Peng, Hongjun; Long, Ying; Li, Jie; Guo, Yangbo; Wu, Huawang; Yang, YuLing; Ding, Yi; He, Jianfei; Ning, Yuping
2014-02-18
To date, the relationships between childhood neglect, hypothalamic-pituitary-adrenal (HPA) axis functioning and dysfunctional attitude in depressed patients are still obscure. The Childhood Trauma Questionnaire (CTQ) was used to assess childhood emotional neglect and physical neglect. Twenty-eight depressed patients with childhood neglect and 30 depressed patients without childhood neglect from Guangzhou Psychiatric Hospital were compared with 29 age- and gender-matched control subjects without childhood neglect and 22 control subjects with childhood neglect. Cortisol awakening response, the difference between the cortisol concentrations at awakening and 30 minutes later, provided a measure of HPA axis functioning. The Dysfunctional Attitude Scale measured cognitive schema. HPA axis functioning was significantly increased in depressed patients with childhood neglect compared with depressed patients without childhood neglect (p < 0.001). HPA axis activity in the control group with childhood neglect was significantly higher than in the depressed group without childhood neglect (p < 0.001). Total scores of childhood neglect were positively correlated with HPA axis functioning and dysfunctional attitude scores, but not with severity of depression. We did not find correlations with HPA axis functioning and dysfunctional attitude or with the Hamilton Rating Scale for Depression scores. Childhood neglect may cause hyperactivity of the HPA axis functioning and dysfunctional attitude, but does not affect depression severity.
HPA axis hyperactivity as suicide predictor in elderly mood disorder inpatients.
Jokinen, Jussi; Nordström, Peter
2008-11-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis function is associated with suicidal behaviour and age-associated alterations in HPA axis functioning may render elderly individuals more susceptible to HPA dysregulation related to mood disorders. Research on HPA axis function in suicide prediction in elderly mood disorder patients is sparse. The study sample consisted of 99 depressed elderly inpatients 65 years of age or older admitted to the department of Psychiatry at the Karolinska University Hospital between 1980 and 2000. The hypothesis was that elderly mood disorder inpatients who fail to suppress cortisol in the dexamethasone suppression test (DST) are at higher risk of suicide. The DST non-suppression distinguished between suicides and survivors in elderly depressed inpatients and the suicide attempt at the index episode was a strong predictor for suicide. Additionally, the DST non-suppression showed higher specificity and predictive value in the suicide attempter group. Due to age-associated alterations in HPA axis functioning, the optimal cut-off for DST non-suppression in suicide prediction may be higher in elderly mood disorder inpatients. These data demonstrate the importance of attempted suicide and DST non-suppression as predictors of suicide risk in late-life depression and suggest the use for neuroendocrine testing of HPA axis functioning as a complementary tool in suicide prevention.
Laceulle, Odilia M; Nederhof, Esther; van Aken, Marcel A G; Ormel, Johan
2017-11-01
The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a key mechanism underlying the link between adversity and mental health, but longitudinal studies on adversity and HPA-axis functioning are scarce. Here, we studied adversity-driven changes in HPA-axis functioning during adolescence (N=141). HPA-axis functioning (basal cortisol, cortisol awakening response, anticipation of, reaction to and recovery after a stress task) was measured twice, at age 16 and 19. Adversity (i.e., social defeat and loss/illness) since age 16 was measured extensively with the Life Stress Interview at age 19. Adolescents who reported being exposed to social defeat showed increases in basal cortisol (ɳ 2 =0.029) and decreases in reaction to the stress task (ɳ 2 =0.030) from age 16-19, compared to their peers in the loss/illness and no stress group. The current study provides unique longitudinal data on the role of adversity in HPA-axis functioning. Evidence is provided that adversity can affect the body's neuroendocrine response to stress, dependent on the nature of both the HPA-measures and adverse events under study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function.
Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J; Corral-Frias, Nadia S; Conley, Emily Drabant; Hariri, Ahmad R; Bogdan, Ryan
2017-06-01
Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stress and the HPA Axis: Balancing Homeostasis and Fertility
Whirledge, Shannon
2017-01-01
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development. PMID:29064426
Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure
van Bodegom, Miranda; Homberg, Judith R.; Henckens, Marloes J. A. G.
2017-01-01
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar (“matching”) adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory. PMID:28469557
ERIC Educational Resources Information Center
Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal
2015-01-01
Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…
The Hypothalamic-Pituitary-Adrenal Axis and Anesthetics: A Review.
Besnier, Emmanuel; Clavier, Thomas; Compere, Vincent
2017-04-01
The hypothalamic-pituitary-adrenal (HPA) axis is essential for human adaptation to stress. However, many anesthetic agents may interfere with the activity of this axis. Although etomidate is known for its suppressive effect on HPA axis function, in vitro evidence suggests that many other drugs used in anesthesia care may also interfere with HPA activity. In this review, we discuss the mechanisms by which all HPA axis activity may be altered during anesthesia and critical care and focus on the impact of hypnotic and analgesic drugs.
Lee, Ellen E.; Nieman, Lynnette K.; Martinez, Pedro E.; Harsh, Veronica L.; Rubinow, David R.
2012-01-01
Context: During conditions of ovarian suppression, women with premenstrual dysphoria (PMD) experience abnormal behavioral responses to physiological levels of ovarian steroids. Although hypothalamic-pituitary-adrenal (HPA) axis dysregulation frequently accompanies depression, and ovarian steroids regulate HPA axis responsivity, the role of HPA axis dysregulation in PMD is not known. We hypothesized that women with PMD would show abnormalities of HPA axis function analogous to those reported in depressive illness, and that ovarian steroids would differentially regulate HPA axis function in women with PMD compared with asymptomatic controls (AC). Objective: Our objective was to characterize the HPA axis response to physiological levels of estradiol and progesterone in women with PMD and AC. Design and Setting: We conducted an open-label trial of the GnRH agonist depot Lupron with ovarian steroid replacement administered in a double-blind crossover design in an outpatient clinic. Participants: Forty-three women (18 with prospectively confirmed PMD and 25 AC) participated. Interventions: Women received Lupron for 6 months. After 3 months of hypogonadism, women received 5 wk each of estradiol (100-μg patch daily) or progesterone (suppositories 200 mg twice daily). During each condition, combined dexamethasone-suppression/CRH-stimulation tests and 24-h urinary free cortisol levels were performed. Main Outcome Measures: Plasma cortisol and ACTH levels were evaluated. Results: HPA axis function was similar in PMD compared with AC. In all, progesterone significantly increased the secretion of cortisol compared with estradiol [area under the curve (t74 = 3.1; P < 0.01)] and urinary free cortisol (t74 = 3.2; P < 0.01) and ACTH compared with hypogonadism [area under the curve (t74 = 2.4; P < 0.05)]. Conclusions: HPA axis regulation is normal in PMD, suggesting that the pathophysiology of PMD differs from major depression. As observed previously, progesterone but not estradiol up-regulates HPA axis function in women. PMID:22466349
Dieleman, Gwendolyn C; Huizink, Anja C; Tulen, Joke H M; Utens, Elisabeth M W J; Creemers, Hanneke E; van der Ende, Jan; Verhulst, Frank C
2015-01-01
It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary diagnoses of clinical anxiety disorders (AD) from each other, and from a general population reference group (GP). The study sample consisted of 152 AD children (comparing separation anxiety disorder, generalized anxiety disorder, social phobia and specific phobia), aged 8- to 12-years, and 200 same-aged reference children. HPA-axis functioning was measured by a diurnal cortisol profile. ANS functioning was measured by continuous measures of skin conductance level in rest and during a mental arithmetic task and high frequency heart rate variability in rest. PA was assessed by a questionnaire. The AD sample showed lower high frequency heart rate variability during rest, heightened anticipatory PA, higher basal and reactive skin conductance levels and lower basal HPA-axis functioning compared to the GP sample. The existence of three or more clinical disorders, i.e. a high clinical 'load', was associated with lower basal HPA-axis functioning, higher skin conductance level and lower posttest PA. Specific phobia could be discerned from social phobia and separation anxiety disorder on higher skin conductance level. Our findings indicated that children with AD have specific psychophysiological characteristics, which resemble the psychophysiological characteristics of chronic stress. A high clinical 'load' is associated with an altered ANS and HPA-axis functioning. Overall, ANS and HPA-axis functioning relate to AD in general, accept for specific phobia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review.
Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-Ya
2017-08-03
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review
Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-ya
2017-01-01
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity. PMID:28771175
Zaba, Monika; Kirmeier, Thomas; Ionescu, Irina A; Wollweber, Bastian; Buell, Dominik R; Gall-Kleebach, Dominique J; Schubert, Christine F; Novak, Bozidar; Huber, Christine; Köhler, Katharina; Holsboer, Florian; Pütz, Benno; Müller-Myhsok, Bertram; Höhne, Nina; Uhr, Manfred; Ising, Marcus; Herrmann, Leonie; Schmidt, Ulrike
2015-05-01
Analysis of the function of the hypothalamic-pituitary-adrenal (HPA)-axis in patients suffering from posttraumatic stress disorder (PTSD) has hitherto produced inconsistent findings, inter alia in the Trier Social Stress Test (TSST). To address these inconsistencies, we compared a sample of 23 female PTSD patients with either early life trauma (ELT) or adult trauma (AT) or combined ELT and AT to 18 age-matched non-traumatized female healthy controls in the TSST which was preceded by intensive baseline assessments. During the TSST, we determined a variety of clinical, psychological, endocrine and cardiovascular parameters as well as expression levels of four HPA-axis related genes. Using a previously reported definition of HPA-axis responsive versus non-responsive phenotypes, we identified for the first time two clinically and biologically distinct HPA-axis reactivity subgroups of PTSD. One subgroup ("non-responders") showed a blunted HPA-axis response and distinct clinical and biological characteristics such as a higher prevalence of trauma-related dissociative symptoms and of combined AT and ELT as well as alterations in the expression kinetics of the genes encoding for the mineralocorticoid receptor (MR) and for FK506 binding protein 51 (FKBP51). Interestingly, this non-responder subgroup largely drove the relatively diminished HPA axis response of the total cohort of PTSD patients. These findings are limited by the facts that the majority of patients was medicated, by the lack of traumatized controls and by the relatively small sample size. The here for the first time identified and characterized HPA-axis reactivity endophenotypes offer an explanation for the inconsistent reports on HPA-axis function in PTSD and, moreover, suggest that most likely other factors than HPA-axis reactivity play a decisive role in determination of PTSD core symptom severity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frodl, Thomas; O'Keane, Veronica
2013-04-01
There is evidence that excessive stress exposure of the brain, mediated through the neurotoxic effects of cortisol and possibly neuroinflammation, causes damage to brain structure and function: the glucocorticoid cascade hypothesis. Functional changes of hypothalamic-pituitary-adrenal (HPA) axis as well as alterations in brain structures like the hippocampus have been consistently reported in major depression. However, there has not been a lot of emphasis on bringing findings from studies on early childhood stress, HPA axis functioning and hippocampal imaging together. This is the subject for this systematic review of the literature on how developmental stress, specifically childhood maltreatment, may impact on HPA axis function and hippocampal structure. We will also review the literature on the relationship between HPA axis function and hippocampal volume in healthy, depressed and other disease states. There is evidence that prenatal stress and childhood maltreatment is associated with an abnormally developing HPA system, as well as hippocampal volume reduction. Smaller hippocampal volumes are associated with increased cortisol secretion during the day. We conclude that a model integrating childhood maltreatment, cortisol abnormalities and hippocampal volume may need to take other factors into account, such as temperament, genetics or the presence of depression; to provide a cohesive explanation of all the findings. Finally, we have to conclude that the cascade hypothesis, mainly based on preclinical studies, has not been translated enough into humans. While there is evidence that early life maltreatment results in structural hippocampal changes and these are in turn more prominent in subjects with higher continuous cortisol secretion it is less clear which role early life maltreatment plays in HPA axis alteration. Copyright © 2012 Elsevier Inc. All rights reserved.
