeping genes and gene combinations investigated, normalization with alone generated the difference in relative expression between mastitis-affected and control samples with the highest significance. These results suggest that is suitable for use as a housekeeping gene for analysis of bovine mastitis-related microRNA in milk.
Wieczorek, Przemysław; Wrzesińska, Barbara; Obrępalska-Stęplowska, Aleksandra
2013-12-01
Tomato (Solanum lycopersicum L.) is one of the most important vegetables of great worldwide economic value. The scientific importance of the vegetable results from the fact that the genome of S. lycopersicum has been sequenced. This allows researchers to study fundamental mechanisms playing an essential role during tomato development and response to environmental factors contributing significantly to cell metabolism alterations. Parallel with the development of contemporary genetics and the constant increase in sequencing data, progress has to be aligned with improvement of experimental methods used for studying genes functions and gene expression levels, of which the quantitative polymerase chain reaction (qPCR) is still the most reliable. As well as with other nucleic acid-based methods used for comparison of the abundance of specific RNAs, the RT-qPCR data have to be normalised to the levels of RNAs represented stably in a cell. To achieve the goal, the so-called housekeeping genes (i.e., RNAs encoding, for instance, proteins playing an important role in the cell metabolism or structure maintenance), are used for normalisation of the target gene expression data. However, a number of studies have indicated the transcriptional instability of commonly used reference genes analysed in different situations or conditions; for instance, the origin of cells, tissue types, or environmental or other experimental conditions. The expression of ten common housekeeping genes of S. lycopersicum, namely EF1α, TUB, CAC, EXP, RPL8, GAPDH, TBP, ACT, SAND and 18S rRNA were examined during viral infections of tomato. Changes in the expression levels of the genes were estimated by comparison of the non-inoculated tomato plants with those infected with commonly known tomato viral pathogens, Tomato torrado virus, Cucumber mosaic virus, Tobacco mosaic virus and Pepino mosaic virus, inducing a diverse range of disease symptoms on the common host, ranging from mild leaves chlorosis to very severe stem necrosis. It is emphasised that despite the wide range of diverse disease symptoms it is concluded that ACT, CAC and EF1α could be used as the most suitable reference genes in studies of host-virus interactions in tomato. Copyright © 2013 Elsevier B.V. All rights reserved.
Saunders, Cassandra Im; Kunde, Dale A; Crawford, Amanda; Geraghty, Dominic P
2007-02-01
The vanilloid receptor family of cation channels includes the capsaicin-sensitive, proton- and heat-activated TRPV1 and noxious heat-activated TRPV2. The present study demonstrates both gene and protein expression of TRPV1 and TRPV2 in human peripheral blood cells (PBCs) using molecular and immunocytochemical techniques. Using reverse-transcription polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR), TRPV1 and TRPV2 mRNA was detected in mRNA isolated from human whole peripheral blood. Using qRT-PCR, TRPV2 mRNA was highly expressed in human whole blood isolates (9.33+/-1.19 x 10(4)copies per 10(6)copies of the housekeeping gene GAPDH), whereas TRPV1 message was detected at approximately 150-fold lower levels (638+/-121 copies per 10(6)copies GAPDH). At the protein level, TRPV1 and TRPV2 activity was determined immunocytochemically in a lymphocyte-enriched mononuclear cell preparation (83+/-2% lymphocytes). Cells were labelled with rabbit anti-TRPV1 or goat anti-TRPV2 (1:500) and subsequently labelled with goat Texas red- (TRPV1) or FITC-(TRPV2) conjugated secondary antibodies (1:1000). All cells demonstrated punctate TRPV1-immunoreactivity, which appeared to be on the plasma membrane and in the cytoplasm. In contrast, cells within subjects appeared to express the TRPV1 protein at varying intensities. TRPV2-immunoreactivity appeared diffuse. This is the first study to demonstrate the presence of both TRPV1 and TRPV2 in human peripheral lymphocytes. Further studies need to be undertaken in order to determine the role of TRPV channels in these cells.
Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng
2017-02-01
Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki
2015-01-01
Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356
Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B
2015-01-01
As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.
Manipulation and Biological Applications of Gold Nanorods
NASA Astrophysics Data System (ADS)
Rostro-Kohanloo, Betty Catalina
This thesis compared anionic polyelectrolyte wrapping stabilization with poly(sodium 4-stryene-sulfonate), (PSS), polyelectrolyte and methoxy (polyethylene glycol)-thiol (mPEG(5000)-SH) strategies. From this data the critical gold nanorod (GNR) and cetyl-trimethylammonium bromide (CTAB) concentration ratio needed for GNR stabilization was determined using optical and chemical extraction methods. This was followed by functionalization with a heterobifunctional Polyethylene glycol (PEG) linker, such as a-thio-w-carboxy poly(ethylene glycol) termed t-PEG-c and carbodiimide chemistries for antibody linkage with Immunoglobulin G (IgG), and epidermal growth factor receptor (EGFR) based Human Epidermal growth factor Receptor 2 (Her2), and Cetuximab (C225) antibodies, for in vitro cancer cell targeting. Confocal, two-photon luminescence (TPL), and dark scattering microscopy, and fluorescence, zeta potential, and Nanoparticle Enzyme-linked immunosorbent assay (ELISA) were used to monitor changes to the GNR surface. An untreatable form of bladder cancer was then studied using the t-GNR-PEG-c-Ab bioconjugates with C225 antibody, which housed a glyceraldehyde-3-phosphate (GAPDH), Fluorescein isothiocyanate (FITC) labeled siRNA, termed GAPDH-siRNA-FITC, which was included within a Luciferase based plasmid. A salt based electrostatic heating method was used to trap the GAPDH-siRNA-FITC from the PEG layer by activating the PEG polymer pour point, while a laser based heating system was used for in vitro release inside cancer cells. The down regulation of the GAPDH gene was targeted by the siRNA. as GAPDH has been shown to be up-regulated in many cancers and down-regulated by chemotherapeutic drugs. Cell culture, and subsequent imaging by transmission electron microscopy (TEM), TPL and confocal microscopy were used to view the internalized conjugates, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to determine if the release of the GAPDH-siRNA caused a reduction in the expression of GAPDH-mRNA. Plasmonic gene silencing of the gene by the GAPDH-siRNA was then compared to a lipid based Dharmafect control in terms of transfection ability. RT-PCR results evidenced gene silencing of the plasmonic-GAPDH-siRNA vector when compared to the Dharmafect control. Silencing likely resulted from the zwitterionic charges of the plasmonic vector and the encapsulated GAPDH-siRNA, which yielded near neutral charge tendencies. This differs significantly from the Dharmafect lipid vector, which is cationic in nature. Endosomal release of the plasmonic vector is further enhanced by the laser excitation of the GNR at the longitudinal surface plasmon resonance (LSPR), which allows for the endosomal release of the GAPDH-siRNA through pore formation leading to cytoplasmic transport and subsequent gene silencing. Near neutral charges were welcomed in this plasmonic gene therapy study as they tend to favor endosomal release, pore formation, and transport.
Gong, Zu-Kang; Wang, Shuang-Jie; Huang, Yong-Qi; Zhao, Rui-Qiang; Zhu, Qi-Fang; Lin, Wen-Zhen
2014-12-01
RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.
Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing
2009-03-11
Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.
Liu, Tengfei; Fang, Hui; Liu, Jun; Reid, Stephen; Hou, Juan; Zhou, Tingting; Tian, Zhendong; Song, Botao; Xie, Conghua
2017-12-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers. © 2017 John Wiley & Sons Ltd.
Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi
2017-01-01
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death. PMID:28167533
Demidenko, Natalia V.; Logacheva, Maria D.; Penin, Aleksey A.
2011-01-01
Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species. PMID:21589908
Digital quantification of gene expression using emulsion PCR.
Shi, Xiaolong; Tang, Chao; Wang, Wei; Zhou, Dequan; Lu, Zuhong
2010-01-01
Here we describe a single-molecule quantitative assay of mRNA levels based on mRNA mediate-ligation and BEAMing (beads, emulsion, amplification, and magnetics) technique, which allows accurate and parallel measurement of multiple genes from a small amount of cells. In this method, a pair of oligos complementary target mRNA was used to probe transcripts for each gene of interest. The ligated products of oligos pair were clonally amplified on beads in millions of parallel compartmentalized droplets in a water-in-oil emulsion. The levels of each transcript within a sample were measured by counting the number of the correspondingly amplified beads which were immobilized on a glass surface. To demonstrate its utility, this method has been applied to the quantitation of the mRNA levels for two transcription factors, Klf4 and Sox5, and a housekeeping gene, Gapdh, in human leukemia K562 cells before and after induction with phorbol 12-myristate 13-acetate. Interestingly, we found a significant downregulation of the mRNA level of Sox5 after phorbol 12-myristate 13-acetate treatment. The mRNA mediate-ligation and BEAMing technique provides an accurate and sensitive way to quantify the amount of multiple specific mRNA in a very small number of cells, which may be valuable in the studies requiring precise and parallel quantization of multiple mRNA in the defined cell populations.
Nazari, Fatemeh; Parham, Abbas; Maleki, Adham Fani
2015-01-01
Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, β-actin and β2-microglobulin) in equine marrow- and adipose- derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. The expression levels of GAPDH were significantly different between AT- and BM- derived MSCs (p < 0.05). Differences in expression level of β-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, β-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. This study demonstrated that GAPDH and especially β-actin and B2M express in different levels in equine AT- and BM- derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.
Kaido, Masanori; Abe, Kazutomo; Mine, Akira; Hyodo, Kiwamu; Taniguchi, Takako; Taniguchi, Hisaaki; Mise, Kazuyuki; Okuno, Tetsuro
2014-01-01
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process. PMID:25411849
Liu, Jing; Wang, Qun; Sun, Minying; Zhu, Linlin; Yang, Michael; Zhao, Yu
2014-01-01
Quantitative real-time reverse transcription PCR (qRT-PCR) has become a widely used method for gene expression analysis; however, its data interpretation largely depends on the stability of reference genes. The transcriptomics of Panax ginseng, one of the most popular and traditional ingredients used in Chinese medicines, is increasingly being studied. Furthermore, it is vital to establish a series of reliable reference genes when qRT-PCR is used to assess the gene expression profile of ginseng. In this study, we screened out candidate reference genes for ginseng using gene expression data generated by a high-throughput sequencing platform. Based on the statistical tests, 20 reference genes (10 traditional housekeeping genes and 10 novel genes) were selected. These genes were tested for the normalization of expression levels in five growth stages and three distinct plant organs of ginseng by qPCR. These genes were subsequently ranked and compared according to the stability of their expressions using geNorm, NormFinder, and BestKeeper computational programs. Although the best reference genes were found to vary across different samples, CYP and EF-1α were the most stable genes amongst all samples. GAPDH/30S RPS20, CYP/60S RPL13 and CYP/QCR were the optimum pair of reference genes in the roots, stems, and leaves. CYP/60S RPL13, CYP/eIF-5A, aTUB/V-ATP, eIF-5A/SAR1, and aTUB/pol IIa were the most stably expressed combinations in each of the five developmental stages. Our study serves as a foundation for developing an accurate method of qRT-PCR and will benefit future studies on gene expression profiles of Panax Ginseng.
Zhang, Hua; Zhao, Yu; Zhou, Dao-Xiu
2017-12-01
Sirtuins, a family of proteins with homology to the yeast silent information regulator 2 (Sir2), are NAD+-dependent histone deacetylases and play crucial roles in energy sensing and regulation in yeast and animal cells. Plants are autotrophic organisms and display distinct features of carbon and energy metabolism. It remains largely unexplored whether and how plant cells sense energy/redox status to control carbon metabolic flux under various growth conditions. In this work, we show that the rice nuclear sirtuin OsSRT1 not only functions as an epigenetic regulator to repress glycolytic genes expression and glycolysis in seedlings, but also inhibits transcriptional activity of glyceraldehyde-3-phosphatedehydrogenase (GAPDH) that is enriched on glycolytic genes promoters and stimulates their expression. We show that OsSRT1 reduces GAPDH lysine acetylation and nuclear accumulation that are enhanced by oxidative stress. Mass spectrometry identified six acetylated lysines regulated by OsSRT1. OsSRT1-dependent lysine deacetylation of OsGAPDH1 represses transcriptional activity of the protein. The results indicate that OsSRT1 represses glycolysis by both regulating epigenetic modification of histone and inhibiting the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes in rice. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Prajapati, Surendra K; Joshi, Hema; Carlton, Jane M; Rizvi, M Alam
2013-01-01
The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.
Whelan, Christopher; Crocitto, Laura; Kawachi, Mark; Chan, Kevin; Smith, David; Wilson, Timothy; Smith, Steven
2013-02-01
In patients with prostate cancer, luminal prostate-specific antigen (PSA) enters the circulation because the basement membrane and glandular epithelium are damaged. Given that excess mobilization of prostate cells during prostatic massage can influence normalization in diagnostic testing, we studied PSA mRNA levels in expressed prostatic secretions (EPS) from patients undergoing biopsy for prostate cancer to determine if prostate cells are preferentially mobilized from patients with prostate cancer during prostatic massage. Quantitative Reverse-Transcription PCR (qRT-PCR) was used to measure the RNA levels of GAPDH, PSA, TMPRSS2:ERG and PCA3 in EPS specimens obtained from patients undergoing biopsy for prostate cancer. The level of PSA mRNA is significantly elevated in EPS specimens obtained from patients with a subsequent diagnosis of prostate cancer. This correlation influenced diagnostic testing results from EPS in two ways. First, when used as an exclusion parameter it appears to improve the diagnostic performance of TMPRSS2:ERG in EPS. Second, when used as a normalization parameter it appears to decrease the performance of these same tests. When comparing the results of mRNA based prostate cancer diagnostics in EPS it will be essential to consider PSA mRNA as a prostate specific gene and not a housekeeping gene.
Taki, Faten A; Abdel-Rahman, Abdel A; Zhang, Baohong
2014-01-01
Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO), ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays.
Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong
2013-07-04
Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.
2013-01-01
Carbon nanotubes are capable of penetrating the cell membrane and are widely considered as potential carriers for gene or drug delivery. Because the C-C and C=C bonds in carbon nanotubes are nonpolar, functionalization is required for carbon nanotubes to interact with genes or drugs as well as to improve their biocompatibility. In this study, polyethylenimine (PEI)-functionalized single-wall (PEI-NH-SWNTs) and multiwall carbon nanotubes (PEI-NH-MWNTs) were produced by direct amination method. PEI functionalization increased the positive charge on the surface of SWNTs and MWNTs, allowing carbon nanotubes to interact electrostatically with the negatively charged small interfering RNAs (siRNAs) and to serve as nonviral gene delivery reagents. PEI-NH-MWNTs and PEI-NH-SWNTs had a better solubility in water than pristine carbon nanotubes, and further removal of large aggregates by centrifugation produced a stable suspension of reduced particle size and improved homogeneity and dispersity. The amount of grafted PEI estimated by thermogravimetric analysis was 5.08% (w/w) and 5.28% (w/w) for PEI-NH-SWNTs and PEI-NH-MWNTs, respectively. For the assessment of cytotoxicity, various concentrations of PEI-NH-SWNTs and PEI-NH-MWNTs were incubated with human cervical cancer cells, HeLa-S3, for 48 h. PEI-NH-SWNTs and PEI-NH-MWNTs induced cell deaths in a dose-dependent manner but were less cytotoxic compared to pure PEI. As determined by electrophoretic mobility shift assay, siRNAs directed against glyceraldehyde-3-phosphate dehydrogenase (siGAPDH) were completely associated with PEI-NH-SWNTs or PEI-NH-MWNTs at a PEI-NH-SWNT/siGAPDH or PEI-NH-MWNT/siGAPDH mass ratio of 80:1 or 160:1, respectively. Furthermore, PEI-NH-SWNTs and PEI-NH-MWNTs successfully delivered siGAPDH into HeLa-S3 cells at PEI-NH-SWNT/siGAPDH and PEI-NH-MWNT/siGAPDH mass ratios of 1:1 to 20:1, resulting in suppression of the mRNA level of GAPDH to an extent similar to that of DharmaFECT, a common transfection reagent for siRNAs. Our results indicate that the PEI-NH-SWNTs and PEI-NH-MWNTs produced in this study are capable of delivering siRNAs into HeLa-S3 cells to suppress gene expression and may therefore be considered as novel nonviral gene delivery reagents. PMID:23742156
USDA-ARS?s Scientific Manuscript database
Gene transcript expression analysis is a useful tool for correlating gene activity with plant phenotype. For these studies, an appropriate reference gene is necessary to quantify the expression of target genes. Classic housekeeping genes have often been used for this purpose, but may not be consis...
Zeng, Hongqiu; Xie, Yanwei; Liu, Guoyin; Lin, Daozhe; He, Chaozu; Shi, Haitao
2018-06-01
MeGAPCs were identified as negative regulators of plant disease resistance, and the interaction of MeGAPCs and MeATG8s was highlighted in plant defense response. As an important enzyme of glycolysis metabolic pathway, glyceraldehyde-3-P dehydrogenase (GAPDH) plays important roles in plant development, abiotic stress and immune responses. Cassava (Manihot esculenta) is most important tropical crop and one of the major food crops, however, no information is available about GAPDH gene family in cassava. In this study, 14 MeGAPDHs including 6 cytosol GAPDHs (MeGAPCs) were identified from cassava, and the transcripts of 14 MeGAPDHs in response to Xanthomonas axonopodis pv manihotis (Xam) indicated their possible involvement in immune responses. Further investigation showed that MeGAPCs are negative regulators of disease resistance against Xam. Through transient expression in Nicotiana benthamiana, we found that overexpression of MeGAPCs led to decreased disease resistance against Xam. On the contrary, MeGAPCs-silenced cassava plants through virus-induced gene silencing (VIGS) conferred improved disease resistance. Notably, MeGAPCs physically interacted with autophagy-related protein 8b (MeATG8b) and MeATG8e and inhibited autophagic activity. Moreover, MeATG8b and MeATG8e negatively regulated the activities of NAD-dependent MeGAPDHs, and are involved in MeGAPCs-mediated disease resistance. Taken together, this study highlights the involvement of MeGAPCs in plant disease resistance, through interacting with MeATG8b and MeATG8e.
Flores-Herrera, Patricio; Arredondo-Zelada, Oscar; Marshall, Sergio H; Gómez, Fernando A
2018-06-01
Piscirickettsia salmonis is a highly aggressive facultative intracellular bacterium that challenges the sustainability of Chilean salmon production. Due to the limited knowledge of its biology, there is a need to identify key molecular markers that could help define the pathogenic potential of this bacterium. We think a model system should be implemented that efficiently evaluates the expression of putative bacterial markers by using validated, stable, and highly specific housekeeping genes to properly select target genes, which could lead to identifying those responsible for infection and disease induction in naturally infected fish. Here, we selected a set of validated reference or housekeeping genes for RT-qPCR expression analyses of P. salmonis under different growth and stress conditions, including an in vitro infection kinetic. After a thorough screening, we selected sdhA as the most reliable housekeeping gene able to represent stable and highly specific host reference genes for RT-qPCR-driven P. salmonis analysis. Copyright © 2018. Published by Elsevier B.V.
Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity.
Santos, Fabiane Igansi de Castro Dos; Marini, Naciele; Santos, Railson Schreinert Dos; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio; de Oliveira, Antonio Costa
2018-01-01
Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here.
Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity
dos Santos, Fabiane Igansi de Castro; Marini, Naciele; dos Santos, Railson Schreinert; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio
2018-01-01
Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here. PMID:29494624
Wang, Kaicheng; Lu, Chengping
2007-01-01
A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.
Al-Bader, Maie Dawoud; Al-Sarraf, Hameed Ali
2005-04-21
Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.
NASA Technical Reports Server (NTRS)
Evans, G. L.; Morey-Holton, E.; Turner, R. T.
1998-01-01
In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.
USDA-ARS?s Scientific Manuscript database
To accurately measure gene expression using PCR-based approaches, there is the need for reference genes that have low variance in expression (housekeeping genes) to normalise the data for RNA quantity and quality. For non-model species such as Malus x domestica (apples), previously, the selection of...
Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking.
Choi, Eun-Hye; Lee, Sang Kwang; Ihm, Chunhwa; Sohn, Young-Hak
2014-12-01
Dried blood spot (DBS) technology is a microsampling alternative to traditional plasma or serum sampling for pharmaco- or toxicokinetic evaluation. DBS technology has been applied to diagnostic screening in drug discovery, nonclinical, and clinical settings. We have developed an improved elution protocol involving boiling of blood spots dried on Whatman filter paper. The purpose of this study was to compare the quality, purity, and quantity of DNA isolated from frozen blood samples and DBSs. We optimized a method for extraction and estimation of DNA from blood spots dried on filter paper (3-mm FTA card). A single DBS containing 40 μL blood was used. DNA was efficiently extracted in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer by incubation at 37°C overnight. DNA was stable in DBSs that were stored at room temperature or frozen. The housekeeping genes GAPDH and beta-actin were used as positive standards for polymerase chain reaction (PCR) validation of general diagnostic screening. Our simple and convenient DBS storage and extraction methods are suitable for diagnostic screening by using very small volumes of blood collected on filter paper, and can be used in biobanks for blood sample storage.
Campos, M S; Rodini, C O; Pinto-Júnior, D S; Nunes, F D
2009-02-01
The selection of housekeeping genes is critical for gene expression studies. To address this issue, four candidate housekeeping genes, including several commonly used ones, were investigated in oral squamous cell carcinoma cell lines. A simple quantitative RT-PCR approach was employed by comparing relative expression of the four candidate genes within two cancerous cell lines (HN6 and HN31) and one noncancerous cell line (HaCaT) treated or not with EGF and TGF-beta1. Data were analyzed using ANOVA followed by the NormFinder software program. On this basis, stability of the candidate housekeeping genes was ranked and non statistical differences were found using ANOVA test. On the other hand, the NormFinder was able to show that GAPD and TUBB presented the less variable results, representing appropriated housekeeping genes for the samples and conditions analyzed. In conclusion, this study suggests that the GAPD and the TUBB represent adequate normalizers for gene profiling studies in OSCC cell lines, covering, respectively, high and low expression levels genes.
Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder
2014-01-01
The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.
Figueredo, Diego de Siqueira; Barbosa, Mayara Rodrigues; Coimbra, Daniel Gomes; Dos Santos, José Luiz Araújo; Costa, Ellyda Fernanda Lopes; Koike, Bruna Del Vechio; Alexandre Moreira, Magna Suzana; de Andrade, Tiago Gomes
2018-03-01
Recent studies have shown that transcriptomes from different tissues present circadian oscillations. Therefore, the endogenous variation of total RNA should be considered as a potential bias in circadian studies of gene expression. However, normalization strategies generally include the equalization of total RNA concentration between samples prior to cDNA synthesis. Moreover, endogenous housekeeping genes (HKGs) frequently used for data normalization may exhibit circadian variation and distort experimental results if not detected or considered. In this study, we controlled experimental conditions from the amount of initial brain tissue samples through extraction steps, cDNA synthesis, and quantitative real time PCR (qPCR) to demonstrate a circadian oscillation of total RNA concentration. We also identified that the normalization of the RNA's yield affected the rhythmic profiles of different genes, including Per1-2 and Bmal1. Five widely used HKGs (Actb, Eif2a, Gapdh, Hprt1, and B2m) also presented rhythmic variations not detected by geNorm algorithm. In addition, the analysis of exogenous microRNAs (Cel-miR-54 and Cel-miR-39) spiked during RNA extraction suggests that the yield was affected by total RNA concentration, which may impact circadian studies of small RNAs. The results indicate that the approach of tissue normalization without total RNA equalization prior to cDNA synthesis can avoid bias from endogenous broad variations in transcript levels. Also, the circadian analysis of 2 -Cycle threshold (Ct) data, without HKGs, may be an alternative for chronobiological studies under controlled experimental conditions.
Korbakis, Dimitrios; Fragoulis, Emmanuel G; Scorilas, Andreas
2013-03-01
3,4-Dihydroxy-L-phenylalanine decarboxylase (DDC) is an enzyme implicated in the biosynthetic pathways of the neurotransmitters dopamine and probably serotonin. DDC gene expression has been studied in numerous malignancies and the corresponding data have shown remarkable alterations in the mRNA and/or protein levels encoded by the gene. The aim of this study was to examine any modulations in the DDC mRNA levels in gastric cancer cells after their treatment with the chemotherapeutic agents 5-fluorouracil, leucovorin, irinotecan, etoposide, cisplatin, and taxol. The sensitivity of the AGS gastric adenocarcinoma cells to the antineoplastic drugs was evaluated using the MTT assay. Total RNA was extracted and reverse transcribed into cDNA. A highly sensitive quantitative real-time PCR methodology was developed for the quantification of DDC mRNA. GAPDH was used as a housekeeping gene. Relative quantification analysis was carried out using the comparative C T method ((Equation is included in full-text article.)). The treatment of AGS cells with several concentrations of various broadly used anticancer drugs resulted in significant modulations of the DDC mRNA levels compared with those in the untreated cells in a time-specific and drug-specific manner. Generally, DDC expression levels appeared to decrease after three time periods of exposure to the selected chemotherapeutic agents, suggesting a characteristic DDC mRNA expression profile that is possibly related to the mechanism of each drug. Our experimental data show that the DDC gene might serve as a new potential molecular biomarker predicting treatment response in gastric cancer cells.
Evaluation of reference genes for insect olfaction studies.
Omondi, Bonaventure Aman; Latorre-Estivalis, Jose Manuel; Rocha Oliveira, Ivana Helena; Ignell, Rickard; Lorenzo, Marcelo Gustavo
2015-04-22
Quantitative reverse transcription PCR (qRT-PCR) is a robust and accessible method to assay gene expression and to infer gene regulation. Being a chain of procedures, this technique is subject to systematic error due to biological and technical limitations mainly set by the starting material and downstream procedures. Thus, rigorous data normalization is critical to grant reliability and repeatability of gene expression quantification by qRT-PCR. A number of 'housekeeping genes', involved in basic cellular functions, have been commonly used as internal controls for this normalization process. However, these genes could themselves be regulated and must therefore be tested a priori. We evaluated eight potential reference genes for their stability as internal controls for RT-qPCR studies of olfactory gene expression in the antennae of Rhodnius prolixus, a Chagas disease vector. The set of genes included were: α-tubulin; β-actin; Glyceraldehyde-3-phosphate dehydrogenase; Eukaryotic initiation factor 1A; Glutathione-S-transferase; Serine protease; Succinate dehydrogenase; and Glucose-6-phosphate dehydrogenase. Five experimental conditions, including changes in age,developmental stage and feeding status were tested in both sexes. We show that the evaluation of candidate reference genes is necessary for each combination of sex, tissue and physiological condition analyzed in order to avoid inconsistent results and conclusions. Although, Normfinder and geNorm software yielded different results between males and females, five genes (SDH, Tub, GAPDH, Act and G6PDH) appeared in the first positions in all rankings obtained. By using gene expression data of a single olfactory coreceptor gene as an example, we demonstrated the extent of changes expected using different internal standards. This work underlines the need for a rigorous selection of internal standards to grant the reliability of normalization processes in qRT-PCR studies. Furthermore, we show that particular physiological or developmental conditions require independent evaluation of a diverse set of potential reference genes.
Haufe, C C; Eismann, U; Deppisch, R M; Stein, G
2001-02-01
Dialysis-related amyloidosis is an important complication of long-term hemodialysis (HD) therapy with several pathogenetic factors. One of them is the influence of the dialyzer membrane type on the synthesis of beta2-microglobulin (beta2m). In vitro results are controversial. Thus, the hypothesis of whether in vivo beta2m generation is induced by the HD procedure and whether this induction depends on the type of the used dialyzer membrane should be tested. The aim of the present study was to investigate the influence of "biocompatible" high-flux versus "bioincompatible" low-flux HD on in vivo beta2m generation as well as the induction of the early activation gene c-fos in peripheral blood cells. Six nondiabetic HD patients [mean age 46 (21 to 69) years; Kt/V> 1.2] were included in a randomized crossover study using either a low-flux (cellulosic/cuprophan) or a high-flux (polyamide) dialyzer membrane. At the end of a four-week run-in period for each membrane, whole blood samples were taken before, immediately at, and four hours after the end of the dialysis session. MRNA was extracted, and after transcription to cDNA, quantitative polymerase chain reaction was performed for the beta2m gene, the early response gene c-fos, and the GAP-DH housekeeping gene. Based on the applied method for detection of specific mRNA, the results were given as ratio of beta2m or c-fos cDNA per GAP-DH cDNA. General cell activation during HD was indicated by increasing mRNA expression of c-fos related to the time course of the dialysis session, whereas beta2m did not change significantly. However, no difference was found when comparing the low-flux and the high-flux dialyzer membranes. Despite the evidence for activation of peripheral blood cells, as indicated by increasing c-fos message, no sign of beta2m mRNA induction during HD procedure with different dialyzer membranes was seen. Our results suggest that there is post-transcriptional regulation of beta2m generation and/or release as well as the influence of the dialyzer membrane type on post-translational processes, that is, advance glycation end products (AGE) or conformational modification of the beta2m protein. Furthermore, our data demonstrate that gene expression patterns during dialysis and/or uremia are not homogenous and need to be investigated further, especially with respect to the proinflammatory role of early leukocyte activation signals.
Sood, Tanushri Jerath; Lagah, Swati Viviyan; Sharma, Ankita; Singla, Suresh Kumar; Mukesh, Manishi; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2017-10-01
We evaluated the suitability of 10 candidate internal control genes (ICGs), belonging to different functional classes, namely ACTB, EEF1A1, GAPDH, HPRT1, HMBS, RPS15, RPS18, RPS23, SDHA, and UBC for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of blastocyst-stage buffalo embryos produced by hand-made cloning and in vitro fertilization (IVF). Total RNA was isolated from three pools, each of cloned and IVF blastocysts (n = 50/pool) for cDNA synthesis. Two different statistical algorithms geNorm and NormFinder were used for evaluating the stability of these genes. Based on gene stability measure (M value) and pairwise variation (V value), calculated by geNorm analysis, the most stable ICGs were RPS15, HPRT1, and ACTB for cloned blastocysts, HMBS, UBC, and HPRT1 for IVF blastocysts and RPS15, GAPDH, and HPRT1 for both the embryo types analyzed together. RPS18 was the least stable gene for both cloned and IVF blastocysts. Following NormFinder analysis, the order of stability was RPS15 = HPRT1>GAPDH for cloned blastocysts, HMBS = UBC>RPS23 for IVF blastocysts, and HPRT1>GAPDH>RPS15 for cloned and IVF blastocysts together. These results suggest that despite overlapping of the three most stable ICGs between cloned and IVF blastocysts, the panel of ICGs selected for normalization of qPCR data of cloned and IVF blastocyst-stage embryos should be different.
Quantitative RT-PCR is frequently used to analyze gene expression in different experimental systems. In this assay, housekeeping genes are frequently used to normalize for the variability between samples (relative quantification). We have examined the utility of using qRT-PCR and...
Role of SRC-3delta4 in the Progression and Metastasis of Castration-Resistant Prostate Cancer
2013-10-01
Expression of SRC-3∆4, GAPDH, and AR target genes including PSA, KLK2, IGFBP5, Cyclin A2, and UBE2C was determined by RT-qPCR analysis . Data are...Expression of AR (B), GAPDH, and TMPRSS2- ERG (C) was determined by RT-qPCR analysis . Data are presented using the comparative Ct method, in which GAPDH...input. An irrelevant region (1800 bp downstream of transcription start site) was served as a negative control. (E) and (F). ChIP analysis of SRC-3∆4’s
Yamaguchi, Hiromi; Matsumoto, Sawako; Ishibashi, Mariko; Hasegawa, Kiyoshi; Sugitani, Masahiko; Takayama, Tadatoshi; Esumi, Mariko
2013-10-01
The level of expression of housekeeping genes is in general considered stable, and a representative gene such as glyceraldehyde-3-phosphate dehydrogenase is commonly used as an internal control for quantitating mRNA. However, expression of housekeeping genes is not always constant under pathological conditions. To determine which genes would be most suitable as internal controls for quantitative gene expression studies in human liver diseases, we quantified 12 representative housekeeping genes in 27 non-cancerous liver tissues (normal, chronic hepatitis C with and without liver cirrhosis). We identified β-glucuronidase as the most suitable gene for studies on liver by rigorous statistical analysis of inter- and intra-group comparisons. We conclude that it is important to determine the most appropriate control gene for the particular condition to be analyzed. © 2013 Elsevier Inc. All rights reserved.
Di, Shengmeng; Tian, Zongcheng; Qian, Airong; Gao, Xiang; Yu, Dan; Brandi, Maria Luisa; Shang, Peng
2011-12-01
Studies of animals and humans subjected to spaceflight demonstrate that weightlessness negatively affects the mass and mechanical properties of bone tissue. Bone cells could sense and respond to the gravity unloading, and genes sensitive to gravity change were considered to play a critical role in the mechanotransduction of bone cells. To evaluate the fold-change of gene expression, appropriate reference genes should be identified because there is no housekeeping gene having stable expression in all experimental conditions. Consequently, expression stability of ten candidate housekeeping genes were examined in osteoblast-like MC3T3-E1, osteocyte-like MLO-Y4, and preosteoclast-like FLG29.1 cells under different apparent gravities (μg, 1 g, and 2 g) in the high-intensity gradient magnetic field produced by a superconducting magnet. The results showed that the relative expression of these ten candidate housekeeping genes was different in different bone cells; Moreover, the most suitable reference genes of the same cells in altered gravity conditions were also different from that in strong magnetic field. It demonstrated the importance of selecting suitable reference genes in experimental set-ups. Furthermore, it provides an alternative choice to the traditionally accepted housekeeping genes used so far about studies of gravitational biology and magneto biology.