Pofi, Riccardo; Feliciano, Chona; Sbardella, Emilia; Argese, Nicola; Woods, Conor P; Grossman, Ashley B; Jafar-Mohammadi, Bahram; Gleeson, Helena; Lenzi, Andrea; Isidori, Andrea M; Tomlinson, Jeremy W
2018-05-25
The 250μg Short Synacthen (corticotropin) Test (SST) is the most commonly used tool to assess hypothalamo-pituitary-adrenal (HPA) axis function. There are many potentially reversible causes of adrenal insufficiency (AI), but currently no data to guide clinicians as to the frequency of repeat testing or likelihood of HPA axis recovery. To use the SST results to predict recovery of adrenal function. A retrospective analysis of data from 1912 SSTs. 776 patients with reversible causes of AI were identified who had at least two SSTs performed. A subgroup analysis was performed on individuals previously treated with suppressive doses of glucocorticoids (n=110). Recovery of HPA axis function. SST 30-minute cortisol levels above or below 350nmol/L (12.7μg/dL) best predicted HPA axis recovery (AUC ROC=0.85; median recovery time 334 vs. 1368 days, p=8.5x10-13): 99% of patients with a 30-minute cortisol >350nmol/L recovered adrenal function within 4-years, compared with 49% in those with cortisol levels <350nmol/L. In patients exposed to suppressive doses of glucocorticoids, delta cortisol (30-minute - basal) was the best predictor of recovery (AUC ROC = 0.77; median recovery time 262 vs. 974 days, p=7.0x10-6). No patient with a delta cortisol <100nmol (3.6μg/dL) and a subsequent random cortisol <200nmol/L (7.3μg/dL) measured approximately 1-year later recovered HPA axis function. Cortisol levels across an SST can be used to predict recovery of AI and may guide the frequency of repeat testing and inform both clinicians and patients as to the likelihood of restoration of HPA axis function.
HPA axis hyperactivity and attempted suicide in young adult mood disorder inpatients.
Jokinen, Jussi; Nordström, Peter
2009-07-01
Hyperactivity of the Hypothalamic-Pituitary-Adrenal (HPA) axis is a consistent finding in Major Depressive Disorder (MDD) and most prospective studies of HPA-axis function have found that non-suppressors in the dexamethasone suppression test (DST) are more likely to commit suicide during follow-up. The results of studies on HPA-axis function and attempted suicide are less consistent. Suicide attempts are more common among young people than the elderly, whereas suicide is more common among the elderly. The impact of age related changes in HPA-axis system activity in relation to suicidal behaviour across the lifecycle may be of importance. The aim of the present study was to investigate the DST results in 36 young adult (30 years or younger) inpatients with mood disorder, with (n=18) and without suicide attempt at the index episode. The DST non-suppressor rate was 25% among young mood disorder inpatients. DST non-suppression was associated with suicide attempt and post-dexamethasone serum cortisol at 11:00 p.m. was significantly higher in suicide attempters compared to non-attempters. The DST non-suppressor rate was 39% in young adult suicide attempters compared with 11% in non-attempters. The results add to previous evidence in support of the role of HPA axis hyperactivity and suicidal behaviour. The present findings motivate to include HPA axis measures in the assessment of depression in young adults.
Oyola, Mario G; Handa, Robert J
2017-09-01
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Oyola, Mario G.; Handa, Robert J.
2018-01-01
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic–pituitary–adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism’s response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic–pituitary–gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life. PMID:28859530
Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge
2013-11-01
Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.
Bacharier, Leonard B; Raissy, Hengameh H; Wilson, Laura; McWilliams, Bennie; Strunk, Robert C; Kelly, H William
2004-06-01
To determine the safety of long-term (36 months) administration of an inhaled corticosteroid (budesonide) on hypothalamic-pituitary-adrenal (HPA) axis function in children with mild to moderate asthma. This was an ancillary study of the Childhood Asthma Management Program (CAMP). Sixty-three children who had mild to moderate asthma and were enrolled in CAMP underwent evaluation of HPA axis function before and 12 and 36 months after receiving continuous therapy with either an inhaled anti-inflammatory agent (budesonide 400 microg/day or nedocromil 16 mg/day) or placebo. HPA axis function was assessed by serum cortisol levels 30 and 60 minutes after 0.25 mg of adrenocorticotrophic hormone (ACTH) and 24-hour urinary free cortisol excretion. There were no differences in serum cortisol levels after ACTH stimulation between treatment groups, regardless of time after ACTH administration or months of follow-up. Urinary cortisol excretion per body surface area was similar in both treatment groups at 36 months, after adjusting for age at randomization, race, gender, and clinic. Cumulative inhaled corticosteroid exposure did not influence serum cortisol response to ACTH or urinary free cortisol excretion at 36 months. We found no effects of chronic budesonide treatment at a dose of 400 micro g/day on HPA axis function in children with mild to moderate asthma and demonstrated the absence of a cumulative effect on HPA axis function over a 3-year period.
Joseph, S P; Ho, J T; Doogue, M P; Burt, M G
2012-10-01
There is limited consensus regarding optimal glucocorticoid administration for pituitary surgery to prevent a potential adrenal crisis. To assess the investigation and management of the hypothalamic-pituitary-adrenal (HPA) axis in patients undergoing trans-sphenoidal hypophysectomy in Australasia. A questionnaire was sent to one endocrinologist at each of 18 centres performing pituitary surgery in Australasia. Using hypothetical case vignettes, respondents were asked to describe their investigation and management of the HPA axis for a patient with a: non-functioning macroadenoma and intact HPA axis, non-functioning macroadenoma and HPA deficiency and growth hormone secreting microadenoma undergoing trans-sphenoidal hypophysectomy. Responses were received from all 18 centres. Seventeen centres assess the HPA axis preoperatively by measuring early morning cortisol or a short synacthen test. Preoperative evaluation of the HPA status influenced glucocorticoid prescription by 10 centres, including 2/18 who would not prescribe perioperative glucocorticoids for a patient with a macroadenoma and an intact HPA axis. Tumour size influenced glucocorticoid prescribing patterns at 7/18 centres who prescribe a lower dose or no glucocorticoids for a patient with a microadenoma. Choice of investigations for definitive postoperative assessment of the HPA axis varied with eight centres requesting an insulin tolerance test, four centres a 250 µg short synacthen test and six centres requesting other tests. There is wide variability in the investigation and management of perioperative glucocorticoid requirements for patients undergoing pituitary surgery in Australasia. This may reflect limited evidence to define optimal management and that further well-designed studies are needed. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.
Essex, Marilyn J.; Shirtcliff, Elizabeth A.; Burk, Linnea R.; Ruttle, Paula L.; Klein, Marjorie H.; Slattery, Marcia J.; Kalin, Ned H.; Armstrong, Jeffrey M.
2012-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children’s HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (trait-like and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A 3-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its co-variation with mental health symptoms. ELS influenced trait-like cortisol level and slope, with both hyper- and hypo-arousal evident depending on type of ELS. Further, type(s) of ELS influenced co-variation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence. PMID:22018080
Essex, Marilyn J; Shirtcliff, Elizabeth A; Burk, Linnea R; Ruttle, Paula L; Klein, Marjorie H; Slattery, Marcia J; Kalin, Ned H; Armstrong, Jeffrey M
2011-11-01
The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children's HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (traitlike and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A three-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its covariation with mental health symptoms. ELS influenced traitlike cortisol level and slope, with both hyper- and hypoarousal evident depending on type of ELS. Further, type(s) of ELS influenced covariation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence.
Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V
2012-01-24
Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.
Sorgdrager, F J H; Doornbos, B; Penninx, B W J H; de Jonge, P; Kema, I P
2017-11-01
Persistent changes in serotonergic and hypothalamic pituitary adrenal (HPA) axis functioning are implicated in recurrent types of major depressive disorder (MDD). Systemic tryptophan levels, which influence the rate of serotonin synthesis, are regulated by glucocorticoids produced along the HPA axis. We investigated tryptophan metabolism and its association with HPA axis functioning in single episode MDD, recurrent MDD and non-depressed individuals. We included depressed individuals (n = 1320) and controls (n = 406) from the Netherlands Study of Depression and Anxiety (NESDA). The kynurenine to tryptophan ratio (kyn/trp ratio) was established using serum kynurenine and tryptophan levels. Several HPA axis parameters were calculated using salivary cortisol samples. We adjusted the regression analyses for a wide range of potential confounders and differentiated between single episode MDD, recurrent MDD and control. Tryptophan, kynurenine and the kyn/trp ratio did not differ between controls and depressed individuals. Increased evening cortisol levels were associated with a decreased kyn/trp ratio in the total sample (Crude: β = -.102, p < .001; Adjusted: β = -.083, p < .001). This association was found to be restricted to recurrently depressed individuals (Crude: β = -.196, p < .001; Adjusted: β = -.145, p = .001). Antidepressant treatment did not affect this association. Our results suggest that an imbalance between HPA axis function and tryptophan metabolism could be involved in recurrent depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanke, Marit A C; Fokkema, Dirk S; Doornbos, Bennard; Postema, Folkert; Korf, Jakob
2008-07-18
Depression is often preceded by stressful life events and accompanied with elevated cortisol levels and glucocorticoid resistance. It has been suggested that a major depressive disorder may result from impaired coping with and adaptation to stress. The question is whether or not hypothalamus-pituitary-adrenal (HPA)-axis dysfunction influences the process of adaptation. We examined the effect of a dysregulated HPA-axis on the adaptation to acoustic stimuli in rats with or without preceding restraint stress. HPA-axis function was altered via slow release of corticosterone (CORT, 90 mg) from subcutaneously implanted pellets for 7 or 14 days. The rate of body temperature increases during restraint (10 min) and the response to acoustic stimuli (of 80+120 dB) were used to quantify daily stress reactivity. Rats habituated to either stress regardless of CORT treatment. CORT treatment combined with restraint decreased the initial reactivity and the variability in response, but the rate of habituation was not influenced. These results show that suppressing normal HPA-axis function by chronic exposure to CORT does affect the course of habituation, but not habituation per se. This implies that altered HPA-axis function in depressed patients may not be causally related to stress coping, but instead may influence the course of the disorder.
Oskis, Andrea; Loveday, Catherine; Hucklebridge, Frank; Wood, David; Clow, Angela
2012-01-01
In the neurodevelopment of adolescent anorexia nervosa (AN), dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is proposed to be a central component. Furthermore, a therapeutic milieu focusing on affect regulation can contribute much to treatment, given the emotional processing difficulties associated with this disorder. Studies of HPA axis function following such specialist treatments for adolescent AN, however, are rare. This study describes the diurnal pattern of HPA axis activation, including the cortisol awakening response (CAR), in a 16-year-old female diagnosed with AN both during illness and at clinical recovery following milieu therapy with a focus on affect regulation. Specialised single-case study statistics were used to assess whether the patient's data were significantly different from the healthy "norm" at illness and recovery. During illness, her measure of affective problems was outside of the normal range and cortisol and DHEA secretory profiles were significantly elevated across the diurnal period. However, at recovery both her affective state and HPA axis function became comparable to healthy controls. This case study suggests that salivary markers of HPA axis function can be feasibly incorporated into the clinical regime within a specialist adolescent AN residential service and could be used by clinicians to monitor prognosis and interventions.