Reference genes for reverse transcription quantitative PCR in canine brain tissue.
Stassen, Quirine E M; Riemers, Frank M; Reijmerink, Hannah; Leegwater, Peter A J; Penning, Louis C
2015-12-09
In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer's disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and inexpensive method to study expression levels of genes involved in disease processes. Accurate normalisation with stably expressed so-called reference genes is crucial for reliable expression analysis. Following the minimum information for publication of quantitative real-time PCR experiments precise guidelines, the expression of ten frequently used reference genes, namely YWHAZ, HMBS, B2M, SDHA, GAPDH, HPRT, RPL13A, RPS5, RPS19 and GUSB was evaluated in seven brain regions (frontal lobe, parietal lobe, occipital lobe, temporal lobe, thalamus, hippocampus and cerebellum) and whole brain of healthy dogs. The stability of expression varied between different brain areas. Using the GeNorm and Normfinder software HMBS, GAPDH and HPRT were the most reliable reference genes for whole brain. Furthermore based on GeNorm calculations it was concluded that as little as two to three reference genes are sufficient to obtain reliable normalisation, irrespective the brain area. Our results amend/extend the limited previously published data on canine brain reference genes. Despite the excellent expression stability of HMBS, GAPDH and HRPT, the evaluation of expression stability of reference genes must be a standard and integral part of experimental design and subsequent data analysis.
Ranga Rao, Suresh; Subbarayan, Rajasekaran; Ajitkumar, Supraja; Murugan Girija, Dinesh
2018-01-01
Cyclosporine induces overgrowth of human gingiva. Previously we have shown (i) cyclosporine-inducing ER stress in human gingival fibroblasts (HGF), (ii) increased matrix protein expression, and (iii) interference with mitochondrial pro- and anti-apoptotic factors. This study was undertaken to assess the effects of melatonin (an antioxidant), 4PBA (an ER stress inhibitor), and simvastatin on the expression of ER Stress markers as well as on matrix and mitochondrial markers. HGF incubated with cyclosporine, or without melatonin/4PBA/statin. After 24 hr of incubation, mRNA expression of ER stress markers (GRP78, CHOP, XBP1, and XBPs) and matrix protein markers (like α-SMA, VEGF, TGF-β, CTGF), and mitochondrial apoptosis markers estimated and compared with housekeeping gene GAPDH. Compared to the control cyclosporine significantly augmented ER Stress and matrix proteins, which decreased significantly with the use of melatonin, 4PBA, and simvastatin. The mitochondrial proapoptotic molecule cyclophilin D, as well as Bcl2 expression also decreased after PBA treatment, paralleling an increase in cytochrome c expression. The effect of 4PBA was much more pronounced than the influence of other two. In conclusion, 4PBA could be a viable therapeutic option for drug-induced gingival overgrowth. © 2017 Wiley Periodicals, Inc.
Optimal Reference Gene Selection for Expression Studies in Human Reticulocytes.
Aggarwal, Anu; Jamwal, Manu; Viswanathan, Ganesh K; Sharma, Prashant; Sachdeva, ManUpdesh S; Bansal, Deepak; Malhotra, Pankaj; Das, Reena
2018-05-01
Reference genes are indispensable for normalizing mRNA levels across samples in real-time quantitative PCR. Their expression levels vary under different experimental conditions and because of several inherent characteristics. Appropriate reference gene selection is thus critical for gene-expression studies. This study aimed at selecting optimal reference genes for gene-expression analysis of reticulocytes and at validating them in hereditary spherocytosis (HS) and β-thalassemia intermedia (βTI) patients. Seven reference genes (PGK1, MPP1, HPRT1, ACTB, GAPDH, RN18S1, and SDHA) were selected because of published reports. Real-time quantitative PCR was performed on reticulocytes in 20 healthy volunteers, 15 HS patients, and 10 βTI patients. Threshold cycle values were compared with fold-change method and RefFinder software. The stable reference genes recommended by RefFinder were validated with SLC4A1 and flow cytometric eosin-5'-maleimide binding assay values in HS patients and HBG2 and high performance liquid chromatography-derived percentage of hemoglobin F in βTI. Comprehensive ranking predicted MPP1 and GAPDH as optimal reference genes for reticulocytes that were not affected in HS and βTI. This was further confirmed on validation with eosin-5'-maleimide results and percentage of hemoglobin F in HS and βTI patients, respectively. Hence, MPP1 and GAPDH are good reference genes for reticulocyte expression studies compared with ACTB and RN18S1, the two most commonly used reference genes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Fuentes, Alejandra; Ortiz, Javier; Saavedra, Nicolás; Salazar, Luis A; Meneses, Claudio; Arriagada, Cesar
2016-04-01
The gene expression stability of candidate reference genes in the roots and leaves of Solanum lycopersicum inoculated with arbuscular mycorrhizal fungi was investigated. Eight candidate reference genes including elongation factor 1 α (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), protein phosphatase 2A (PP2Acs), ribosomal protein L2 (RPL2), β-tubulin (TUB), ubiquitin (UBI) and actin (ACT) were selected, and their expression stability was assessed to determine the most stable internal reference for quantitative PCR normalization in S. lycopersicum inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. The stability of each gene was analysed in leaves and roots together and separated using the geNorm and NormFinder algorithms. Differences were detected between leaves and roots, varying among the best-ranked genes depending on the algorithm used and the tissue analysed. PGK, TUB and EF1 genes showed higher stability in roots, while EF1 and UBI had higher stability in leaves. Statistical algorithms indicated that the GAPDH gene was the least stable under the experimental conditions assayed. Then, we analysed the expression levels of the LePT4 gene, a phosphate transporter whose expression is induced by fungal colonization in host plant roots. No differences were observed when the most stable genes were used as reference genes. However, when GAPDH was used as the reference gene, we observed an overestimation of LePT4 expression. In summary, our results revealed that candidate reference genes present variable stability in S. lycopersicum arbuscular mycorrhizal symbiosis depending on the algorithm and tissue analysed. Thus, reference gene selection is an important issue for obtaining reliable results in gene expression quantification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J
2008-09-01
The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.
Selection of Reference Genes for Expression Studies in Diaphorina citri (Hemiptera: Liviidae).
Bassan, Meire Menezes; Angelotti-Mendonc A, Je Ssika; Alves, Gustavo Rodrigues; Yamamoto, Pedro Takao; Moura O Filho, Francisco de Assis Alves
2017-12-05
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is considered the main vector of the bacteria associated with huanglongbing, a very serious disease that has threatened the world citrus industry. The absence of efficient control management protocols, including a lack of resistant cultivars, has led to the development of different approaches to study this pathosystem. The production of resistant genotypes relies on D. citri gene expression analyses by RT-qPCR to assess control of the vector population. High-quality, reliable RT-qPCR analyses depend upon proper reference gene selection and validation. However, adequate D. citri reference genes have not yet been identified. In the present study, we evaluated the genes EF 1-α, ACT, GAPDH, RPL7, RPL17, and TUB as candidate reference genes for this insect. Gene expression stability was evaluated using the mathematical algorithms deltaCt, NormFinder, BestKeeper, and geNorm, at five insect developmental stages, grown on two different plant hosts [Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae) and Murraya paniculata (L.) Jack (Sapindales: Rutaceae)]. The final gene ranking was calculated using RefFinder software, and the V-ATPase-A gene was selected for validation. According to our results, two reference genes are recommended when different plant hosts and developmental stages are considered. Considering gene expression studies in D. citri grown on M. paniculata, regardless of the insect developmental stage, GAPDH and RPL7 have the best fit as reference genes in RT-qPCR analyses, whereas GAPDH and EF 1-α are recommended as reference genes in insect studies using C. sinensis. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder
2014-01-01
Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses. PMID:24927412
2014-01-01
Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level of expression stability across three different olive cultivars, Barnea, Frantoio and Picual, however the combination of the three most stable reference genes do vary amongst individual cultivars. This study will provide guidance to other researchers to select reference genes for normalization against target genes by qPCR across tissues obtained from the mesocarp region of the olive fruit in the cultivars, Barnea, Frantoio and Picual. PMID:24884716
NASA Astrophysics Data System (ADS)
Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao
2013-03-01
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.
Branny, P; de la Torre, F; Garel, J R
1998-04-01
The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.
Marcial-Quino, Jaime; Fierro, Francisco; De la Mora-De la Mora, Ignacio; Enríquez-Flores, Sergio; Gómez-Manzo, Saúl; Vanoye-Carlo, America; Garcia-Torres, Itzhel; Sierra-Palacios, Edgar; Reyes-Vivas, Horacio
2016-04-25
The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia. Copyright © 2016 Elsevier B.V. All rights reserved.
Combination Antiangiogenic and Immunomodulatory Gene Therapy for Breast Cancer
2002-06-01
Flk-1 and endoglin cDNA. Specific primers for G3PDH housekeeping gene were included in each reaction as a positive control. The samples were run on a...cultured cells and specific primers for Flk-1 and endoglin cDNA. Specific primers for G3PDH housekeeping gene were included in each reaction as a...positive control. Arrows indicate the 500 bp, 410 bp and 109 bp amplified products of Flk-1, endoglin and G3PDH , respectively. Fig 3. Viral replication
GAPDH rs1136666 SNP indicates a high risk of Parkinson's disease.
Ping, Zhang; Xiaomu, Wu; Xufang, Xie; Wenfeng, Cao; Liang, Shao; Tao, Wang
2018-06-07
Development of Parkinson's disease (PD) is attributed to both genetic and environmental factors. Furthermore,GAPDH may play a key role in the development of neurodegenerative disease. Examination of genetic polymorphism in patients with sporadic PD will help uncover the mechanisms of PD pathogenesis and provide new insights into the treatment of PD. The SNaPshot method was applied to determine the gene sequences in 265 patients with idiopathic PD and 269 control cases (sex- and age-matched). The rs1136666 polymorphism of GAPDH was determined to be closely associated with PD. Subsequently, the CC genotype of the rs1136666 fragment was transfected into SH-SY5Y cells via a plasmid. The genetic expression of rs1136666 CC could induce SH-SY5Y cell injury and apoptosis via regulation of the oxidant-antioxidant and apoptosis-antiapoptosis balance. rs1136666 CC of the GAPDH had a pro-apoptotic effect similar to that of rotenone, and combination of the rs1136666 CC genetic variation and the rotenone neurotoxic effect could aggravate oxidative stress, cell injury, and apoptosis better than either single treatment alone. This study confirmed that the rs1136666 CC allele of theGAPDH increased the risk of PD, particularly in older male patients. Copyright © 2018. Published by Elsevier B.V.
Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.
Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas
2008-10-01
L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (p<0.001). Logistic regression and ROC analysis have demonstrated that the DDC expression has significant discriminatory value between CaP and BPH (p<0.001). DDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.
Mahakapuge, T A N; Scheerlinck, J-P Y; Rojas, C A Alvarez; Every, A L; Hagen, J
2016-03-01
With the availability of genetic sequencing data, quantitative reverse transcription PCR (RT-qPCR) is increasingly being used for the quantification of gene transcription across species. Too often there is little regard to the selection of reference genes and the impact that a poor choice has on data interpretation. Indeed, RT-qPCR provides a snapshot of relative gene transcription at a given time-point, and hence is highly dependent on the stability of the transcription of the reference gene(s). Using ovine efferent lymph cells and peripheral blood mono-nuclear cells (PBMCs), the two most frequently used leukocytes in immunological studies, we have compared the stability of transcription of the most commonly used ovine reference genes: YWHAZ, RPL-13A, PGK1, B2M, GAPDH, HPRT, SDHA and ACTB. Using established algorithms for reference gene normalization "geNorm" and "Norm Finder", PGK1, GAPDH and YWHAZ were deemed the most stably transcribed genes for efferent leukocytes and PGK1, YWHAZ and SDHA were optimal in PBMCs. These genes should therefore be considered for accurate and reproducible RT-qPCR data analysis of gene transcription in sheep. Copyright © 2016. Published by Elsevier B.V.
Growth Suppression and Therapy Sensitization of Breast Cancer
2000-07-01
determined by performed on two independent occasions. PCR amplification of a given housekeeping gene have been shown to correspond to determinations of...h incubation in the presence or absence of 1 mM cisplatin expressed housekeeping gene, dihydrofolate reductase (DHFR). (Platinol, aqueous solution at... G3PDH :j G3PDH Figure 9. A549 cells were treated with 3 different antisense oligonucleotides complementary to JNKI mRNA (including the active antisense
Nishimura, Ikuko; Shinohara, Yasutomo; Oguma, Tetsuya; Koyama, Yasuji
2018-04-08
In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10. We isolated and identified heptelidic acid (HA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), produced by A. oryzae RIB40 as the growth inhibitor of the salt-tolerant lactic acid bacteria. The growth inhibition of T. halophilus D10 by HA was suggested to be associated with the direct inhibition of GAPDH activity under high salt environment. The difference in the susceptibility to HA among various strains of T. halophilus was caused by the mutations in the gene encoding GAPDH.
Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…
Ruduś, Izabela; Kępczyński, Jan
2018-01-01
Molecular studies of primary and secondary dormancy in Avena fatua L., a serious weed of cereal and other crops, are intended to reveal the species-specific details of underlying molecular mechanisms which in turn may be useable in weed management. Among others, quantitative real-time PCR (RT-qPCR) data of comparative gene expression analysis may give some insight into the involvement of particular wild oat genes in dormancy release, maintenance or induction by unfavorable conditions. To assure obtaining biologically significant results using this method, the expression stability of selected candidate reference genes in different data subsets was evaluated using four statistical algorithms i.e. geNorm, NormFinder, Best Keeper and ΔCt method. Although some discrepancies in their ranking outputs were noticed, evidently two ubiquitin-conjugating enzyme homologs, AfUBC1 and AfUBC2, as well as one homolog of glyceraldehyde 3-phosphate dehydrogenase AfGAPDH1 and TATA-binding protein AfTBP2 appeared as more stably expressed than AfEF1a (translation elongation factor 1α), AfGAPDH2 or the least stable α-tubulin homolog AfTUA1 in caryopses and seedlings of A. fatua. Gene expression analysis of a dormancy-related wild oat transcription factor VIVIPAROUS1 (AfVP1) allowed for a validation of candidate reference genes performance. Based on the obtained results it can be recommended that the normalization factor calculated as a geometric mean of Cq values of AfUBC1, AfUBC2 and AfGAPDH1 would be optimal for RT-qPCR results normalization in the experiments comprising A. fatua caryopses of different dormancy status.
Nuclear Matrix Proteins in Disparity of Prostate Cancer
2011-07-01
using G3PDH 3’ primer and PCR primer 1 followed by two rounds of hybridization. In the first hybridization, the RsaI-digested driver cDNA was mixed...determined using β-actin to confirm the reduced relative abundance of the housekeeping gene after SSH. The SSH nested PCR products were cloned using pCR®2.1...variability of DNA concentration. Additionally, negative and positive controls ( housekeeping genes) from the Ambion™ ArrayControls™ Set were included
Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots.
Ho, Nhan T; Busik, Julia V; Resau, James H; Paneth, Nigel; Khoo, Sok Kean
2016-11-01
Unfrozen archived newborn blood spots (NBS) have been shown to retain sufficient messenger RNA (mRNA) for gene expression profiling. However, the effect of storage time at ambient temperature for NBS samples in relation to the quality of gene expression data is relatively unknown. Here, we evaluated mRNA expression from quantitative real-time PCR (qRT-PCR) and microarray data obtained from NBS samples stored at ambient temperature to determine the effect of storage time on the quality of gene expression. These data were generated in a previous case-control study examining NBS in 53 children with cerebral palsy (CP) and 53 matched controls. NBS sample storage period ranged from 3 to 16years at ambient temperature. We found persistently low RNA integrity numbers (RIN=2.3±0.71) and 28S/18S rRNA ratios (~0) across NBS samples for all storage periods. In both qRT-PCR and microarray data, the expression of three common housekeeping genes-beta cytoskeletal actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and peptidylprolyl isomerase A (PPIA)-decreased with increased storage time. Median values of each microarray probe intensity at log 2 scale also decreased over time. After eight years of storage, probe intensity values were largely reduced to background intensity levels. Of 21,500 genes tested, 89% significantly decreased in signal intensity, with 13,551, 10,730, and 9925 genes detected within 5years, > 5 to <10years, and >10years of storage, respectively. We also examined the expression of two gender-specific genes (X inactivation-specific transcript, XIST and lysine-specific demethylase 5D, KDM5D) and seven gene sets representing the inflammatory, hypoxic, coagulative, and thyroidal pathways hypothesized to be related to CP risk to determine the effect of storage time on the detection of these biologically relevant genes. We found the gender-specific genes and CP-related gene sets detectable in all storage periods, but exhibited differential expression (between male vs. female or CP vs. control) only within the first six years of storage. We concluded that gene expression data quality deteriorates in unfrozen archived NBS over time and that differential gene expression profiling and analysis is recommended for those NBS samples collected and stored within six years at ambient temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Theis, Torsten; Skurray, Ronald A; Brown, Melissa H
2007-08-01
Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.
Hao, Xinyuan; Horvath, David P.; Chao, Wun S.; Yang, Yajun; Wang, Xinchao; Xiao, Bin
2014-01-01
Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a crucial step in qRT-PCR normalization. To date, only a few housekeeping genes have been identified and used as reference genes in tea plant. The validity of those reference genes are not clear since their expression stabilities have not been rigorously examined. To identify more appropriate reference genes for qRT-PCR studies on tea plant, we examined the expression stability of 11 candidate reference genes from three different sources: the orthologs of Arabidopsis traditional reference genes and stably expressed genes identified from whole-genome GeneChip studies, together with three housekeeping gene commonly used in tea plant research. We evaluated the transcript levels of these genes in 94 experimental samples. The expression stabilities of these 11 genes were ranked using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ∆CT method. Results showed that the three commonly used housekeeping genes of CsTUBULIN1, CsACINT1 and Cs18S rRNA1 together with CsUBQ1 were the most unstable genes in all sample ranking order. However, CsPTB1, CsEF1, CsSAND1, CsCLATHRIN1 and CsUBC1 were the top five appropriate reference genes for qRT-PCR analysis in complex experimental conditions. PMID:25474086
Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin
2014-02-01
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.
Paolinelli-Alfonso, Marcos; Galindo-Sánchez, Clara Elizabeth; Hernandez-Martinez, Rufina
2016-08-01
Lasiodiplodia theobromae is a highly virulent plant pathogen. It has been suggested that heat stress increases its virulence. The aim of this work was to evaluate, compare, and recommend normalization strategies for gene expression analysis of the fungus growing with grapevine wood under heat stress. Using RT-qPCR-derived data, reference gene stability was evaluated through geNorm, NormFinder and Bestkeeper applications. Based on the geometric mean using the ranking position obtained for each independent analysis, genes were ranked from least to most stable as follows: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin (TUB) and elongation factor-1α (EF1α). Using RNAseq-derived data based on the calculated tagwise dispersion these genes were ordered by increasing stability as follows: GAPDH, ACT, TUB, and EF1α. The correlation between RNAseq and RTqPCR results was used as criteria to identify the best RT-qPCR normalization approach. The gene TUB is recommended as the best option for normalization among the commonly used reference genes, but alternative fungal reference genes are also suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-01-01
Background Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis. Results In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1α in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines. Conclusions The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development. PMID:20056000
Ampomah, Osei Yaw; Mousavi, Seyed Abdollah; Lindström, Kristina; Huss-Danell, Kerstin
2017-01-01
Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15 N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen. Copyright © 2016 Elsevier GmbH. All rights reserved.
Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan
2015-10-01
The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Kai Wei; Zou, Lan; Penttinen, Petri; Wang, Ke; Heng, Nan Nan; Zhang, Xiao Ping; Chen, Qiang; Zhao, Ke; Chen, Yuan Xue
2015-10-01
A total of 54 rhizobial strains were isolated from faba bean root nodules in 21 counties of Sichuan hilly areas in China, and their symbiotic effectiveness, genetic diversity and phylogeny were assessed. Only six strains increased the shoot dry mass of the host plant significantly (P ≤ 0.05). Based on the cluster analysis of combined 16S rDNA and intergenic spacer region (IGS) PCR-RFLP, the strains were divided into 31 genotypes in 11 groups, indicating a high degree of genetic diversity among the strains. The sequence analysis of three housekeeping genes (atpD, glnII and recA) and 16S rDNA indicated that the strains represented two R. leguminosarum, two Rhizobium spp., R. mesosinicum, Agrobacterium sp. and A. tumefaciens. The strains representing four Rhizobium species were divided into two distinct nodC and nifH genotypes. However, the phylogeny of housekeeping genes and symbiotic genes was not congruent, implying that the strains had been shaped by vertical evolution of the housekeeping genes and lateral evolution of the symbiotic genes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Chapman, Joanne R; Waldenström, Jonas
2015-01-01
The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.
Wang, Peihong; Xiong, Aisheng; Gao, Zhihong; Yu, Xinyi; Li, Man; Hou, Yingjun; Sun, Chao; Qu, Shenchun
2016-01-01
The success of quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to quantify gene expression depends on the stability of the reference genes used for data normalization. To date, systematic screening for reference genes in persimmon (Diospyros kaki Thunb) has never been reported. In this study, 13 candidate reference genes were cloned from 'Nantongxiaofangshi' using information available in the transcriptome database. Their expression stability was assessed by geNorm and NormFinder algorithms under abiotic stress and hormone stimulation. Our results showed that the most suitable reference genes across all samples were UBC and GAPDH, and not the commonly used persimmon reference gene ACT. In addition, UBC combined with RPII or TUA were found to be appropriate for the "abiotic stress" group and α-TUB combined with PP2A were found to be appropriate for the "hormone stimuli" group. For further validation, the transcript level of the DkDREB2C homologue under heat stress was studied with the selected genes (CYP, GAPDH, TUA, UBC, α-TUB, and EF1-α). The results suggested that it is necessary to choose appropriate reference genes according to the test materials or experimental conditions. Our study will be useful for future studies on gene expression in persimmon. PMID:27513755
Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Chen, Wen Xin
2014-01-01
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons. PMID:24317084
Zhou, Liang-Yun; Mo, Ge; Wang, Sheng; Tang, Jin-Fu; Yue, Hong; Huang, Lu-Qi; Shao, Ai-Juan; Guo, Lan-Ping
2014-03-01
In this study, Actin, 18S rRNA, PAL, GAPDH and CPR of Artemisia annua were selected as candidate reference genes, and their gene-specific primers for real-time PCR were designed, then geNorm, NormFinder, BestKeeper, Delta CT and RefFinder were used to evaluate their expression stability in the leaves of A. annua under treatment of different concentrations of Cd, with the purpose of finding a reliable reference gene to ensure the reliability of gene-expression analysis. The results showed that there were some significant differences among the candidate reference genes under different treatments and the order of expression stability of candidate reference gene was Actin > 18S rRNA > PAL > GAPDH > CPR. These results suggested that Actin, 18S rRNA and PAL could be used as ideal reference genes of gene expression analysis in A. annua and multiple internal control genes were adopted for results calibration. In addition, differences in expression stability of candidate reference genes in the leaves of A. annua under the same concentrations of Cd were observed, which suggested that the screening of candidate reference genes was needed even under the same treatment. To our best knowledge, this study for the first time provided the ideal reference genes under Cd treatment in the leaves of A. annua and offered reference for the gene expression analysis of A. annua under other conditions.
Generation of diversity in Streptococcus mutans genes demonstrated by MLST.
Do, Thuy; Gilbert, Steven C; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C; Maltz, Marisa; Russell, Roy R; Holbrook, Peter; Wade, William G; Beighton, David
2010-02-05
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Hyun-Yoo; Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713; Woo, Seon Rang
2012-08-10
Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggeredmore » nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.« less
2017-01-01
Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185
Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram
2015-04-03
Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.
Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta
NASA Technical Reports Server (NTRS)
Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.
2017-01-01
Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.
Baibai, Tarik; Oukhattar, Laila; Mountassif, Driss; Assobhei, Omar; Serrano, Aurelio; Soukri, Abdelaziz
2010-12-01
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.
Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren
2013-06-12
An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.
Selection of Reference Gene Expression in a Schizophrenia Brain Cohort
Weickert, Cynthia Shannon; Sheedy, Donna; Rothmond, Debora A.; Dedova, Irina; Fung, Samantha; Garrick, Therese; Wong, Jenny; Harding, Antony J.; Sivagnanansundaram, Sinthuja; Hunt, Clare; Duncan, Carlotta; Sundqvist, Nina; Tsai, Shan-Yuan; Anand, Jasna; Draganic, Daren; Harper, Clive
2010-01-01
Objective To conduct postmortem human brain research into the neuropathological basis of schizophrenia, it is critical to establish cohorts that are well-characterised and well-matched. Our objective was to determine if specimen characteristics, including: diagnosis, age, postmortem interval (PMI), brain acidity (pH), and/or the agonal state of the subject at death related to RNA quality, and to determine the most appropriate reference gene mRNAs. Methods We selected a matched cohort of 74 cases (37 schizophrenia / schizoaffective disorder cases and 37 controls cases). Middle frontal gyrus tissue was pulverised, tissue pH was measured, RNA isolated for cDNA from each case, and RNA integrity number (RIN) measurements were assessed. Using RT-PCR, we measured nine housekeeper genes and calculated a geomean in each diagnostic group. Results We found that the RINs were very good (mean 7.3) and all nine housekeeper control genes were significantly correlated with RIN. Seven of nine housekeeper genes were also correlated with pH, and two clinical variables, agonal state and duration of illness did have an effect on some control mRNAs. No major impact of PMI or freezer time on housekeeper mRNAs was detected. Our results show that people with schizophrenia had significantly less PPIA, and SDHA and tended to have less GUSB and B2M mRNA suggesting that these control genes may not be good candidates for normalisation. Conclusions In our cohort, less than 10% variability in RIN values was detected and the diagnostic groups were well matched overall. Our cohort was adequately powered (0.80–0.90) to detect mRNA differences (25%) due to disease. Our study suggests that multiple factors should be considered in mRNA expression studies of human brain tissues. When schizophrenia cases are adequately matched to control cases subtle differences in gene expression can be reliably detected. PMID:20073568
Aswal, Ajay Pal Singh; Raghav, Sarvesh; De, Sachinandan; Thakur, Manish; Goswami, Surender Lal; Datta, Tirtha Kumar
2008-01-15
The present study was undertaken to evaluate the expression stability of two housekeeping genes (HKGs), 18S rRNA and G3PDH during in vitro maturation (IVM) of oocytes in buffalo, which qualifies their use as internal controls for valid qRT-PCR estimation of other oocyte transcripts. A semi quantitative RT-PCR system was used with optimised qRT-PCR parameters at exponential PCR cycle for evaluation of temporal expression pattern of these genes over 24 h of IVM. 18S rRNA was found more stable in its expression pattern than G3PDH.
Reference genes for normalization of qPCR assays in sugarcane plants under water deficit.
de Andrade, Larissa Mara; Dos Santos Brito, Michael; Fávero Peixoto Junior, Rafael; Marchiori, Paulo Eduardo Ribeiro; Nóbile, Paula Macedo; Martins, Alexandre Palma Boer; Ribeiro, Rafael Vasconcelos; Creste, Silvana
2017-01-01
Sugarcane ( Saccharum spp.) is the main raw material for sugar and ethanol production. Among the abiotic stress, drought is the main one that negatively impact sugarcane yield. Although gene expression analysis through quantitative PCR (qPCR) has increased our knowledge about biological processes related to drought, gene network that mediates sugarcane responses to water deficit remains elusive. In such scenario, validation of reference gene is a major requirement for successful analyzes involving qPCR. In this study, candidate genes were tested for their suitable as reference genes for qPCR analyses in two sugarcane cultivars with varying drought tolerance. Eight candidate reference genes were evaluated in leaves sampled in plants subjected to water deficit in both field and greenhouse conditions. In addition, five genes were evaluated in shoot roots of plants subjected to water deficit by adding PEG8000 to the nutrient solution. NormFinder and RefFinder algorithms were used to identify the most stable gene(s) among genotypes and under different experimental conditions. Both algorithms revealed that in leaf samples, UBQ1 and GAPDH genes were more suitable as reference genes, whereas GAPDH was the best reference one in shoot roots. Reference genes suitable for sugarcane under water deficit were identified, which would lead to a more accurate and reliable analysis of qPCR. Thus, results obtained in this study may guide future research on gene expression in sugarcane under varying water conditions.
Liao, Feng; Mo, Zhishuo; Chen, Meiling; Pang, Bo; Fu, Xiaoqing; Xu, Wen; Jing, Huaiqi; Kan, Biao; Gu, Wenpeng
2018-01-01
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae , one was used seven housekeeping genes ( adk , gyrB , metE , pntA , mdh , purM , and pyrC ), and all the isolates belonged to ST69; another was used nine housekeeping genes ( cat , chi , dnaE , gyrB , lap , pgm , recA , rstA , and gmd ). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method ( ctxAB , tcpA , and toxR ) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues.
Pinheiro, T T; Litholdo, C G; Sereno, M L; Leal, G A; Albuquerque, P S B; Figueira, A
2011-11-17
Lack of continuous progress in Theobroma cacao (Malvaceae) breeding, especially associated with seed quality traits, requires more efficient selection methods based on genomic information. Reverse transcript quantitative PCR (RT-qPCR) has become the method of choice for gene expression analysis, but relative expression analysis requires various reference genes, which must be stable across various biological conditions. We sought suitable reference genes for various tissues of cacao, especially developing seeds. Ten potential reference genes were analyzed for stability at various stages of embryo development, leaves, stems, roots, flowers, and pod epicarp; seven of them were also evaluated in shoot tips treated either with hormones (salicylate; ethefon; methyl-jasmonate) or after inoculation with the fungus Moniliophthora perniciosa (Marasmiaceae sensu lato). For developing embryos, the three most stable genes were actin (ACT), polyubiquitin (PUB), and ribosomal protein L35 (Rpl35). In the analyses of various tissues, the most stable genes were malate dehydrogenase (MDH), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and acyl-carrier protein B (ACP B). GAPDH, MDH and tubulin (TUB) were the most appropriate for normalization when shoot apexes were treated with hormones, while ACT, TUB and Rpl35 were the most appropriate after inoculation with M. perniciosa. We conclude that for each plant system and biological or ontogenetical condition, there is a need to define suitable reference genes. This is the first report to define reference genes for expression studies in cacao.
Gupta, Mridula; Pandher, Suneet; Kaur, Gurmeet; Rathore, Pankaj; Palli, Subba Reddy
2018-01-01
Amrasca biguttula biguttula (Ishida) commonly known as cotton leafhopper is a severe pest of cotton and okra. Not much is known on this insect at molecular level due to lack of genomic and transcriptomic data. To prepare for functional genomic studies in this insect, we evaluated 15 common housekeeping genes (Tub, B-Tub, EF alpha, GADPH, UbiCF, RP13, Ubiq, G3PD, VATPase, Actin, 18s, 28s, TATA, ETF, SOD and Cytolytic actin) during different developmental stages and under starvation stress. We selected early (1st and 2nd), late (3rd and 4th) stage nymphs and adults for identification of stable housekeeping genes using geNorm, NormFinder, BestKeeper and RefFinder software. Based on the different algorithms, RP13 and VATPase are identified as the most suitable reference genes for quantification of gene expression by reverse transcriptase quantitative PCR (RT-qPCR). Based on RefFinder which comprehended the results of three algorithms, RP13 in adults, Tubulin (Tub) in late nymphs, 28S in early nymph and UbiCF under starvation stress were identified as the most stable genes. We also developed methods for feeding double-stranded RNA (dsRNA) incorporated in the diet. Feeding dsRNA targeting Snf7, IAP, AQP1, and VATPase caused 56.17–77.12% knockdown of targeted genes compared to control and 16 to 48% mortality of treated insects when compared to control. PMID:29329327
Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof
2014-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4, and bGAPDH(NAD)3. The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54–56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies. PMID:25176140
Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina
2015-01-01
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.
Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina
2015-01-01
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131
Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng
2016-01-01
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803
Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng
2016-01-01
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.
Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi
2015-11-13
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.
Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P
2016-02-01
Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.
dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana
2015-01-01
Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.
Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis
dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana
2015-01-01
Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.
2014-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035
Liu, Qiuxu; Qi, Xiao; Yan, Haidong; Huang, Linkai; Nie, Gang; Zhang, Xinquan
2018-01-16
To select the most stable reference genes in annual ryegrass ( Lolium multiflorum ), we studied annual ryegrass leaf tissues exposed to various abiotic stresses by qRT-PCR and selected 11 candidate reference genes, i.e., 18S rRNA, E2, GAPDH, eIF4A, HIS3, SAMDC, TBP-1, Unigene71, Unigene77, Unigene755, and Unigene14912. We then used GeNorm, NormFinder, and BestKeeper to analyze the expression stability of these 11 genes, and used RefFinder to comprehensively rank genes according to stability. Under different stress conditions, the most suitable reference genes for studies of leaf tissues of annual ryegrass were different. The expression of the eIF4A gene was the most stable under drought stress. Under saline-alkali stress, Unigene14912 has the highest expression stability. Under acidic aluminum stress, SAMDC expression stability was highest. Under heavy metal stress, Unigene71 expression had the highest stability. According to the software analyses, Unigene14912, HIS3, and eIF4A were the most suitable for analyses of abiotic stress in tissues of annual ryegrass. GAPDH was the least suitable reference gene. In conclusion, selecting appropriate reference genes under abiotic stress not only improves the accuracy of annual ryegrass gene expression analyses, but also provides a theoretical reference for the development of reference genes in plants of the genus Lolium .