The role of BDNF and HPA axis in the neurobiology of burnout syndrome.
Onen Sertoz, Ozen; Tolga Binbay, Ibrahim; Koylu, Ersin; Noyan, Aysin; Yildirim, Emre; Elbi Mete, Hayriye
2008-08-01
Chronic stress is known to affect the HPA axis. The few clinical studies which have been conducted on HPA-axis function in burnout have produced inconsistent results. The etiological relationship between sBDNF and burnout has not yet been studied. The aim of the current study was to investigate the role of BDNF and HPA axis in the neurobiology of burnout. In the current study 37 clinically diagnosed burnout participants were compared with 35 healthy controls in terms of BDNF, HPA axis, burnout symptoms, depression, anxiety and psychosomatic complaints. Basal serum cortisol, sBDNF and cortisol level after 1 mg DST was sampled. We found no significant differences in terms of HPA-axis function (for basal serum cortisol, p=0.592; for cortisol level after 1 mg DST, p=0.921), but we did find lowered sBDNF levels in burnout group (88.66+/-18.15 pg/ml) as compared to healthy controls (102.18+/-20.92 pg/ml) and the difference was statistically significant (p=0.005). Logistic Regression Analysis revealed that emotional exhaustion (p=0.05), depersonalization (p=0.005) and depression (p=0.025) were significantly associated with burnout. sBDNF levels correlated negatively with emotional exhaustion (r=-,268, p=0.026), depersonalization (r=-,333, p=0.005) and correlated positively with competence (r=0.293, p=0.015) sub-scales of burnout inventory. However, there were no significant relationships between cortisol levels and sBDNF levels (r=0.80, p=0.51), depression, anxiety, psychosomatic complaints and burnout inventory. Our results suggest that low BDNF might contribute to the neurobiology of burnout syndrome and it seems to be associated with burnout symptoms including altered mood and cognitive functions.
Urinary cortisol and psychopathology in obese binge eating subjects.
Lavagnino, Luca; Amianto, Federico; Parasiliti Caprino, Mirko; Maccario, Mauro; Arvat, Emanuela; Ghigo, Ezio; Abbate Daga, Giovanni; Fassino, Secondo
2014-12-01
Investigations on the relationship between obesity, binge eating and the function of hypothalamic-pituitary-adrenal (HPA) axis have led to inconsistent results. General psychopathology affects HPA axis function. The present study aims to examine correlations between binge eating, general psychopathology and HPA axis function in obese binge eaters. Twenty-four hour urinary free cortisol (UFC/24 h) was measured in 71 obese binge eating women. The patients were administered psychometric tests investigating binge eating, psychopathology and clinical variables. The relationship between binge eating, psychopathology and urinary cortisol was investigated, controlling for age and BMI. We found an inverse correlation between UFC/24 h and binge eating, depression, obsessive-compusive symptoms, somatization and sensitivity. In a regression model a significant inverse correlation between urinary cortisol and psychopathology was confirmed. Urinary cortisol levels in obese patients with binge eating disorder show an inverse correlation with several dimensions of psychopathology which are considered to be typical of a cluster of psychiatric disorders characterized by low HPA axis function, and are very common in obese binge eating patients. If these results are confirmed, UFC/24 h might be considered a biomarker of psychopathology in obese binge eaters. Copyright © 2014 Elsevier Ltd. All rights reserved.
While it is known that adrenal steroids impact reproduction and a variety of other physiological and behavioral functions, disruption of the HPA-axis is not typically considered in toxicological studies. Here we characterize changes in basal corticosterone (CORT) and progesterone...
Change in parent-child conflict and the HPA-axis: Where should we be looking and for how long?
Kuhlman, Kate R.; Repetti, Rena L.; Reynolds, Bridget M.; Robles, Theodore F.
2017-01-01
Objective Salivary cortisol is increasingly used as a longitudinal indicator of change in neuroendocrine regulation and as a predictor of health outcomes in youth. The purpose of this study was to describe which indices of HPA-axis functioning are sensitive to changes in parent-child conflict over a three week period and to explore the time course under which these changes can be measured. Methods Youth (n = 47; ages 8–13) completed daily diaries of their conflict with parents for 56 days. On days 17–18 and 38–39, youth contributed saliva samples upon waking, 30-minutes post-waking, afternoon, and bedtime. We assessed change in average diurnal HPA-axis functioning between day 17–18 and day 38–39 as a function of the slopes of change in parent-child conflict over 3 weeks. Results Increasing parent-child conflict was positively associated with concurrent increases in total cortisol output (AUCg), flattening of the diurnal slope, and increases in cortisol at bedtime, but not with change in the cortisol awakening response (CAR). Further, associations between parent-child conflict and both AUCg and bedtime cortisol were observed with at least 14 days of daily diary reporting, whereas any additional ratings of conflict beyond 3 days of daily diaries did not improve model fit for changes in diurnal slope. Conclusions This study demonstrates the within-subject up-regulation of the HPA-axis across three weeks in a healthy sample of youth exposed to natural increases in family conflict. In particular, cortisol at bedtime may be the HPA-axis index that is most sensitive to change over time in parent-child conflict, above and beyond conflict occurring that day. Further, when testing associations between family stressors and diurnal cortisol, the optimal schedule for assessing parent-child conflict varies for different indices of HPA-axis functioning. PMID:26963373
Tak, Lineke M; Bakker, Stephan J L; Rosmalen, Judith G M
2009-07-01
In persons with functional somatic symptoms (FSS), no conventionally defined organic pathology is apparent. It has been suggested that complex interactions of psychological, physiological, and social factors are involved in the etiology of FSS. One of the physiological mechanisms that may contribute to FSS is the function of the hypothalamic-pituitary-adrenal (HPA)-axis. This study investigates the association of HPA-axis function with cross-sectional presence and prospective development of FSS in the general population. This study was performed in a population-based cohort of 741 male and female adults (mean age 53.1, S.D. 10.9). Participants completed the somatization section of the Composite International Diagnostic Interview (CIDI) in which the presence of 43 FSS is surveyed. In addition to the total number of FSS, bodily system FSS clusters with musculoskeletal, gastrointestinal, cardiorespiratory, and general symptoms were constructed. HPA-axis function was assessed by measuring 24-h urinary free cortisol (24-h UFC) excretion. Follow-up measurements were performed approximately 2 years later. All analyses were adjusted for age, gender, body mass index, smoking, alcohol use, depression, exercise frequency, and urinary volume. Regression analysis detected no cross-sectional association between 24-h UFC excretion and the number of FSS (beta=-0.021, t=-0.521, p=0.603). In addition, 24-h UFC excretion was not associated with any of the bodily system FSS clusters (all p>0.050). Furthermore, 24-h UFC excretion did not predict new-onset FSS in the 2-year follow-up period (beta=0.021, t=0.566, p=0.572). We conclude that this study does not provide evidence for an association between altered HPA-axis function, as indexed by 24-h UFC, and FSS in the general population. We conclude that this study does not provide evidence for an association between altered HPA-axis function, as indexed by 24-h UFC, and FSS in the general population.
Lin, Shih-Hsien; Chen, Wei Tseng; Chen, Kao Chin; Lee, Sheng-Yu; Lee, I Hui; Chen, Po See; Yeh, Tzung Lieh; Lu, Ru-Band; Yang, Yen Kuang
2013-01-01
The efficacy of methadone maintenance therapy for heroin dependence is compromised by the low retention rate. Hypothalamus-pituitary-adrenal (HPA) axis function, which is associated with stress response, and novelty seeking (NS), a personality trait associated with low dopaminergic activity, may play roles in retention. We conducted a prospective study in which HPA axis function and NS were assessed by the dexamethasone suppression test and the Tridimensional Personality Questionnaire at baseline, respectively. The retention rate was assessed at the half- and 1-year points of methadone maintenance therapy. A low suppression rate of dexamethasone suppression test (D%) was associated with a high level of NS. A low D% was associated with half-year dropout, whereas a high level of NS was associated with 1-year dropout. Survival analysis confirmed that D% and NS were significant time-dependent covariates for retention. The findings showed that HPA axis function and NA were associated with retention at different time points.
Haddad, John J; Saadé, Nayef E; Safieh-Garabedian, Bared
2002-12-01
Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.
Esmaeili, Mohammad Hossein; Bahari, Behnam; Salari, Ali-Akbar
2018-03-01
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(K ATP ) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of K ATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, K ATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of K ATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that K ATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Langelaan, Saar; Bakker, Arnold B; Schaufeli, Wilmar B; van Rhenen, Willem; van Doornen, Lorenz J P
2006-10-01
The central aim of the present study was to examine differences in the functioning of the hypothalamic-pituitary-adrenal (HPA) axis between 29 burned-out, 33 work-engaged, and 26 healthy reference managers, as identified with the Maslach Burnout Inventory-General Survey and the Utrecht Work Engagement Scale. All of the managers were employed in a large Dutch telecommunications company. Salivary cortisol was sampled on three consecutive workdays and one nonworkday to determine the cortisol awakening response. Salivary dehydroepiandrosterone-sulfate (DHEAS), a cortisol counterbalancing product of the HPA axis, was measured on these days 1 hour after managers awakened. The dexamethasone suppression test was used to investigate the feedback sensitivity of the HPA axis. The morning cortisol levels were higher on the workdays than on the nonworkday, but this effect did not differ between the three groups. The burned-out, work-engaged, and reference groups did not differ in the cortisol and DHEAS levels, the slope of the cortisol awakening response, and the cortisol : DHEAS ratio. The work-engaged group showed a stronger cortisol suppression in response to the dexamethasone suppression test than the other two groups, the finding suggesting higher feedback sensitivity among work-engaged managers. Burned-out and work-engaged managers only differ marginally in HPA-axis functioning.
van Dalfsen, Jens H; Markus, C Rob
2018-06-01
Inadequate sleep is highly prevalent and known to decline both physical- and mental health. Literature suggests that altered functioning of the hypothalamic-pituitary-adrenal (HPA) axis might underlie this association. This assumption is mainly based on changes in basal neuroendocrine activity and it is of equal importance to elucidate whether sleep may also influence HPA stress responsiveness. The present review provides a complete outline of recent human studies that have investigated how different aspects of sleep influence cortisol reactivity to laboratory stress. From the available data it can be concluded that both objective and subjective decrements in sleep quality potentiate the stress reactivity of the HPA axis. On the contrary, normal variations in sleep duration do not seem to influence cortisol stress responsiveness whereas excessive daytime sleepiness is associated with a blunting of the cortisol response. Given its well-established health consequences, sensitization of the HPA axis might well be a crucial component linking inadequate sleep to stress-related pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johnson, Elizabeth O; Calogero, Aldo E; Konstandi, Maria; Kamilaris, Themis C; La Vignera, Sandro; Vignera, Sandro La; Chrousos, George P
2013-06-01
Hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally responsible for the hypercorticosteronism remains unclear. The purpose of this study was to assess the effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis, to identify the locus in the HPA axis that is principally affected, and address the time-dependent effects of alterations in thyroid status. The functional integrity of each component of the HPA axis was examined in vitro and in situ in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given pharmacological dose (50 μg) of thyroxin for 7 or 60 days. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days. Basal plasma ACTH levels were similar to controls. Both hypothalamic CRH content and the magnitude of KCL- and arginine vasopressin (AVP)-induced CRH release from hypothalamic culture were increased in long-term hyperthyroid rats. There was a significant increase in the content of both ACTH and β-endorphin in the anterior pituitaries of both short- and long-term hyperthyroid animals. Short-term hyperthyroid rats showed a significant increase in basal POMC mRNA expression in the anterior pituitary, and chronically hyperthyroid animals showed increased stress-induced POMC mRNA expression. Adrenal cultures taken from short-term hyperthyroid rats responded to exogenous ACTH with an exaggerated corticosterone response, while those taken from 60-day hyperthyroid animals showed responses similar to controls. The findings show that hyperthyroidism is associated with hypercorticosteronemia and HPA axis dysfunction that becomes more pronounced as the duration of hyperthyroidism increases. The evidence suggests that experimentally induced hyperthyroidism is associated with central hyperactivity of the HPA axis.
Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M
2013-01-01
Evidence for a detrimental impact of chronic work stress on health has accumulated in epidemiological research. Recent studies indicate altered hypothalamus-pituitary-adrenal (HPA) axis regulation as a possible biological pathway underlying the link between stress and disease. However, the direction of dysregulation remains unclear, with reported HPA hyper- or hyporeactivity. To disentangle potential effects on different functional levels in the HPA axis, we examined responses using two pharmacological stimulation tests in 53 healthy teachers (31 females, 22 males; mean age: 49.3 years; age range: 30-64 years): a low-dose adrenocorticotrophic hormone (ACTH(1-24), Synacthen) test was used to assess adrenal cortex sensitivity and the combined dexamethasone-corticotropin releasing hormone (DEX-CRH) test to examine pituitary and adrenal cortex reactivity. Blood and saliva samples were collected at - 1,+15,+30,+45,+60,+90,+120 min. Emotional exhaustion (EE), the core dimension of burnout, was measured with the Maslach Burnout Inventory. Overcommitment (OC) was assessed according to Siegrist's effort-reward-imbalance model. We found a significant association between EE and higher plasma cortisol profiles after Synacthen (p = 0.045). By contrast, OC was significantly associated with attenuated ACTH (p = 0.045), plasma cortisol (p = 0.005), and salivary cortisol (p = 0.023) concentrations following DEX-CRH. Results support the notion of altered HPA axis regulation in chronically work-stressed teachers, with differential patterns of hyper- and hyporeactivity depending on individual stress condition and the tested functional level of the HPA axis.
Social strain and cortisol regulation in midlife in the US.
Friedman, Esther M; Karlamangla, Arun S; Almeida, David M; Seeman, Teresa E
2012-02-01
Chronic stress has been implicated in a variety of adverse health outcomes, from compromised immunity to cardiovascular disease to cognitive decline. The hypothalamic pituitary adrenal (HPA) axis has been postulated to play the primary biological role in translating chronic stress into ill health. Stressful stimuli activate the HPA-axis and cause an increase in circulating levels of cortisol. Frequent and long-lasting activation of the HPA-axis, as occurs in recurrently stressful environments, can in the long run compromise HPA-axis functioning and ultimately affect health. Negative social interactions with family and friends may be a significant source of stress in daily life, constituting the type of recurrently stressful environment that could lead to compromised HPA functioning and altered diurnal cortisol rhythms. We use data from two waves (1995 and 2004-2005) of the Midlife in the U.S. (MIDUS) study and from the National Study of Daily Experiences (NSDE) and piecewise growth curve models to investigate relationships between histories of social strain and patterns of diurnal cortisol rhythms. We find that reported levels of social strain were significantly associated with their diurnal cortisol rhythm. These effects were more pronounced for individuals with a history of greater reported strain across a ten-year period. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stamper, Christopher E; Hassell, James E; Kapitz, Adam J; Renner, Kenneth J; Orchinik, Miles; Lowry, Christopher A
2017-03-01
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to the release of corticosteroid hormones into the circulation, is an adaptive response to perceived threats. Persistent activation of the HPA axis can lead to impaired physiological or behavioral function with maladaptive consequences. Thus, efficient control and termination of stress responses is essential for well-being. However, inhibitory control mechanisms governing the HPA axis are poorly understood. Previous studies suggest that serotonergic systems, acting within the medial hypothalamus, play an important role in inhibitory control of stress-induced HPA axis activity. To test this hypothesis, we surgically implanted chronic jugular cannulae in adult male rats and conducted bilateral microinjection of vehicle or the 5-HT 1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT; 8 nmol, 0.2 μL, 0.1 μL/min, per side) into the dorsomedial hypothalamus (DMH) immediately prior to a 40 min period of restraint stress. Repeated blood sampling was conducted using an automated blood sampling system and plasma corticosterone concentrations were determined using enzyme-linked immunosorbent assay. Bilateral intra-DMH microinjections of 8-OH-DPAT suppressed stress-induced increases in plasma corticosterone within 10 min of the onset of handling prior to restraint and, as measured by area-under-the-curve analysis of plasma corticosterone concentrations, during the 40 min period of restraint. These data support an inhibitory role for serotonergic systems, acting within the DMH, on stress-induced activation of the HPA axis. Lay summary: Inhibitory control of the hypothalamic-pituitary-adrenal (HPA) stress hormone response is important for well-being. One neurochemical implicated in inhibitory control of the HPA axis is serotonin. In this study we show that activation of serotonin receptors, specifically inhibitory 5-HT 1A receptors in the dorsomedial hypothalamus, is sufficient to inhibit stress-induced HPA axis activity in rats.
Daily family stress and HPA axis functioning during adolescence: The moderating role of sleep
Chiang, Jessica J.; Tsai, Kim M.; Park, Heejung; Bower, Julienne E.; Almeida, David M.; Dahl, Ronald E.; Irwin, Michael R.; Seeman, Teresa E.; Fuligni, Andrew J.
2017-01-01
The present study examined the moderating role of sleep in the association between family demands and conflict and hypothalamic-pituitary-adrenal (HPA) axis functioning in a sample of ethnically diverse adolescents (n = 316). Adolescents completed daily diary reports of family demands and conflict for 15 days, and wore actigraph watches during the first 8 nights to assess sleep. Participants also provided five saliva samples for 3 consecutive days to assess diurnal cortisol rhythms. Regression analyses indicated that sleep latency and efficiency moderated the link between family demands and the cortisol awakening response. Specifically, family demands were related to a smaller cortisol awakening response only among adolescents with longer sleep latency and lower sleep efficiency. These results suggest that certain aspects of HPA axis functioning may be sensitive to family demands primarily in the context of longer sleep latency and lower sleep efficiency. PMID:27235639
Ruttle, Paula L.; Shirtcliff, Elizabeth A.; Essex, Marilyn J.; Susman, Elizabeth J.
2014-01-01
Substantial research has implicated the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes independently in adolescent mental health problems, though this literature remains largely inconclusive. Given the cross-talk between the HPA and HPG axes and their increased activation in adolescence, a dual-axis approach that examines both axes simultaneously is proposed to predict the emergence and persistence of adolescent mental health problems. After briefly orienting readers to HPA and HPG axis functioning, we review the literature examining associations between hormone levels and changes with behavior during adolescence. Then, we provide a review of the literature supporting examination of both axes simultaneously and present the limited research that has taken a dual-axis approach. We propose future directions including consideration of between-person and within-person approaches to address questions of correlated changes in HPA and HPG hormones. Potential moderators are considered to increase understanding of the nuanced hormone–behavior associations during key developmental transitions. PMID:24729154
ERIC Educational Resources Information Center
Miller, Gregory E.; Chen, Edith; Zhou, Eric S.
2007-01-01
The notion that chronic stress fosters disease by activating the hypothalamic-pituitary adrenocortical (HPA) axis is featured prominently in many theories. The research linking chronic stress and HPA function is contradictory, however, with some studies reporting increased activation, and others reporting the opposite. This meta-analysis showed…
Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B
2016-08-01
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Sartori, S.B.; Whittle, N.; Hetzenauer, A.; Singewald, N.
2012-01-01
Preclinical and some clinical studies suggest a relationship between perturbation in magnesium (Mg2+) homeostasis and pathological anxiety, although the underlying mechanisms remain largely unknown. Since there is evidence that Mg2+ modulates the hypothalamic-pituitary adrenal (HPA) axis, we tested whether enhanced anxiety-like behaviour can be reliably elicited by dietary Mg2+ deficiency and whether Mg2+ deficiency is associated with altered HPA axis function. Compared with controls, Mg2+ deficient mice did indeed display enhanced anxiety-related behaviour in a battery of established anxiety tests. The enhanced anxiety-related behaviour of Mg2+ deficient mice was sensitive to chronic desipramine treatment in the hyponeophagia test and to acute diazepam treatment in the open arm exposure test. Mg2+ deficiency caused an increase in the transcription of the corticotropin releasing hormone in the paraventricular hypothalamic nucleus (PVN), and elevated ACTH plasma levels, pointing to an enhanced set-point of the HPA axis. Chronic treatment with desipramine reversed the identified abnormalities of the stress axis. Functional mapping of neuronal activity using c-Fos revealed hyper-excitability in the PVN of anxious Mg2+ deficient mice and its normalisation through diazepam treatment. Overall, the present findings demonstrate the robustness and validity of the Mg2+ deficiency model as a mouse model of enhanced anxiety, showing sensitivity to treatment with anxiolytics and antidepressants. It is further suggested that dysregulations in the HPA axis may contribute to the hyper-emotionality in response to dietary induced hypomagnesaemia. This article is part of a Special Issue entitled ‘Anxiety and Depression’. PMID:21835188
Bitsika, Vicki; Sharpley, Christopher F; Sweeney, John A; McFarlane, James R
2014-03-29
Anxiety and Autistic Disorder (AD) are both neurological conditions and both disorders share some features that make it difficult to precisely allocate specific symptoms to each disorder. HPA and SAM axis activities have been conclusively associated with anxiety, and may provide a method of validating anxiety rating scale assessments given by parents and their children with AD about those children. Data from HPA axis (salivary cortisol) and SAM axis (salivary alpha amylase) responses were collected from a sample of 32 high-functioning boys (M age=11yr) with an Autistic Disorder (AD) and were compared with the boys' and their mothers' ratings of the boys' anxiety. There was a significant difference between the self-ratings given by the boys and ratings given about them by their mothers. Further, only the boys' self-ratings of their anxiety significantly predicted the HPA axis responses and neither were significantly related to SAM axis responses. Some boys showed cortisol responses which were similar to that previously reported in children who had suffered chronic and severe anxiety arising from stressful social interactions. As well as suggesting that some boys with an AD can provide valid self-assessments of their anxiety, these data also point to the presence of very high levels of chronic HPA-axis arousal and consequent chronic anxiety in these boys. Copyright © 2014 Elsevier Inc. All rights reserved.
Stress reactivity in childhood functional abdominal pain or irritable bowel syndrome.