Palau, Montserrat; Kulmann, Marcos; Ramírez-Lázaro, María José; Lario, Sergio; Quilez, María Elisa; Campo, Rafael; Piqué, Núria; Calvet, Xavier; Miñana-Galbis, David
2016-12-01
Helicobacter pylori infects human stomachs of over half the world's population, evades the immune response and establishes a chronic infection. Although most people remains asymptomatic, duodenal and gastric ulcers, MALT lymphoma and progression to gastric cancer could be developed. Several virulence factors such as flagella, lipopolysaccharide, adhesins and especially the vacuolating cytotoxin VacA and the oncoprotein CagA have been described for H. pylori. Despite the extensive published data on H. pylori, more research is needed to determine new virulence markers, the exact mode of transmission or the role of multiple infection. Amplification and sequencing of six housekeeping genes (amiA, cgt, cpn60, cpn70, dnaJ, and luxS) related to H. pylori pathogenesis have been performed in order to evaluate their usefulness for the specific detection of H. pylori, the genetic discrimination at strain level and the detection of multiple infection. A total of 52 H. pylori clones, isolated from 14 gastric biopsies from 11 patients, were analyzed for this purpose. All genes were specifically amplified for H. pylori and all clones isolated from different patients were discriminated, with gene distances ranged from 0.9 to 7.8%. Although most clones isolated from the same patient showed identical gene sequences, an event of multiple infection was detected in all the genes and microevolution events were showed for amiA and cpn60 genes. These results suggested that housekeeping genes could be useful for H. pylori detection and to elucidate the mode of transmission and the relevance of the multiple infection. © 2016 John Wiley & Sons Ltd.
Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.
2018-01-01
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602
Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R
2013-07-10
The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Yang, Jie; Lin, Qi; Lin, Juan; Ye, Xiuyun
2016-01-01
With its ability to produce ligninolytic enzymes such as laccases, white-rot basidiomycete Cerrena unicolor, a medicinal mushroom, has great potential in biotechnology. Elucidation of the expression profiles of genes encoding ligninolytic enzymes are important for increasing their production. Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool to study transcriptional regulation of genes of interest. To ensure accuracy and reliability of qPCR analysis of C. unicolor, expression levels of seven candidate reference genes were studied at different growth phases, under various induction conditions, and with a range of carbon/nitrogen ratios and carbon and nitrogen sources. The stability of the genes were analyzed with five statistical approaches, namely geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder. Our results indicated that the selection of reference genes varied with sample sets. A combination of four reference genes (Cyt-c, ATP6, TEF1, and β-tubulin) were recommended for normalizing gene expression at different growth phases. GAPDH and Cyt-c were the appropriate reference genes under different induction conditions. ATP6 and TEF1 were most stable in fermentation media with various carbon/nitrogen ratios. In the fermentation media with various carbon or nitrogen sources, 18S rRNA and GAPDH were the references of choice. The present study represents the first validation analysis of reference genes in C. unicolor and serves as a foundation for its qPCR analysis.
Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo
2018-06-01
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
Analysis of co-evolving genes in campylobacter jejuni and C. coli
USDA-ARS?s Scientific Manuscript database
Background: The population structure of Campylobacter has been frequently studied by MLST, for which fragments of housekeeping genes are compared. We wished to determine if the used MLST genes are representative of the complete genome. Methods: A set of 1029 core gene families (CGF) was identifie...
Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa
2016-01-01
Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.
Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa
2016-01-01
Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673
Barinova, K V; Serebryakova, M V; Muronetz, V I; Schmalhausen, E V
2017-12-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic protein involved in numerous non-glycolytic functions. S-glutathionylated GAPDH was revealed in plant and animal tissues. The role of GAPDH S-glutathionylation is not fully understood. Rabbit muscle GAPDH was S-glutathionylated in the presence of H 2 O 2 and reduced glutathione (GSH). The modified protein was assayed by MALDI-MS analysis, differential scanning calorimetry, dynamic light scattering, and ultracentrifugation. Incubation of GAPDH in the presence of H 2 O 2 together with GSH resulted in the complete inactivation of the enzyme. In contrast to irreversible oxidation of GAPDH by H 2 O 2 , this modification could be reversed in the excess of GSH or dithiothreitol. By data of MALDI-MS analysis, the modified protein contained both mixed disulfide between Cys150 and GSH and the intrasubunit disulfide bond between Cys150 and Cys154 (different subunits of tetrameric GAPDH may contain different products). S-glutathionylation results in loosening of the tertiary structure of GAPDH, decreases its affinity to NAD + and thermal stability. The mixed disulfide between Cys150 and GSH is an intermediate product of S-glutathionylation: its subsequent reaction with Cys154 results in the intrasubunit disulfide bond in the active site of GAPDH. The mixed disulfide and the C150-C154 disulfide bond protect GAPDH from irreversible oxidation and can be reduced in the excess of thiols. Conformational changes that were observed in S-glutathionylated GAPDH may affect interactions between GAPDH and other proteins (ligands), suggesting the role of S-glutathionylation in the redox signaling. The manuscript considers one of the possible mechanisms of redox regulation of cell functions. Copyright © 2017 Elsevier B.V. All rights reserved.
Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu
2008-11-01
Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.
Hu, Yue; Zhang, Erhong; Huang, Lisi; Li, Wenfang; Liang, Pei; Wang, Xiaoyun; Xu, Jin; Huang, Yan; Yu, Xinbing
2014-12-01
Globally, 15-20 million people are infected with Clonorchis sinensis (C. sinensis) which results in clonorchiasis. In China, clonorchiasis is considered to be one of the fastest-growing food-borne parasitic diseases. That more key molecules of C. sinensis are characterized will be helpful to understand biology and pathogenesis of the carcinogenic liver fluke. Glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) from many species have functions other than their catalytic role in glycolysis. In the present study, we analyzed the sequence and structure of GAPDH from C. sinensis (CsGAPDH) by using bioinformatics tools and obtained its recombinant protein by prokaryotic expression system, to learn its expression profiles and molecular property. CsGAPDH could bind to human intrahepatic biliary epithelial cell in vivo and in vitro by the method of immunofluorescence assays. CsGAPDH also disturbed in lumen of biliary tract near to the parasite in the liver of infected rat. Western blotting analysis together with immunofluorescence assay indicated that CsGAPDH was a component of excretory/secretory proteins (CsESPs) and a surface-localized protein of C. sinensis. Quantitative real-time PCR (Q-PCR) and Western blotting demonstrated that CsGAPDHs are expressed at the life stages of adult worm, metacercaria, and egg, but the expression levels were different from each other. Recombinant CsGAPDH (rCsGAPDH) was confirmed to have the capacity to catalyze the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate which was inhibited by AMP in a dose-dependent manner. In addition, rCsGAPDH was able to interact with human plasminogen in a dose-dependent manner by ELISA. The interaction could be inhibited by lysine. The plasminogen binding capacity of rCsGAPDH along with the distribution of CsGAPDH in vivo and in the liver of C. sinensis-infected rat hinted that surface-localized CsGAPDH might play an important role in host invasion of the worm besides its glycolytic activity. Our work will be a cornerstone for getting more messages about CsGAPDH and its role in biology and parasitism of C. sinensis.
2012-01-01
Background Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. Results In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNALys3 into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNALys3 into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55gag and p160gag-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood mononuclear cells (PBMCs). Conclusions These findings indicate that GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection. PMID:23237566
Butterfield, D Allan; Hardas, Sarita S; Lange, Miranda L Bader
2010-01-01
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.
Del Giudice, Alessandra; Pavel, Nicolae Viorel; Galantini, Luciano; Falini, Giuseppe; Trost, Paolo; Fermani, Simona; Sparla, Francesca
2015-12-01
Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.
Zhu, Wuzheng; Lin, Yaqiu; Liao, Honghai; Wang, Yong
2015-01-01
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.
Petriccione, Milena; Mastrobuoni, Francesco; Zampella, Luigi; Scortichini, Marco
2015-01-01
Normalization of data, by choosing the appropriate reference genes (RGs), is fundamental for obtaining reliable results in reverse transcription-quantitative PCR (RT-qPCR). In this study, we assessed Actinidia deliciosa leaves inoculated with two doses of Pseudomonas syringae pv. actinidiae during a period of 13 days for the expression profile of nine candidate RGs. Their expression stability was calculated using four algorithms: geNorm, NormFinder, BestKeeper and the deltaCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protein phosphatase 2A (PP2A) were the most stable genes, while β-tubulin and 7s-globulin were the less stable. Expression analysis of three target genes, chosen for RGs validation, encoding the reactive oxygen species scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) indicated that a combination of stable RGs, such as GAPDH and PP2A, can lead to an accurate quantification of the expression levels of such target genes. The APX level varied during the experiment time course and according to the inoculum doses, whereas both SOD and CAT resulted down-regulated during the first four days, and up-regulated afterwards, irrespective of inoculum dose. These results can be useful for better elucidating the molecular interaction in the A. deliciosa/P. s. pv. actinidiae pathosystem and for RGs selection in bacteria-plant pathosystems. PMID:26581656
Sahu, Shriya; Philip, Finly; Scarlata, Suzanne
2014-01-01
C3PO plays a key role in promoting RNA-induced gene silencing. C3PO consists of two subunits of the endonuclease translin-associated factor X (TRAX) and six subunits of the nucleotide-binding protein translin. We have found that TRAX binds strongly to phospholipase Cβ (PLCβ), which transmits G protein signals from many hormones and sensory inputs. The association between PLCβ and TRAX is thought to underlie the ability of PLCβ to reverse gene silencing by small interfering RNAs. However, this reversal only occurs for some genes (e.g. GAPDH and LDH) but not others (e.g. Hsp90 and cyclophilin A). To understand this specificity, we carried out studies using fluorescence-based methods. In cells, we find that PLCβ, TRAX, and their complexes are identically distributed through the cytosol suggesting that selectivity is not due to large scale sequestration of either the free or complexed proteins. Using purified proteins, we find that PLCβ binds ∼5-fold more weakly to translin than to TRAX but ∼2-fold more strongly to C3PO. PLCβ does not alter TRAX-translin assembly to C3PO, and brightness studies suggest one PLCβ binds to one C3PO octamer without a change in the number of TRAX/translin molecules suggesting that PLCβ binds to an external site. Functionally, we find that C3PO hydrolyzes siRNA(GAPDH) at a faster rate than siRNA(Hsp90). However, when PLCβ is bound to C3PO, the hydrolysis rate of siRNA(GAPDH) becomes comparable with siRNA(Hsp90). Our results show that the selectivity of PLCβ toward certain genes lies in the rate at which the RNA is hydrolyzed by C3PO. PMID:24338081
Navarro, Aaron; Martínez-Murcia, Antonio
2018-04-19
The phylogenies derived from housekeeping gene sequence alignments, although mere evolutionary hypotheses, have increased our knowledge about the Aeromonas genetic diversity, providing a robust species delineation framework invaluable for reliable, easy and fast species identification. Previous classifications of Aeromonas, have been fully surpassed by recently developed phylogenetic (natural) classification obtained from the analysis of so-called "molecular chronometers". Despite ribosomal RNAs cannot split all known Aeromonas species, the conserved nature of 16S rRNA offers reliable alignments containing mosaics of sequence signatures which may serve as targets of genus-specific oligonucleotides for subsequent identification/detection tests in samples without culturing. On the contrary, some housekeeping genes coding for proteins show a much better chronometric capacity to discriminate highly related strains. Although both, species and loci, do not all evolve at exactly the same rate, published Aeromonas phylogenies were congruent to each other, indicating that, phylogenetic markers are synchronized and a concatenated multi-gene phylogeny, may be "the mirror" of the entire genomic relationships. Thanks to MLPA approaches, the discovery of new Aeromonas species and strains of rarely isolated species is today more frequent and, consequently, should be extensively promoted for isolate screening and species identification. Although, accumulated data still should be carefully catalogued to inherit a reliable database. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chang, Chunmei; Su, Hua; Zhang, Danhong; Wang, Yusha; Shen, Qiuhong; Liu, Bo; Huang, Rui; Zhou, Tianhua; Peng, Chao; Wong, Catherine C L; Shen, Han-Ming; Lippincott-Schwartz, Jennifer; Liu, Wei
2015-12-17
Eukaryotes initiate autophagy to cope with the lack of external nutrients, which requires the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase Sirtuin 1 (Sirt1). However, the mechanisms underlying the starvation-induced Sirt1 activation for autophagy initiation remain unclear. Here, we demonstrate that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a conventional glycolytic enzyme, is a critical mediator of AMP-activated protein kinase (AMPK)-driven Sirt1 activation. Under glucose starvation, but not amino acid starvation, cytoplasmic GAPDH is phosphorylated on Ser122 by activated AMPK. This causes GAPDH to redistribute into the nucleus. Inside the nucleus, GAPDH interacts directly with Sirt1, displacing Sirt1's repressor and causing Sirt1 to become activated. Preventing this shift of GAPDH abolishes Sirt1 activation and autophagy, while enhancing it, through overexpression of nuclear-localized GAPDH, increases Sirt1 activation and autophagy. GAPDH is thus a pivotal and central regulator of autophagy under glucose deficiency, undergoing AMPK-dependent phosphorylation and nuclear translocation to activate Sirt1 deacetylase activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Ávila, César L; Torres-Bugeau, Clarisa M; Barbosa, Leandro R S; Sales, Elisa Morandé; Ouidja, Mohand O; Socías, Sergio B; Celej, M Soledad; Raisman-Vozari, Rita; Papy-Garcia, Dulce; Itri, Rosangela; Chehín, Rosana N
2014-05-16
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A
2008-01-01
Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene expression during tomato development process. From our study a tool-kit of control genes emerges that outperform the traditional genes in terms of expression stability. PMID:19102748
Fokina, K V; Dainyak, M B; Nagradova, N K; Muronetz, V I
1997-09-15
The ability of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzing the reaction of 1,3-diphosphoglycerate synthesis in human erythrocytes to form complexes with enzymes which use this metabolite as substrate (3-phosphoglycerate kinase (3-PGK) or 2,3-diphosphoglycerate mutase (2,3-DPGM)) was studied. It was found that highly active 2,3-DPGM can be extracted from human erythrocyte hemolysates in a complex with GAPDH adsorbed on Sepharose-bound anti-GAPDH antibodies at pH 6.5, the molar ratio being one 2,3-GPGM subunit per subunit of GAPDH. No complexation was, however, detected at pH 8.0. The opposite was true for the interaction between GAPDH and 3-PGK, which could be observed at pH 8.0. In experiments carried out at pH 7.4, both GAPDH x 2,3-DPGM and GAPGH x 3-PGK complexes were detected. The Kd values of the complexes determined with purified enzyme preparations were in the range 2.40-2.48 microM for both the GAPDH x 2,3-DPGM and GAPGH x 3-PGK enzyme pairs, when titrations of GAPDH covalently bound to CNBr-activated Sepharose were performed by the soluble 2,3-DPGM or 3-PGK. If, however, GAPDH adsorbed on the specific antibodies covalently bound to Sepharose was used in the titration experiments, the Kd for the GAPDH x 2,3-DPGM complex was found to be 0.54 microM, and the Kd for the GAPDH x 3-PGK complex was 0.49 microM. The concentration of 2,3-diphosphoglycerate determined after 1 h of incubation of erythrocytes in the presence of glucose was found to increase 1.5-fold if the incubation was carried out at pH 6.5, but did not change upon incubation at pH 8.0. On the other hand, the concentration of 3-phosphoglycerate after incubation at pH 8.0 was twice as large as that found after incubation at pH 6.5. The results are interpreted on the hypothesis that specific protein-protein interactions between GAPDH and 2,3-DPGM or between GAPDH and 3-PGK may play a role in determining the fate of 1,3-diphosphoglycerate produced in the GAPDH-catalyzed reaction.
Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun; Li, Xing-Hui
2017-01-01
Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants.
Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun
2017-01-01
Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants. PMID:28453515
Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou
2014-01-01
Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects. PMID:25356721
Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou
2014-01-01
Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects.
Liu, Mingying; Jiang, Jing; Han, Xiaojiao; Qiao, Guirong; Zhuo, Renying
2014-01-01
Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.
USDA-ARS?s Scientific Manuscript database
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...
Lloyd, Julie C.; Raines, Christine A.
2011-01-01
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein–protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the ‘non-regulatory’ A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed. PMID:21498632
Howard, Thomas P; Lloyd, Julie C; Raines, Christine A
2011-07-01
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.
Wu, Yonghong; Wu, Min; He, Guowei; Zhang, Xiao; Li, Weiguang; Gao, Yan; Li, Zhihui; Wang, Zhaoyan; Zhang, Chenggang
2012-04-01
In the current study, we examined the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in a number of organisms and the stability of GAPDH under various conditions. Our results revealed that GAPDH is present in multiple Escherichia coli strains, the yeast strain GS115, Caenorhabditis elegans, rat PC12 cells, and both mouse and rat brain. Furthermore, GAPDH was stably expressed under different concentrations of inducer and at different times of induction in E. coli (BL21) cells and yeast GS115 cells. Stable expression of GAPDH protein was also observed in C.elegans and PC12 cells that were treated with different concentrations of paraquat or sodium sulfite, respectively. In addition, we were able to detect and identify the endogenous gapA protein in E.coli via immunoprecipitation and MALDI-TOF-MS analysis. Endogenous gapA protein and exogenously expressed (subcloned) GAPDH proteins were detected in E. coli BL21 but not for gapC. With the exception of gapC in E. coli, the various isoforms of GAPDH possessed enzymatic activity. Finally, sequence analysis revealed that the GAPDH proteins were 76% identical, with the exception of E. coli gapC. Taken together, our results indicate that GAPDH could be universally used as an internal control for the Western blot analysis of prokaryotic and eukaryotic samples. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M
2013-11-30
Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio
2010-03-21
Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.
2010-01-01
Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton. PMID:20302670
Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou
2015-01-01
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.
Danshina, Polina V.; Qu, Weidong; Temple, Brenda R.; Rojas, Rafael J.; Miley, Michael J.; Machius, Mischa; Betts, Laurie; O'Brien, Deborah A.
2016-01-01
STUDY HYPOTHESIS Detailed structural comparisons of sperm-specific glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS) and the somatic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) isozyme should facilitate the identification of selective GAPDHS inhibitors for contraceptive development. STUDY FINDING This study identified a small-molecule GAPDHS inhibitor with micromolar potency and >10-fold selectivity that exerts the expected inhibitory effects on sperm glycolysis and motility. WHAT IS KNOWN ALREADY Glycolytic ATP production is required for sperm motility and male fertility in many mammalian species. Selective inhibition of GAPDHS, one of the glycolytic isozymes with restricted expression during spermatogenesis, is a potential strategy for the development of a non-hormonal contraceptive that directly blocks sperm function. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Homology modeling and x-ray crystallography were used to identify structural features that are conserved in GAPDHS orthologs in mouse and human sperm, but distinct from the GAPDH orthologs present in somatic tissues. We identified three binding pockets surrounding the substrate and cofactor in these isozymes and conducted a virtual screen to identify small-molecule compounds predicted to bind more tightly to GAPDHS than to GAPDH. Following the production of recombinant human and mouse GAPDHS, candidate compounds were tested in dose–response enzyme assays to identify inhibitors that blocked the activity of GAPDHS more effectively than GAPDH. The effects of a selective inhibitor on the motility of mouse and human sperm were monitored by computer-assisted sperm analysis, and sperm lactate production was measured to assess inhibition of glycolysis in the target cell. MAIN RESULTS AND THE ROLE OF CHANCE Our studies produced the first apoenzyme crystal structures for human and mouse GAPDHS and a 1.73 Å crystal structure for NAD+-bound human GAPDHS, facilitating the identification of unique structural features of this sperm isozyme. In dose–response assays T0501_7749 inhibited human GAPDHS with an IC50 of 1.2 μM compared with an IC50 of 38.5 μM for the somatic isozyme. This compound caused significant reductions in mouse sperm lactate production (P= 0.017 for 100 μM T0501_7749 versus control) and in the percentage of motile mouse and human sperm (P values from <0.05 to <0.0001, depending on incubation conditions). LIMITATIONS, REASONS FOR CAUTION The chemical properties of T0501_7749, including limited solubility and nonspecific protein binding, are not optimal for drug development. WIDER IMPLICATIONS OF THE FINDINGS This study provides proof-of-principle evidence that GAPDHS can be selectively inhibited, causing significant reductions in sperm glycolysis and motility. These results highlight the utility of structure-based drug design and support further exploration of GAPDHS, and perhaps other sperm-specific isozymes in the glycolytic pathway, as contraceptive targets. LARGE SCALE DATA None. Coordinates and data files for three GAPDHS crystal structures were deposited in the RCSB Protein Data Bank (http://www.rcsb.org). STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by grants from the National Institutes of Health (NIH), USA, including U01 HD060481 and cooperative agreement U54 HD35041 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and TW/HD00627 from the NIH Fogarty International Center. Additional support was provided by subproject CIG-05-109 from CICCR, a program of CONRAD, Eastern Virginia Medical School, USA. There are no conflicts of interest. PMID:26921398
Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.
Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W
2002-01-01
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055
Kishimoto, Naoki; Onitsuka-Kishimoto, Ayano; Iga, Nozomi; Takamune, Nobutoki; Shoji, Shozo; Misumi, Shogo
2016-12-01
Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNA Lys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNA Lys3 . Although the binding of GAPDH to Pr55 gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55 gag . In this study, we show that Asp 256 , Lys 260 , Lys 263 and Glu 267 of GAPDH are important for the suppression of tRNA Lys3 packaging. Yeast two-hybrid analysis demonstrated that the C -terminal domain of GAPDH (151-335) interacts with both the matrix region (MA; 1-132) and capsid N -terminal domain (CA-NTD; 133-282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C -terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNA Lys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp 256 , Lys 260 , Lys 263 and Glu 267 of GAPDH is essential for the mechanism of tRNA Lys3 -packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNA Lys3 packaging.
Shuel, Michelle L; Karlowsky, Kathleen E; Law, Dennis K S; Tsang, Raymond S W
2011-12-01
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.
Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.
Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J
2012-10-30
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.
THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.
2012-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700
Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru
2015-01-01
Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.
Auler, Priscila Ariane; Benitez, Letícia Carvalho; do Amaral, Marcelo Nogueira; Vighi, Isabel Lopes; Dos Santos Rodrigues, Gabriela; da Maia, Luciano Carlos; Braga, Eugenia Jacira Bolacel
2017-05-01
Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (β-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes β-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.
Reference gene stability of a synanthropic fly, Chrysomya megacephala.
Wang, Xiaoyun; Xiong, Mei; Wang, Jialu; Lei, Chaoliang; Zhu, Fen
2015-10-29
Stable reference genes are essential for accurate normalization in gene expression studies with reverse transcription quantitative polymerase chain reaction (qPCR). A synanthropic fly, Chrysomya megacephala, is a well known medical vector and forensic indicator. Unfortunately, previous studies did not look at the stability of reference genes used in C. megacephala. In this study, the expression level of Actin, ribosomal protein L8 (Rpl8), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1), α-tubulin (α-TUB), β-tubulin (β-TUB), TATA binding box (TBP), 18S rRNA (18S) and ribosomal protein S7 (Rps7) were evaluated for their stability using online software RefFinder, which combines the normal software of the ΔCt method, BestKeeper, Normfinder, and geNorm. Moreover the number of suitable reference gene pairs was also suggested by Excel-based geNorm. The expression levels of these reference genes were evaluated under different experimental conditions with special perspectives of forensic applications: developmental stages (eggs, first, second and third instar larvae, pupae and adults); food sources of larvae (pork, fish and chicken); feeding larvae with drugs (untreated control, Estazolam and Marvelon); feeding larvae with heavy metals (untreated control, cadmium and zinc); tissues of adults (head, thorax, abdomen, legs and wings). According to RefFinder, EF1 was the most suitable reference gene of developmental stages, food and tissues; 18S and GAPDH were the most suitable reference genes for drugs and heavy metals, respectively, which could be widely used for quantification of target gene expression with qPCR in C. megacephala. Suitable reference gene pairs were also suggested by geNorm. This fundamental but vital work should facilitate the gene studies of related biological processes and deepen the understanding in physiology, toxicology, and especially medical and forensic entomology of C. megacephala.
Liang, Chaoqiong; Hao, Jianjun; Meng, Yan; Luo, Laixin; Li, Jianqiang
2018-01-01
Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall. PMID:29543906
NASA Astrophysics Data System (ADS)
Pu, Fei; Yang, Bingye; Ke, Caihuan
2015-07-01
Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 ( ACT-2), elongation factor 1 alpha ( EF-1α), elongation factor 1 beta ( EF-1β), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH), ubiquitin ( UBQ), β-tubulin ( β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene ( Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.
Housekeeping genes as internal standards: use and limits.
Thellin, O; Zorzi, W; Lakaye, B; De Borman, B; Coumans, B; Hennen, G; Grisar, T; Igout, A; Heinen, E
1999-10-08
Quantitative studies are commonly realised in the biomedical research to compare RNA expression in different experimental or clinical conditions. These quantifications are performed through their comparison to the expression of the housekeeping gene transcripts like glyceraldehyde-3-phosphate dehydrogenase (G3PDH), albumin, actins, tubulins, cyclophilin, hypoxantine phsophoribosyltransferase (HRPT), L32. 28S, and 18S rRNAs are also used as internal standards. In this paper, it is recalled that the commonly used internal standards can quantitatively vary in response to various factors. Possible variations are illustrated using three experimental examples. Preferred types of internal standards are then proposed for each of these samples and thereafter the general procedure concerning the choice of an internal standard and the way to manage its uses are discussed.
Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin
2014-01-01
The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806
Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin
2014-01-01
The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.
Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.
Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M
2011-12-01
Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Human GAPDH Is a Target of Aspirin’s Primary Metabolite Salicylic Acid and Its Derivatives
Manohar, Murli; Harraz, Maged M.; Park, Sang-Wook; Schroeder, Frank C.; Snyder, Solomon H.; Klessig, Daniel F.
2015-01-01
The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248
Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L
2016-10-01
Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Chong, Isaac K W; Ho, Wing S
2013-09-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to interact with different biomolecules and was implicated in many novel cellular activities including programmed cell death, nuclear RNA transport unrelated to the commonly known carbohydrate metabolism. We reported here the purification of GAPDH from Chironomidae larvae (Insecta, Diptera) that showed different biologic activity towards heavy metals. It was inhibited by copper, cobalt nickel, iron and lead but was activated by zinc. The GAPDH was purified by ammonium sulphate fractionation and Chelating Sepharose CL-6B chromatography followed by Blue Sepharose CL-6B chromatography. The 150-kDa tetrameric GAPDH showed optimal activity at pH 8.5 and 37°C. The multiple alignment of sequence of the Chironomidae GAPDH with other known species showed 78 - 88% identity to the conserved regions of the GADPH. Bioinformatic analysis unveils substantial N-terminal sequence similarity of GAPDH of Chironomidae larvae to mammalian GADPHs. However, the GADPH of Chironomidae larvae showed different biologic activities and cytotoxicity towards heavy metals. The GAPDH enzyme would undergo adaptive molecular changes through binding at the active site leading to higher tolerance to heavy metals.
Cabiati, Manuela; Raucci, Serena; Caselli, Chiara; Guzzardi, Maria Angela; D'Amico, Andrea; Prescimone, Tommaso; Giannessi, Daniela; Del Ry, Silvia
2012-06-01
Obesity is a complex pathology with interacting and confounding causes due to the environment, hormonal signaling patterns, and genetic predisposition. At present, the Zucker rat is an eligible genetic model for research on obesity and metabolic syndrome, allowing scrutiny of gene expression profiles. Real-time PCR is the benchmark method for measuring mRNA expressions, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. In the Zucker rat model, no specific reference genes have been identified in myocardium, kidney, and lung, the main organs involved in this syndrome. The aim of this study was to select among ten candidates (Actb, Gapdh, Polr2a, Ywhag, Rpl13a, Sdha, Ppia, Tbp, Hprt1 and Tfrc) a set of reference genes that can be used for the normalization of mRNA expression data obtained by real-time PCR in obese and lean Zucker rats both at fasting and during acute hyperglycemia. The most stable genes in the heart were Sdha, Tbp, and Hprt1; in kidney, Tbp, Actb, and Gapdh were chosen, while Actb, Ywhag, and Sdha were selected as the most stably expressed set for pulmonary tissue. The normalization strategy was used to analyze mRNA expression of tumor necrosis factor α, the main inflammatory mediator in obesity, whose variations were more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance of having three stably expressed reference gene sets for use in the cardiac, renal, and pulmonary tissues of an experimental model of obese and hyperglycemic Zucker rats.
Phylogenetic Analysis of the Incidence of lux Gene Horizontal Transfer in Vibrionaceae▿ †
Urbanczyk, Henryk; Ast, Jennifer C.; Kaeding, Allison J.; Oliver, James D.; Dunlap, Paul V.
2008-01-01
Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib2 operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib2 operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa. PMID:18359809
Julian, Guilherme Silva; Oliveira, Renato Watanabe de; Tufik, Sergio; Chagas, Jair Ribeiro
2016-01-01
Obstructive sleep apnea (OSA) has been associated with oxidative stress and various cardiovascular consequences, such as increased cardiovascular disease risk. Quantitative real-time PCR is frequently employed to assess changes in gene expression in experimental models. In this study, we analyzed the effects of chronic intermittent hypoxia (an experimental model of OSA) on housekeeping gene expression in the left cardiac ventricle of rats. Analyses via four different approaches-use of the geNorm, BestKeeper, and NormFinder algorithms; and 2-ΔCt (threshold cycle) data analysis-produced similar results: all genes were found to be suitable for use, glyceraldehyde-3-phosphate dehydrogenase and 18S being classified as the most and the least stable, respectively. The use of more than one housekeeping gene is strongly advised. RESUMO A apneia obstrutiva do sono (AOS) tem sido associada ao estresse oxidativo e a várias consequências cardiovasculares, tais como risco aumentado de doença cardiovascular. A PCR quantitativa em tempo real é frequentemente empregada para avaliar alterações na expressão gênica em modelos experimentais. Neste estudo, analisamos os efeitos da hipóxia intermitente crônica (um modelo experimental de AOS) na expressão de genes de referência no ventrículo cardíaco esquerdo de ratos. Análises a partir de quatro abordagens - uso dos algoritmos geNorm, BestKeeper e NormFinder e análise de dados 2-ΔCt (ciclo limiar) - produziram resultados semelhantes: todos os genes mostraram-se adequados para uso, sendo que gliceraldeído-3-fosfato desidrogenase e 18S foram classificados como o mais e o menos estável, respectivamente. A utilização de mais de um gene de referência é altamente recomendada.
Differential gene expression in Alternaria gaisen exposed to dark and light
USDA-ARS?s Scientific Manuscript database
Character states observed during sporulation have been the basis for segregation and description of many of the small-spored species of Alternaria. Phylogenetic analyses of ITS and housekeeping genes from small-spored Alternaria spp. do not support most of the currently defined morphological specie...
Mogollon, Catherin Marin; van Pul, Fiona J A; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M; Veld, Sabrina A J; Kroeze, Hans; Franke-Fayard, Blandine M D; Janse, Chris J; Khan, Shahid M
2016-01-01
The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.
Mogollon, Catherin Marin; van Pul, Fiona J. A.; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M.; Veld, Sabrina A. J.; Kroeze, Hans; Franke-Fayard, Blandine M. D.; Janse, Chris J.
2016-01-01
The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters. PMID:27997583
Elberg, Gerard; Elberg, Dorit; Logan, Charlotte J; Chen, Lijuan; Turman, Martin A
2006-01-01
Progressive renal fibrotic disease is accompanied by the massive accumulation of myofibroblasts as defined by alpha smooth muscle actin (alphaSMA) expression. We quantitated gene expression using real-time RT-PCR analysis during conversion of primary cultured human renal tubular cells (RTC) to myofibroblasts after treatment with transforming growth factor-beta1 (TGF-beta1). We report herein the limitations of commonly used reference genes for mRNA quantitation. We determined the expression of alphaSMA and megakaryoblastic leukemia-1 (MKL1), a transcriptional regulator of alphaSMA, by quantitative real-time PCR using three common internal controls, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin A and 18S rRNA. Expression of GAPDH mRNA and cyclophilin A mRNA, and to a lesser extent, 18S rRNA levels varied over time in culture and with exposure to TGF-beta1. Thus, depending on which reference gene was used, TGF-beta1 appeared to have different effects on expression of MKL1 and alphaSMA. RTC converting to myofibroblasts in primary culture is a valuable system to study renal fibrosis in humans. However, variability in expression of reference genes with TGF-beta1 treatment illustrates the need to validate mRNA quantitation with multiple reference genes to provide accurate interpretation of fibrosis studies in the absence of a universal internal standard for mRNA expression. 2006 S. Karger AG, Basel.
Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).
Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette
2013-12-05
Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Regions of very low H3K27me3 partition the Drosophila genome into topological domains
Flower, Rosalyn; Choo, Siew Woh
2017-01-01
It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome. PMID:28282436
Lecithin:retinol acyltransferase in ARPE-19
2005-04-05
analyses. (A) Microarray analysis was performed on RNA extracted from ARPE 19. Both LRAT (white), and housekeeping gene G3PDH (shaded) were detected...about one third of the house keeping gene glyceraldehydes-3-phosphate dehydrogenase ( G3PDH ) 663G66. Western analyses with tLRAT antibody showed that LRAT
Demarse, Neil A.; Ponnusamy, Suriyan; Spicer, Eleanor K.; Apohan, Elif; Baatz, John E.; Ogretmen, Besim; Davies, Christopher
2009-01-01
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel shift assays, we show that recombinant GAPDH binds directly with high affinity (Kd = 45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats and that nucleotides T1, G5 and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA: GAPDH), and GAPDH appears to form a high-molecular weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition, and this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells. PMID:19800890
Marri, Lucia; Zaffagnini, Mirko; Collin, Valérie; Issakidis-Bourguet, Emmanuelle; Lemaire, Stéphane D; Pupillo, Paolo; Sparla, Francesca; Miginiac-Maslow, Myroslawa; Trost, Paolo
2009-03-01
The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.
Park, Sang-Je; Kim, Young-Hyun; Lee, Youngjeon; Kim, Kyoung-Min; Kim, Heui-Soo; Lee, Sang-Rae; Kim, Sun-Uk; Kim, Sang-Hyun; Kim, Ji-Su; Jeong, Kang-Jin; Lee, Kyoung-Min; Huh, Jae-Won; Chang, Kyu-Tae
2013-01-01
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the specificity, sensitivity, and accuracy of this technique. In order to obtain reliable gene expression data from RT-qPCR experiments, it is important to utilize optimal reference genes for the normalization of target gene expression under varied experimental conditions. Previously, we developed and validated a novel icv-STZ cynomolgus monkey model for Alzheimer's disease (AD) research. However, in order to enhance the reliability of this disease model, appropriate reference genes must be selected to allow meaningful analysis of the gene expression levels in the icv-STZ cynomolgus monkey brain. In this study, we assessed the expression stability of 9 candidate reference genes in 2 matched-pair brain samples (5 regions) of control cynomolgus monkeys and those who had received intracerebroventricular injection of streptozotocin (icv-STZ). Three well-known analytical programs geNorm, NormFinder, and BestKeeper were used to choose the suitable reference genes from the total sample group, control group, and icv-STZ group. Combination analysis of the 3 different programs clearly indicated that the ideal reference genes are RPS19 and YWHAZ in the total sample group, GAPDH and RPS19 in the control group, and ACTB and GAPDH in the icv-STZ group. Additionally, we validated the normalization accuracy of the most appropriate reference genes (RPS19 and YWHAZ) by comparison with the least stable gene (TBP) using quantification of the APP and MAPT genes in the total sample group. To the best of our knowledge, this research is the first study to identify and validate the appropriate reference genes in cynomolgus monkey brains. These findings provide useful information for future studies involving the expression of target genes in the cynomolgus monkey.
Thiel, Cora S; Huge, Andreas; Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-01-01
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5 , GAPDH , HPRT1 , PLA2G4A , and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10 -4 and 9 g), 20-40% remained unchanged in microgravity (between 10 -4 and 10 -2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Liu, Shuang; Zhu, Pengfei; Zhang, Ling; Ding, Shanlong; Zheng, Sujun; Wang, Yang; Lu, Fengmin
2013-01-01
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the high specificity, sensitivity and accuracy of this technique. However, its reliability is strongly depends on the expression stability of reference gene used for data normalization. Therefore, identification of reliable and condition specific reference genes is critical for the success of RT-qPCR. Hepatitis B virus (HBV) infection, male gender and the presence of cirrhosis are widely recognized as the leading independent risk factors for the development of hepatocellular carcinoma (HCC). This study aimed to select reliable reference gene for RT-qPCR analysis in HCC patients with all of those risk factors. Six candidate reference genes were analyzed in 33 paired tumor and non-tumor tissues from untreated HCC patients. The genes expression stabilities were assessed by geNorm and NormFinder. C-terminal binding protein 1(CTBP1) was the most stable gene among the 6 candidate genes evaluated by both geNorm and NormFinder. The expression stability values were 0.08 for CTBP1 and UBC, 0.09 for HPRT1, 0.12 for HMBS, 0.14 for GAPDH and 0.18 for 18S with geNorm analysis. The stability values suggested by NormFinder software were CTBP1: 0.044, UBC: 0.063, HMBS: 0.072, HPRT1: 0.072, GAPDH: 0.098 and 18S rRNA: 0.161. This is the first systematic analysis which suggested CTBP1 as the highest expression-stable gene in human male HBV infection related-HCC with cirrhosis. We recommend CTBP1 as the best candidate reference gene when RT-qPCR was used to determine gene(s) expression in HCC. This may facilitate the relevant HBV related HCC studies in the future.
Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus.
Patel, Dhaval K; Shah, Kunal R; Pappachan, Anju; Gupta, Sarita; Singh, Desh Deepak
2016-10-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis. It is also referred to as a moonlighting protein as it has many diverse functions like regulation of apoptosis, iron homeostasis, cell-matrix interactions, adherence to human colon etc. apart from its principal role in glycolysis. Lactobacilli are lactic acid bacteria which colonize the human gut and confer various health benefits to humans. In the present study, we have cloned, expressed and purified the GAPDH from Lactobacillus acidophilus to get a recombinant product (r-LaGAPDH) and characterized it. Size exclusion chromatography shows that r-LaGAPDH exists as a tetramer in solution and have a mucin binding and hemagglutination activity indicating carbohydrate like binding adhesion mechanism. Fluorescence spectroscopy studies showed an interaction of r-LaGAPDH with mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine with a Kd of 3.6±0.7×10(-3)M, 4.34±0.09×10(-3)M, 4±0.87×10(-3)M and 3.7±0.28×10(-3)M respectively. We hope that this preliminary data will generate more interest in further elucidation of the roles of GAPDH in the adhesion processes of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong
2015-01-01
Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were relatively low, ranging from 68.7-97.9%. The housekeeping genes rpoB and gyrB1 were demonstrated to be alternative classification markers to the species level based on intra- and inter-species comparisons, whereas based on phylogenetic tree rpoB proved to be reliable phylogenetic marker for the genus Prevotella.
Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong
2015-01-01
Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the inter-species similarities were relatively low, ranging from 68.7–97.9%. The housekeeping genes rpoB and gyrB1 were demonstrated to be alternative classification markers to the species level based on intra- and inter-species comparisons, whereas based on phylogenetic tree rpoB proved to be reliable phylogenetic marker for the genus Prevotella. PMID:26103050
Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.
Soyalan, Bülent; Minn, Jutta; Schmitz, Hans J; Schrenk, Dieter; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine
2011-03-01
The risk of cancer and other degenerative diseases is inversely correlated with consumption of fruits and vegetables. This beneficial effect is mainly attributed to secondary plant constituents such as polyphenols, supposed to play a major role in protection against ROS (reactive oxygen species)-associated toxicity. To elucidate the potential of differently manufactured apple juices (clear AJ/cloudy AJ/smoothie, in comparison with a polyphenol-free control juice) to modulate expression of ARE-dependent genes. In male Sprague-Dawley rats (n = 8/group; 10d juice intervention, 4d wash-out; 4 treatment cycles), expression of target genes (superoxide dismutase, SOD1/SOD2; glutathione peroxidase, GPX1/GPX2; γ-glutamylcysteine ligase, GCLC/GCLM; glutathione reductase, GSR; catalase, CAT; NAD(P)H:quinone oxidoreductase-1, NQO1 and transcription factor erythroid-derived 2-like-2, Nrf2) was quantified with duplex RT-PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. In colon and liver of rats consuming polyphenol-free control juice, rather similar basic expressions were observed (relative GAPDH ratios ranging from 2 to 0.7 and 2.5-0.3, respectively). In the distal colon, apple juice intervention slightly but significantly induced most genes (e.g. GPX2, GSR, CAT, Nrf2; p < 0.001), whereas in the liver only GPX1 and NQO1 mRNA were up-regulated; other hepatic target genes were not affected or down-regulated (SOD1, SOD2, GCLC/M, GSR), concomitant with the absence of Nrf2 induction. Induction of antioxidant gene expression differed with juice type (cloudy AJ > clear AJ ~ smoothie). Taken together, the results underline the potential of polyphenol-rich apple juice to increase the expression of ARE-dependent antioxidant genes.
Application of a Master Equation for Quantitative mRNA Analysis Using qRT-PCR
USDA-ARS?s Scientific Manuscript database
The qRT-PCR has been widely accepted as the assay of choice for mRNA quantification. Gene expression as measured by mRNA dynamics varies in response to different conditions and environmental stimuli. For conventional practice, housekeeping genes have been applied as internal reference for data nor...
Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou
2015-01-01
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens. PMID:25585250
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro.
Jarosz, Artur P; Wei, Wanlei; Gauld, James W; Auld, Janeen; Özcan, Filiz; Aslan, Mutay; Mutus, Bulent
2015-12-01
Hydrogen sulfide (H2S) is produced enzymatically by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), as well as other enzymes in mammalian tissues. These discoveries have led to the crowning of H2S as yet another toxic gas that serves as a gasotransmitter like NO and CO. H2S is thought to exert its biological effects through its reaction with cysteine thiols in proteins, yielding sulfurated thiol (-SSH) derivatives. One of the first proteins shown to be modified by H2S was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [1] where the S-sulfuration of the active site cysteine (Cys 152) resulted in ~7-fold increase in the activity of the enzyme. In the present study we have attempted to reproduce this result with no success. GAPDH in its reduced, or hydrogen peroxide, or glutathione disulfide, or nitrosonium oxidized forms was reacted with sulfide or polysulfides. Sulfide had no effect on reduced GAPDH activity, while polysulfides inhibited GAPDH to ~42% of control. S-sulfuration of GAPDH occurred at Cys 247 after sulfide treatment, Cys 156 and Cys 247 after polysulfide treatment. No evidence of S-sulfuration at active site Cys 152 was discovered. Both sulfide and polysulfide was able to restore the activity of glutathione disulfide oxidized GAPDH, but not to control untreated levels. Treatment of glutathione disulfide oxidized GAPDH with polysulfide also produced S-sulfuration of Cys 156. Treatment of a C156S mutant of GAPDH with sulfide and polysulfide resulted in S-sulfuration of Cys 152, which also caused a decrease and not an increase in enzymatic activity. Computational chemistry shows S-sulfuration of Cys 156 may affect the position of catalytic Cys 152, raising its pKa by 0.5, which may affect the nucleophilicity of Cys 152. The current study raises significant questions about the reported ability of H2S to activate GAPDH by the sulfuration of its active site thiol, and indicates that polysulfide is a stronger protein S-sulfurating agent than sulfide. Copyright © 2015 Elsevier Inc. All rights reserved.
Tsuchiya, Yukihiro; Yamaguchi, Mitsune; Chikuma, Toshiyuki; Hojo, Hiroshi
2005-06-15
Lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) may be responsible for various pathophysiological events under oxidative stress, since they injure cellular components such as proteins and DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a key enzyme of glycolysis and has been reported to be a multifunctional enzyme, is one of the enzymes inhibited by HNE. Previous studies showed that GAPDH is degraded when incubated with acetylleucine chloromethyl ketone (ALCK), resulting in the liberation of a 23-kDa fragment. In this study, we examined whether GAPDH incubated with HNE or other aldehydes of lipid peroxidation products are degraded similarly to that with ALCK. The U937 cell extract was incubated with these aldehydes at 37 degrees C and analyzed by Western blotting using anti-GAPDH antibodies. Incubation with HNE or 4-hydroxy-2-hexenal (HHE) decreased GAPDH activity and GAPDH protein level, and increased the 23-kDa fragment, in time- and dose-dependent manners, but that with other aldehydes did not. Gel filtration using the Superose 6 showed that the GAPDH-degrading activity was eluted in higher molecular fractions than proteasome activity. The enzyme activity was detected at the basic range of pH and inhibited by serine protease inhibitors, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, but not by other protease inhibitors including a proteasome inhibitor, MG-132, and a tripeptidyl peptidase II (TPP II) inhibitor, AAF-CMK. These results suggest that GAPDH modified by HNE and HHE is degraded by a giant serine protease, releasing the 23-kDa fragment, not by proteasome or TPP II.
Sexton, Jonathan Z; Danshina, Polina V; Lamson, David R; Hughes, Mark; House, Alan J; Yeh, Li-An; O’Brien, Deborah A; Williams, Kevin P
2011-01-01
Glycolytic isozymes that are restricted to the male germline are potential targets for the development of reversible, non-hormonal male contraceptives. GAPDHS, the sperm-specific isoform of glyceraldehyde-3-phosphate dehydrogenase, is an essential enzyme for glycolysis making it an attractive target for rational drug design. Toward this goal, we have optimized and validated a high-throughput spectrophotometric assay for GAPDHS in 384-well format. The assay was stable over time and tolerant to DMSO. Whole plate validation experiments yielded Z’ values >0.8 indicating a robust assay for HTS. Two compounds were identified and confirmed from a test screen of the Prestwick collection. This assay was used to screen a diverse chemical library and identified fourteen small molecules that modulated the activity of recombinant purified GAPDHS with confirmed IC50 values ranging from 1.8 to 42 µM. These compounds may provide useful scaffolds as molecular tools to probe the role of GAPDHS in sperm motility and long term to develop potent and selective GAPDHS inhibitors leading to novel contraceptive agents. PMID:21760877
Chen, Fei; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Pezzotti, Mario; Zhang, Liangsheng; Cai, Bin; Cheng, Zong-Ming
2013-01-01
Calcium-dependent protein kinases (CDPKs) are molecular switches that bind Ca2+, ATP, and protein substrates, acting as sensor relays and responders that convert Ca2+ signals, created by developmental processes and environmental stresses, into phosphorylation events. The precise functions of the CDPKs in grapevine (Vitis vinifera) are largely unknown. We therefore investigated the phylogenetic relationships and expression profiles of the 17 CDPK genes identified in the 12x grapevine genome sequence, resolving them into four subfamilies based on phylogenetic tree topology and gene structures. The origins of the CDPKs during grapevine evolution were characterized, involving 13 expansion events. Transcriptomic analysis using 54 tissues and developmental stages revealed three types of CDPK gene expression profiles: constitutive (housekeeping CDPKs), partitioned functions, and prevalent in pollen/stamen. We identified two duplicated CDPK genes that had evolved from housekeeping to pollen-prevalent functions and whose origin correlated with that of seed plants, suggesting neofunctionalization with an important role in pollen development and also potential value in the breeding of seedless varieties. We also found that CDPKs were involved in three abiotic stress signaling pathways and could therefore be used to investigate the crosstalk between stress responses. PMID:24324631
Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli.
Chen, Zhenya; Li, Ye; Sun, Xinxiao; Yuan, Qipeng
2016-10-20
Escherichia coli (E. coli) is widely used to express a variety of heterologous proteins. Efforts have been made to enhance the expression level of the desired protein. However, problems still exist to regulate the level of protein expression and therefore, new strategies are needed to overcome those issues. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is properly expressed in E. coli might play a leading role and increase the expression levels of the target proteins. In this study, GAPDH was fused with a target enzyme, ChSase ABC I, an endoeliminase and polysaceharide lyase. Our results confirmed this hypothesis and indicated that GAPDH boosted the expression level of ChSase ABC I with an increase of 2.25 times, while the enzymatic activity with an increase of 2.99 times. The hypothesis were also supported by RT-PCR study and GAPDH was more effective in enhancing the expression level and enzymatic activity as compared to MBP, which is commonly used as fused tag and can improve the soluble expression of target protein. addition, the expression level and enzymatic activity of other polysaceharide lyases were also improved in the presence of GAPDH. The findings of this study prove that GAPDH has a strong effect on enhancing the expression level and enzymatic activity of the target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.
Long, Chandler A.; Boloum, Valy; Albadawi, Hassan; Tsai, Shirling; Yoo, Hyung-Jin; Oklu, Rahmi; Goldman, Mitchell H.; Watkins, Michael T.
2013-01-01
Introduction Diabetes is known to increase poly-ADP-ribose-polymerase (PARP) activity and posttranslational poly-ADP-ribosylation of several regulatory proteins involved in inflammation and energy metabolism. These experiments test the hypothesis that PARP inhibition will modulate hind limb ischemia reperfusion (IR) in a mouse model of type-II diabetes; ameliorate the ribosylation and the activity/transnuclear localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Methods db/db mice underwent 1.5hrs of hind limb ischemia followed by 1, 7, or 24hrs reperfusion. The treatment group received the PARP inhibitor PJ34 (PJ34) over a 24hrs period; the untreated group received Lactated ringer’s (LR) at the same time points. IR muscles were analyzed for indices of PARP activity, fiber injury, metabolic activity, inflammation, GAPDH activity /intracellular localization and poly-ADP-ribosylation of GAPDH. Results PARP activity was significantly lower in the PJ34 treated groups compared to the LR group at 7 and 24 hours reperfusion. There was significantly less muscle fiber injury in the PJ34 treated group compared to LR treated mice at 24 hrs reperfusion. PJ34 lowered levels of select proinflammatory molecules at 7hrs and 24hrs IR. There were significant increases in metabolic activity only at 24 hours IR in the PJ34 group, which temporally correlated with increase in GAPDH activity, decreased GAPDH poly ADP-ribosylation and nuclear translocation of GAPDH. Conclusions PJ34 reduced PARP activity, GAPDH ribosylation, GAPDH translocation, ameliorated muscle fiber injury, and increased metabolic activity following hind limb IR injury in a murine model of type-II diabetes. PARP inhibition might be a therapeutic strategy following IR in diabetic humans. PMID:23549425
da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; Mesquita, Eric Takashi Kamakura de Carvalho; Gennari, Solange Maria; Marcili, Arlei
2015-11-01
Trypanosoma and Leishmania are obligate parasites that cause important diseases in human and domestic animals. Wild mammals are the natural reservoirs of these parasites, which are transmitted by hematophagous arthropods. The present study aimed to detect the natural occurrence of trypanosomatids through serological diagnosis, PCR of whole blood and blood culture (hemoculture), and phylogenetic relationships using small subunit ribosomal DNA (SSU rDNA), cytochrome b, and glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) genes. Samples from 131 wild animals, including rodents, marsupials, and bats, were sampled in six areas in the state of Maranhão, in a transition zone of semiarid climates northeast of the equatorial humid Amazon. Serological analysis for Leishmania (Leishmania) infantum chagasi was performed in opossums by indirect fluorescent antibody test (IFAT), and all animals were serologically negative. Nine positive hemocultures (6.77%) were isolated and cryopreserved and from mammals of the Didelphimorphia and Chiroptera orders and positioned in phylogenies on the basis of sequences from different genes with reference strains of Trypanosoma cruzi marinkellei and T. cruzi. From primary samples (blood and tissues) only one bat, Pteronotus parnellii, was positive to SSU rDNA and gGAPDH genes and grouped with the L. infantum chagasi branch. The studies conducted in Maranhão State provide knowledge of parasite diversity. It is important to determine the presence of trypanosomatids in wild mammals with synanthropic habits.
Kim, Min-Sik
2016-01-01
Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine. PMID:27551151
Cha, Sung-Jae; Kim, Min-Sik; Pandey, Akhilesh; Jacobs-Lorena, Marcelo
2016-09-19
Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine. © 2016 Cha et al.
Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)
NASA Astrophysics Data System (ADS)
Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong
2008-02-01
The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.
Identification of erythrocyte membrane proteins interacting with Mycoplasma suis GAPDH and OSGEP.
Song, Qiqi; Song, Weijiao; Zhang, Weijing; He, Lan; Fang, Rui; Zhou, Yanqin; Shen, Bang; Hu, Min; Zhao, Junlong
2018-05-05
Mycoplasma suis (M. suis) is an uncultivable haemotrophic mycoplasma that parasitizes the red blood cells of a wide range of domestic and wild animals. Adhesion of M. suis to host erythrocytes is crucial for its unique RBC-dependent lifecycle. MSG1 protein (now named as GAPDH) with homology to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was the first identified adhesion protein of M. suis. In this study, we found that O-sialoglycoprotein endopeptidase (OSGEP) is another M. suis protein capable of binding porcine erythrocytes. Recombinant OSGEP expressed in E. coli demonstrated surface localization similar to GAPDH. Purified rOSGEP bound to erythrocyte membrane preparations in a dose-dependent manner and this adhesion could be specifically inhibited by anti-rOSGEP antibodies. E. coli transformants expressing OSGEP on their surface were able to adhere to porcine erythrocytes. Furthermore, using far-western and pull-down assays, we determined the host membrane proteins that interacted with OSGEP and GAPDH were Band3 and glycophorin A (GPA). In conclusion, our studies indicated that OSGEP and GAPDH could interact with both Band3 and GPA to mediate adhesion of M. suis to porcine erythrocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B
2015-09-15
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results in studies on the effect of CO in gene expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Treatment Induced Autophagy Associated with Tumor Dormancy and Relapse
2016-07-01
for the autophagy gene , ATG5 (Figure 2A). Figure 2B confirms that autophagy was inhibited based on interference with the degradation of p62/SQSTM1 and...post IR (6Gy) LC.3.B GAPDH Figure 2. Silencing of autophagy in MMC cells. (A) Sh RNA mediated silencing of the autophagy gene , ATG5, in MMC cells...they sleep ? J Pharmacol Exp Ther 2012; 343(3):763-78. 9. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec
Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.
Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen
2014-01-01
The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.
Li, Ye; Chen, Zhenya; Zhou, Zhao; Yuan, Qipeng
2016-12-01
Chondroitinases (ChSases) are a family of polysaccharide lyases that can depolymerize high molecular weight chondroitin sulfate (CS) and dermatan sulfate (DS). In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is stably expressed in different cells like normal cells and cancer cells and the expression is relatively insensitive to experimental conditions, was expressed as a fusion protein with ChSase ABC I. Results showed that the expression level and enzyme activity of GAPDH-ChSase ABC I were about 2.2 and 3.0 times higher than those of ChSase ABC I. By optimization of fermentation conditions, higher productivity of ChSase ABC I was achieved as 880 ± 61 IU/g wet cell weight compared with the reported ones. The optimal temperature and pH of GAPDH-ChSase ABC I were 40 °C and 7.5, respectively. GAPDH-ChSase ABC I had a kcat/Km of 131 ± 4.1 L/μmol s and the catalytic efficiency was decreased as compared to ChSase ABC I. The relative activity of GAPDH-ChSase ABC I remained 89% after being incubated at 30 °C for 180 min and the thermostability of ChSase ABC I was enhanced by GAPDH when it was incubated at 30, 35, 40 and 45 °C. Copyright © 2016 Elsevier Inc. All rights reserved.
Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH
Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen
2014-01-01
The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592
Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.
Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko
2014-11-01
Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.
Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.
Xu, H; Li, C; Zeng, Q; Agrawal, I; Zhu, X; Gong, Z
2016-06-01
In this study, to systematically identify the most stably expressed genes for internal reference in zebrafish Danio rerio investigations, 37 D. rerio transcriptomic datasets (both RNA sequencing and microarray data) were collected from gene expression omnibus (GEO) database and unpublished data, and gene expression variations were analysed under three experimental conditions: tissue types, developmental stages and chemical treatments. Forty-four putative candidate genes were identified with the c.v. <0·2 from all datasets. Following clustering into different functional groups, 21 genes, in addition to four conventional housekeeping genes (eef1a1l1, b2m, hrpt1l and actb1), were selected from different functional groups for further quantitative real-time (qrt-)PCR validation using 25 RNA samples from different adult tissues, developmental stages and chemical treatments. The qrt-PCR data were then analysed using the statistical algorithm refFinder for gene expression stability. Several new candidate genes showed better expression stability than the conventional housekeeping genes in all three categories. It was found that sep15 and metap1 were the top two stable genes for tissue types, ube2a and tmem50a the top two for different developmental stages, and rpl13a and rp1p0 the top two for chemical treatments. Thus, based on the extensive transcriptomic analyses and qrt-PCR validation, these new reference genes are recommended for normalization of D. rerio qrt-PCR data respectively for the three different experimental conditions. © 2016 The Fisheries Society of the British Isles.
Fu, Shulin; Zhang, Minmin; Ou, Jiwen; Liu, Huazhen; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng
2012-11-06
Haemophilus parasuis, the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. The development of a vaccine against H. parasuis has been impeded due to the lack of induction of reliable cross-serotype protection. In this study the gapA gene that encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be present and highly conserved in various serotypes of H. parasuis and we constructed a novel DNA vaccine encoding GAPDH (pCgap) to evaluate the immune response and protective efficacy against infection with H. parasuis MD0322 serovar 4 or SH0165 serovar 5 in mice. A significant antibody response against GAPDH was generated following pCgap intramuscular immunization; moreover, antibodies to the pCgap DNA vaccine were bactericidal, suggesting that it was expressed in vivo. The gapA transcript was detected in muscle, liver, spleen, and kidney of the mice seven days post-vaccination. The IgG subclass (IgG1 and IgG2a) analysis indicated that the DNA vaccine induced both Th1 and Th2 immune responses, but the IgG1 response was greater than the IgG2a response. Moreover, the groups vaccinated with the pCgap vaccine exhibited 83.3% and 50% protective efficacy against the H. parasuis MD0322 serovar 4 or SH0165 serovar 5 challenges, respectively. The pCgap DNA vaccine provided significantly greater protective efficacy compared to the negative control groups or blank control groups (P<0.05 for both). Taken together, these findings indicate that the pCgap DNA vaccine provides a novel strategy against infection of H. parasuis and offer insight concerning the underlying immune mechanisms of a bacterial DNA vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
FRET analysis of CP12 structural interplay by GAPDH and PRK.
Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme
2015-03-13
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi
2013-09-01
Brain edema is believed to be linked to high mortality incidence after severe burns. The present study investigated the molecular pathology of brain damage and responses involving brain edema in forensic autopsy cases of fire fatality (n = 55) compared with sudden cardiac death (n = 11), mechanical asphyxia (n = 13), and non-brain injury cases (n = 22). Postmortem mRNA and immunohistochemical expressions of aquaporins (AQPs), claudin5 (CLDN5), and matrix metalloproteinases (MMPs) were examined. Prolonged deaths due to severe burns showed an increase in brain water content, but relative mRNA quantification, using different normalization methods, showed inconsistent results: in prolonged deaths due to severe burns, higher expression levels were detected for all markers when three previously validated reference genes, PES1, POLR2A, and IPO8, were used for normalization, higher for AQP1 and MMP9 when GAPDH alone was used for normalization and higher for MMP9, but lower for MMP2 when B2M alone was used for normalization. Additionally, when B2M alone was used for normalization, higher expression of AQP4 was detected in acute fire deaths. Furthermore, the expression stability values of these five reference genes calculated by geNorm demonstrated that B2M was the least stable one, followed by GAPDH. In immunostaining, only AQP1 and MMP9 showed differences among the causes of death: they were evident in most prolonged deaths due to severe burns. These findings suggest that systematic analysis of gene expressions using real-time PCR might be a useful procedure in forensic death investigation, and validation of reference genes is crucial.
Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation
Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr
2011-01-01
Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949
On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
Linck, Annabell; Vu, Xuan-Khang; Essl, Christine; Hiesl, Charlotte; Boles, Eckhard; Oreb, Mislav
2014-05-01
In the metabolic network of the cell, many intermediary products are shared between different pathways. d-Glyceraldehyde-3-phosphate, a glycolytic intermediate, is a substrate of GAPDH but is also utilized by transaldolase and transketolase in the scrambling reactions of the nonoxidative pentose phosphate pathway. Recent efforts to engineer baker's yeast strains capable of utilizing pentose sugars present in plant biomass rely on increasing the carbon flux through this pathway. However, the competition between transaldolase and GAPDH for d-glyceraldehyde-3-phosphate produced in the first transketolase reaction compromises the carbon balance of the pathway, thereby limiting the product yield. Guided by the hypothesis that reduction in GAPDH activity would increase the availability of d-glyceraldehyde-3-phosphate for transaldolase and thereby improve ethanol production during fermentation of pentoses, we performed a comprehensive characterization of the three GAPDH isoenzymes in baker's yeast, Tdh1, Tdh2, and Tdh3 and analyzed the effect of their deletion on xylose utilization by engineered strains. Our data suggest that overexpression of transaldolase is a more promising strategy than reduction in GAPDH activity to increase the flux through the nonoxidative pentose phosphate pathway. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation?
Ramzan, Rabia; Weber, Petra; Linne, Uwe; Vogt, Sebastian
2013-10-01
The main function of glycolysis and oxidative phosphorylation is to produce cellular energy in the form of ATP. In the present paper we propose a link between both of these energy-regulatory processes in the form of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and CytOx (cytochrome c oxidase). GAPDH is the sixth enzyme of glycolysis, whereas CytOx is the fourth complex of the mitochondrial oxidative phosphorylation system. In MS analysis, GAPDH was found to be associated with a BN-PAGE (blue native PAGE)-isolated complex of CytOx from bovine heart tissue homogenates. Both GAPDH and CytOx are highly regulated under normal energy metabolic conditions, but both of these enzymes are highly deregulated in the presence of oxidative stress. The interaction of GAPDH with CytOx could be the point of interest as it has already been shown that GAPDH protein damage results in a marked decrease in cellular ATP levels. On the other hand, decreasing the ATP/ADP ratio may ultimately result in switching off the allosteric ATP inhibition of CytOx leading to increased ROS (reactive oxygen species), cytochrome c release and apoptosis. Moreover, we have previously reported that allosteric ATP inhibition of CytOx is responsible for keeping the membrane potential at low healthy values, thus avoiding the production of ROS and this allosteric ATP inhibition is switched on at a high ATP/ADP ratio. So, in the present paper, we propose a scheme that could prove to be a link between these two enzymes and their role in the prevalence of diseases.
NASA Astrophysics Data System (ADS)
Shi, Zhenhua; Yu, Hui; Sun, Yongyan; Yang, Chuanjun; Lian, Huiyong; Cai, Peng
2015-02-01
A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.
Zhang, Bao-cun; Sun, Li; Xiao, Zhi-zhong; Hu, Yong-hua
2014-06-01
Rock bream Oplegnathus fasciatus is an important economic fish species. In this study, we evaluated the appropriateness of six housekeeping genes as internal controls for quantitative real-time PCR (RT-qPCR) analysis of gene expression in rock bream before and after pathogen infection. The expression of the selected genes in eight tissues infected with Vibrio alginolyticus or megalocytivirus was determined by RT-qPCR, and the PCR data were analyzed with geNorm and NormFinder algorithms. The results showed that before pathogen infection, mediator of RNA polymerase II transcription subunit 8 and β-actin were ranked as the most stable genes across the examined tissues. After bacterial or viral infection, the stabilities of the housekeeping genes varied to significant extents in tissue-dependent manners, and no single pair of genes was identified as suitable references for all tissues for either of the pathogen stimuli. In addition, for the majority of tissues, the most stable genes during bacterial infection differed from those during viral infection. Nevertheless, optimum reference genes were identified for each tissue under different conditions. Taken together, these results indicate that tissue type and the nature of the infectious agent used in the study can all influence the choice of normalization factors, and that the optimum reference genes identified in this study will provide a useful guidance for the selection of internal controls in future RT-PCR study of gene expression in rock bream. Copyright © 2014 Elsevier B.V. All rights reserved.
Urinary mRNA for the Diagnosis of Renal Allograft Rejection: The Issue of Normalization.
Galichon, P; Amrouche, L; Hertig, A; Brocheriou, I; Rabant, M; Xu-Dubois, Y-C; Ouali, N; Dahan, K; Morin, L; Terzi, F; Rondeau, E; Anglicheau, D
2016-10-01
Urinary messenger RNA (mRNA) quantification is a promising method for noninvasive diagnosis of renal allograft rejection (AR), but the quantification of mRNAs in urine remains challenging due to degradation. RNA normalization may be warranted to overcome these issues, but the strategies of gene normalization have been poorly evaluated. Herein, we address this issue in a case-control study of 108 urine samples collected at time of allograft biopsy in kidney recipients with (n = 52) or without (n = 56) AR by comparing the diagnostic value of IP-10 and CD3ε mRNAs-two biomarkers of AR-after normalization by the total amount of RNA, normalization by one of the three widely used reference RNAs-18S, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Hypoxanthine-guanine phosphoribosyltransferase (HPRT)-or normalization using uroplakin 1A (UPK) mRNA as a possible urine-specific reference mRNA. Our results show that normalization based on the total quantity of RNA is not substantially improved by additional normalization and may even be worsened with some classical reference genes that are overexpressed during rejection. However, considering that normalization by a reference gene is necessary to ensure polymerase chain reaction (PCR) quality and reproducibility and to suppress the effect of RNA degradation, we suggest that GAPDH and UPK1A are preferable to 18S or HPRT RNA. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
In vivo modulation of foreign body response on polyurethane by surface entrapment technique.
Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh
2010-11-01
Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later being mostly resistant to this phenomenon.
Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A
1997-10-01
Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.