Gulewitsch, M D; Weimer, K; Enck, P; Schwille-Kiuntke, J; Hautzinger, M; Schlarb, A A
2017-01-01
Frequent abdominal pain (AP) in childhood has been shown to be associated with elevated experience of stress and with deficits in stress coping, but psychophysiological stress reactivity has been studied rarely. We examined whether children with frequent AP show altered reactions of the parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis during and following an afternoon laboratory social stress task in comparison to healthy children and children with anxiety disorders. Twenty-four children with frequent AP (18 with functional AP and six with irritable bowel syndrome; M = 9.9 years), and 24 healthy controls underwent stressful free speech and arithmetic tasks. Twelve children with anxiety disorders served as second comparison sample. Groups were compared regarding parasympathetic reaction and saliva cortisol concentration. We found no differences in parasympathetic withdrawal between the groups. Concerning the HPA axis, we detected an attenuated cortisol reactivity in children with AP compared to both other groups. This study provides preliminary evidence that childhood AP is not associated with altered parasympathetic withdrawal during stress. It seems to be related to a down-regulated reactivity of the HPA axis. This pattern was ascertained in comparison to healthy children and also in comparison to children with anxiety disorders. Childhood abdominal pain could be related to down-regulated HPA axis reactivity to stress but not to altered parasympathetic reaction. Children with abdominal pain and children with anxiety disorders exhibit a divergent stress-related HPA axis reaction. © 2016 European Pain Federation - EFIC®.
HPA axis programming by maternal undernutrition in the male rat offspring.
Vieau, Didier; Sebaai, Naima; Léonhardt, Marion; Dutriez-Casteloot, Isabelle; Molendi-Coste, Olivier; Laborie, Christine; Breton, Christophe; Deloof, Sylvie; Lesage, Jean
2007-08-01
Epidemiological and experimental studies have demonstrated that perinatal alterations such as maternal undernutrition are frequently associated with the onset of several chronic adult diseases. Although the physiological mechanisms involved in this "fetal programming" remain largely unknown, it has been shown that early exposure to undernutrition programs hypothalamic-pituitary-adrenal (HPA) axis throughout lifespan. However, the wide spectrum of experimental paradigms used (species, sex, age of the animals, and duration and severity of undernutrition exposure) has given rise to variable results that are difficult to interpret. To circumvent this problem, we used the same experimental protocol of maternal food restriction to study the effects of a severe maternal undernutrition on the HPA axis activity in the male rat offspring throughout the life, namely from fetal stage to adulthood. Mothers exposed to food restriction received 50% (FR50) of the daily intake of pregnant dams during the last week of gestation and lactation. In FR50 fetuses, HPA axis function was reduced and associated with a decreased placental 11beta-HSD2 activity and a greater transplacental transfer of glucocorticoids. At weaning, maternal food restriction reduced HPA axis activity in response to an ether inhalation stress. In young adults (4-month-old), only fine HPA axis alterations were observed, whereas in older ones (8-month-old), maternal undernutrition was associated with chronic hyperactivity of this neuroendocrine axis. Interestingly, excessive glucocorticoids production is observed in a growing number of pathologies such as metabolic, cognitive, immune and inflammatory diseases, suggesting that they could, at least in part, result from fetal undernutrition and thus have a neurodevelopmental origin.
McIlwrick, Silja; Pohl, Tobias; Chen, Alon; Touma, Chadi
2017-01-01
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS. PMID:28261058
Richards, Jessica; Stipelman, Brooke A.; Bornovalova, Marina A.; Daughters, Stacey; Sinha, Rajita; Lejuez, C.W.
2011-01-01
Theories of addiction implicate stress as a crucial mechanism underlying initiation, maintenance, and relapse to cigarette smoking. Examinations of the biological stress systems, including functioning of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS), have provided additional insights into the relationship between stress and smoking. To date, convergent data suggests that chronic cigarette smoking is associated with alterations in HPA and ANS functioning; however, less is known about the role of HPA and ANS functioning in smoking initiation and relapse following cessation. In order to organize existing findings and stimulate future research, the current paper summarizes the available literature on the roles of HPA axis and ANS functioning in the relationship between stress and cigarette smoking, highlights limitations within the existing literature, and suggests directions for future research to address unanswered questions in the extant literature on the biological mechanisms underlying the relationship between stress and smoking. PMID:21741435
Giesbrecht, Gerald F; Ejaredar, Maede; Liu, Jiaying; Thomas, Jenna; Letourneau, Nicole; Campbell, Tavis; Martin, Jonathan W; Dewey, Deborah
2017-05-19
Animal models show that prenatal bisphenol A (BPA) exposure leads to sexually dimorphic disruption of the neuroendocrine system in offspring, including the hypothalamic-pituitary-adrenal (HPA) neuroendocrine system, but human data are lacking. In humans, prenatal BPA exposure is associated with sex-specific behavioural problems in children, and HPA axis dysregulation may be a biological mechanism. The objective of the current study was to examine sex differences in associations between prenatal maternal urinary BPA concentration and HPA axis function in 3 month old infants. Mother-infant pairs (n = 132) were part of the Alberta Pregnancy Outcomes and Nutrition study, a longitudinal birth cohort recruited (2010-2012) during pregnancy. Maternal spot urine samples collected during the 2nd trimester were analyzed for total BPA and creatinine. Infant saliva samples collected prior to and after a blood draw were analyzed for cortisol. Linear growth curve models were used to characterize changes in infant cortisol as a function of prenatal BPA exposure. Higher maternal BPA was associated with increases in baseline cortisol among females (β = 0.13 log μg/dL; 95% CI: 0.01, 0.26), but decreases among males (β = -0.22 log μg/dL; 95% CI: -0.39, -0.05). In contrast, higher BPA was associated with increased reactivity in males (β = .30 log μg/dL; 95% CI: 0.04, 0.56) but decreased reactivity in females (β = -0.15 log μg/dL; 95% CI: -0.35, 0.05). Models adjusting for creatinine yielded similar results. Prenatal BPA exposure is associated with sex-specific changes in infant HPA axis function. The biological plausibility of these findings is supported by their consistency with evidence in rodent models. Furthermore, these data support the hypotheses that sexually dimorphic changes in children's behaviour following prenatal BPA exposure are mediated by sexually dimorphic changes in HPA axis function.
Modeling the hypothalamus-pituitary-adrenal axis: A review and extension.
Hosseinichimeh, Niyousha; Rahmandad, Hazhir; Wittenborn, Andrea K
2015-10-01
Multiple models of the hypothalamus-pituitary-adrenal (HPA) axis have been developed to characterize the oscillations seen in the hormone concentrations and to examine HPA axis dysfunction. We reviewed the existing models, then replicated and compared five of them by finding their correspondence to a dataset consisting of ACTH and cortisol concentrations of 17 healthy individuals. We found that existing models use different feedback mechanisms, vary in the level of details and complexities, and offer inconsistent conclusions. None of the models fit the validation dataset well. Therefore, we re-calibrated the best performing model using partial calibration and extended the model by adding individual fixed effects and an exogenous circadian function. Our estimated parameters reduced the mean absolute percent error significantly and offer a validated reference model that can be used in diverse applications. Our analysis suggests that the circadian and ultradian cycles are not created endogenously by the HPA axis feedbacks, which is consistent with the recent literature on the circadian clock and HPA axis. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stanojević, A.; Marković, V. M.; Čupić, Ž.; Vukojević, V.; Kolar-Anić, L.
2017-12-01
A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.
Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans.
Gifford, Robert M; Reynolds, Rebecca M
2017-11-01
Increasing evidence supports fetal glucocorticoid exposure with associated altered offspring hypothalamic-pituitary-adrenal (HPA) axis activity as a key mechanism linking early life events with later life disease. Alterations in HPA axis activity are linked to a range of cardiometabolic and psychiatric diseases. As many of these diseases manifest sex differences in presentation we review the evidence for programmed sex-differences in the HPA axis. Available literature suggests vulnerability of the female HPA axis to prenatal stressors with female offspring demonstrating increased HPA axis reactivity. This may be due to changes in placental glucocorticoid metabolism leading to increased fetal glucocorticoid exposure. We discuss the potential consequences of increased vulnerability of the female HPA axis for later life health and consider the underlying mechanisms. Further studies are needed to determine whether sex-differences in early-life programming of the HPA axis represent a pathway underpinning the sex-differences in common cardiometabolic and psychiatric diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; Penninx, Brenda W J H; Dekker, Joost
2014-07-09
Studies on hypothalamic-pituitary-adrenal axis (HPA-axis) function amongst patients with chronic pain show equivocal results and well-controlled cohort studies are rare in this field. The goal of our study was to examine whether HPA-axis dysfunction is associated with the presence and the severity of chronic multi-site musculoskeletal pain. Data are from the Netherlands Study of Depression and Anxiety including 1125 subjects with and without lifetime depressive and anxiety disorders. The Chronic Pain Grade questionnaire was used to determine the presence and severity of chronic multi-site musculoskeletal pain. Subjects were categorized into a chronic multi-site musculoskeletal pain group (n = 471) and a control group (n = 654). Salivary cortisol samples were collected to assess HPA-axis function (awakening level, 1-h awakening response, evening level, diurnal slope and post-dexamethasone level). In comparison with the control group, subjects with chronic multi-site musculoskeletal pain showed significantly lower cortisol level at awakening, lower evening level and a blunted diurnal slope. Lower cortisol level at awakening and a blunted diurnal slope appeared to be restricted to those without depressive and/or anxiety disorders, who also showed a lower 1-h awakening response. Our results suggest hypocortisolemia in chronic multi-site musculoskeletal pain. However, if chronic pain is accompanied by a depressive or anxiety disorder, typically related to hypercortisolemia, the association between cortisol levels and chronic multi-site musculoskeletal pain appears to be partly masked. Future studies should take psychopathology into account when examining HPA-axis function in chronic pain.
2014-01-01
Background Studies on hypothalamic-pituitary-adrenal axis (HPA-axis) function amongst patients with chronic pain show equivocal results and well-controlled cohort studies are rare in this field. The goal of our study was to examine whether HPA-axis dysfunction is associated with the presence and the severity of chronic multi-site musculoskeletal pain. Methods Data are from the Netherlands Study of Depression and Anxiety including 1125 subjects with and without lifetime depressive and anxiety disorders. The Chronic Pain Grade questionnaire was used to determine the presence and severity of chronic multi-site musculoskeletal pain. Subjects were categorized into a chronic multi-site musculoskeletal pain group (n = 471) and a control group (n = 654). Salivary cortisol samples were collected to assess HPA-axis function (awakening level, 1-h awakening response, evening level, diurnal slope and post-dexamethasone level). Results In comparison with the control group, subjects with chronic multi-site musculoskeletal pain showed significantly lower cortisol level at awakening, lower evening level and a blunted diurnal slope. Lower cortisol level at awakening and a blunted diurnal slope appeared to be restricted to those without depressive and/or anxiety disorders, who also showed a lower 1-h awakening response. Conclusions Our results suggest hypocortisolemia in chronic multi-site musculoskeletal pain. However, if chronic pain is accompanied by a depressive or anxiety disorder, typically related to hypercortisolemia, the association between cortisol levels and chronic multi-site musculoskeletal pain appears to be partly masked. Future studies should take psychopathology into account when examining HPA-axis function in chronic pain. PMID:25007969
Harris, Breanna N.; Saltzman, Wendy
2013-01-01
Previous studies indicate that reproductive condition can alter the stress response and glucocorticoid release. Although the functional significance of hypothalamic-pituitary-adrenal (HPA) axis modulation by breeding condition is not fully understood, one possible explanation is the behavior hypothesis, which states that an animal’s need to express parental behavior may be driving modulation of the HPA axis. This possibility is consistent with findings of blunted activity and reactivity of the HPA axis in lactating female mammals; however, effects of reproductive status on HPA function have not been well characterized in male mammals that express parental behavior. Therefore, we tested this hypothesis in the monogamous and biparental California mouse. Several aspects of HPA activity were compared in males from three reproductive conditions: virgin males (housed with another male), non-breeding males (housed with a tubally ligated female), and first-time fathers (housed with a female and their first litter of pups). In light of the behavior hypothesis we predicted that new fathers would differ from virgin and non-breeding males in several aspects of HPA function and corticosterone (CORT) output: decreased amplitude of the diurnal rhythm in CORT, a blunted CORT increase following predator-odor stress, increased sensitivity to glucocorticoid negative feedback, and/or a blunted CORT response to pharmacological stimulation. In addition, we predicted that first-time fathers would be more resistant to CORT-induced suppression of testosterone secretion, as testosterone is important for paternal behavior in this species. We found that virgin males, non-breeding males and first-time fathers did not display any CORT differences in diurnal rhythm, response to a predator-odor stressor, or response to pharmacological suppression or stimulation. Additionally, there were no differences in circulating testosterone concentrations. Adrenal mass was, however, significantly lower in new fathers than in virgin or non-breeding males. These results suggest that the behavior hypothesis does not explain HPA function across reproductive conditions in male California mice. PMID:23474132
ERIC Educational Resources Information Center
Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.
2016-01-01
Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…
Poverty and Awakening Cortisol in Adolescence: The Importance of Timing in Early Life
McFarland, Michael J.; Hayward, Mark D.
2015-01-01
The deleterious effects of poverty on mental and physical health are routinely argued to operate, at least in part, via dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, although empirical examinations connecting poverty with HPA axis functioning are rare. Research on the effects of timing of poverty is a particularly neglected aspect of this relationship. This study uses 15 years of prospective data from the Study of Early Child Care and Youth Development to assess how exposure to poverty during infancy, childhood, and adolescence is related to awakening cortisol (n = 826), a marker of HPA axis functioning. Among female participants, poverty exposure in infancy and adolescence, but not childhood, was negatively associated with awakening cortisol. Poverty exposure was unrelated to cortisol among male participants. The importance of timing and gender differences are discussed along with directions for future research. PMID:26140229
Modulation of HPA axis response to social stress in schizophrenia by childhood trauma.
Lange, Claudia; Huber, Christian G; Fröhlich, Daniela; Borgwardt, Stefan; Lang, Undine E; Walter, Marc
2017-08-01
HPA axis functioning plays an important role in the etiology of schizophrenia spectrum disorders (SSD). However, only few studies have examined HPA axis responsivity to psychosocial stress in SSD, and results are heterogeneous. Furthermore, childhood trauma is known to influence psychopathology and treatment outcome in SSD, but studies on the influence of childhood trauma on stress related HPA axis activity are missing. The purpose of this study was to investigate cortisol response to a psychosocial stress challenge in SSD patients, and to examine its association with severity of childhood trauma. The present study included 25 subacutely ill patients with a current episode of a chronic SSD and 25 healthy controls. Participants underwent the modified Trier Social Stress Test, and salivary cortisol levels were assessed. The childhood trauma questionnaire was used to assess severity of adverse life events. Overall, cortisol response was blunted in the patient group compared to the control group (p<0.01). Furthermore, we identified two patient subgroups (cortisol responders (n=12) vs. non-responders (n=13) to the modified TSST) that differed in their severity of childhood trauma experience: responders had experienced more emotional abuse in their past (p<0.042). Therefore, childhood trauma might influence stress-related HPA axis activity in SSD. Our data contribute to the hypothesis that severity of childhood trauma may be of pathophysiological relevance in schizophrenia. In addition, it may be an overlooked factor contributing to inconsistent findings regarding HPA axis response to psychosocial stress in SSD. Copyright © 2017. Published by Elsevier Ltd.
Long-term effects of early parental loss due to divorce on the HPA axis.
Bloch, Miki; Peleg, Ido; Koren, Danny; Aner, Hamotal; Klein, Ehud
2007-04-01
We investigated the long-term effects of divorce and early separation from one parent on HPA axis reactivity, in young adults without psychopathology. Participants were 44 young subjects, 22 whose parents divorced before they reached age 10, and 22 controls. Psychiatric symptomatology was measured with the Brief Symptom Inventory (BSI), family perceived stress by the Dyadic Adjustment Scale (DAS), and bonding by the Parental Bonding Instrument (PBI). Assessment of HPA axis function included baseline morning cortisol and ACTH and cortisol response to a CRH stimulation test. No baseline or stimulated group differences were observed for ACTH. Cortisol levels were consistently but insignificantly lower in the divorce group throughout the CRH stimulation reaching statistical significance only at 5 min (p<0.03). Group by time effect reached a trend level (p<0.06). A correlation was found between psychiatric symptomatology and PBI scores; however, both parameters did not correlate with HPA axis activity. A significant correlation was found between DAS scores and ACTH. A regression model revealed a contributing effect for both family stress and child-parent bonding to stimulated ACTH levels. These preliminary findings suggest that even in the absence of adult psychopathology, a history of childhood separation from one parent due to divorce may lead to detectable, albeit mild, long-term alterations in HPA axis activity. Furthermore, they suggest that level of stress at home and parental bonding are important determinants of this effect. It is likely that divorce has significant and sustained effects on children's HPA axis only in the context of a traumatic separation.
Cortisol Levels and Conduct Disorder in Adolescent Mothers
ERIC Educational Resources Information Center
Pajer, Kathleen; Gardner, William
2004-01-01
This study investigates the function of the hypothalamic-pituitary-adrenal (HPA) axis in adolescent antisocial girls. This question is important because disturbance of HPA functioning has been found in populations of violent adult males and antisocial adolescent males, suggesting that it may be a marker of a physiological disorder associated with…
Harris, Breanna N; Carr, James A
2016-05-01
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of Social Isolation on Glucocorticoid Regulation in Social Mammals
Hawkley, Louise C.; Cole, Steve W.; Capitanio, John P.; Norman, Greg J.; Cacioppo, John T.
2012-01-01
The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans. PMID:22663934
Endocannabinoid Signaling, Glucocorticoid-Mediated Negative Feedback and Regulation of the HPA Axis
Hill, M. N.; Tasker, J. G.
2012-01-01
The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signalling plays in phases of HPA axis regulation, or the neural sites of action mediating this regulation, was not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Ultimately, the current level of information indicates that endocannabinoid signalling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala and hypothalamus. PMID:22214537
Effortful Control and Parenting: Associations with HPA Axis Reactivity in Early Childhood
ERIC Educational Resources Information Center
Kryski, Katie R.; Dougherty, Lea R.; Dyson, Margaret W.; Olino, Thomas M.; Laptook, Rebecca S.; Klein, Daniel N.; Hayden, Elizabeth P.
2013-01-01
While activation of the hypothalamic-pituitary-adrenal (HPA) axis is an adaptive response to stress, excessive HPA axis reactivity may be an important marker of childhood vulnerability to psychopathology. Parenting, including parent affect during parent-child interactions, may play an important role in shaping the developing HPA system; however,…
Macut, Djuro; Božić Antić, Ivana; Nestorov, Jelena; Topalović, Vladanka; Bjekić Macut, Jelica; Panidis, Dimitrios; Kastratović Kotlica, Biljana; Papadakis, Efstathios; Matić, Gordana; Vojnović Milutinović, Danijela
2015-01-01
Most women with PCOS have increased adrenal androgen production, enhanced peripheral metabolism of cortisol and elevation in urinary excretion of its metabolites. Increased cortisol clearance in PCOS is followed by a compensatory overdrive of the hypothalamic-pituitary-adrenocortical (HPA) axis. We hypothesized that oral contraceptives containing ethinylestradiol and drospirenone (EE-DRSP) could modulate glucocorticoid receptor (GR) expression and function and thus affect HPA axis activity in PCOS patients. We analyzed 12 women with PCOS (age 24.17±4.88 years; body mass index 22.05±3.97 kg/m²) treated for 12 months with EE-DRSP and 20 BMI matched controls. In all subjects testosterone, dehydroepiandrosterone sulfate (DHEAS), sex hormone binding globulin (SHBG), cortisol (basal and after dexamethasone), concentrations of GR protein, phospo-GR211 protein, number of GR per cell (B(max) and its equilibrium dissociation constant (K(D)) were measured. Before treatment, increased concentrations of testosterone and DHEAS (p<0.001, respectively), unaltered basal cortisol and an increased sensitivity (p<0.05) of the HPA axis to dexamethasone were observed in PCOS women in comparison to controls. After treatment, testosterone (p<0.01), DHEAS (p<0.05) and cortisol suppression after dexamethasone (p<0.01) were decreased in PCOS women. There were no changes in GR protein concentration, GR phosphorylation nor in the receptor functional parameters B(max) and K(D) in women with PCOS before and after the therapy, and in comparison to controls. Prolonged treatment with EE-DRSP in PCOS women decreased serum androgens and increased cortisol in the presence of decreased sensitivity of the HPA axis and did not exert changes in GR expression and function.
Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge
2013-01-01
Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30 min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in-situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids. PMID:23305762
Haj-Mirzaian, A; Amiri, S; Kordjazy, N; Momeny, M; Razmi, A; Rahimi-Balaei, M; Amini-Khoei, H; Haj-Mirzaian, A; Marzban, H; Mehr, S E; Ghaffari, S H; Dehpour, A R
2016-02-19
The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. Results showed that experiencing 4-weeks of juvenile SIS provoked depressive and anxiety-like behaviors that were associated with hyper responsiveness of HPA axis, upregulation of interleukin-1β, and nitric oxide (NO) overproduction in the pre-frontal cortex and hippocampus. Administration of lithium (10 mg/kg) significantly attenuated the depressant and anxiogenic effects of SIS in behavioral tests. Lithium also restored the negative effects of SIS on cortical and hippocampal interleukin-1β and NO as well as HPA axis deregulation. Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques
Kohn, Jordan N.; Snyder-Mackler, Noah; Barreiro, Luis B.; Johnson, Zachary P.; Tung, Jenny; Wilson, Mark E.
2017-01-01
Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed ‘social approachability’ and ‘boldness,’ which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. PMID:27639059
Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques.
Kohn, Jordan N; Snyder-Mackler, Noah; Barreiro, Luis B; Johnson, Zachary P; Tung, Jenny; Wilson, Mark E
2016-12-01
Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed 'social approachability' and 'boldness,' which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Michailidou, Z.; Carter, R. N.; Marshall, E.; Sutherland, H. G.; Brownstein, D. G.; Owen, E.; Cockett, K.; Kelly, V.; Ramage, L.; Al-Dujaili, E. A. S.; Ross, M.; Maraki, I.; Newton, K.; Holmes, M. C.; Seckl, J. R.; Morton, N. M.; Kenyon, C. J.; Chapman, K. E.
2008-01-01
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GRβgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.—Michailidou, Z., Carter, R. N., Marshall, E., Sutherland, H. G., Brownstein, D. G., Owen, E., Cockett, K., Kelly, V., Ramage, L., Al-Dujaili, E. A. S., Ross, M., Maraki, I., Newton, K., Holmes, M. C., Seckl, J. R., Morton, N. M., Kenyon, C. J., Chapman, K. E. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. PMID:18697839
Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C
2010-11-10
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.