McKenzie, S; Doe, W; Buffinton, G
1999-01-01
Background—Reactive oxygen and nitrogen derived species produced by activated neutrophils have been implicated in the damage of mucosal proteins including the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the active inflammatory lesion in patients with inflammatory bowel disease (IBD). This study investigated the efficacy of currently used IBD therapeutics to prevent injury mediated by reactive oxygen and nitrogen derived species. Methods—GAPDH activity of human colon epithelial cells was used as a sensitive indicator of injury produced by reactive oxygen and nitrogen derived species. HCT116 cells (106/ml phosphate buffered saline; 37°C) were incubated in the presence of 5-aminosalicylic acid (5-ASA), 6-mercaptopurine, methylprednisolone, or metronidazole before exposure to H2O2, HOCl, or NO in vitro. HCT116 cell GAPDH enzyme activity was determined by standard procedures. Cell free reactions between 5-ASA and HOCl were analysed by spectrophotometry and fluorimetry to characterise the mechanism of oxidant scavenging. Results—GAPDH activity of HCT116 cells was inhibited by the oxidants tested: the concentration that produced 50% inhibition (IC50) was 44.5 (2.1) µM for HOCl, 379.8 (21.3) µM for H2O2, and 685.8 (103.8) µM for NO (means (SEM)). 5-ASA was the only therapeutic compound tested to show efficacy (p<0.05) against HOCl mediated inhibition of enzyme activity; however, it was ineffective against H2O2 and NO mediated inhibition of GAPDH. Methylprednisolone, metronidazole, and the thiol-containing 6-mercaptopurine were ineffective against all oxidants. Studies at ratios of HOCl:5-ASA achievable in the mucosa showed direct scavenging to be the mechanism of protection of GAPDH activity. Mixing 5-ASA and HOCl before addition to the cells resulted in significantly greater protection of GAPDH activity than when HOCl was added to cells preincubated with 5-ASA. The addition of 5-ASA after HOCl exposure did not restore GAPDH activity. Conclusions—Therapies based on 5-ASA may play a direct role in scavenging the potent neutrophil oxidant HOCl, thereby protecting mucosal GAPDH from oxidative inhibition. These findings suggest that strategies for the further development of new HOCl scavenging compounds may be useful in the treatment of IBD. Keywords: 5-aminosalicylic acid; 6-mercaptopurine; prednisolone; metronidazole; oxidants; glyceraldehyde-3-phosphate dehydrogenase PMID:9895376
2005-08-01
The neuronal nitric oxide synthase (NOS1) gene target was amplified and sequenced in all samples tested, in addition to HSV1 , HSV2 , or Human Herpes...Triphosphate DNA Deoxyribonucleic acid GAPDH Glyceraldehyde-3 -phosphate dehydrogenase HSV Herpes Simplex Virus HSV1 Herpes Simplex Virus Type 1 HSV2 Herpes... HSV2 ) share 50-70 % homology. HSV1 is primarily associated with oral and ocular lesions, while HSV2 is primarily associated with genital and anal lesions
Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation*
Vanacloig-Pedros, Elena; Bets-Plasencia, Carolina; Pascual-Ahuir, Amparo; Proft, Markus
2015-01-01
Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of “housekeeping” genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H+-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover. PMID:25745106
Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I
2000-04-01
Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.
Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio
2015-01-01
Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838
Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V
2017-07-11
In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
Nitric Oxide-GAPDH Transcriptional Signaling Mediates Behavioral Actions of Cocaine.
Harraz, Maged M; Snyder, Solomon H
2015-01-01
Psychotropic actions of cocaine are generally thought to involve its blockade of monoamine transporters leading to increased synaptic levels of monoamines, especially dopamine. Subsequent intracellular events have been less well characterized. We describe a signaling system wherein lower behavioral stimulant doses of cocaine, as well as higher neurotoxic doses, activate a cascade wherein nitric oxide nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to generate a complex with the ubiquitin-E3-ligase Siah1 which translocates to the nucleus. With lower cocaine doses, nuclear GAPDH augments CREB signaling, while at higher doses p53 signaling is enhanced. The drug CGP3466B very potently blocks GAPDH nitrosylation, hindering both signaling cascades and inhibits both behavioral activating and neurotoxic effects of cocaine. This system affords potentially novel approaches to the therapy of cocaine abuse.
Lorén, J. Gaspar; Farfán, Maribel; Fusté, M. Carmen
2014-01-01
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process. PMID:24586399
Malik, Shweta; Petrova, Mariya I.; Claes, Ingmar J. J.; Verhoeven, Tine L. A.; Busschaert, Pieter; Vaneechoutte, Mario; Lievens, Bart; Lambrichts, Ivo; Siezen, Roland J.; Balzarini, Jan; Vanderleyden, Jos
2013-01-01
Lactobacilli are important for the maintenance of a healthy ecosystem in the human vagina. Various mechanisms are postulated but so far are poorly substantiated by molecular studies, such as mutant analysis. Bacterial autoaggregation is an interesting phenomenon that can promote adhesion to host cells and displacement of pathogens. In this study, we report on the identification of a human vaginal isolate, Lactobacillus plantarum strain CMPG5300, which shows high autoaggregative and adhesive capacity. To investigate the importance of sortase-dependent proteins (SDPs) in these phenotypes, a gene deletion mutant was constructed for srtA, the gene encoding the housekeeping sortase that covalently anchors these SDPs to the cell surface. This mutant lost the capacity to autoaggregate, showed a decrease in adhesion to vaginal epithelial cells, and lost biofilm-forming capacity under the conditions tested. These results indicate that the housekeeping sortase SrtA of CMPG5300 is a key determinant of the peculiar surface properties of this vaginal Lactobacillus strain. PMID:23709503
Molecular Mechanism for Prostate Cancer Resistance to the Anti-tumor Activity of Vitamin D
2006-11-01
point where each curve crossed the threshold line (Ct) using the following equation : Rel. value = 2[Ct(control) Ct(test)]test gene / 2[Ct(control...by hypermethylation in human pancreatic cancer. J Hum Genet 2005;50:159–67. 41. Armes JE, Hammet F, de Silva M, et al. Candidate tumor-suppressor...line (Ct) using the equation : Rel. Value = 2 - [Ct(control) – Ct(test)]test gene/ 2 -[Ct(control) – Ct(test)]housekeeping gene [22]. Reactions were
Stecyk, Jonathan A W; Couturier, Christine S; Fagernes, Cathrine E; Ellefsen, Stian; Nilsson, Göran E
2012-03-01
The mRNA expression of heat-shock protein 90 (HSP90) and heat-shock cognate 70 (HSC70) was examined in cardiac chambers and telencephalon of warm- (21°C) and cold-acclimated (5°C) turtles (Trachemys scripta) exposed to normoxia, prolonged anoxia or anoxia followed by reoxygenation. Additionally, the suitability of total RNA as well as mRNA from β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and cyclophilin A (PPIA) for normalizing gene expression data was assessed, as compared to the use of an external RNA control. Measurements of HSP90 and HSC70 mRNA expression revealed that anoxia and reoxygenation have tissue- and gene-specific effects. By and large, the alterations support previous investigations on HSP protein abundance in the anoxic turtle heart and brain, as well as the hypothesized roles of HSP90 and HSC70 during stress and non-stress conditions. However, more prominent was a substantially increased HSP90 and HSC70 mRNA expression in the cardiac chambers with cold acclimation. The finding provides support for the notion that cold temperature induces a number of adaptations in tissues of anoxia-tolerant vertebrates that precondition them for winter anoxia. β-actin, GAPDH and PPIA mRNA expression and total RNA also varied with oxygenation state and acclimation temperature in a tissue- and gene-specific manner, as well as among tissue types, thus disqualifying them as suitable for real-time RT-PCR normalization. Thus, the present data highlights the advantages of normalizing real-time RT-PCR data to an external RNA control, an approach that also allows inter-tissue and potentially inter-species comparisons of target gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.
2014-01-01
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863
Rivera-Posada, J A; Pratchett, M; Cano-Gomez, A; Arango-Gomez, J D; Owens, L
2011-09-09
We used a polyphasic approach for precise identification of bacterial flora (Vibrionaceae) isolated from crown-of-thorns starfish (COTS) from Lizard Island (Great Barrier Reef, Australia) and Guam (U.S.A., Western Pacific Ocean). Previous 16S rRNA gene phylogenetic analysis was useful to allocate and identify isolates within the Photobacterium, Splendidus and Harveyi clades but failed in the identification of Vibrio harveyi-like isolates. Species of the V harveyi group have almost indistinguishable phenotypes and genotypes, and thus, identification by standard biochemical tests and 16S rRNA gene analysis is commonly inaccurate. Biochemical profiling and sequence analysis of additional topA and mreB housekeeping genes were carried out for definitive identification of 19 bacterial isolates recovered from sick and wild COTS. For 8 isolates, biochemical profiles and topA and mreB gene sequence alignments with the closest relatives (GenBank) confirmed previous 16S rRNA-based identification: V. fortis and Photobacterium eurosenbergii species (from wild COTS), and V natriegens (from diseased COTS). Further phylogenetic analysis based on topA and mreB concatenated sequences served to identify the remaining 11 V harveyi-like isolates: V. owensii and V. rotiferianus (from wild COTS), and V. owensii, V. rotiferianus, and V. harveyi (from diseased COTS). This study further confirms the reliability of topA-mreB gene sequence analysis for identification of these close species, and it reveals a wider distribution range of the potentially pathogenic V. harveyi group.
Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław
2016-03-01
The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.
Kidney, B A; Ellis, J A; Haines, D M; Jackson, M L
2001-12-01
To determine whether feline vaccine site-associated sarcomas (VSS) contain a higher amount of endogenous FeLV (enFeLV) RNA, compared with feline nonvaccine site-associated sarcomas (non-VSS). Formalin-fixed paraffin-embedded (FFPE) tissues from 50 VSS and 50 cutaneous non-VSS. RNA was extracted from FFPE sections of each tumor, and regions of the long terminal repeat (LTR) and envelope (env) gene of enFeLV were amplified by use of reverse transcriptase-polymerase chain reaction (RT-PCR). The density of each RT-PCR product band for enFeLV was compared with that of a constitutively expressed gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). An integrated density value (IDV) was determined by use of densitometry, and the IDV ratio for enFeLV to GAPDH was calculated for each enFeLV primer set. The median (interquartile range) of the IDV ratio for the enFeLV LTR primer set was 0.52 (0.26 to 1.17) for the VSS group and 0.84 (0.21 to 1.53) for the non-VSS group. The median (interquartile range) of the IDV ratio for the enFeLV env primer set was 0.60 (0.37 to 0.91) for the VSS group and 0.59 (0.36 to 1.09) for the non-VSS group. Because the amount of enFeLV RNA within the LTR and env gene was not significantly different between the VSS and non-VSS groups, enFeLV replication or expression is unlikely to be involved in VSS development.
Margaryan, Hasmik; Dorosh, Andriy; Capkova, Jana; Manaskova-Postlerova, Pavla; Philimonenko, Anatoly; Hozak, Pavel; Peknicova, Jana
2015-03-08
Sperm proteins are important for the sperm cell function in fertilization. Some of them are involved in the binding of sperm to the egg. We characterized the acrosomal sperm protein detected by a monoclonal antibody (MoAb) (Hs-8) that was prepared in our laboratory by immunization of BALB/c mice with human ejaculated sperms and we tested the possible role of this protein in the binding assay. Indirect immunofluorescence and immunogold labelling, gel electrophoresis, Western blotting and protein sequencing were used for Hs-8 antigen characterization. Functional analysis of GAPDHS from the sperm acrosome was performed in the boar model using sperm/zona pellucida binding assay. Monoclonal antibody Hs-8 is an anti-human sperm antibody that cross-reacts with the Hs-8-related protein in spermatozoa of other mammalian species (boar, mouse). In the immunofluorescence test, Hs-8 antibody recognized the protein localized in the acrosomal part of the sperm head and in the principal piece of the sperm flagellum. In immunoblotting test, MoAb Hs-8 labelled a protein of 45 kDa in the extract of human sperm. Sequence analysis identified protein Hs-8 as GAPDHS (glyceraldehyde 3-phosphate dehydrohenase-spermatogenic). For this reason, commercial mouse anti-GAPDHS MoAb was applied in control tests. Both antibodies showed similar staining patterns in immunofluorescence tests, in electron microscopy and in immunoblot analysis. Moreover, both Hs-8 and anti-GAPDHS antibodies blocked sperm/zona pellucida binding. GAPDHS is a sperm-specific glycolytic enzyme involved in energy production during spermatogenesis and sperm motility; its role in the sperm head is unknown. In this study, we identified the antigen with Hs8 antibody and confirmed its localization in the apical part of the sperm head in addition to the principal piece of the flagellum. In an indirect binding assay, we confirmed the potential role of GAPDHS as a binding protein that is involved in the secondary sperm/oocyte binding.
Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia
2014-07-01
Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M.; onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen
2017-01-01
Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013–2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH1–22-vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH1–22 antibodies, suggesting good induction of LM-specific memory. PMID:28903312
Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Teran-Navarro, Hector; Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M; Onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen
2017-08-15
Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013-2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH 1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH 1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH 1-22 -vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH 1-22 antibodies, suggesting good induction of LM-specific memory.
Deprenyl Enhances the Teratogenicity of Hydroxyurea in Organogenesis Stage Mouse Embryos
Schlisser, Ava E.; Hales, Barbara F.
2013-01-01
Hydroxyurea, an antineoplastic drug, is a model teratogen. The administration of hydroxyurea to CD1 mice on gestation day 9 induces oxidative stress, increasing the formation of 4-hydroxy-2-nonenal adducts to redox-sensitive proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the caudal region of the embryo. GAPDH catalytic activity is reduced, and its translocation into the nucleus is increased. Because the nuclear translocation of GAPDH is associated with oxidative stress–induced cell death, we hypothesized that this translocation plays a role in mediating the teratogenicity of hydroxyurea. Deprenyl (also known as selegiline), a drug used as a neuroprotectant in Parkinson’s disease, inhibits the nuclear translocation of GAPDH. Hence, timed pregnant CD1 mice were treated with deprenyl (10mg/kg) on gestation day 9 followed by the administration of hydroxyurea (400 or 600mg/kg). Deprenyl treatment significantly decreased the hydroxyurea-induced nuclear translocation of GAPDH in the caudal lumbosacral somites. Deprenyl enhanced hydroxyurea-mediated caudal malformations, inducing specifically limb reduction, digit anomalies, tail defects, and lumbosacral vertebral abnormalities. Deprenyl did not augment the hydroxyurea-induced inhibition of glycolysis or alter the ratio of oxidized to reduced glutathione. However, it did dramatically increase cleaved caspase-3 in embryos. These data suggest that nuclear GAPDH plays an important, region-specific, role in teratogen-exposed embryos. Deprenyl exacerbated the developmental outcome of hydroxyurea exposure by a mechanism that is independent of oxidative stress. Although the administration of deprenyl alone did not affect pregnancy outcome, this drug may have adverse consequences when combined with exposures that increase the risk of malformations. PMID:23696560
Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae
Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.
2016-01-01
Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905
Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.
Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P
2016-09-01
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Tay, Li Min; Wiraja, Christian; Yeo, David C; Wu, Yingnan; Yang, Zheng; Chuah, Yon Jin; Lee, Eng Hin; Kang, Yuejun; Xu, Chenjie
2017-01-01
Chondrogenic differentiation of human mesenchymal stem cells (MSCs) in three-dimensional hydrogel holds promise as a method for repairing injured articular cartilage. Given MSC plasticity (its potential to mature into alternative lineages), nondestructive monitoring is critical for the optimization of chondrogenic differentiation conditions and the evaluation of the final product. However, conventional validation/assessments of the differentiation process (i.e., quantitative reverse transcription polymerase chain reaction [qRT-PCR] and histology) are end-point assays requiring disruption of the sample. This report introduces molecular beacon (MB)-based nanosensors to achieve noninvasive monitoring of chondrogenic differentiation. These nanosensors consist of biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) encapsulating MBs to detect Type II Collagen (Col2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNAs that serve as lineage-specific and housekeeping biomarkers, respectively. The sustainable release of MBs from MB-NPs allows longitudinal monitoring of MSCs undergoing chondrogenic differentiation over a period of 28 days. Dual-colored MB loading ensures accurate assessment of Col2 mRNA expression level, where potential heterogeneity in nanosensor uptake and retention by MSCs are taken into account. When normalized nanosensor signal was compared against qRT-PCR result, a tight correlation was observed (R 2 = 0.9301). Finally, nanosensor usage was compatible with MSC potency with minimal influence on chondrogenic, adipogenic, and osteogenic differentiation.
Age-dependent redox status in the brain stem of NO-deficient hypertensive rats.
Majzúnová, Miroslava; Pakanová, Zuzana; Kvasnička, Peter; Bališ, Peter; Čačányiová, Soňa; Dovinová, Ima
2017-09-11
The brain stem contains important nuclei that control cardiovascular function via the sympathetic nervous system (SNS), which is strongly influenced by nitric oxide. Its biological activity is also largely determined by oxygen free radicals. Despite many experimental studies, the role of AT1R-NAD(P)H oxidase-superoxide pathway in NO-deficiency is not yet sufficiently clarified. We determined changes in free radical signaling and antioxidant and detoxification response in the brain stem of young and adult Wistar rats during chronic administration of exogenous NO inhibitors. Young (4 weeks) and adult (10 weeks) Wistar rats were treated with 7-nitroindazole (7-NI group, 10 mg/kg/day), a specific nNOS inhibitor, with N G -nitro-L-arginine-methyl ester (L-NAME group, 50 mg/kg/day), a nonspecific NOS inhibitor, and with drinking water (Control group) during 6 weeks. Systolic blood pressure was measured by non-invasive plethysmography. Expression of genes (AT1R, AT2R, p22phox, SOD and NOS isoforms, HO-1, MDR1a, housekeeper GAPDH) was identified by real-time PCR. NOS activity was detected by conversion of [3H]-L-arginine to [3H]-L-citrulline and SOD activity was measured using UV VIS spectroscopy. We observed a blood pressure elevation and decrease in NOS activity only after L-NAME application in both age groups. Gene expression of nNOS (youngs) and eNOS (adults) in the brain stem decreased after both inhibitors. The radical signaling pathway triggered by AT1R and p22phox was elevated in L-NAME adults, but not in young rats. Moreover, L-NAME-induced NOS inhibition increased antioxidant response, as indicated by the observed elevation of mRNA SOD3, HO-1, AT2R and MDR1a in adult rats. 7-NI did not have a significant effect on AT1R-NADPH oxidase-superoxide pathway, yet it affected antioxidant response of mRNA expression of SOD1 and stimulated total activity of SOD in young rats and mRNA expression of AT2R in adult rats. Our results show that chronic NOS inhibition by two different NOS inhibitors has age-dependent effect on radical signaling and antioxidant/detoxificant response in Wistar rats. While 7-NI had neuroprotective effect in the brain stem of young Wistar rats, L-NAME- induced NOS inhibition evoked activation of AT1R-NAD(P)H oxidase pathway in adult Wistar rats. Triggering of the radical pathway was followed by activation of protective compensation mechanism at the gene expression level.
AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee; Haljasorg, Uku; Kisand, Kai
2012-06-22
Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well asmore » doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.« less
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen
2017-02-01
Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green ® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit ® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.
Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.
Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F
2018-04-01
This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.
Do, T; Gilbert, S C; Klein, J; Warren, S; Wade, W G; Beighton, D
2011-10-01
A collection of Streptococcus sanguinis strains from patients with endocarditis (n = 21) and from the oral cavity (n = 34) was subjected to a multi-locus sequence typing analysis using seven housekeeping genes, carbamoyl-phosphate synthetase (carB), Co/Zn/Cd efflux system component (czcD), d-alanyl-d-alanine ligase (ddl), DNA polymerase III (dnaX), glucose-6-phosphate dehydrogenase (gdh), DNA-directed RNA polymerase, beta subunit (rpoB) and superoxide dismutase (sodA). The scheme was expanded by the inclusion of two the putative virulence genes, bacitracin-resistance protein (bacA) and saliva-binding protein (ssaB), to increase strain discrimination. Extensive intra-species recombination was apparent in all genes but inter-species recombination was also apparent with strains apparently harbouring gdh and ddl from unidentified sources and one isolate harboured a sodA allele apparently derived from Streptococcus oralis. The recombination/mutation ratio for the concatenated housekeeping gene sequences was 1.67 (95% confidence limits 1.25-2.72) and for the two virulence genes the r/m ratio was 3.99 (95% confidence limits 1.61-8.72); recombination was the major driver for genetic variation. All isolates were distinct and the endocarditis strains did not form distinct sub-clusters when the data were analysed using ClonalFrame. These data support the widely held opinion that infecting S. sanguinis strains are opportunistic human pathogens. © 2011 John Wiley & Sons A/S.
Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R
2014-08-05
The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara
2017-09-01
The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene‑expression profile in the form of searchable database tables.
Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J
2018-02-06
The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.
Kim, Kwang-Pyo; Singh, Atul K; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K
2015-09-08
The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 10⁴ CFU/mL.
Kim, Kwang-Pyo; Singh, Atul K.; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K.
2015-01-01
The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL. PMID:26371000
[Distal hereditary motor neuropathy].
Devic, P; Petiot, P
2011-11-01
Distal hereditary motor neuropathy (dHMN), also known as spinal muscular atrophy, represents a group of clinically and genetically heterogeneous diseases caused by degenerations of spinal motor neurons and leading to distal muscle weakness and wasting. Nerve conduction studies reveal a pure motor axonopathy and needle examination shows chronic denervation. dHMN were initially subdivided into seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been characterized. To date, mutations in 11 different genes have been identified for autosomal-dominant, autosomal-recessive, and X-linked recessive dHMN. Most of the genes encode protein involved in housekeeping functions, endosomal trafficking, axonal transport, translation synthesis, RNA processing, oxidative stress response and apoptosis. The pathophysiological mechanisms underlying dHMN seem to be related to the "length-dependent" death of motor neurons of the anterior horn of the spinal cord, likely because their large axons have higher metabolic requirements for maintenance. dHMN remain heterogeneous at the clinical and molecular genetic level. The molecular pathomechanisms explaining why mutations in these ubiquitously expressed housekeeping genes result in the selective involvement of spinal motor neurons remain to be unravelled. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Tak, Nisha; Awasthi, Esha; Bissa, Garima; Meghwal, Raju Ram; James, Euan K; Sprent, Janet S; Gehlot, Hukam S
2016-12-01
Phylogenetically diverse Ensifer strains associated with five species of Tephrosia growing in alkaline soils of semi-arid regions of the Thar Desert were characterized using multi locus sequence analysis. Based on 16S rRNA and four protein-coding housekeeping gene (recA, atpD, glnII and dnaK) sequences, the Tephrosia-Ensifer strains were genetically different from the type strains of Ensifer saheli, Ensifer kostiensis, Ensifer terangae (African origin) and Ensifer psoraleae (Asiatic origin). One strain, Ensifer sp. TL4, showed maximum similarity (99%) to Ensifer adhaerens LMG 20216 T and formed a separate lineage close to it. Phylogenetic incongruence between sym and housekeeping genes was observed. The monophyletic origin of symbiotic genes from Asia in the Tephrosia-Ensifer strains from the Thar Desert suggests that they might have been acquired from a common ancestor and horizontally transferred. These novel strains are promiscuous, cross-nodulating some papilionoid crop species, mimosoid trees and the caesalpinioid Chamaecrista pumila. This study improves understanding of the distribution of Ensifer in unexplored and threatened alkaline arid regions of the Thar Desert and how this relates to other similar regions in the world. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yan, Hong; Lou, Marjorie F; Fernando, M Rohan; Harding, John J
2006-10-02
To investigate whether mammalian thioredoxin (Trx) and thioredoxin reductase (TrxR), with or without alpha-crystallin can revive inactivated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in both the cortex and nucleus of human aged clear and cataract lenses. The lens cortex (including capsule-epithelium) and the nucleus were separated from human aged clear and cataract lenses (grade II and grade IV) with similar average age. The activity of GAPDH in the water-soluble fraction after incubation with or without Trx or/and TrxR for 60 min at 30 degrees C was measured spectrophotometrically. In addition, the effect of a combination of Trx/TrxR and bovine lens alpha-crystallin was investigated. GAPDH activity was lower in the nucleus of clear lenses than in the cortex, and considerably diminished in the cataractous lenses, particularly in the nucleus of cataract lenses grade IV. Trx and TrxR were able to revive the activity of GAPDH markedly in both the cortex and nucleus of the clear and cataract lenses. The percentage increase of activity in the cortex of the clear lenses was less than that of the nucleus in the presence of Trx and TrxR, whereas it was opposite in the cataract lenses. The revival of activity in both the cortex and nucleus from the cataract lenses grade II was higher than that of the grade IV. Moreover, Trx alone, but not TrxR, efficiently enhanced GAPDH activity. The combination of Trx and TrxR had greater effect than that of either alone. In addition, alpha(L)-crystallin enhanced the activity in the cortex of cataract grade II with Trx and TrxR present. However, it failed to provide a statistically significant increase of activity in the nucleus. This is the first evidence to show that mammalian Trx and TrxR are able to revive inactivated GAPDH in human aged clear and cataract lenses, and alpha-crystallin helped this effect. The inactivation of GAPDH during aging and cataract development must be caused in part by disulphide formation and in part by unfolding, and can be recovered by reducing agents and a molecular chaperone.
NASA Astrophysics Data System (ADS)
Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum
2011-10-01
The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onodera, Yasuhito; Bissell, Mina
Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA andmore » GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.« less
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
Bera, Aloke K; Ho, Nancy W Y; Khan, Aftab; Sedlak, Miroslav
2011-05-01
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD(+)-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.
Sayed, Danish; He, Minzhen; Yang, Zhi; Lin, Lin; Abdellatif, Maha
2013-01-01
Cardiac hypertrophy is characterized by a generalized increase in gene expression that is commensurate with the increase in myocyte size and mass, on which is superimposed more robust changes in the expression of specialized genes. Both transcriptional and posttranscriptional mechanisms play fundamental roles in these processes; however, genome-wide characterization of the transcriptional changes has not been investigated. Our goal was to identify the extent and modes, RNA polymerase II (pol II) pausing versus recruitment, of transcriptional regulation underlying cardiac hypertrophy. We used anti-pol II and anti-histone H3K9-acetyl (H3K9ac) chromatin immunoprecipitation-deep sequencing to determine the extent of pol II recruitment and pausing, and the underlying epigenetic modifications, respectively, during cardiac growth. The data uniquely reveal two mutually exclusive modes of transcriptional regulation. One involves an incremental increase (30–50%) in the elongational activity of preassembled, promoter-paused, pol II, and encompasses ∼25% of expressed genes that are essential/housekeeping genes (e.g. RNA synthesis and splicing). Another involves a more robust activation via de novo pol II recruitment, encompassing ∼5% of specialized genes (e.g. contractile and extracellular matrix). Moreover, the latter subset has relatively shorter 3′-UTRs with fewer predicted targeting miRNA, whereas most miRNA targets fall in the former category, underscoring the significance of posttranscriptional regulation by miRNA. The results, for the first time, demonstrate that promoter-paused pol II plays a role in incrementally increasing housekeeping genes, proportionate to the increase in heart size. Additionally, the data distinguish between the roles of posttranscriptional versus transcriptional regulation of specific genes. PMID:23229551
Planelló, R; Martínez-Guitarte, J L; Morcillo, G
2008-05-01
Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.
Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M
2011-04-01
Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.
Bek-Thomsen, Malene; Poulsen, Knud; Kilian, Mogens
2012-01-01
ABSTRACT The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. PMID:23033471
Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark
2010-01-01
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. PMID:20808891
Olbermann, Patrick; Josenhans, Christine; Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark; Linz, Bodo
2010-08-19
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI-carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Li, Hua; Zheng, Xiangtao; Koren, Viktoria; Vashist, Yogesh Kumar; Tsui, Tung Yu
2014-07-20
Small interfering RNAs (siRNAs) delivery remains a bottleneck for RNA interference (RNAi) - based therapies in the clinic. In the present study, a fusion protein with two cell-penetrating peptides (CPP), Hph1-Hph1, and a double-stranded RNA binding domain (dsRBD), was constructed for the siRNA delivery: dsRBD was designed to bind siRNA, and CPP would subsequently transport the dsRBD/siRNA complex into cells. We assessed the efficiency of the fusion protein, Hph1-Hph1-dsRBD, as a siRNA carrier. Calcium-condensed effects were assessed on GAPDH and green fluorescent protein (GFP) genes by western blot, real time polymerase chain reaction (RT-PCR), and flow cytometry analysis in vitro. Evaluations were also made in an in vivo heart transplantation model. The results demonstrated that the fusion protein, Hph1-Hph1-dsRBD, is highly efficient at delivering siRNA in vitro, and exhibits efficiency on GAPDH and GFP genes similar to or greater than lipofectamine. Interestingly, the calcium-condensed effects dramatically enhanced cellular uptake of the protein-siRNA complex. In vivo, Hph1-Hph1-dsRBD transferred and distributed ^ targeted siRNA throughout the whole mouse heart graft. Together, these results indicate that Hph1-Hph1-dsRBD has potential as an siRNA carrier for applications in the clinic or in biomedical research. Copyright © 2014 Elsevier B.V. All rights reserved.
The NSL Complex Regulates Housekeeping Genes in Drosophila
Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa
2012-01-01
MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752
Acosta, Igor da Cunha Lima; da Costa, Andrea Pereira; Nunes, Pablo Henrique; Gondim, Maria Fernanda Naegeli; Gatti, Andressa; Rossi, João Luiz; Gennari, Solange Maria; Marcili, Arlei
2013-12-11
The Lowland tapir (Tapirus terrestris) is the largest Brazilian mammal and despite being distributed in various Brazilian biomes, it is seriously endangered in the Atlantic Rainforest. These hosts were never evaluated for the presence of Trypanosoma parasites. The Lowland tapirs were captured in the Brazilian southeastern Atlantic Rainforest, Espírito Santo state. Trypanosomes were isolated by hemoculture, and the molecular phylogeny based on small subunit rDNA (SSU rDNA) and glycosomal-3-phosphate dehydrogenase (gGAPDH) gene sequences and the ultrastructural features seen via light microscopy and scanning and transmission electron microscopy are described. Phylogenetic trees using combined SSU rDNA and gGAPDH data sets clustered the trypanosomes of Lowland tapirs, which were highly divergent from other trypanosome species. The phylogenetic position and morphological discontinuities, mainly in epimastigote culture forms, made it possible to classify the trypanosomes from Lowland tapirs as a separate species. The isolated trypanosomes from Tapirus terrestris are a new species, Trypanosoma terrestris sp. n., and were positioned in a new Trypanosoma clade, named T. terrestris clade.
2013-01-01
Background The Lowland tapir (Tapirus terrestris) is the largest Brazilian mammal and despite being distributed in various Brazilian biomes, it is seriously endangered in the Atlantic Rainforest. These hosts were never evaluated for the presence of Trypanosoma parasites. Methods The Lowland tapirs were captured in the Brazilian southeastern Atlantic Rainforest, Espírito Santo state. Trypanosomes were isolated by hemoculture, and the molecular phylogeny based on small subunit rDNA (SSU rDNA) and glycosomal-3-phosphate dehydrogenase (gGAPDH) gene sequences and the ultrastructural features seen via light microscopy and scanning and transmission electron microscopy are described. Results Phylogenetic trees using combined SSU rDNA and gGAPDH data sets clustered the trypanosomes of Lowland tapirs, which were highly divergent from other trypanosome species. The phylogenetic position and morphological discontinuities, mainly in epimastigote culture forms, made it possible to classify the trypanosomes from Lowland tapirs as a separate species. Conclusions The isolated trypanosomes from Tapirus terrestris are a new species, Trypanosoma terrestris sp. n., and were positioned in a new Trypanosoma clade, named T. terrestris clade. PMID:24330660
Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H.; Kunjithapatham, Rani; Buijs, Manon; Vossen, Josephina A.; Tchernyshyov, Irina; Cole, Robert N.; Syed, Labiq H.; Rao, Pramod P.; Ota, Shinichi; Vali, Mustafa
2013-01-01
Background The pyruvic acid analog 3-bromopyruvate (3BrPA) is an alkylating agent known to induce cancer cell death by blocking glycolysis. The anti-glycolytic effect of 3BrPA is considered to be the inactivation of glycolytic enzymes. Yet, there is a lack of experimental documentation on the direct interaction of 3BrPA with any of the suggested targets during its anticancer effect. Methods and Results In the current study, using radiolabeled (14C) 3BrPA in multiple cancer cell lines, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the primary intracellular target of 3BrPA, based on two-dimensional (2D) gel electrophoretic autoradiography, mass spectrometry and immunoprecipitation. Furthermore, in vitro enzyme kinetic studies established that 3BrPA has marked affinity to GAPDH. Finally, Annexin V staining and active caspase-3 immunoblotting demonstrated that apoptosis was induced by 3BrPA. Conclusion GAPDH pyruvylation by 3BrPA affects its enzymatic function and is the primary intracellular target in 3BrPA mediated cancer cell death. PMID:20044597
Genetics and epigenetics of aging and longevity
Moskalev, Alexey A; Aliper, Alexander M; Smit-McBride, Zeljka; Buzdin, Anton; Zhavoronkov, Alex
2014-01-01
Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response. PMID:24603410
Ho, L-P; Chang, C-J; Liu, H-C; Yang, H-L; Lin, J H-Y
2014-01-01
Cobia, Rachycentron canadum L., is a very important aquatic fish that faces the risk of infection with the bacterial pathogen Photobacterium damselae ssp. piscicida, and there are few protective approaches available that use multiple antigens. In the present study, potent bivalent antigens from P. damselae ssp. piscicida showed more efficient protection than did single antigens used in isolation. In preparations of three antigens that included recombinant heat shock protein 60 (rHSP60), recombinant α-enolase (rENOLASE) and recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH), we analysed the doses that elicited the best immune responses and found that this occurred at a total of 30 μg of antigen per fish. Subsequently, vaccination of fish with rHSP60, rENOLASE and rGAPDH achieved 46.9, 52 and 25% relative per cent survival (RPS), respectively. In addition, bivalent subunit vaccines--combination I (rHSP60 + rENOLASE), combination II (rENOLASE + rGAPDH) and combination III (rHSP60 + rGAPDH)--were administered and the RPS in these groups (65.6, 64.0 and 48.4%, respectively), was higher than that achieved with single-antigen administration. Finally, in combination IV, the trivalent vaccine rHSP60 + rENOLASE + rGAPDH, the RPS was 1.6%. Taken together, our results suggest that combinations of two antigens may achieve a better efficiency than monovalent or trivalent antigens, and this may provide new insights into pathogen prevention strategies. © 2013 John Wiley & Sons Ltd.
Mohr, S; Stamler, J S; Brüne, B
1994-07-18
Previous studies have suggested that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes covalent modification of an active site thiol by a NO.-induced [32P]NAD(+)-dependent mechanism. However, the efficacy of GAPDH modification induced by various NO donors was found to be independent of spontaneous rates of NO. release. To further test the validity of this mechanism, we studied the effects of nitrosonium tertrafluoroborate (BF4NO), a strong NO+ donor. BF4NO potently induces GAPDH labeling by the radioactive nucleotide. In this case, the addition of thiol significantly attenuates enzyme modification by competing for the NO moiety in the formation of RS-NO. Peroxynitrite (ONOO-) also induces GAPDH modification in the presence of thiol, consistent with the notion that this species can transfer NO+ (or NO2+) through the intermediacy of RS-NO. However, the efficiency of this reaction is limited by ONOO- -induced oxidation of protein SH groups at the active site. ONOO- generation appears to account for the modification of GAPDH by SIN-1. Thus, S-nitrosylation of the active site thiol is a prequisite for subsequent post-translational modification with NAD+, and emphasizes the role of NO+ transfer in the initial step of this pathway. Our findings thus provide a uniform mechanism by which nitric oxide and related NO donors initiate non-enzymatic ADP-ribosylation (like) reactions. In biological systems, endogenous RS-NO are likely to support the NO group transfer to thiol-containing proteins.
Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping
2014-09-01
Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Falnoga, Ingrid; Zelenik Pevec, Andreja; Šlejkovec, Zdenka; Žnidarič, Magda Tušek; Zajc, Irena; Mlakar, Simona Jurković; Marc, Janja
2012-12-01
Arsenic trioxide (As(2)O(3); ATO, TRISENOX®) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6-7 μM arsenic (equivalent to 0.3, 1 and 3-3.5 μM As(2)O(3)) for 12, 24 or 48 h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman® gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.
A Reduction in Age-Enhanced Gluconeogenesis Extends Lifespan
Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi
2013-01-01
The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan. PMID:23342062
A reduction in age-enhanced gluconeogenesis extends lifespan.
Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi
2013-01-01
The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.
Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.
2015-01-01
ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux. PMID:26378175
Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo
2015-12-01
Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zheng, Yu; Yun, Chenxia; Wang, Qihui; Smith, Wanli W; Leng, Jing
2015-02-01
The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew. The amino acid sequence of β-actin in the tree shrew was compared to that of humans and other species; a simple phylogenetic relationship was discovered. Quantitative polymerase chain reaction (qPCR) and western blot analysis further demonstrated that the expression profiles of β-actin, as a general conservative housekeeping gene, in the tree shrew were similar to those in humans, although the expression levels varied among different types of tissue in the tree shrew. Our data provide evidence that the tree shrew has a close phylogenetic association with humans. These findings further enhance the potential that the tree shrew, as a species, may be used as an animal model for studying human disorders.
Hotel housekeeping work influences on hypertension management.
Sanon, Marie-Anne
2013-12-01
Characteristics of hotel housekeeping work increase the risk for hypertension development. Little is known about the influences of such work on hypertension management. For this qualitative study, 27 Haitian immigrant hotel housekeepers from Miami-Dade County, FL were interviewed. Interview transcripts were analyzed with the assistance of the Atlas.ti software for code and theme identification. Influences of hotel housekeeping work on hypertension management arose both at the individual and system levels. Factors at the individual level included co-worker dynamics and maintenance of transmigrant life. Factors at the system level included supervisory support, workload, work pace, and work hiring practices. No positive influences were reported for workload and hiring practices. Workplace interventions may be beneficial for effective hypertension management among hotel housekeepers. These work influences must be considered when determining effective methods for hypertension management among hotel housekeepers. © 2013 Wiley Periodicals, Inc.
Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis
2012-01-01
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196
Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.
2011-01-01
Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin. PMID:21665968
Yao, Yao; Wang, Rui; Lu, Jun Kun; Wang, En Tao; Chen, Wen Xin
2014-01-01
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia. PMID:25085491
Gómez, Cristina; Horna, Dina H; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J; Braña, Alfredo F; Méndez, Carmen; Salas, José A
2011-08-01
Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin.
Wan, Qiang; Whang, Ilson; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee
2011-04-01
Our experiments were designed to identify suitable housekeeping genes (HKGs) in disk abalone as internal controls to quantify biomarker expression following endocrine disrupting chemicals (EDCs). Relative expression levels of twelve candidate HKGs were examined by real-time reverse transcription PCR (qRT-PCR) in gill and hepatopancreas of abalone following a 7-day challenge with either tributyltin chloride (TBT) or 17β-estradiol (E2). The expression levels of several conventional HKGs, such as 18s rRNA, glyceraldehyde-3-phosphate dehydrogenase and β-actin, were significantly altered by the challenges, indicating that they might not be suitable internal controls. Instead, the geNorm analysis pinpointed ribosomal protein L-5/ elongation factor 1 and ribosomal protein L-5/ succinate dehydrogenase as the most stable HKGs under TBT and E2 challenges, respectively. Moreover, these three HKGs also showed the highest stabilities overall amongst different tissues, genders and EDC challenges. The expression of a biomarker gene, cytochrome P450 4B (CYP4), was also investigated and exhibited a significant increase after the challenges. Importantly, when unsuitable HKGs were used for normalization, the influence of two EDCs on CYP4 expression was imprecisely overestimated or underestimated, which strongly emphasized the importance of selecting appropriately validated HKGs as internal controls in biomarker studies. Copyright © 2010 Elsevier Inc. All rights reserved.
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Menna, Pâmela; Bangel, Eliane Villamil; Hungria, Mariangela
2012-04-01
Symbiotic association of several genera of bacteria collectively called as rhizobia and plants belonging to the family Leguminosae (=Fabaceae) results in the process of biological nitrogen fixation, playing a key role in global N cycling, and also bringing relevant contributions to the agriculture. Bradyrhizobium is considered as the ancestral of all nitrogen-fixing rhizobial species, probably originated in the tropics. The genus encompasses a variety of diverse bacteria, but the diversity captured in the analysis of the 16S rRNA is often low. In this study, we analyzed twelve Bradyrhizobium strains selected from previous studies performed by our group for showing high genetic diversity in relation to the described species. In addition to the 16S rRNA, five housekeeping genes (recA, atpD, glnII, gyrB and rpoB) were analyzed in the MLSA (multilocus sequence analysis) approach. Analysis of each gene and of the concatenated housekeeping genes captured a considerably higher level of genetic diversity, with indication of putative new species. The results highlight the high genetic variability associated with Bradyrhizobium microsymbionts of a variety of legumes. In addition, the MLSA approach has proved to represent a rapid and reliable method to be employed in phylogenetic and taxonomic studies, speeding the identification of the still poorly known diversity of nitrogen-fixing rhizobia in the tropics.
The genome of Brucella melitensis.
DelVecchio, Vito G; Kapatral, Vinayak; Elzer, Philip; Patra, Guy; Mujer, Cesar V
2002-12-20
The genome of Brucella melitensis strain 16M was sequenced and contained 3,294,931 bp distributed over two circular chromosomes. Chromosome I was composed of 2,117,144 bp and chromosome II has 1,177,787 bp. A total of 3,198 ORFs were predicted. The origins of replication of the chromosomes are similar to each other and to those of other alpha-proteobacteria. Housekeeping genes such as those that encode for DNA replication, protein synthesis, core metabolism, and cell-wall biosynthesis were found on both chromosomes. Genes encoding adhesins, invasins, and hemolysins were also identified.
Hotel Housekeeping Work Influences on Hypertension Management
Sanon, Marie-Anne
2013-01-01
Background Characteristics of hotel housekeeping work increase the risk for hypertension development. Little is known about the influences of such work on hypertension management. Methods For this qualitative study, 27 Haitian immigrant hotel housekeepers from Miami-Dade County, FL were interviewed. Interview transcripts were analyzed with the assistance of the Atlas. ti software for code and theme identification. Results Influences of hotel housekeeping work on hypertension management arose both at the individual and system levels. Factors at the individual level included co-worker dynamics and maintenance of transmigrant life. Factors at the system level included supervisory support, workload, work pace, and work hiring practices. No positive influences were reported for workload and hiring practices. Conclusions Workplace interventions may be beneficial for effective hypertension management among hotel housekeepers. These work influences must be considered when determining effective methods for hypertension management among hotel housekeepers. PMID:23775918
Liu, Xin; Guan, Huirui; Song, Min; Fu, Yanping; Han, Xiaomin; Lei, Meng; Ren, Jingyu; Guo, Bin; He, Wei; Wei, Yahui
2018-01-01
Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. In this study, 10 candidate RGs namely, 18S , 60S , CYP , GAPCP1 , GAPDH2 , EF1B , MDH , SAND , TUA1 , and TUA6 , were singled out from the transcriptome database of S. chamaejasme , and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper. Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND , TUA1 and CYP , GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes ( P5CS2 and GI ) further verified that the RGs that we selected were suitable for gene expression normalization. This work is the first attempt to comprehensively estimate the stability of RGs in S. chamaejasme . Our results provide suitable RGs for high-precision normalization in qRT-PCR analysis, thereby making it more convenient to analyze gene expression under these experimental conditions.
Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution
Brown, Robert W. B.; Collingridge, Peter W.; Gull, Keith; Rigden, Daniel J.; Ginger, Michael L.
2014-01-01
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed. PMID:25050549
Agency-Hired Hotel Housekeepers
Sanon, Marie-Anne V.
2014-01-01
Hotel housekeepers experience unique workplace hazards and characteristics that increase their risks for poor health outcomes. Today’s agency-hiring practices may further marginalize hotel housekeepers and negatively impact their health. Yet the impact of such hiring practices on the health of this vulnerable worker group remains unexplored. This article presents the debate regarding agency-hiring practices and how these practices may influence the health and well-being of hotel housekeepers. Implications for occupational health nurses are also discussed. PMID:24512722
Perceived workplace mistreatment: Case of Latina hotel housekeepers.
Hsieh, Yu-Chin Jerrie; Sönmez, Sevil; Apostolopoulos, Yorghos; Lemke, Michael Kenneth
2017-01-01
Latina hotel housekeepers' social class, gender, race/ethnicity, nationality, and United States immigration status render them particularly vulnerable to workplace mistreatment. We sought to reveal the array of policy- and interpersonal-related mistreatment experienced by Latina hotel housekeepers in the southeastern United States employed at 75 local hotels which included 4-star, 3-star, 2-star, and 1-star properties. This ethnographic study involved 27 in-depth interviews with Latina hotel housekeepers. Using semi-structured in-depth interview guides, participants were interviewed until collected data reached saturation. Data were coded to explore themes and relationships for the housekeepers' work environments, and thick descriptions of these environments were developed. Participants ranged in work experience from 1 to 15 years, with all but one unable to reach full-time status, and were paid between $7.25 and $8.00 per hour. Policy-related phenomena, such as low pay, lack of paid sick leave or overtime, and absence of appropriate cleaning tools or protective equipment were all perceived as forms of mistreatment by Latina hotel housekeepers. Interpersonal mistreatment in the form of supervisor favoritism, unfair work assignments, biased allocation of cleaning supplies, disrespect, and verbal abuse due to ethnicity was also perceived. Latina hotel housekeepers endure mistreatment that impacts their psychosocial and physical occupational health. We provide recommendations to minimize workplace mistreatment and improve well-being of Latina hotel housekeepers.
Mu, Huawei; Sun, Jin; Heras, Horacio; Chu, Ka Hou; Qiu, Jian-Wen
2017-02-23
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs. Copyright © 2017 Elsevier B.V. All rights reserved.
Early Intervention with Cdk9 Inhibitors to Prevent Post-Traumatic Osteoarthritis
2015-10-01
Manuscript published in Biochem Biophys Res Commun, title “High abundant protein removal from rodent blood for biomarker discovery”. Included as...Vivo Drug Deliv- ery via the TAT Protein Transduction Domain. Poster Presentation, Osteoarthritis Research Society International (OARSI), Seattle, WA o...COL2A, aggrecan, and cartilage oligomeric matrix protein ) and housekeeping genes. Flavopiridol had no apparent short-term cytotoxicity, as assessed by
Perrineau, M M; Le Roux, C; de Faria, S M; de Carvalho Balieiro, F; Galiana, A; Prin, Y; Béna, G
2011-07-01
Acacia mangium is a legume tree native to Australasia. Since the eighties, it has been introduced into many tropical countries, especially in a context of industrial plantations. Many field trials have been set up to test the effects of controlled inoculation with selected symbiotic bacteria versus natural colonization with indigenous strains. In the introduction areas, A. mangium trees spontaneously nodulate with local and often ineffective bacteria. When inoculated, the persistence of inoculants and possible genetic recombination with local strains remain to be explored. The aim of this study was to describe the genetic diversity of bacteria spontaneously nodulating A. mangium in Brazil and to evaluate the persistence of selected strains used as inoculants. Three different sites, several hundred kilometers apart, were studied, with inoculated and non-inoculated plots in two of them. Seventy-nine strains were isolated from nodules and sequenced on three housekeeping genes (glnII, dnaK and recA) and one symbiotic gene (nodA). All but one of the strains belonged to the Bradyrhizobium elkanii species. A single case of housekeeping gene transfer was detected among the 79 strains, suggesting an extremely low rate of recombination within B. elkanii, whereas the nodulation gene nodA was found to be frequently transferred. The fate of the inoculant strains varied depending on the site, with a complete disappearance in one case, and persistence in another. We compared our results with the sister species Bradyrhizobium japonicum, both in terms of population genetics and inoculant strain destiny. Copyright © 2011 Elsevier GmbH. All rights reserved.
Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin
2015-04-10
For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained. Copyright © 2015 Elsevier B.V. All rights reserved.
Alliinase and cysteine synthase transcription in developing garlic (Allium sativum L.) over time.
Mitrová, Katarina; Svoboda, Pavel; Milella, Luigi; Ovesná, Jaroslava
2018-06-15
Garlic is a valuable source of healthy compounds, including secondary metabolites rich in sulphur such as cysteine sulphoxides (CSOs). Here, we present new qRT-PCR assays analysing the transcription of two genes encoding key enzymes in CSO biosynthetic pathways (cysteine synthase and alliinase) in developing garlic. We also identified a set of genes (ACT I, GAPDH, and TUB) to use as transcription normalisation controls. We showed that the (normalised) transcription of both enzymes was highest during sprouting and decreased significantly in fully developed leaves, which are the major CSO-producing organs. Transcriptional activity further declined at the end of the growing season. Different cultivars show similar sulphur metabolism gene expression when European garlics were compared to Chinese and American genotypes. The qRT-PCR assays presented are also suitable for investigating the effects of agricultural practices on CSO formation in garlic to satisfy consumer demands. Copyright © 2017. Published by Elsevier Ltd.
Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A
2008-11-01
Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.
Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E
2005-01-07
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish
2009-06-08
The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips tomore » the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in the substrate-free conformation. Orientation of the substrate with respect to the active site histidine and serine (in the mutant enzyme) also varies in different subunits. The structures of the C. parvum GAPDH ternary complex and other GAPDH complexes demonstrate the plasticity of the substrate binding site. We propose that the active site of GAPDH can accommodate the substrate in multiple conformations at multiple locations during the initial encounter. However, the C-3 phosphate group clearly prefers the 'new Pi' site for initial binding in the active site.« less
Compensation for intracellular environment in expression levels of mammalian circadian clock genes
Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto
2014-01-01
The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324
Nonis, Alberto; Vezzaro, Alice; Ruperti, Benedetto
2012-07-11
Genome wide transcriptomic surveys together with targeted molecular studies are uncovering an ever increasing number of differentially expressed genes in relation to agriculturally relevant processes in olive (Olea europaea L). These data need to be supported by quantitative approaches enabling the precise estimation of transcript abundance. qPCR being the most widely adopted technique for mRNA quantification, preliminary work needs to be done to set up robust methods for extraction of fully functional RNA and for the identification of the best reference genes to obtain reliable quantification of transcripts. In this work, we have assessed different methods for their suitability for RNA extraction from olive fruits and leaves and we have evaluated thirteen potential candidate reference genes on 21 RNA samples belonging to fruit developmental/ripening series and to leaves subjected to wounding. By using two different algorithms, GAPDH2 and PP2A1 were identified as the best reference genes for olive fruit development and ripening, and their effectiveness for normalization of expression of two ripening marker genes was demonstrated.
Chidebe, Ifeoma N.
2017-01-01
ABSTRACT Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLASTn sequence analysis of 16S rRNA and four housekeeping genes (glnII, gyrB, recA, and rpoB) showed their alignment with Rhizobium and Bradyrhizobium species. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which included Bradyrhizobium pachyrhizi, Bradyrhizobium arachidis, Bradyrhizobium yuanmingense, and a novel Bradyrhizobium sp., as well as Rhizobium tropici, Rhizobium pusense, and Neorhizobium galegae in Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of the gyrB region was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency of nifH with core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes. IMPORTANCE A diverse group of both Bradyrhizobium and Rhizobium species responsible for cowpea nodulation in Mozambique was found in this study. Future studies could prove useful in evaluating these bacterial isolates for symbiotic efficiency and strain competitiveness in Mozambican soils. PMID:29101189
GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives.
Kao, Tim; Labonne, Tanya; Niclis, Jonathan C; Chaurasia, Ritu; Lokmic, Zerina; Qian, Elizabeth; Bruveris, Freya F; Howden, Sara E; Motazedian, Ali; Schiesser, Jacqueline V; Costa, Magdaline; Sourris, Koula; Ng, Elizabeth; Anderson, David; Giudice, Antonietta; Farlie, Peter; Cheung, Michael; Lamande, Shireen R; Penington, Anthony J; Parish, Clare L; Thomson, Lachlan H; Rafii, Arash; Elliott, David A; Elefanty, Andrew G; Stanley, Edouard G
2016-09-13
The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A
2015-07-31
The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.
Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu
2016-01-01
The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum. PMID:27609555
Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu
2016-09-09
The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.
Housekeeping. An Approach to Housekeeping Training.
ERIC Educational Resources Information Center
Hotel and Catering Industry Training Board, Wembley (England).
This booklet examines the training required by staff employed in housekeeping departments in the hotel and catering industry. It details specifications of particular tasks--baths/cloakrooms; service pantries and utility rooms; beds; furniture/fittings; floors/walls and ceilings; carpets/upholstery/soft furnishings; linen handling; linen room work;…
Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).
You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng
2018-05-01
Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.
Azarias Guimarães, Amanda; Florentino, Ligiane Aparecida; Alves Almeida, Kize; Lebbe, Liesbeth; Barroso Silva, Karina; Willems, Anne; de Souza Moreira, Fatima Maria
2015-09-01
The genus Bradyrhizobium stands out among nitrogen-fixing legume-nodulating bacteria because it predominates among the efficient microsymbionts of forest, forage, and green manure legume species, as well as important species of grain legumes, such as soybean, cowpea, and peanut. Therefore, the diversity of Bradyrhizobium strains is a relevant resource from environmental and economic perspectives, and strains isolated from diverse legume species and land uses in Brazilian tropical ecosystems were assessed in this study. To accomplish this, sequences of four housekeeping genes (atpD, dnaK, gyrB, and recA) were individually analysed, with the first three also being considered using multilocus sequence analysis (MLSA). The sensitivity of the strains to different antibiotics, their tolerance to different levels of salinity, and their ability to nodulate soybean plants were also measured. The phylogenetic trees based on each individual gene, and on the concatenated housekeeping genes, revealed several strain clusters separated from any currently described species. The Bradyrhizobium strains studied were generally resistant to antibiotics. All strains were able to grow at salinity levels of up to 0.5% NaCl, whereas only strains UFLA03-142, UFLA03-143, UFLA03-145, and UFLA03-146 grew in the presence of 1% NaCl. Together, the results indicated that some of the strains studied were potential novel species, indicating that the various soils and ecosystems in Brazil may harbour an as yet unknown diversity of rhizobia. Copyright © 2015 Elsevier GmbH. All rights reserved.
First isolation of Actinobacillus genomospecies 2 in Japan.
Murakami, Miyuki; Shimonishi, Yoshimasa; Hobo, Seiji; Niwa, Hidekazu; Ito, Hiroya
2016-05-03
We describe here the first isolation of Actinobacillus genomospecies 2 in Japan. The isolate was found in a septicemic foal and characterized by phenotypic and genetic analyses, with the latter consisting of 16S rDNA nucleotide sequence analysis plus multilocus sequence analysis using three housekeeping genes, recN, rpoA and thdF, that have been proposed for use as a genomic tool in place of DNA-DNA hybridization.
Bergmann, Jan H; Jakubsche, Julia N; Martins, Nuno M; Kagansky, Alexander; Nakano, Megumi; Kimura, Hiroshi; Kelly, David A; Turner, Bryan M; Masumoto, Hiroshi; Larionov, Vladimir; Earnshaw, William C
2012-01-15
Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.
Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target.
Krause, Robert G E; Hurdayal, Ramona; Choveaux, David; Przyborski, Jude M; Coetzer, Theresa H T; Goldring, J P Dean
2017-08-01
Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.
Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard
2016-01-01
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan® Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)® microarrays from Agilent® was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort. PMID:26821018
Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard
2016-01-26
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan(®) Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)(®) microarrays from Agilent(®) was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.
Loftus, Stacie K.; Baxter, Laura L.; Cronin, Julia C.; Fufa, Temesgen D.; Pavan, William J.
2017-01-01
Summary Hypoxia and HIF1α signaling direct tissue-specific gene responses regulating tumor progression, invasion and metastasis. By integrating HIF1α knockdown and hypoxia-induced gene expression changes, this study identifies a melanocyte-specific, HIF1α-dependent/hypoxia-responsive gene expression signature. Integration of these gene expression changes with HIF1α ChIP-Seq analysis identifies 81 HIF1α direct target genes in melanocytes. The expression levels for ten of the HIF1α direct targets – GAPDH, PKM, PPAT, DARS, DTWD1, SEH1L, ZNF292, RLF, AGTRAP, and GPC6 – are significantly correlated with reduced time of Disease Free Status (DFS) in melanoma by logistic regression (P-value =0.0013) and ROC curve analysis (AUC= 0.826, P-value<0.0001). This HIF1α-regulated profile defines a melanocyte-specific response under hypoxia, and demonstrates the role of HIF1α as an invasive cell state gatekeeper in regulating cellular metabolism, chromatin and transcriptional regulation, vascularization and invasion. PMID:28168807
Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas
2015-01-01
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210
Sartor, Francesco; Jackson, Matthew J; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P; Ayer, Donald E; Kubis, Hans-Peter
2013-04-01
Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ~2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1α mRNA was reduced (-0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this.
Sartor, Francesco; Jackson, Matthew J.; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P.; Ayer, Donald E.
2015-01-01
Purpose Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Methods Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ∼2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. Results SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1a mRNA was reduced (−0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Conclusion Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this. PMID:22733000
Zhou, Juhua; Dudley, Mark E.; Rosenberg, Steven A.; Robbins, Paul F.
2007-01-01
Summary The authors recently reported that adoptive immunotherapy with autologous tumor-reactive tumor infiltrating lymphocytes (TILs) immediately following a conditioning nonmyeloablative chemotherapy regimen resulted in an enhanced clinical response rate in patients with metastatic melanoma. These observations led to the current studies, which are focused on a detailed analysis of the T-cell antigen reactivity as well as the in vivo persistence of T cells in melanoma patient 2098, who experienced a complete regression of all metastatic lesions in lungs and soft tissues following therapy. Screening of an autologous tumor cell cDNA library using transferred TILs resulted in the identification of novel mutated growth arrest-specific gene 7 (GAS7) and glyceral-dehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts. Direct sequence analysis of the expressed T-cell receptor beta chain variable regions showed that the transferred TILs contained multiple T-cell clonotypes, at least six of which persisted in peripheral blood for a month or more following transfer. The persistent T cells recognized both the mutated GAS7 and GAPDH. These persistent tumor-reactive T-cell clones were detected in tumor cell samples obtained from the patient following adoptive cell transfer and appeared to be represented at higher levels in the tumor sample obtained 1 month following transfer than in the peripheral blood obtained at the same time. Overall, these results indicate that multiple tumor-reactive T cells can persist in the peripheral blood and at the tumor site for prolonged times following adoptive transfer and thus may be responsible for the complete tumor regression in this patient. PMID:15614045
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey
2010-04-19
Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and NormFinder-designated-reference genes. The use of 2 different statistical algorithms results in the identification of different combinations of flax HKGs for expression data normalization. Despite such differences, the use of geNorm-designated- and NormFinder-designated-reference genes enabled us to accurately compare the expression levels of a flax MYB gene in different organs and tissues. Our identification and validation of suitable flax HKGs will facilitate future developmental transcriptomic studies in this economically-important plant.
Finke, J; Fritzen, R; Ternes, P; Lange, W; Dölken, G
1993-03-01
Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of material. We describe a procedure for RNA extraction from different types of FFPE tissues, involving digestion with proteinase K followed by guanidinium-thiocyanate acid phenol extraction and DNase I digestion. These RNA preparations are suitable for PCR analysis of mRNA and even of intronless genes. Furthermore, the universally expressed porphobilinogen deaminase mRNA proved to be useful as a positive control because of the lack of pseudogenes.
Bradford, Kathryn L; Moretti, Federico A; Carbonaro-Sarracino, Denise A; Gaspar, Hubert B; Kohn, Donald B
2017-10-01
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T - B - NK - ), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.
Xu, Yuanyuan; Zhu, Xianwen; Gong, Yiqin; Xu, Liang; Wang, Yan; Liu, Liwang
2012-08-03
Real-time quantitative reverse transcription PCR (RT-qPCR) is a rapid and reliable method for gene expression studies. Normalization based on reference genes can increase the reliability of this technique; however, recent studies have shown that almost no single reference gene is universal for all possible experimental conditions. In this study, eight frequently used reference genes were investigated, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Actin2/7 (ACT), Tubulin alpha-5 (TUA), Tubulin beta-1 (TUB), 18S ribosomal RNA (18SrRNA), RNA polymerase-II transcription factor (RPII), Elongation factor 1-b (EF-1b) and Translation elongation factor 2 (TEF2). Expression stability of candidate reference genes was examined across 27 radish samples, representing a range of tissue types, cultivars, photoperiodic and vernalization treatments, and developmental stages. The eight genes in these sample pools displayed a wide range of Ct values and were variably expressed. Two statistical software packages, geNorm and NormFinder showed that TEF2, RPII and ACT appeared to be relatively stable and therefore the most suitable for use as reference genes. These results facilitate selection of desirable reference genes for accurate gene expression studies in radish. Copyright © 2012 Elsevier Inc. All rights reserved.
Pombo-Suarez, Manuel; Calaza, Manuel; Gomez-Reino, Juan J; Gonzalez, Antonio
2008-01-29
Assessment of gene expression is an important component of osteoarthritis (OA) research, greatly improved by the development of quantitative real-time PCR (qPCR). This technique requires normalization for precise results, yet no suitable reference genes have been identified in human articular cartilage. We have examined ten well-known reference genes to determine the most adequate for this application. Analyses of expression stability in cartilage from 10 patients with hip OA, 8 patients with knee OA and 10 controls without OA were done with classical statistical tests and the software programs geNorm and NormFinder. Results from the three methods of analysis were broadly concordant. Some of the commonly used reference genes, GAPDH, ACTB and 18S RNA, performed poorly in our analysis. In contrast, the rarely used TBP, RPL13A and B2M genes were the best. It was necessary to use together several of these three genes to obtain the best results. The specific combination depended, to some extent, on the type of samples being compared. Our results provide a satisfactory set of previously unused reference genes for qPCR in hip and knee OA This confirms the need to evaluate the suitability of reference genes in every tissue and experimental situation before starting the quantitative assessment of gene expression by qPCR.
Schuhmacher, Laura-Nadine; Smith, Ewan St John
2016-12-13
Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.
Hoshino, Tomonori; Fujiwara, Taku; Kilian, Mogens
2005-12-01
The aim of this study was to evaluate molecular and phenotypic methods for the identification of nonhemolytic streptococci. A collection of 148 strains consisting of 115 clinical isolates from cases of infective endocarditis, septicemia, and meningitis and 33 reference strains, including type strains of all relevant Streptococcus species, were examined. Identification was performed by phylogenetic analysis of nucleotide sequences of four housekeeping genes, ddl, gdh, rpoB, and sodA; by PCR analysis of the glucosyltransferase (gtf) gene; and by conventional phenotypic characterization and identification using two commercial kits, Rapid ID 32 STREP and STREPTOGRAM and the associated databases. A phylogenetic tree based on concatenated sequences of the four housekeeping genes allowed unequivocal differentiation of recognized species and was used as the reference. Analysis of single gene sequences revealed deviation clustering in eight strains (5.4%) due to homologous recombination with other species. This was particularly evident in S. sanguinis and in members of the anginosus group of streptococci. The rate of correct identification of the strains by both commercial identification kits was below 50% but varied significantly between species. The most significant problems were observed with S. mitis and S. oralis and 11 Streptococcus species described since 1991. Our data indicate that identification based on multilocus sequence analysis is optimal. As a more practical alternative we recommend identification based on sodA sequences with reference to a comprehensive set of sequences that is available for downloading from our server. An analysis of the species distribution of 107 nonhemolytic streptococci from bacteremic patients showed a predominance of S. oralis and S. anginosus with various underlying infections.
Mohr, S; Hallak, H; de Boitte, A; Lapetina, E G; Brüne, B
1999-04-02
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.
The "Good Housekeeping" Seal of Approval: An Historical Analysis 1909-1975.
ERIC Educational Resources Information Center
Oliver, Lauren
Examining the evolution of the "Good Housekeeping" Seal of Approval--one of the first codes to set standards for the products advertised in a periodical, a study analyzed issues of "Good Housekeeping" magazine from 1909 to 1975 (with the exception of issues from July 1929 to December 1938). The study also examined elements that…
First isolation of Actinobacillus genomospecies 2 in Japan
MURAKAMI, Miyuki; SHIMONISHI, Yoshimasa; HOBO, Seiji; NIWA, Hidekazu; ITO, Hiroya
2015-01-01
We describe here the first isolation of Actinobacillus genomospecies 2 in Japan. The isolate was found in a septicemic foal and characterized by phenotypic and genetic analyses, with the latter consisting of 16S rDNA nucleotide sequence analysis plus multilocus sequence analysis using three housekeeping genes, recN, rpoA and thdF, that have been proposed for use as a genomic tool in place of DNA-DNA hybridization. PMID:26668165
Eckstein, Brittany C; Adams, Daniel A; Eckstein, Elizabeth C; Rao, Agam; Sethi, Ajay K; Yadavalli, Gopala K; Donskey, Curtis J
2007-01-01
Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced. Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff. PMID:17584935
Biological risk among hospital housekeepers.
Ream, Priscilla Santos Ferreira; Tipple, Anaclara Ferreira Veiga; Barros, Dayane Xavier; Souza, Adenícia Custódia Silva; Pereira, Milca Severino
2016-01-01
Although not directly responsible for patient care, hospital housekeepers are still susceptible to accidents with biological material. The objectives of this study were to establish profile and frequency of accidents among hospital housekeepers, describe behaviors pre- and postaccident, and risk factors. This was a cross-sectional study with hospital housekeepers in Goiania, Brazil. Data were obtained from interviews and vaccination records. The observations were as follows: (1) participating workers: 94.3%; (2) incomplete hepatitis B vaccination: 1 in 3; and (3) accident rate: 26.5%, mostly percutaneous with hypodermic needles, and involved blood from an unknown source; roughly half occurred during waste management. Upon review, length of service less than 5 years, completed hepatitis B vaccination, and had been tested for anti-HBs (hepatitis B surface antigen) influenced frequency of accidents. These findings suggest that improper disposal of waste appears to enhance the risk to hospital housekeepers. All hospital workers should receive continued training with regard to waste management.
Mühldorfer, Kristin; Speck, Stephanie; Wibbelt, Gudrun
2014-07-01
Five bacterial strains isolated from bats of the family Vespertilionidae were characterized by phenotypic tests and multilocus sequence analysis (MLSA) using the 16S rRNA gene and four housekeeping genes (rpoA, rpoB, infB, recN). Phylogenetic analyses of individual and combined datasets indicated that the five strains represent a monophyletic cluster within the family Pasteurellaceae. Comparison of 16S rRNA gene sequences demonstrated a high degree of similarity (98.3-99.9%) among the group of bat-derived strains, while searches in nucleotide databases indicated less than 96% sequence similarity to known members of the Pasteurellaceae. The housekeeping genes rpoA, rpoB, infB and recN provided higher resolution compared with the 16S rRNA gene and subdivided the group according to the bat species from which the strains were isolated. Three strains derived from noctule bats shared 98.6-100% sequence similarity in all four genes investigated, whereas, based on rpoB, infB and recN gene sequences, 91.8-96% similarity was observed with and between the remaining two strains isolated from a serotine bat and a pipistrelle bat, respectively. Genome relatedness as deduced from recN gene sequences correlated well with the results of MLSA and indicated that the five strains represent a new genus. Based on these results, it is proposed to classify the five strains derived from bats within Vespertiliibacter pulmonis gen. nov., sp. nov. (the type species), Vespertiliibacter genomospecies 1 and Vespertiliibacter genomospecies 2. The genus can be distinguished phenotypically from recognized genera of the Pasteurellaceae by at least three characteristics. All strains are nutritionally fastidious and require a chemically defined supplement with NAD for growth. The DNA G+C content of strain E127/08(T) is 38.2 mol%. The type strain of Vespertiliibacter pulmonis gen. nov., sp. nov. is E127/08(T) ( = CCUG 64585(T) = DSM 27238(T)). The reference strains of Vespertiliibacter genomospecies 1 and 2 are E145/08 and E157/08, respectively. © 2014 IUMS.