Allen, Camryn D; Grigoleit, Jan-Sebastian; Hong, Joonho; Bae, Sejin; Vaughan, Joan; Lee, Soon
2016-12-17
The hypothalamic-pituitary-adrenal (HPA) axis undergoes critical developments during adolescence. Therefore, stressors experienced during this period potentially have long-term effects on adult HPA axis function. We hypothesized that adolescent intermittent ethanol (AIE) exposure would affect adult HPA axis function, resulting in altered responses to an alcohol challenge in young adults or adults. To test these hypotheses, male rats were exposed to alcohol vapor for 6h per day from post-natal day (PND) 28-42, then acutely challenged with alcohol intragastrically (3.2-4.5g/kg) in young adults (PND 70) or adults (PND 90). Overall, we observed blunted HPA axis responses to an alcohol challenge due to AIE exposure. Specifically, AIE tended to inhibit the alcohol challenge-induced increase in plasma corticosterone (CORT) concentrations in young adult and adult rats. As well, AIE significantly blunted the alcohol challenge-induced arginine vasopressin (Avp) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus of adult rats. Results of the present study are similar to what we have previously shown, that these changes in PVN responsiveness may result from AIE-induced alterations in adrenergic neurons in brain stem regions C1-C3 known to project to the PVN. AIE elevated the number of colocalized c-fos/phenylethanolamine N-methyltransferase (PNMT)-positive cell bodies in the C1 region of adult rats. Together, these data suggest that AIE exposure produces alterations in male HPA axis responsiveness to administration of an acute alcohol challenge that may be long-lasting. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Gastón, M S; Cid, M P; Salvatierra, N A
2017-03-01
Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S
2013-01-01
Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.
Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.
2013-01-01
Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes. PMID:24265604
Peer, Miki; Soares, Claudio N; Levitan, Robert D; Streiner, David L; Steiner, Meir
2013-10-01
Immigrant women living in Canada present with higher rates of prenatal depressive symptomatology than Canadian-born women; however, the associated psychosocial correlates remain understudied. Antenatal depression and stress negatively affect maternal health and infant development, in part through changes in maternal hypothalamic-pituitary-adrenal (HPA) axis activity. We aimed to examine the factors associated with prenatal depressive symptoms, including altered HPA axis function, in an ethnically diverse community sample of Canadian immigrant women. Seventy-eight pregnant immigrant women were recruited from the community at 19 weeks' gestation and provided information on health, mood, stressful life events (SLEs), and social support. Fifty-seven of these women also provided saliva samples for measurement of the cortisol awakening response and nighttime cortisol levels. Seventeen per cent of the sample had a high level of prenatal depressive symptoms, and these women reported more perceived stress, more somatic symptoms, lower social support, and were less often working or attending school during pregnancy. Controlling for wake time, parity, and region of origin, high levels of prenatal depressive symptoms were associated with elevated nighttime cortisol levels, whereas SLEs were not associated with any measures of HPA axis activity. High levels of prenatal depressive symptoms are common in immigrant women living in Canada, and are associated with identifiable factors. Preliminary evidence suggests a similar pattern of HPA axis activity characterizing depressive symptomatology in this subpopulation as previously seen in clinically depressed patients.
Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats
Robertson, Donald; Rodger, Jennifer; Martin-Iverson, Mathew T.
2016-01-01
The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease. PMID:27936175
Esmaeili-Mahani, Saeed; Fathi, Yadollah; Motamedi, Fereshteh; Hosseinpanah, Farhad; Ahmadiani, Abolhassan
2008-02-01
Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.
Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A
2016-09-01
Substantial evidence suggests that youth who experience early adversity exhibit alterations in hypothalamic pituitary adrenal (HPA) axis functioning, thereby increasing risk for negative health outcomes. However, few studies have explored whether early adversity alters enduring trait indicators of HPA axis activity. Using objective contextual stress interviews with adolescents and their mothers to assess early adversity, we examined the cumulative impact of nine types of early adversity on early adolescents girls' latent trait cortisol (LTC). Adolescents (n = 122; M age = 12.39 years) provided salivary cortisol samples three times a day (waking, 30 min post-waking, and bedtime) over 3 days. Latent state-trait modeling indicated that the waking and 30 min post-waking samples contributed to a LTC factor. Moreover, greater early adversity was associated with a lower LTC level. Implications of LTC for future research examining the impact of early adversity on HPA axis functioning are discussed. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:700-713, 2016. © 2016 Wiley Periodicals, Inc.
Giesbrecht, Gerald F; Liu, Jiaying; Ejaredar, Maede; Dewey, Deborah; Letourneau, Nicole; Campbell, Tavis; Martin, Jonathan W
2016-11-01
Bisphenol A (BPA) is associated with dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity in rodents, but evidence in humans is lacking. To determine whether BPA exposure during pregnancy is associated with dysregulation of the HPA-axis, we examined the association between urinary BPA concentrations and diurnal salivary cortisol in pregnant women. Secondary analyses investigated whether the association between BPA and cortisol was dependent on fetal sex. Diurnal salivary cortisol and urinary BPA were collected during pregnancy from 174 women in a longitudinal cohort study, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Associations between BPA and daytime cortisol and the cortisol awakening response (CAR) were estimated using mixed models after adjusting for covariates. Higher concentrations of total BPA uncorrected for urinary creatinine were associated with dysregulation of the daytime cortisol pattern, including reduced cortisol at waking, β=-.055, 95% CI (-.100, -.010) and a flatter daytime pattern, β=.014, 95% CI (.006, .022) and β=-.0007 95% CI (-.001, -.0002) for the linear and quadratic slopes, respectively. Effect sizes in creatinine corrected BPA models were slightly smaller. None of the interactions between fetal sex and BPA were significant (all 95% CI's include zero). These findings provide the first human evidence suggesting that BPA exposure is associated with dysregulation of HPA-axis function during pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L
2015-11-01
Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.
Jahng, Jeong Won; Lee, Jong-Ho
2015-12-05
Intraperitoneal injections (ip) of lithium chloride at large doses induce c-Fos expression in the brain regions implicated in conditioned taste aversion (CTA) learning, and also activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the plasma corticosterone levels in rats. A pharmacologic treatment blunting the lithium-induced c-Fos expression in the brain regions, but not the HPA axis activation, induced CTA formation. Synthetic glucocorticoids at conditioning, but not glucocorticoid antagonist, attenuated the lithium-induced CTA acquisition. The CTA acquisition by ip lithium was not affected by adrenalectomy regardless of basal corticosterone supplement, but the extinction was delayed in the absence of basal corticosterone. Glucocorticoids overloading delayed the extinction memory formation of lithium-induced CTA. ip lithium consistently induced the brain c-Fos expression, the HPA activation and CTA formation regardless of the circadian activation of the HPA axis. Intracerebroventricular (icv) injections of lithium at day time also increased the brain c-Fos expression, activated the HPA axis and induced CTA acquisition. However, icv lithium at night, when the HPA axis shows its circadian activation, did not induce CTA acquisition nor activate the HPA axis, although it increased the brain c-Fos expression. These results suggest that the circadian activation of the HPA axis may affect central, but not peripheral, effect of lithium in CTA learning in rats, and the HPA axis activation may be necessary for the central effect of lithium in CTA formation. Also, glucocorticoids may be required for a better extinction; however, increased glucocorticoids hinder both the acquisition and the extinction of lithium-induced CTA. Copyright © 2015. Published by Elsevier B.V.
Johnson, Elizabeth O; Kamilaris, Themis C; Calogero, Aldo E; Gold, Philip W; Chrousos, George P
2005-07-01
Previous studies on the effects of altered thyroid function on the secretion and metabolism of adrenocortical hormones suggest a degree of adrenocortical hyperactivity in hyperthyroidism. We have previously shown that experimentally-induced hyperthyroidism is associated with significant alterations in pituitary-adrenal responsiveness to synthetic ovine corticotropin-releasing hormone (oCRH) that are contingent upon the duration of the altered thyroid function. The purpose of this study was to assess the time-dependent effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis by in vivo stimulation of the hypothalamic CRH neuron and adrenal cortex. The functional integrity of the HPA axis was examined in vivo in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given 50 mug of thyroxine every day for 7 or 60 days. Responses to insulin-induced hypoglycemia and IL-1alpha stimulation were used to assess the hypothalamic CRH neuron. Adrenocortical reserve was assessed in response to low-dose adrenocorticotropic hormone (ACTH), following suppression of the HPA axis with dexamethasone. Adrenal and thymus tissue weight, in addition to basal plasma ACTH, corticosterone and thyroid indices were also determined. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days, cerebrospinal fluid (CSF) corticosterone levels were significantly increased. Basal plasma ACTH levels were similar to controls. Although plasma ACTH responses to hypoglycemic stress and IL-1alpha administration in both short- and long-term hyperthyroidism were normal, corticosterone responses to the ACTH release during the administration of these stimuli were significantly increased. The adrenal reserve was significantly elevated in short-term hyperthyroidsim. Long-term hyperthyroidism, however, was associated with a significant reduction in adrenocortical reserve. A significant increase in adrenal weights and a decrease in thymus weights were observed in both short- and long-term hyperthyroidism. The available data confirms that hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally affected still remains unclear. Despite the sustained hyperactivity of the HPA axis, long-term experimentally-induced hyperthyroidism is associated with diminished adrenal functional reserve. The alterations in HPA function in states of disturbed thyroid function were found to be somewhat more pronounced as the duration of thyroid dysfunction increased.
Gelfo, Francesca; De Bartolo, Paola; Tirassa, Paola; Croce, Nicoletta; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco
2011-06-01
Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.
Jarcho, Michael R.; Slavich, George M.; Tylova-Stein, Hana; Wolkowitz, Owen M.; Burke, Heather M.
2013-01-01
Dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis is believed to play a role in the pathophysiology of depression. To investigate mechanisms that may underlie this effect, we examined several indices of HPA axis function – specifically, diurnal cortisol slope, cortisol awakening response, and suppression of cortisol release following dexamethasone administration – in 26 pre-menopausal depressed women and 23 never depressed women who were matched for age and body mass index. Salivary cortisol samples were collected at waking, 30 min after waking, and at bedtime over three consecutive days. On the third day, immediately after the bedtime sample, participants ingested a 0.5 mg dexamethasone tablet; they then collected cortisol samples at waking and 30 min after waking the following morning. As predicted, depressed women exhibited flatter diurnal cortisol rhythms and more impaired suppression of cortisol following dexamethasone administration than non-depressed women over the three sampling days. In addition, flatter diurnal cortisol slopes were associated with reduced cortisol response to dexamethasone treatment, both for all women and for depressed women when considered separately. Finally, greater self-reported depression severity was associated with flatter diurnal cortisol slopes and with less dexamethasone-related cortisol suppression for depressed women. Depression in women thus appears to be characterized by altered HPA axis functioning, as indexed by flatter diurnal cortisol slopes and an associated impaired sensitivity of cortisol to dexamethasone. Given that altered HPA axis functioning has been implicated in several somatic conditions, the present findings may be relevant for understanding the pathophysiology of both depression and depression-related physical disease. PMID:23410758
Tenk, Judit; Mátrai, Péter; Hegyi, Péter; Rostás, Ildikó; Garami, András; Szabó, Imre; Solymár, Margit; Pétervári, Erika; Czimmer, József; Márta, Katalin; Mikó, Alexandra; Füredi, Nóra; Párniczky, Andrea; Zsiborás, Csaba; Balaskó, Márta
2016-01-01
Obesity is one of the major public health challenges worldwide. It involves numerous endocrine disorders as etiological factors or as complications. Previous studies strongly suggested the involvement of the hypothalamic-pituitary-adrenal (HPA) axis activity in obesity, however, to date, no consistent trend in obesity-associated alterations of the HPA axis has been identified. Aging has been demonstrated to aggravate obesity and to induce abnormalities of the HPA axis. Thus, the question arises whether obesity is correlated with peripheral indicators of HPA function in adult populations. We aimed to meta-analyze literature data on peripheral cortisol levels as indicators of HPA activity in obesity during aging, in order to identify possible explanations for previous contradictory findings and to suggest new approaches for future clinical studies. 3,596 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 26 articles were suitable for analyses. Empirical research papers were eligible provided that they reported data of healthy adult individuals, included body mass index (BMI) and measured at least one relevant peripheral cortisol parameter (i.e., either morning blood cortisol or 24-h urinary free cortisol). We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. Meta-regression was applied to explore the effect of BMI and age on morning blood and urinary free cortisol levels. To assess publication bias Egger's test was used. Obesity did not show any correlation with the studied peripheral cortisol values. On the other hand, peripheral cortisol levels declined with aging within the obese, but not in the non-obese groups. Our analysis demonstrated that obesity or healthy aging does not lead to enhanced HPA axis activity, peripheral cortisol levels rather decline with aging.