Critzer, Faith J; Dsouza, Doris H; Golden, David A
2008-07-01
Expression of the multiple antibiotic resistance (mar) operon causes increased antimicrobial resistance in bacterial pathogens. The activator of this operon, MarA, can alter expression of >60 genes in Escherichia coli K-12. However, data on the expression of virulence and resistance genes when foodborne pathogens are exposed to antimicrobial agents are lacking. This study was conducted to determine transcription of marA (mar activator), stx1 (Shiga toxin 1), and eaeA (intimin) genes of E. coli O157:H7 EDL933 as affected by sodium benzoate. E. coli O157:H7 was grown in Luria-Bertani broth containing 0 (control) and 1% sodium benzoate at 37 degrees C for 24 h, and total RNA was extracted. Primers were designed for hemX (209 bp; housekeeping gene), marA (261 bp), and eaeA (223 bp) genes; previously reported primers were used for stx1. Tenfold dilutions of RNA were used in a real-time one-step reverse transcriptase PCR to determine transcription levels. All experiments were conducted in triplicate, and product detection was validated by gel electrophoresis. For marA and stx1, real-time one-step reverse transcriptase PCR products were detected at a 1-log-greater dilution in sodium benzoate-treated cells than in control cells, although cell numbers for each were similar (7.28 and 7.57 log CFU/ml, respectively). This indicates a greater (albeit slight) level of their transcription in treated cells than in control cells. No difference in expression of eaeA was observed. HemX is a putative uroporphyrinogen III methylase. The hemX gene was expressed at the same level in control and treated cells, validating hemX as an appropriate housekeeping marker. These data indicate that stx1 and marA genes could play a role in pathogen virulence and survival when treated with sodium benzoate, whereas eaeA expression is not altered. Understanding adaptations of E. coli O157:H7 during antimicrobial exposure is essential to better understand and implement methods to inhibit or control survival of this pathogen in foods.
Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer
Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.
2009-01-01
Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. ?? 2009 Pearson et al; licensee BioMed Central Ltd.
Genome-wide investigation reveals high evolutionary rates in annual model plants.
Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai
2010-11-09
Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.
ERIC Educational Resources Information Center
Bennett, Marilyn; And Others
Designed for grades 11 and 12 special need students, this curriculum guide attempts to provide the EMH student with basic knowledge of housekeeping and food service before being placed on a job. Following lists of suggestions to the teacher and unit objectives, units are included on the following topics for housekeeping: (1) housekeeping…
The Role of Semaphorin 3B (SEMA3B) in the Pathogenesis of Breast Cancer
2006-04-01
apoptotic and anti-proliferative effect on cancer lines it is in part by the inhibition of Akt pathway. In conclusion, we hypothesize that VEGF165...autocrine activity and by inhibiting the Akt pathway. 15. SUBJECT TERMS tumor suppressor gene, breast cancer and apoptosis 16. SECURITY...TGFβ TGFR2 Smad4 M D A M B A 54 9 H 12 99 H el a H 46 0 M C F7 ZR -7 5 H 15 7 2 31 GAPDH TGFR1 B. C 2H 24H 48H 72H SEMA3B SEMA3B
Ma, Yue-Jiao; Sun, Xiao-Hong; Xu, Xiao-Yan; Zhao, Yong; Pan, Ying-Jie; Hwang, Cheng-An; Wu, Vivian C H
2015-01-01
Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus.
Ovesná, Jaroslava; Kučera, Ladislav; Vaculová, Kateřina; Štrymplová, Kamila; Svobodová, Ilona; Milella, Luigi
2012-01-01
Reverse transcription coupled with real-time quantitative PCR (RT-qPCR) is a frequently used method for gene expression profiling. Reference genes (RGs) are commonly employed to normalize gene expression data. A limited information exist on the gene expression and profiling in developing barley caryopsis. Expression stability was assessed by measuring the cycle threshold (Ct) range and applying both the GeNorm (pair-wise comparison of geometric means) and Normfinder (model-based approach) principles for the calculation. Here, we have identified a set of four RGs suitable for studying gene expression in the developing barley caryopsis. These encode the proteins GAPDH, HSP90, HSP70 and ubiquitin. We found a correlation between the frequency of occurrence of a transcript in silico and its suitability as an RG. This set of RGs was tested by comparing the normalized level of β-amylase (β-amy1) transcript with directly measured quantities of the BMY1 gene product in the developing barley caryopsis. This panel of genes could be used for other gene expression studies, as well as to optimize β-amy1 analysis for study of the impact of β-amy1 expression upon barley end-use quality.
Maier, Alexandra; Zell, Martina B; Maurino, Veronica G
2011-05-01
In the C(4) pathway of photosynthesis two types of malate decarboxylases release CO(2) in bundle sheath cells, NADP- and NAD-dependent malic enzyme (NADP-ME and NAD-ME), located in the chloroplasts and the mitochondria of these cells, respectively. The C(4) decarboxylases involved in C(4) photosynthesis did not evolve de novo; they were recruited from existing housekeeping isoforms. NADP-ME housekeeping isoforms would function in the control of malate levels during hypoxia, pathogen defence responses, and microspore separation, while NAD-ME participates in the respiration of malate in the tricarboxylic acid cycle. Recently, the existence of three enzymatic NAD-ME entities in Arabidopsis, occurring by alternative association of two subunits, was described as a novel mechanism to regulate NAD-ME activity under changing metabolic environments. The C(4) NADP-ME is thought to have evolved from a C(3) chloroplastic ancestor, which in turn would have evolved from an ancient cytosolic enzyme. In this way, the C(4) NADP-ME would have emerged through gene duplication, acquisition of a new promoter, and neo-functionalization. In contrast, there would exist a unique NAD-ME in C(4) plants, which would have been adapted to perform a dual function through changes in the kinetic and regulatory properties of the C(3) ancestors. In addition to this, for the evolution of C(4) NAD-ME, insertion of promoters or enhancers into the single-copy genes of the C(3) ancestors would have changed the expression without gene duplication.
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Terry, Richard; Turczyk, Brian M.; Yang, Joyce L.; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M.
2014-01-01
RNA sequencing measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. On the other hand, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq our method enriches for context-specific transcripts over house-keeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d. PMID:25675209
Development of FQ-PCR method to determine the level of ADD1 expression in fatty and lean pigs.
Cui, J X; Chen, W; Zeng, Y Q
2015-10-30
To determine how adipocyte determination and differentiation factor 1 (ADD1), a gene involved in the determination of pork quality, is regulated in Laiwu and Large pigs, we used TaqMan fluorescence quantitative real-time polymerase chain reaction (FQ-PCR) to detect differential expression in the longissimus muscle of Laiwu (fatty) and Large White (lean) pigs. In this study, the ADD1 and GAPDH cDNA sequences were cloned using a T-A cloning assay, and the clone sequences were consistent with those deposited in GenBank. Thus, the target fragment was successfully recombined into the vector, and its integrity was maintained. The standard curve and regression equation were established through the optimized FQ-PCR protocol. The standard curve of porcine ADD1 and GAPDH cDNA was determined, and its linear range extension could reach seven orders of magnitudes. The results showed that this method was used to quantify ADD1 expression in the longissimus muscle of two breeds of pig, and was found to be accurate, sensitive, and convenient. These results provide information regarding porcine ADD1 mRNA expression and the mechanism of adipocyte differentiation, and this study could help in the effort to meet the demands of consumers interested in the maintenance of health and prevention of obesity. Furthermore, it could lead to new approaches in the prevention and clinical treatment of this disease.
Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong
2015-10-24
Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.
Dvornyk, Volodymyr; Jahan, Akhee Sabiha
2012-01-01
Cyanobacteria are among the most ancient organisms known to have circadian rhythms. The cpmA gene is involved in controlling the circadian output signal. We studied polymorphism and divergence of this gene in six populations of a stress-tolerant cyanobacterium, Chroococcidiopsis sp., sampled in extreme habitats across the globe. Despite high haplotype diversity (0.774), nucleotide diversity of cpmA is very low (π = 0.0034): the gene appears to be even more conserved than housekeeping genes. Even though the populations were sampled thousands kilometers apart, they manifested virtually no genetic differentiation at this locus (FST = 0.0228). Using various tests for neutrality, we determined that evolution of cpmA significantly departures from the neutral model and is governed by episodic positive selection. PMID:22844070
Ahmed, Sara; Besser, Thomas E; Call, Douglas R; Weissman, Scott J; Jones, Lisa P; Davis, Margaret A
2016-05-01
Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.
Multilocus sequence typing scheme for the Mycobacterium abscessus complex.
Macheras, Edouard; Konjek, Julie; Roux, Anne-Laure; Thiberge, Jean-Michel; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby E; Bodmer, Thomas; Jarlier, Vincent; Cambau, Emmanuelle; Brisse, Sylvain; Caro, Valérie; Rastogi, Nalin; Gaillard, Jean-Louis; Heym, Beate
2014-01-01
We developed a multilocus sequence typing (MLST) scheme for Mycobacterium abscessus sensu lato, based on the partial sequencing of seven housekeeping genes: argH, cya, glpK, gnd, murC, pta and purH. This scheme was used to characterize a collection of 227 isolates recovered between 1994 and 2010 in France, Germany, Switzerland and Brazil. We identified 100 different sequence types (STs), which were distributed into three groups on the tree obtained by concatenating the sequences of the seven housekeeping gene fragments (3576bp): the M. abscessus sensu stricto group (44 STs), the "M. massiliense" group (31 STs) and the "M. bolletii" group (25 STs). SplitTree analysis showed a degree of intergroup lateral transfers. There was also evidence of lateral transfer events involving rpoB. The most prevalent STs in our collection were ST1 (CC5; 20 isolates) and ST23 (CC3; 31 isolates). Both STs were found in Europe and Brazil, and the latter was implicated in a large post-surgical procedure outbreak in Brazil. Respiratory isolates from patients with cystic fibrosis belonged to a large variety of STs; however, ST2 was predominant in this group of patients. Our MLST scheme, publicly available at www.pasteur.fr/mlst, offers investigators a valuable typing tool for M. abscessus sensu lato in future epidemiological studies throughout the world. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Dan, Tong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Menghe, Bilige; Zhang, Heping; Sun, Zhihong
2015-05-20
Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (I A (S)) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.
Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia
2012-01-01
Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms.
Capdevila, Mercè; Palacios, Òscar; Atrian, Sílvia
2012-01-01
Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms. PMID:22905252
Jahid, Mohd; Rehan-Ul-Haq; Avasthi, Rajnish; Ahmed, Rafat Sultana
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder of unknown etiology. IL-10 stimulates B cell survival and is involved in antibody isotype switching. The serum IL-10 levels are increased in RA patients. Ethnicity influences polymorphisms in cytokine genes. Therefore, this study was designed to explore possible association, if any, between polymorphism of IL10-1082 A/G, serum cytokine levels, inflammatory markers and gene expression in RA patients of North India. A total of 187 RA patients classified according to American college of rheumatology 2010 criteria and 214 controls were included in the study. Levels of serum IL-10 and inflammatory markers were estimated by ELISA. PCR-RFLP was used to analyze IL10-1082 A/G polymorphism. Quantitative real time PCR was used to measure the mRNA expression of IL-10 gene. The serum inflammatory markers were significantly higher in RA patients. Circulating IL-10 levels were positively and significantly correlated with RF (r = 0.28), anti-CCP (r = 0.26), CRP (r = 0.17) and mRNA expression levels (r = 0.59) among RA patients. Homozygous mutant variant (GG) and heterozygous mutant variant (AG) were associated with patients of RA (OR = 2.87 and 1.55, p < 0.05) as compared to controls. The association still persisted when the heterozygous and homozygous mutants (AG + GG) were clubbed together (OR = 1.67, p < 0.05). The mRNA expression of IL-10 was found to be 3.63 folds higher (housekeeping gene, β-actin) and 2.42 folds higher (housekeeping gene, 18S rRNA) in RA patients as compared to controls. The results indicate that IL10-1082 A/G polymorphism is associated with genetic susceptibility/predisposition to RA in North Indian population. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Muñoz, Marina; Ríos-Chaparro, Dora Inés; Patarroyo, Manuel Alfonso; Ramírez, Juan David
2017-03-14
Multilocus sequence typing (MLST) is a highly discriminatory typing strategy; it is reproducible and scalable. There is a MLST scheme for Clostridium difficile (CD), a gram positive bacillus causing different pathologies of the gastrointestinal tract. This work was aimed at describing the frequency of sequence types (STs) and Clades (C) reported and evalute the intra-taxa diversity in the CD MLST database (CD-MLST-db) using an MLSA approach. Analysis of 1778 available isolates showed that clade 1 (C1) was the most frequent worldwide (57.7%), followed by C2 (29.1%). Regarding sequence types (STs), it was found that ST-1, belonging to C2, was the most frequent. The isolates analysed came from 17 countries, mostly from the United Kingdom (UK) (1541 STs, 87.0%). The diversity of the seven housekeeping genes in the MLST scheme was evaluated, and alleles from the profiles (STs), for identifying CD population structure. It was found that adk and atpA are conserved genes allowing a limited amount of clusters to be discriminated; however, different genes such as drx, glyA and particularly sodA showed high diversity indexes and grouped CD populations in many clusters, suggesting that these genes' contribution to CD typing should be revised. It was identified that CD STs reported to date have a mostly clonal population structure with foreseen events of recombination; however, one group of STs was not assigned to a clade being highly different containing at least nine well-supported clusters, suggesting a greater amount of clades for CD. This study shows the usefulness of CD-MLST-db as a tool for studying CD distribution and population structure, identifying the need for reviewing the usefulness of sodA as housekeeping gene within the MLST scheme and suggesting the existence of a greater amount of CD clades. The study also shows the plausible exchange of genetic material between STs, contributing towards intra-taxa genetic diversity.
McDowell, Andrew; Nagy, István; Magyari, Márta; Barnard, Emma; Patrick, Sheila
2013-01-01
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. PMID:24058439
Sustained Local Delivery of siRNA from an Injectable Scaffold
Nelson, Christopher E.; Gupta, Mukesh K.; Adolph, Elizabeth J.; Shannon, Joshua M.; Guelcher, Scott A.; Duvall, Craig L.
2011-01-01
Controlled gene silencing technologies have significant, unrealized potential for use in tissue regeneration applications. The design described herein provides a means to package and protect siRNA within pH-responsive, endosomolytic micellar nanoparticles (si-NPs) that can be incorporated into nontoxic, biodegradable, and injectable polyurethane (PUR) tissue scaffolds. The si-NPs were homogeneously incorporated throughout the porous PUR scaffolds, and they were shown to be released via a diffusion-based mechanism for over three weeks. The siRNA-loaded micelles were larger but retained nano particulate morphology of approximately 100 nm diameter following incorporation into and release from the scaffolds. PUR scaffold releasate collected in vitro in PBS at 37°C for 1–4 days was able to achieve dose-dependent siRNA-mediated silencing with approximately 50% silencing achieved of the model gene GAPDH in NIH3T3 mouse fibroblasts. This promising platform technology provides both a research tool capable of probing the effects of local gene silencing and a potentially high-impact therapeutic approach for sustained, local silencing of deleterious genes within tissue defects. PMID:22061489
Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine.
Luo, Meng; Gao, Zhen; Li, Hui; Li, Qin; Zhang, Caixi; Xu, Wenping; Song, Shiren; Ma, Chao; Wang, Shiping
2018-03-13
Grapevine is among the fruit crops with high economic value, and because of the economic losses caused by abiotic stresses, the stress resistance of Vitis vinifera has become an increasingly important research area. Among the mechanisms responding to environmental stresses, the role of miRNA has received much attention recently. qRT-PCR is a powerful method for miRNA quantitation, but the accuracy of the method strongly depends on the appropriate reference genes. To determine the most suitable reference genes for grapevine miRNA qRT-PCR, 15 genes were chosen as candidate reference genes. After eliminating 6 candidate reference genes with unsatisfactory amplification efficiency, the expression stability of the remaining candidate reference genes under salinity, cold and drought was analysed using four algorithms, geNorm, NormFinder, deltaCt and Bestkeeper. The results indicated that U6 snRNA was the most suitable reference gene under salinity and cold stresses; whereas miR168 was the best for drought stress. The best reference gene sets for salinity, cold and drought stresses were miR160e + miR164a, miR160e + miR168 and ACT + UBQ + GAPDH, respectively. The selected reference genes or gene sets were verified using miR319 or miR408 as the target gene.
Chidebe, Ifeoma N; Jaiswal, Sanjay K; Dakora, Felix D
2018-01-15
Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLAST n sequence analysis of 16S rRNA and four housekeeping genes ( glnII , gyrB , recA , and rpoB ) showed their alignment with Rhizobium and Bradyrhizobium species. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which included Bradyrhizobium pachyrhizi , Bradyrhizobium arachidis , Bradyrhizobium yuanmingense , and a novel Bradyrhizobium sp., as well as Rhizobium tropici , Rhizobium pusense , and Neorhizobium galegae in Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of the gyrB region was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency of nifH with core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes. IMPORTANCE A diverse group of both Bradyrhizobium and Rhizobium species responsible for cowpea nodulation in Mozambique was found in this study. Future studies could prove useful in evaluating these bacterial isolates for symbiotic efficiency and strain competitiveness in Mozambican soils. Copyright © 2018 Chidebe et al.
Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N
2013-01-01
To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.
Transposases are the most abundant, most ubiquitous genes in nature.
Aziz, Ramy K; Breitbart, Mya; Edwards, Robert A
2010-07-01
Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and--consequently--evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist.
Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang
2016-01-01
Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells.
Pathan, Ejaj K; Ghormade, Vandana; Deshpande, Mukund V
2017-01-01
Benjaminiella poitrasii, a dimorphic non-pathogenic zygomycetous fungus, exhibits a morphological yeast (Y) to hypha (H) reversible transition in the vegetative phase, sporangiospores (S) in the asexual phase and zygospores (Z) in the sexual phase. To study the gene expression across these diverse morphological forms, suitable reference genes are required. In the present study, 13 genes viz. ACT, 18S rRNA, eEF1α, eEF-Tu,eIF-1A, Tub-α, Tub-b, Ubc, GAPDH, Try, WS-21, NADGDH and NADPGDH were evaluated for their potential as a reference, particularly for studying gene expression during the Y-H reversible transition and also for other asexual and sexual life stages of B. poitrasii. Analysis of RT-qPCR data using geNorm, normFinder and BestKeeper software revealed that genes such as Ubc, 18S rRNA and WS-21 were expressed at constant levels in each given subset of RNA samples from all the morphological phases of B. poitrasii. Therefore, these reference genes can be used to elucidate the role of morpho-genes in B. poitrasii. Further, use of the two most stably expressed genes (Ubc and WS-21) to normalize the expression of the ornithine decarboxylase gene (Bpodc) in different morphological forms of B. poitrasii, generated more reliable results, indicating that our selection of reference genes was appropriate.
Glycolysis determines dichotomous regulation of T cell subsets in hypoxia
Xu, Yang; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S.; Rodgers, John; Yustein, Jason T.; Neilson, Joel R.
2016-01-01
Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526
Penna model from the perspective of one geneticist
NASA Astrophysics Data System (ADS)
Cebrat, Stanis l̶aw
1998-09-01
Penna model of ageing predicts many phenomena in population dynamics. Since the model assumes that all genes in genomes are switched on chronologically and that there are no structural differences between male and female genomes, it cannot explain genetic death before birth and differences in mortality rates of men and women. I suggest adding the set of housekeeping genes, which are switched on during the embryo development, to the “death genes” of Penna model. Taking into account the large fraction of genes located on X chromosome whose deleterious mutations exert dominant effect on the male phenotype and recessive on the female phenotype would make it possible to avoid introducing somatic mutations as a cause of higher mortality of men. The modelling of linkage disequilibrium and its implications on eugenics have also been suggested.
NASA Astrophysics Data System (ADS)
Aji, Wijayanto Setyo; Purwanto; Suherman, S.
2018-02-01
Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.
Wang, X N; Yang, Q W; Du, Z W; Yu, T; Qin, Y G; Song, Y; Xu, M; Wang, J C
2016-05-25
This study aimed to evaluate 12 genes (18S, GAPDH, B2M, ACTB, ALAS1, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP) for their reliability and stability as reference sequences for real-time quantitative PCR (RT-qPCR) in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from patients with avascular necrosis of the femoral head (ANFH). BMSCs were isolated from 20 ANFH patients divided into four groups according to etiology, and four donors with femoral neck fractures. Total RNA was isolated from BMSCs and reverse transcribed into complementary DNA, which served as a template for RT-qPCR. Three commonly used programs were then used to analyze the results. Reference gene expression varied within each group, between specific groups, and among all five groups. Based on comparisons of all five groups, two of the programs used suggested that HPRT1 was the most stable reference gene, while 18S and ACTB were the most variable. Among the 12 candidate reference genes, HPRT1 exhibited the greatest reliability, followed by PPIA. Thus, these sequences could be used as references for the normalization of RT-qPCR results.
Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris
2017-01-25
The anti-obesity effects of two types of resistant starch (RS) in high-fat-diet-induced obese rats were investigated. The serum triglycerides, total cholesterol and malondialdehyde concentrations were significantly reduced, and the total antioxidant capacity, superoxide dismutase levels and glutathione peroxidase activity were increased by RS2 and RS4 consumption compared to the obesity group. A significant reduction in the serum glucose level and elevations in hepatic lipid metabolic enzyme activities were observed only for RS4 administration. Moreover, the expression levels of the fatty acid synthesis associated genes ACC and Fads1, the triglyceride synthesis and metabolism-related gene SREBP-1, the adipocyte differentiation gene PPARγ, the cholesterol synthesis associated gene HMGCR, and the gluconeogenesis associated gene GAPDH were all significantly down-regulated, whilst the lipid oxidation gene Acox1 and the liver function genes Gsta2, Nqo1, and Gclm were up-regulated in both administered groups. Additionally, RS4 performed well in up-regulating the expressions of Gsta2, Gsta3, Nqo1, and Egfr, and down-regulating LXRα, Igfbp1, and Pml. RS4 exhibited great advantages in reducing oxidative stress compared with RS2.
Studies of Altered Response to Infection Induced by Severe Injury.
1994-11-15
quantitation of original specific RNA was determined by comparison of target and MIMIC band intensities and were standardized by G3PDH quantities. 4 RESULTS... housekeeping gene G 3PDH (Fig. 1). We compared the amount of mRNA present after 3 hours of stimulation to the amount of bioactivity present after 16 hours...Is$ mimic concelntration l PCR with G3PDH Primers ( G3PDH ) PCR Products Gel MIMIC -~ Attomoie MIMIC 100 10 1 0.1 SDensitometry Reading I Graphing and
Tan, Qian-Qian; Zhu, Li; Li, Yi; Liu, Wen; Ma, Wei-Hua; Lei, Chao-Liang; Wang, Xiao-Ping
2015-01-01
The cabbage beetle Colaphellus bowringi Baly is a serious insect pest of crucifers and undergoes reproductive diapause in soil. An understanding of the molecular mechanisms of diapause regulation, insecticide resistance, and other physiological processes is helpful for developing new management strategies for this beetle. However, the lack of genomic information and valid reference genes limits knowledge on the molecular bases of these physiological processes in this species. Using Illumina sequencing, we obtained more than 57 million sequence reads derived from C. bowringi, which were assembled into 39,390 unique sequences. A Clusters of Orthologous Groups classification was obtained for 9,048 of these sequences, covering 25 categories, and 16,951 were assigned to 255 Kyoto Encyclopedia of Genes and Genomes pathways. Eleven candidate reference gene sequences from the transcriptome were then identified through reverse transcriptase polymerase chain reaction. Among these candidate genes, EF1α, ACT1, and RPL19 proved to be the most stable reference genes for different reverse transcriptase quantitative polymerase chain reaction experiments in C. bowringi. Conversely, aTUB and GAPDH were the least stable reference genes. The abundant putative C. bowringi transcript sequences reported enrich the genomic resources of this beetle. Importantly, the larger number of gene sequences and valid reference genes provide a valuable platform for future gene expression studies, especially with regard to exploring the molecular mechanisms of different physiological processes in this species.
Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana
2017-01-01
Dekkera/Brettanomyces bruxellensis , the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase ( DbCD ) and the vinylphenol reductase ( DbVPR ), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO 2 ) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO 2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC , DbALD , DbEF , DbACT , and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO 2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect ( p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO 2 , pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO 2 , pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO 2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage.
Up-regulation of the G3PDH 'housekeeping' gene by estrogen.
Galal, Nadia; El-Beialy, Waleed; Deyama, Yoshiaki; Yoshimura, Yoshitaka; Tei, Kanchu; Suzuki, Kuniaki; Totsuka, Yasunori
2010-01-01
Proteomic and genomic studies commonly involve the assessment of mRNA levels using reverse transcription-polymerase chain reaction (PCR) and real-time quantitative PCR. An internal standard RNA is fundamentally analyzed along with the investigated mRNA to document the specificity of the effect(s) on mRNA and to correct for inter-sample variations. In our studies implementing estrogen treatments on different cell lines, we initially used glyceraldehyde-3-phosphate dehydrogenase (G3PDH) as an internal standard. However, the results of PCR amplification demonstrated that 17β-estradiol enhanced the expression of the G3PDH gene, rendering it impossible to use G3PDH as an unbiased comparative control.
Role of TMS1 Silencing in the Resistance of Breast Cancer Cells to Apoptosis
2006-08-01
USA 93: Kelliher MA, Grimm S, Ishida Y, Kuo F , Stanger BZ, Leder 14486-14491. P. (1998). Immunity 8: 297-303. Stehlik C , Fiorentino L , Dorfleutner A ...Caspase-8 - TMS1.. -. - GAPDH - . B. CuX+ siRNA: CHX TRAIL Lamin A / C + - + - TMS1 + - + Procaspase-8 f t Cleaved Caspase-8 - - 3 TMS1 . 03-tubulin...analysis for caspase-8, TMS 1 and either GAPDH or P3-tubulin as indicated. siRNA: Lamin A / C TMS1 TNFa+CHX - +- - + TRAIL -+ - + PARP -m l PARP p85
Genome-wide network of regulatory genes for construction of a chordate embryo.
Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori
2008-04-15
Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.
Anand, Sneha; Madhubala, Rentala
2016-08-19
Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis
2014-01-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. PMID:25078912
Degefu, Tulu; Wolde-Meskel, Endalkachew; Liu, Binbin; Cleenwerck, Ilse; Willems, Anne; Frostegård, Åsa
2013-05-01
A total of 18 strains, representing members of the genus Mesorhizobium, obtained from root nodules of woody legumes growing in Ethiopia, have been previously shown, by multilocus sequence analysis (MLSA) of five housekeeping genes, to form three novel genospecies. In the present study, the phylogenetic relationship between representative strains of these three genospecies and the type strains of their closest phylogenetic neighbours Mesorhizobium plurifarium, Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium huakuii was further evaluated using a polyphasic taxonomic approach. In line with our earlier MLSA of other housekeeping genes, the phylogenetic trees derived from the atpD and glnII genes grouped the test strains into three well-supported, distinct lineages that exclude all defined species of the genus Mesorhizobium. The DNA-DNA relatedness between the representative strains of genospecies I-III and the type strains of their closest phylogenetic neighbours was low (≤59 %). They differed from each other and from their closest phylogenetic neighbours by the presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon and nitrogen sources. The strains belonging to genospecies I, II and III therefore represent novel species for which we propose the names Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov. The isolates AC39a(T) ( = LMG 26966(T) = HAMBI 3295(T)), AC99b(T) ( = LMG 26968(T) = HAMBI 3301(T)) and AC98c(T) ( = LMG 26967(T) = HAMBI 3306(T)) are proposed as type strains for the respective novel species.
Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A
2015-09-01
To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.
Proposal for implementation of CCSDS standards for use with spacecraft engineering/housekeeping data
NASA Technical Reports Server (NTRS)
Welch, Dave
1994-01-01
Many of today's low earth orbiting spacecraft are using the Consultative Committee for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth and onboard storage space. However, most of the associated housekeeping data has continued to be generated and down linked in a synchronous, Time Division Multiplexed (TDM) fashion. There are many economies that the CCSDS protocol will allow to better utilize the available bandwidth and storage space in order to optimize the housekeeping data for use in operational trending and analysis work. By only outputting what is currently important or of interest, finer resolution of critical items can be obtained. This can be accomplished by better utilizing the normally allocated housekeeping data down link and storage areas rather than taking space reserved for science.
Work Conditions and Health and Well-Being of Latina Hotel Housekeepers.
Hsieh, Yu-Chin; Apostolopoulos, Yorghos; Sönmez, Sevil
2016-06-01
Hotel housekeepers are exposed to a plethora of disproportionately high work-induced hazards that can lead to adverse health consequences. Latina hotel housekeepers are rendered particularly vulnerable to elevated occupational hazards and resultant health strains due to their socioeconomic status, immigration status, language barriers, and lack of access to healthcare services. The findings from the 27 interviews with Latina hotel housekeepers indicated that the interviewees were exposed to physical, chemical, and social hazards in the workplace and suffered musculoskeletal injuries. In terms of psychological wellness, the time pressure of cleaning rooms quickly and work-related stress stemming from workplace mistreatment emerged as major work-related stressors. Recommendations are made for the introduction of multilevel interventions designed to prevent work-related injuries and illnesses and to promote healthier workplaces.
Proposal for implementation of CCSDS standards for use with spacecraft engineering/housekeeping data
NASA Astrophysics Data System (ADS)
Welch, Dave
1994-11-01
Many of today's low earth orbiting spacecraft are using the Consultative Committee for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth and onboard storage space. However, most of the associated housekeeping data has continued to be generated and down linked in a synchronous, Time Division Multiplexed (TDM) fashion. There are many economies that the CCSDS protocol will allow to better utilize the available bandwidth and storage space in order to optimize the housekeeping data for use in operational trending and analysis work. By only outputting what is currently important or of interest, finer resolution of critical items can be obtained. This can be accomplished by better utilizing the normally allocated housekeeping data down link and storage areas rather than taking space reserved for science.
Park, Sang-Je; Huh, Jae-Won; Kim, Young-Hyun; Lee, Sang-Rae; Kim, Sang-Hyun; Kim, Sun-Uk; Kim, Heui-Soo; Kim, Min Kyu; Chang, Kyu-Tae
2013-05-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive technique for quantifying gene expression. To analyze qRT-PCR data accurately, suitable reference genes that show consistent expression patterns across different tissues and experimental conditions should be selected. The objective of this study was to obtain the most stable reference genes in dogs, using samples from 13 different brain tissues and 10 other organs. 16 well-known candidate reference genes were analyzed by the geNorm, NormFinder, and BestKeeper programs. Brain tissues were derived from several different anatomical regions, including the forebrain, cerebrum, diencephalon, hindbrain, and metencephalon, and grouped accordingly. Combination of the three different analyses clearly indicated that the ideal reference genes are ribosomal protien S5 (RPS5) in whole brain, RPL8 and RPS5 in whole body tissues, RPS5 and RPS19 in the forebrain and cerebrum, RPL32 and RPS19 in the diencephalon, GAPDH and RPS19 in the hindbrain, and MRPS7 and RPL13A in the metencephalon. These genes were identified as ideal for the normalization of qRT-PCR results in the respective tissues. These findings indicate more suitable and stable reference genes for future studies of canine gene expression.
Koloušková, Pavla; Stone, James D.
2017-01-01
Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728
Zhu, Yuanyuan; Yang, Chao; Weng, Mingjiao; Zhang, Yan; Yang, Chunhui; Jin, Yinji; Yang, Weiwei; He, Yan; Wu, Yiqi; Zhang, Yuhua; Wang, Guangyu; RajkumarEzakiel Redpath, Riju James; Zhang, Lei; Jin, Xiaoming; Liu, Ying; Sun, Yuchun; Ning, Ning; Qiao, Yu; Zhang, Fengmin; Li, Zhiwei; Wang, Tianzhen; Zhang, Yanqiao; Li, Xiaobo
2017-01-01
Numerous evidences indicate that aspirin usage causes a significant reduction in colorectal cancer. However, the molecular mechanisms about aspirin preventing colon cancer are largely unknown. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a most frequently used method to identify the target molecules regulated by certain compound. However, this method needs stable internal reference genes to analyze the expression change of the targets. In this study, the transcriptional stabilities of several traditional reference genes were evaluated in colon cancer cells treated with aspirin, and also, the suitable internal reference genes were screened by using a microarray and were further identified by using the geNorm and NormFinder softwares, and then were validated in more cell lines and xenografts. We have showed that three traditional internal reference genes, β-actin, GAPDH and α-tubulin, are not suitable for studying gene transcription in colon cancer cells treated with aspirin, and we have identified and validated TMEM208 and PQLC2 as the ideal internal reference genes for detecting the molecular targets of aspirin in colon cancer in vitro and in vivo. This study reveals stable internal reference genes for studying the target genes of aspirin in colon cancer, which will contribute to identify the molecular mechanism behind aspirin preventing colon cancer. PMID:28184026
Zhu, Yuanyuan; Yang, Chao; Weng, Mingjiao; Zhang, Yan; Yang, Chunhui; Jin, Yinji; Yang, Weiwei; He, Yan; Wu, Yiqi; Zhang, Yuhua; Wang, Guangyu; RajkumarEzakiel Redpath, Riju James; Zhang, Lei; Jin, Xiaoming; Liu, Ying; Sun, Yuchun; Ning, Ning; Qiao, Yu; Zhang, Fengmin; Li, Zhiwei; Wang, Tianzhen; Zhang, Yanqiao; Li, Xiaobo
2017-04-04
Numerous evidences indicate that aspirin usage causes a significant reduction in colorectal cancer. However, the molecular mechanisms about aspirin preventing colon cancer are largely unknown. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a most frequently used method to identify the target molecules regulated by certain compound. However, this method needs stable internal reference genes to analyze the expression change of the targets. In this study, the transcriptional stabilities of several traditional reference genes were evaluated in colon cancer cells treated with aspirin, and also, the suitable internal reference genes were screened by using a microarray and were further identified by using the geNorm and NormFinder softwares, and then were validated in more cell lines and xenografts. We have showed that three traditional internal reference genes, β-actin, GAPDH and α-tubulin, are not suitable for studying gene transcription in colon cancer cells treated with aspirin, and we have identified and validated TMEM208 and PQLC2 as the ideal internal reference genes for detecting the molecular targets of aspirin in colon cancer in vitro and in vivo. This study reveals stable internal reference genes for studying the target genes of aspirin in colon cancer, which will contribute to identify the molecular mechanism behind aspirin preventing colon cancer.
Zhang, Songdou; An, Shiheng; Li, Zhen; Wu, Fengming; Yang, Qingpo; Liu, Yichen; Cao, Jinjun; Zhang, Huaijiang; Zhang, Qingwen; Liu, Xiaoxia
2015-01-25
Recent studies have focused on determining functional genes and microRNAs in the pest Helicoverpa armigera (Lepidoptera: Noctuidae). Most of these studies used quantitative real-time PCR (qRT-PCR). Suitable reference genes are necessary to normalize gene expression data of qRT-PCR. However, a comprehensive study on the reference genes in H. armigera remains lacking. Twelve candidate reference genes of H. armigera were selected and evaluated for their expression stability under different biotic and abiotic conditions. The comprehensive stability ranking of candidate reference genes was recommended by RefFinder and the optimal number of reference genes was calculated by geNorm. Two target genes, thioredoxin (TRX) and Cu/Zn superoxide dismutase (SOD), were used to validate the selection of reference genes. Results showed that the most suitable candidate combinations of reference genes were as follows: 28S and RPS15 for developmental stages; RPS15 and RPL13 for larvae tissues; EF and RPL27 for adult tissues; GAPDH, RPL27, and β-TUB for nuclear polyhedrosis virus infection; RPS15 and RPL32 for insecticide treatment; RPS15 and RPL27 for temperature treatment; and RPL32, RPS15, and RPL27 for all samples. This study not only establishes an accurate method for normalizing qRT-PCR data in H. armigera but also serve as a reference for further study on gene transcription in H. armigera and other insects. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Introduction Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. Results cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. Conclusions We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable catalogue of annotated genes (or gene fragments) and protein families for ten newly sequenced non-model organisms, some of commercial importance (i.e., Octopus vulgaris). These comprehensive sets of genes can be readily used for phylogenetic analysis, gene expression profiling, developmental analysis, and can also be a powerful resource for gene discovery. The characterization of the transcriptomes of such a diverse array of animal species permitted the comparison of sequencing depth, functional annotation, and efficiency of genomic sampling using the same pipelines, which proved to be similar for all considered species. In addition, the datasets revealed their potential as a resource for paralogue detection, a recurrent concern in various aspects of biological inquiry, including phylogenetics, molecular evolution, development, and cellular biochemistry. PMID:23190771
Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin
2018-01-01
Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.
Distinct contributions of replication and transcription to mutation rate variation of human genomes.
Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun
2012-02-01
Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
An Integrated Approach for RNA-seq Data Normalization.
Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide
2016-01-01
DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.
Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal
2009-01-01
Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889
Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C
2005-02-01
Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high Km. Apparent second-order rate constants, determined for concentrations
Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C
2004-11-15
Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high K(m). Apparent second-order rate constants, determined for concentrations
Zhang, Yanfei; Kouril, Theresa; Snoep, Jacky L; Siebers, Bettina; Barberis, Matteo; Westerhoff, Hans V
2017-04-20
Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), which catalyzes the direct oxidation of glyceraldehyde-3-phosphate to 3-phosphoglycerate omitting adenosine 5'-triphosphate (ATP) formation by substrate-level-phosphorylation via phosphoglycerate kinase. In this study we formulate three hypotheses that could explain functionally why GAPN exists in these Archaea, and then construct and use mathematical models to test these three hypotheses. We used kinetic parameters of enzymes of Sulfolobus solfataricus ( S. solfataricus ) which is a thermo-acidophilic archaeon that grows optimally between 60 and 90 °C and between pH 2 and 4. For comparison, we used a model of Saccharomyces cerevisiae ( S. cerevisiae ), an organism that can live at moderate temperatures. We find that both the first hypothesis, i.e., that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plus phosphoglycerate kinase (PGK) route (the alternative to GAPN) is thermodynamically too much uphill and the third hypothesis, i.e., that GAPDH plus PGK are required to carry the flux in the gluconeogenic direction, are correct. The second hypothesis, i.e., that the GAPDH plus PGK route delivers less than the 1 ATP per pyruvate that is delivered by the GAPN route, is only correct when GAPDH reaction has a high rate and 1,3- bis -phosphoglycerate (BPG) spontaneously degrades to 3PG at a high rate.
Stroylova, Yulia Y; Semenyuk, Pavel I; Asriyantz, Regina A; Gaillard, Cedric; Haertlé, Thomas; Muronetz, Vladimir I
2014-09-01
The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes. © 2014 Wiley Periodicals, Inc.
30 CFR 57.20003 - Housekeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Housekeeping. At all mining operations— (a) Workplaces, passageways, storerooms, and service rooms shall be kept clean and orderly; (b) The floor of every workplace shall be maintained in a clean and, so far as...
30 CFR 57.20003 - Housekeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Housekeeping. At all mining operations— (a) Workplaces, passageways, storerooms, and service rooms shall be kept clean and orderly; (b) The floor of every workplace shall be maintained in a clean and, so far as...
30 CFR 57.20003 - Housekeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Housekeeping. At all mining operations— (a) Workplaces, passageways, storerooms, and service rooms shall be kept clean and orderly; (b) The floor of every workplace shall be maintained in a clean and, so far as...
30 CFR 57.20003 - Housekeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Housekeeping. At all mining operations— (a) Workplaces, passageways, storerooms, and service rooms shall be kept clean and orderly; (b) The floor of every workplace shall be maintained in a clean and, so far as...
Means, A L; Farnham, P J
1990-02-01
We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).
Systematic analysis of transcription start sites in avian development.
Lizio, Marina; Deviatiiarov, Ruslan; Nagai, Hiroki; Galan, Laura; Arner, Erik; Itoh, Masayoshi; Lassmann, Timo; Kasukawa, Takeya; Hasegawa, Akira; Ros, Marian A; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Kawaji, Hideya; Gusev, Oleg; Sheng, Guojun
2017-09-01
Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Ormeño-Orrillo, Ernesto; Parma, Marcia Maria; Melo, Itamar Soares; Martínez-Romero, Esperanza; Hungria, Mariangela
2015-12-01
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
Keshavarz-Pakseresht, Behta; Shandiz, Seyed Ataollah Sadat; Baghbani-arani, Fahimeh
2017-01-01
Aim: The present study investigated the anti-tumor activity of Imatinib mesylate through modulation of NM23 gene expression in human hepatocellular carcinoma (HepG2) cell line. Background: Hepatocellular carcinoma (HCC) is considered to be the third leading cause of cancer related death worldwide. Down regulation of NM23, a metastasis suppressor gene, has been associated with several types of malignant cancer. Recently, effects of Imatinib mesylate, a first member of tyrosine kinases inhibitors, were indicated in research and treatment of different malignant tumors. Methods: Cell viability was quantitated by MTT assay after HepG2 cells exposure to Imatinib mesylate at various concentrations of 0, 1.56, 3.125, 6.25, 12.5, 25,50μM for 24 hours. Also, quantitative real time PCR technique was applied for the detection of NM23 gene expression in HepG2 cell line. Results: There was a dose dependent increase in the cytotoxicity effect of imatinib. The real time PCR results demonstrated that inhibitory effect of Imatinib mesylate on viability via up regulation of NM23 gene expression compared to GAPDH gene (internal control gene) in cancer cells. Conclusion: According to our findings, imatinib can modulate metastasis by enhancing Nm23 gene expression in human hepatocellular carcinoma (HepG2) cell line. PMID:28331561
Chen, Lei; Zhong, Hai-ying; Kuang, Jian-fei; Li, Jian-guo; Lu, Wang-jin; Chen, Jian-ye
2011-08-01
Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.
2013-01-01
Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli. PMID:23915781
Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds
Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.
2014-01-01
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145
Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong
2017-10-01
An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.
On the relevance of glycolysis process on brain gliomas.
Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X
2013-01-01
The proposed analysis considers aspects of both statistical and biological validation of the glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two independent datasets are analyzed in parallel, one engaging genomic (Microarray Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) data. The aim of this study is twofold. First to show that, apart from the already studied genes (markers), other genes such as those involved in the human cell glycolysis significantly contribute in gliomas discrimination. Second, to demonstrate how the glycolysis process can open new ways towards the design of patient-specific therapeutic protocols. The results of our analysis demonstrate that the combination of genes participating in the glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, PFKM, PGI, PGK1, PGM1 and PKLR) with the already known tumor suppressors (PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhance the discrimination of low versus high-grade gliomas providing high prediction ability in a cross-validated framework. Following these results and supported by the biological effect of glycolytic genes on cancer cells, we address the study of glycolysis for the development of new treatment protocols.
Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H
2013-04-01
Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
This document addresses the incidental reflector reactivity worth of containerized maintenance/housekeeping fluids for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze containerized maintenance/housekeeping fluids which will be analyzed as water that may be present under normal conditions of an operation. The reactivity worth is compared to the reactivity worth due to I-inch of close-fitting 4n water reflection and I-inch of close-fitting radial water reflection. Both have been used to bound incidental reflection by 2-liter bottles in criticality safety evaluations. The conclusion is that, when the maintenance/housekeeping fluids are containerized the reactivitymore » increase from a configuration which is bounding of normal conditions (up to eight bottles modeled with 2-liters of solution at varying diameter) is bound by I-inch of close fitting 4n water relection.« less
Beer, Lucian; Mlitz, Veronika; Gschwandtner, Maria; Berger, Tanja; Narzt, Marie-Sophie; Gruber, Florian; Brunner, Patrick M; Tschachler, Erwin; Mildner, Michael
2015-10-01
Reverse transcription polymerase chain reaction (qRT-PCR) has become a mainstay in many areas of skin research. To enable quantitative analysis, it is necessary to analyse expression of reference genes (RGs) for normalization of target gene expression. The selection of reliable RGs therefore has an important impact on the experimental outcome. In this study, we aimed to identify and validate the best suited RGs for qRT-PCR in human primary keratinocytes (KCs) over a broad range of experimental conditions using the novel bioinformatics tool 'RefGenes', which is based on a manually curated database of published microarray data. Expression of 6 RGs identified by RefGenes software and 12 commonly used RGs were validated by qRT-PCR. We assessed whether these 18 markers fulfilled the requirements for a valid RG by the comprehensive ranking of four bioinformatics tools and the coefficient of variation (CV). In an overall ranking, we found GUSB to be the most stably expressed RG, whereas the expression values of the commonly used RGs, GAPDH and B2M were significantly affected by varying experimental conditions. Our results identify RefGenes as a powerful tool for the identification of valid RGs and suggest GUSB as the most reliable RG for KCs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Comparative analysis of the blood transcriptomes between wolves and dogs.
Yang, X; Zhang, H; Shang, J; Liu, G; Xia, T; Zhao, C; Sun, G; Dou, H
2018-06-28
Dogs were domesticated by human and originated from wolves. Their evolutionary relationships have attracted much scientific interest due to their genetic affinity but different habitats. To identify the differences between dogs and wolves associated with domestication, we analysed the blood transcriptomes of wolves and dogs by RNA-Seq. We obtained a total of 30.87 Gb of raw reads from two dogs and three wolves using RNA-Seq technology. Comparisons of the wolf and dog transcriptomes revealed 524 genes differentially expressed genes between them. We found that some genes related to immune function (DCK, ICAM4, GAPDH and BSG) and aerobic capacity (HBA1, HBA2 and HBB) were more highly expressed in the wolf. Six differentially expressed genes related to the innate immune response (CCL23, TRIM10, DUSP10, RAB27A, CLEC5A and GCH1) were found in the wolf by a Gene Ontology enrichment analysis. Immune system development was also enriched only in the wolf group. The ALAS2, HMBS and FECH genes, shown to be enriched by the Kyoto Encyclopedia of Genes and Genomes analysis, were associated with the higher aerobic capacity and hypoxia endurance of the wolf. The results suggest that the wolf might have greater resistance to pathogens, hypoxia endurance and aerobic capacity than dogs do. © 2018 Stichting International Foundation for Animal Genetics.
Development of a Novel and Rapid Fully Automated Genetic Testing System.
Uehara, Masayuki
2016-01-01
We have developed a rapid genetic testing system integrating nucleic acid extraction, purification, amplification, and detection in a single cartridge. The system performs real-time polymerase chain reaction (PCR) after nucleic acid purification in a fully automated manner. RNase P, a housekeeping gene, was purified from human nasal epithelial cells using silica-coated magnetic beads and subjected to real-time PCR using a novel droplet-real-time-PCR machine. The process was completed within 13 min. This system will be widely applicable for research and diagnostic uses.
Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Kim, Yeon Jun; Park, Nam Gyu
2014-02-01
A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fu, Shulin; Zhang, Minmin; Xu, Juan; Ou, Jiwen; Wang, Yan; Liu, Huazhen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng
2013-01-02
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. Little vaccines currently exist that have a significant effect on infections with all pathogenic serovars of H. parasuis. H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar 5 strain SH0165 was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on 10 putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50 challenge. Out of these 10 OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675 were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675 in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165 in pig models. In addition, the antisera against the three individual proteins and the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675 offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675 induced protection against H. parasuis SH0165 infection, which may facilitate the development of a multi-component vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Yao; Zheng, Zhi
2016-05-15
We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.
Natural infection of the sand fly Phlebotomus kazeruni by Trypanosoma species in Pakistan
2010-01-01
The natural infection of phlebotomine sand flies by Leishmania parasites was surveyed in a desert area of Pakistan where cutaneous leishmaniasis is endemic. Out of 220 female sand flies dissected, one sand fly, Phlebotomus kazeruni, was positive for flagellates in the hindgut. Analyses of cytochrome b (cyt b), glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA) gene sequences identified the parasite as a Trypanosoma species of probably a reptile or amphibian. This is the first report of phlebotomine sand flies naturally infected with a Trypanosoma species in Pakistan. The possible infection of sand flies with Trypanosoma species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniasis is endemic. PMID:20184773
Sheng, X G; Zhao, Z Q; Yu, H F; Wang, J S; Zheng, C F; Gu, H H
2016-07-15
Quantitative reverse-transcription PCR (qRT-PCR) is a versatile technique for the analysis of gene expression. The selection of stable reference genes is essential for the application of this technique. Cauliflower (Brassica oleracea L. var. botrytis) is a commonly consumed vegetable that is rich in vitamin, calcium, and iron. Thus far, to our knowledge, there have been no reports on the validation of suitable reference genes for the data normalization of qRT-PCR in cauliflower. In the present study, we analyzed 12 candidate housekeeping genes in cauliflower subjected to different abiotic stresses, hormone treatment conditions, and accessions. geNorm and NormFinder algorithms were used to assess the expression stability of these genes. ACT2 and TIP41 were selected as suitable reference genes across all experimental samples in this study. When different accessions were compared, ACT2 and UNK3 were found to be the most suitable reference genes. In the hormone and abiotic stress treatments, ACT2, TIP41, and UNK2 were the most stably expressed. Our study also provided guidelines for selecting the best reference genes under various experimental conditions.
Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia
2015-10-01
Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).
Yang, Hongli; Liu, Jing; Huang, Shunmou; Guo, Tingting; Deng, Linbin; Hua, Wei
2014-03-15
Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Wu, Jianyang; Zhang, Hongna; Liu, Liqin; Li, Weicai; Wei, Yongzan; Shi, Shengyou
2016-01-01
Reverse transcription quantitative PCR (RT-qPCR) as the accurate and sensitive method is use for gene expression analysis, but the veracity and reliability result depends on whether select appropriate reference gene or not. To date, several reliable reference gene validations have been reported in fruits trees, but none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3, and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D, and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22°C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits. PMID:27375640
Mutations of RNA splicing factors in hematological malignancies.
Shukla, Girish C; Singh, Jagjit
2017-11-28
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Ko, Kwan Soo; Oh, Won Sup; Peck, Kyong Ran; Lee, Jang Ho; Lee, Nam Yong; Song, Jae-Hoon
2005-07-01
Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.
Genetic and physiological interactions in the amoeba-bacteria symbiosis.
Jeon, Kwang W
2004-01-01
Amoebae of the xD strain of Amoeba proteus that arose from the D strain by spontaneous infection of Legionella-like X-bacteria are now dependent on their symbionts for survival. Each xD amoeba contains about 42,000 symbionts within symbiosomes, and established xD amoebae die if their symbionts are removed. Thus, harmful infective bacteria changed into necessary cell components. As a result of harboring X-bacteria. xD amoebae exhibit various physiological and genetic characteristics that are different from those of symbiont-free D amoebae. One of the recent findings is that bacterial symbionts control the expression of a host's house-keeping gene. Thus, the expression of the normal amoeba sams gene (sams1) encoding one form of S-adenosylmethionine synthetase is switched to that of sams2 by endosymbiotic X-bacteria. Possible mechanisms for the switching of sams genes brought about by endosymbionts and its significance are discussed.
Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana
2017-01-01
Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC, DbALD, DbEF, DbACT, and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect (p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO2, pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO2, pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage. PMID:28955312
Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.
Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois
2013-01-01
The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.
Kramer, B; Ferrari, D M; Klappa, P; Pöhlmann, N; Söling, H D
2001-01-01
The rat luminal endoplasmic-recticulum calcium-binding proteins 1 and 2 (CaBP1 and CaBP2 respectively) are members of the protein disulphide-isomerase (PDI) family. They contain two and three thioredoxin boxes (Cys-Gly-His-Cys) respectively and, like PDI, may be involved in the folding of nascent proteins. We demonstrate here that CaBP1, similar to PDI and CaBP2, can complement the lethal phenotype of the disrupted Saccharomyces cerevisiae PDI gene, provided that the natural C-terminal Lys-Asp-Glu-Leu sequence is replaced by His-Asp-Glu-Leu. Both the in vitro RNase AIII-re-activation assays and in vivo pro-(carboxypeptidase Y) processing assays using CaBP1 and CaBP2 thioredoxin (trx)-box mutants revealed that, whereas the three trx boxes in CaBP2 seem to be functionally equivalent, the first trx box of CaBP1 is significantly more active than the second trx box. Furthermore, only about 65% re-activation of denatured reduced RNase AIII could be obtained with CaBP1 or CaBP2 compared with PDI, and the yield of PDI-catalysed reactions was significantly reduced in the presence of either CaBP1 or CaBP2. In contrast with PDI, neither CaBP1 nor CaBP2 could catalyse the renaturation of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a redox-independent process, and neither protein had any effect on the PDI-catalysed refolding of GAPDH. Furthermore, although PDI can bind peptides via its b' domain, a property it shares with PDIp, the pancreas-specific PDI homologue, and although PDI can bind malfolded proteins such as 'scrambled' ribonuclease, no such interactions could be detected for CaBP2. We conclude that: (1) both CaBP2 and CaBP1 lack peptide-binding activity for GAPDH attributed to the C-terminal region of the a' domain of PDI; (2) CaBP2 lacks the general peptide-binding activity attributed to the b' domain of PDI; (3) interaction of CaBP2 with substrate (RNase AIII) is different from that of PDI and substrate; and (4) both CaBP2 and CaBP1 may promote oxidative folding by different kinetic pathways. PMID:11415439
Wang, Erlong; Wang, Kaiyu; Chen, Defang; Wang, Jun; He, Yang; Long, Bo; Yang, Lei; Yang, Qian; Geng, Yi; Huang, Xiaoli; Ouyang, Ping; Lai, Weimin
2015-01-01
qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA. PMID:25941937
Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting
Piazza, Carol Lyn; Smith, Dorie
2018-01-01
Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149
Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments
Khalsa-Moyers, Gurusahai; Alexandre, Gladys; Sukharnikov, Leonid O.; Wuichet, Kristin; Hurst, Gregory B.; McDonald, W. Hayes; Robertson, Jon S.; Barbe, Valérie; Calteau, Alexandra; Rouy, Zoé; Mangenot, Sophie; Prigent-Combaret, Claire; Normand, Philippe; Boyer, Mickaël; Siguier, Patricia; Dessaux, Yves; Elmerich, Claudine; Condemine, Guy; Krishnen, Ganisan; Kennedy, Ivan; Paterson, Andrew H.; González, Victor; Mavingui, Patrick; Zhulin, Igor B.
2011-01-01
Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land. PMID:22216014
Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.
Qu, Guosheng; Piazza, Carol Lyn; Smith, Dorie; Belfort, Marlene
2018-06-15
Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis , inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. © 2018, Qu et al.
Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria
2011-01-01
The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370
30 CFR 56.20003 - Housekeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Miscellaneous § 56.20003 Housekeeping... possible, dry condition. Where wet processes are used, drainage shall be maintained, and false floors...
29 CFR 1915.81 - Housekeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Housekeeping. 1915.81 Section 1915.81 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT General Working Conditions § 1915.81...
29 CFR 1915.91 - Housekeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Housekeeping. 1915.91 Section 1915.91 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT General Working Conditions § 1915.91...
Sémon, Marie; Mouchiroud, Dominique; Duret, Laurent
2005-02-01
Mammalian chromosomes are characterized by large-scale variations of DNA base composition (the so-called isochores). In contradiction with previous studies, Lercher et al. (Hum. Mol. Genet., 12, 2411, 2003) recently reported a strong correlation between gene expression breadth and GC-content, suggesting that there might be a selective pressure favoring the concentration of housekeeping genes in GC-rich isochores. We reassessed this issue by examining in human and mouse the correlation between gene expression and GC-content, using different measures of gene expression (EST, SAGE and microarray) and different measures of GC-content. We show that correlations between GC-content and expression are very weak, and may vary according to the method used to measure expression. Such weak correlations have a very low predictive value. The strong correlations reported by Lercher et al. (2003) are because of the fact that they measured variables over neighboring genes windows. We show here that using gene windows artificially enhances the correlation. The assertion that the expression of a given gene depends on the GC-content of the region where it is located is therefore not supported by the data.
Population genetic structure of Helicobacter pylori strains from Portuguese-speaking countries.
Oleastro, Mónica; Rocha, Raquel; Vale, Filipa F
2017-08-01
The human gastric colonizer Helicobacter pylori is useful to track human migrations given the agreement between the bacterium phylogeographic distribution and human migrations. As Portugal was an African and Brazilian colonizer for over 400 years, we hypothesized that Portuguese isolates were likely genetically closer with those from countries colonized by Portuguese in the past. We aimed to characterize the population structure of several Portuguese-speaking countries, including Portugal, Brazil, Angola, and Cape Verde. We included strains isolated in Portugal from Portuguese and from former Portuguese colonies. These strains were typed by multilocus sequence typing (MLST) for seven housekeeping genes. We also retrieved from Multi Locus Sequence Typing Web site additional housekeeping gene sequences, namely from Angola and Brazil. We provided evidence that strains from Portuguese belong to hpEurope and that the introgression of hpEurope in non-European countries that speak Portuguese is low, except for Brazil and Cape Verde, where hpEurope accounted for one quarter and one half of the population, respectively. We found genetic similarity for all strains from Portuguese-speaking countries that belong to hpEurope population. Moreover, these strains showed a predominance of ancestral Europe 2 (AE2) over ancestral Europe 1 (AE1), followed by ancestral Africa 1. H. pylori is a useful marker even for relative recent human migration events and may become rapidly differentiated from founder populations. H. pylori from Portuguese-speaking countries assigned to hpEurope appears to be a hybrid population resulting from the admixture of AE1, AE2 and ancestral hpAfrica1. © 2017 John Wiley & Sons Ltd.
A New Perspective on Listeria monocytogenes Evolution
Ragon, Marie; Wirth, Thierry; Hollandt, Florian; Lavenir, Rachel; Lecuit, Marc; Le Monnier, Alban; Brisse, Sylvain
2008-01-01
Listeria monocytogenes is a model organism for cellular microbiology and host–pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence. PMID:18773117
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel
2004-04-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel
2004-01-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845
Schoen, K; Plendl, J; Gabler, C; Kaessmeyer, S
2015-06-01
Ovaries are highly complex organs displaying morphological, molecular and functional differences between their cortical zona parenchymatosa and medullary zona vasculosa, and also between the different cyclic luteal stages. Objective of the present study was to validate expression stability of twelve putative reference genes (RGs) in bovine ovaries, considering the intrinsic heterogeneity of bovine ovarian tissue with regard to different luteal stages and intra-ovarian localizations. The focus was on identifying RGs, which are suitable to normalize RT-qPCR results of ovaries collected from clinical healthy cattle, irrespective of localization and the hormonal stage. Expression profiles of twelve potential reference genes (GAPDH, ACTB, YWHAZ, HPRT1, SDHA, UBA52, POLR2C, RPS9, ACTG2, H3F3B, RPS18 and RPL19) were analysed. Evaluation of gene expression differences was performed using genorm, normfinder, and bestkeeper software. The most stably expressed genes according to genorm, normfinder and bestkeeper approaches contained the candidates H3F3B, RPS9, YWHAZ, RPS18, POLR2C and UBA52. Of this group, the genes YWHAZ, H3F3B and RPS9 could be recommended as best-suited RGs for normalization purposes on healthy bovine ovaries irrespective of the luteal stage or intra-ovarian localization. © 2014 Blackwell Verlag GmbH.
Mafra, Valéria; Kubo, Karen S.; Alves-Ferreira, Marcio; Ribeiro-Alves, Marcelo; Stuart, Rodrigo M.; Boava, Leonardo P.; Rodrigues, Carolina M.; Machado, Marcos A.
2012-01-01
Real-time reverse transcription PCR (RT-qPCR) has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus). We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family) and GAPC2 (GAPDH) was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin), TUB (tubulin) and CtP (cathepsin) were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein), GAPC2 and UPL7 (ubiquitin protein ligase 7) to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress. PMID:22347455
Zeng, Shaohua; Liu, Yongliang; Wu, Min; Liu, Xiaomin; Shen, Xiaofei; Liu, Chunzhao; Wang, Ying
2014-01-01
Lycium barbarum and L. ruthenicum are extensively used as traditional Chinese medicinal plants. Next generation sequencing technology provides a powerful tool for analyzing transcriptomic profiles of gene expression in non-model species. Such gene expression can then be confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Therefore, use of systematically identified suitable reference genes is a prerequisite for obtaining reliable gene expression data. Here, we calculated the expression stability of 18 candidate reference genes across samples from different tissues and grown under salt stress using geNorm and NormFinder procedures. The geNorm-determined rank of reference genes was similar to those defined by NormFinder with some differences. Both procedures confirmed that the single most stable reference gene was ACNTIN1 for L. barbarum fruits, H2B1 for L. barbarum roots, and EF1α for L. ruthenicum fruits. PGK3, H2B2, and PGK3 were identified as the best stable reference genes for salt-treated L. ruthenicum leaves, roots, and stems, respectively. H2B1 and GAPDH1+PGK1 for L. ruthenicum and SAMDC2+H2B1 for L. barbarum were the best single and/or combined reference genes across all samples. Finally, expression of salt-responsive gene NAC, fruit ripening candidate gene LrPG, and anthocyanin genes were investigated to confirm the validity of the selected reference genes. Suitable reference genes identified in this study provide a foundation for accurately assessing gene expression and further better understanding of novel gene function to elucidate molecular mechanisms behind particular biological/physiological processes in Lycium.
Elanchezhian, R; Sakthivel, M; Geraldine, P; Thomas, P A
2010-03-30
Differential expression of apoptotic genes has been demonstrated in selenite-induced cataract. Acetyl-l-carnitine (ALCAR) has been shown to prevent selenite cataractogenesis by maintaining lenticular antioxidant enzyme and redox system components at near normal levels and also by inhibiting lenticular calpain activity. The aim of the present experiment was to investigate the possibility that ALCAR also prevents selenite-induced cataractogenesis by regulating the expression of antioxidant (catalase) and apoptotic [caspase-3, early growth response protein-1 (EGR-1) and cytochrome c oxidase subunit I (COX-I)] genes. The experiment was conducted on 9-day-old Wistar rat pups, which were divided into normal, cataract-untreated and cataract-treated groups. Putative changes in gene expression in whole lenses removed from the rats were determined by measuring mRNA transcript levels of the four genes by RT-PCR analysis, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control. The expression of lenticular caspase-3 and EGR-1 genes appeared to be upregulated, as inferred by detecting increased mRNA transcript levels, while that of COX-I and catalase genes appeared to be downregulated (lowered mRNA transcript levels) in the lenses of cataract-untreated rats. However, in rats treated with ALCAR, the lenticular mRNA transcript levels were maintained at near normal (control) levels. These results suggest that ALCAR may prevent selenite-induced cataractogenesis by preventing abnormal expression of lenticular genes governing apoptosis.
Dai, Tian-Mei; Lü, Zhi-Chuang; Liu, Wan-Xue; Wan, Fang-Hao
2017-01-01
The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading to most parts of the world owing to its strong ecological adaptability, which is considered as a model insect for stress tolerance studies under rapidly changing environments. Selection of a suitable reference gene for quantitative stress-responsive gene expression analysis based on qRT-PCR is critical for elaborating the molecular mechanisms of thermotolerance. To obtain accurate and reliable normalization data in MED, eight candidate reference genes (β-act, GAPDH, β-tub, EF1-α, GST, 18S, RPL13A and α-tub) were examined under various thermal stresses for varied time periods by using geNorm, NormFinder and BestKeeper algorithms, respectively. Our results revealed that β-tub and EF1-α were the best reference genes across all sample sets. On the other hand, 18S and GADPH showed the least stability for all the samples studied. β-act was proved to be highly stable only in case of short-term thermal stresses. To our knowledge this was the first comprehensive report on validation of reference genes under varying temperature stresses in MED. The study could expedite particular discovery of thermotolerance genes in MED. Further, the present results can form the basis of further research on suitable reference genes in this invasive insect and will facilitate transcript profiling in other invasive insects.
Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle
2018-04-13
Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.
Development of a one-step duplex RT-qPCR for the quantification of phocine distemper virus.
Bogomolni, Andrea L; Frasca, Salvatore; Matassa, Keith A; Nielsen, Ole; Rogers, Kara; De Guise, Sylvain
2015-04-01
Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 10(0) to 10(9) copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 10(0) to 10(9) copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.
Vieira, Willie A S; Lima, Waléria G; Nascimento, Eduardo S; Michereff, Sami J; Câmara, Marcos P S; Doyle, Vinson P
2017-01-01
Developing a comprehensive and reliable taxonomy for the Colletotrichum gloeosporioides species complex will require adopting data standards on the basis of an understanding of how methodological choices impact morphological evaluations and phylogenetic inference. We explored the impact of methodological choices in a morphological and molecular evaluation of Colletotrichum species associated with banana in Brazil. The choice of alignment filtering algorithm has a significant impact on topological inference and the retention of phylogenetically informative sites. Similarly, the choice of phylogenetic marker affects the delimitation of species boundaries, particularly if low phylogenetic signal is confounded with strong discordance, and inference of the species tree from multiple-gene trees. According to both phylogenetic informativeness profiling and Bayesian concordance analyses, the most informative loci are DNA lyase (APN2), intergenic spacer (IGS) between DNA lyase and the mating-type locus MAT1-2-1 (APN2/MAT-IGS), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), β-tubulin (TUB2), and a new marker, the intergenic spacer between GAPDH and an hypothetical protein (GAP2-IGS). Cornmeal agar minimizes the variance in conidial dimensions compared with potato dextrose agar and synthetic nutrient-poor agar, such that species are more readily distinguishable based on phenotypic differences. We apply these insights to investigate the diversity of Colletotrichum species associated with banana anthracnose in Brazil and report C. musae, C. tropicale, C. theobromicola, and C. siamense in association with banana anthracnose. One lineage did not cluster with any previously described species and is described here as C. chrysophilum.
Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells.
Peng, Haoran; Liu, Bin; Yves, Toure Doueu; He, Yanhua; Wang, Shijie; Tang, Hailin; Ren, Hao; Zhao, Ping; Qi, Zhongtian; Qin, Zhaoling
2018-05-15
Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 5 2014-07-01 2014-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 5 2013-07-01 2013-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 5 2012-07-01 2012-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
2013-01-01
Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672