Tenk, Judit; Mátrai, Péter; Hegyi, Péter; Rostás, Ildikó; Garami, András; Szabó, Imre; Solymár, Margit; Pétervári, Erika; Czimmer, József; Márta, Katalin; Mikó, Alexandra; Füredi, Nóra; Párniczky, Andrea; Zsiborás, Csaba; Balaskó, Márta
2016-01-01
Background Obesity is one of the major public health challenges worldwide. It involves numerous endocrine disorders as etiological factors or as complications. Previous studies strongly suggested the involvement of the hypothalamic-pituitary-adrenal (HPA) axis activity in obesity, however, to date, no consistent trend in obesity-associated alterations of the HPA axis has been identified. Aging has been demonstrated to aggravate obesity and to induce abnormalities of the HPA axis. Thus, the question arises whether obesity is correlated with peripheral indicators of HPA function in adult populations. Objectives We aimed to meta-analyze literature data on peripheral cortisol levels as indicators of HPA activity in obesity during aging, in order to identify possible explanations for previous contradictory findings and to suggest new approaches for future clinical studies. Data Sources 3,596 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 26 articles were suitable for analyses. Study Eligibility Criteria Empirical research papers were eligible provided that they reported data of healthy adult individuals, included body mass index (BMI) and measured at least one relevant peripheral cortisol parameter (i.e., either morning blood cortisol or 24-h urinary free cortisol). Statistical Methods We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. Meta-regression was applied to explore the effect of BMI and age on morning blood and urinary free cortisol levels. To assess publication bias Egger’s test was used. Results Obesity did not show any correlation with the studied peripheral cortisol values. On the other hand, peripheral cortisol levels declined with aging within the obese, but not in the non-obese groups. Conclusions Our analysis demonstrated that obesity or healthy aging does not lead to enhanced HPA axis activity, peripheral cortisol levels rather decline with aging. PMID:27870910
Morris, Gerwyn; Anderson, George; Maes, Michael
2017-11-01
There is evidence that immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways play a role in the pathophysiology of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). There is also evidence that these neuroimmune diseases are accompanied by hypothalamic-pituitary-adrenal (HPA) axis hypoactivity as indicated by lowered baseline glucocorticoid levels. This paper aims to review the bidirectional communications between immune-inflammatory and O&NS pathways and HPA axis hypoactivity in ME/CFS, considering two possibilities: (a) Activation of immune-inflammatory pathways is secondary to HPA axis hypofunction via attenuated negative feedback mechanisms, or (b) chronic activated immune-inflammatory and O&NS pathways play a causative role in HPA axis hypoactivity. Electronic databases, i.e., PUBMED, Scopus, and Google Scholar, were used as sources for this narrative review by using keywords CFS, ME, cortisol, ACTH, CRH, HPA axis, glucocorticoid receptor, cytokines, immune, immunity, inflammation, and O&NS. Findings show that activation of immune-inflammatory and O&NS pathways in ME/CFS are probably not secondary to HPA axis hypoactivity and that activation of these pathways may underpin HPA axis hypofunction in ME/CFS. Mechanistic explanations comprise increased levels of tumor necrosis factor-α, T regulatory responses with elevated levels of interleukin-10 and transforming growth factor-β, elevated levels of nitric oxide, and viral/bacterial-mediated mechanisms. HPA axis hypoactivity in ME/CFS is most likely a consequence and not a cause of a wide variety of activated immune-inflammatory and O&NS pathways in that illness.
The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors?
Armario, Antonio
2006-10-01
The hypothalamic-pituitary-adrenal (HPA) axis is an extremely sensitive physiological system whose activation, with the consequent release of ACTH and glucocorticoids, is triggered by a wide range of psychological experiences and physiological perturbations (stressors). The HPA axis is also activated by a high number of pharmacological agents that markedly differ in structure and function, although the precise mechanisms remain in most cases unknown. Activation of the HPA axis is the consequence of the convergence of stimulatory inputs from different brain regions into the paraventricular nucleus of the hypothalamus (PVN), where the most important ACTH secretagogues (corticotrophin releasing factor, CRF, and arginin-vasopressin, AVP) are formed. Plasma levels of ACTH and corticosterone (the latter under more restricted conditions), are considered as good markers of stress for three main reasons: (a) their plasma levels are proportional to the intensity of emotional and systemic stressors, (b) daily repeated exposure to a stressor usually resulted in reduced ACTH response to the same stressor, that is termed adaptation or habituation; and (c) chronic exposure to stressful situations results in tonic changes in the HPA axis that can be used as indices of the accumulative impact of these situations. These changes can be evaluated under resting conditions (i.e. adrenal weight, CRF and AVP gene expression in the PVN) or after some challenges (administration of CRF, ACTH or dexamethasone) that are classical endocrinological tests. There is also evidence that the activation of the HPA axis may also reflect subtle changes in the characteristics of the stressful situations (unpredictability, lack of control, omission of expected rewards, presence of conspecifics), although this is a topic that requires further studies.
Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones.
Fernández-Guasti, A; Fiedler, J L; Herrera, L; Handa, R J
2012-07-01
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design. © Georg Thieme Verlag KG Stuttgart · New York.
Yang, Xiaoju; Ewald, Erin R.; Huo, Yuqing; Tamashiro, Kellie L.; Salvatori, Roberto; Sawa, Akira; Wand, Gary S.; Lee, Richard S.
2012-01-01
Glucocorticoids may play a significant role in the etiology of neuropsychiatric illnesses. Abnormalities in plasma cortisol levels, glucocorticoid sensitivity, and HPA-axis function often accompany clinical symptoms of stress-related illnesses such as PTSD and depression. Of particular interest are genetic association studies that link single nucleotide polymorphisms of HPA-axis genes with illnesses only in the context of an early-life trauma exposure such as child abuse. These studies suggest that dysregulation of HPA-axis function can have lasting repercussions in shaping mood and anxiety, long after termination of the traumatic experience. As persistent glucocorticoid-induced loss of DNA methylation in Fkbp5 was previously observed in the hippocampus and blood and in the neuronal cell line HT-22, we asked whether these epigenetic alterations occur in non-neuronal, HPA-axis relevant cells. We used the pituitary adenoma cell line AtT-20 to demonstrate that the intronic enhancer region of Fkbp5 undergoes loss of DNA methylation in response to dexamethasone treatment in a dose-dependent manner. We also focused on the mouse hippocampal dentate gyrus to test whether these changes would be enriched in a region implicated in the HPA-axis stress response, neurogenesis, and synaptic plasticity. We observed an increase in enrichment of DNA methylation loss in the dentate gyrus, as compared to whole hippocampal tissues that were similarly treated with glucocorticoids. We then asked whether Dnmt1, a methyltransferase enzyme involved in maintaining DNA methylation following cell division, is involved in the observed epigenetic alterations. We found a dose-dependent decrease of Dnmt1 expression in the AtT-20 cells following dexamethasone treatment, and a similar decrease in corticosterone-treated mouse hippocampus. Taken together, we provide evidence that these glucocorticoid-induced epigenetic alterations have a broader validity in non-neuronal cells and that they may involve the DNA methylation machinery. PMID:22445894
Aging and the HPA axis: Stress and resilience in older adults
Gaffey, Allison E.; Bergeman, C.S.; Clark, Lee Anna; Wirth, Michelle M.
2017-01-01
Hypothalamic-pituitary-adrenal (HPA) axis function may change over the course of aging, and altered diurnal or stress-induced secretion of the hormone cortisol could predispose older adults to negative health outcomes. We propose that psychological resilience may interact with diurnal cortisol to affect health outcomes later in life. Emotion regulation and social support are two constructs that contribute to resilience and exhibit age-specific patterns in older adults. Determining how the use of resilience resources interacts with age-related diurnal cortisol will improve our understanding of the pathways between stress, resilience, and well-being. In this review, we assess published studies evaluating diurnal cortisol in older adults to better understand differences in their HPA axis functioning. Evidence thus far suggests that diurnal cortisol may increase with age, although cross-sectional studies limit the conclusions that can be drawn. We also review extant evidence connecting age-specific signatures of emotion regulation and social support with diurnal cortisol. Conclusions are used to propose a preliminary model demonstrating how resilience resources may modulate the effects of cortisol on health in aging. PMID:27377692
Kuhlman, Kate Ryan; Chiang, Jessica J; Horn, Sarah; Bower, Julienne E
2017-09-01
Childhood adversity has been repeatedly and robustly linked to physical and mental illness across the lifespan. Yet, the biological pathways through which this occurs remain unclear. Functioning of the inflammatory arm of the immune system and the hypothalamic-pituitary-adrenal (HPA)-axis are both hypothesized pathways through which childhood adversity leads to disease. This review provides a novel developmental framework for examining the role of adversity type and timing in inflammatory and HPA-axis functioning. In particular, we identify elements of childhood adversity that are salient to the developing organism: physical threat, disrupted caregiving, and unpredictable environmental conditions. We propose that existing, well-characterized animal models may be useful in differentiating the effects of these adversity elements and review both the animal and human literature that supports these ideas. To support these hypotheses, we also provide a detailed description of the development and structure of both the HPA-axis and the inflammatory arm of the immune system, as well as recent methodological advances in their measurement. Recommendations for future basic, developmental, translational, and clinical research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Latent trait cortisol (LTC) during pregnancy: Composition, continuity, change, and concomitants.
Giesbrecht, Gerald F; Bryce, Crystal I; Letourneau, Nicole; Granger, Douglas A
2015-12-01
Individual differences in the activity of the hypothalamic pituitary adrenal (HPA) axis are often operationalized using summary measures of cortisol that are taken to represent stable individual differences. Here we extend our understanding of a novel latent variable approach to latent trait cortisol (LTC) as a measure of trait-like HPA axis function during pregnancy. Pregnant women (n=380) prospectively collected 8 diurnal saliva samples (4 samples/day, 2 days) within each trimester. Saliva was assayed for cortisol. Confirmatory factor analyses were used to fit LTC models to early morning and daytime cortisol. For individual trimester data, only the daytime LTC models had adequate fit. These daytime LTC models were strongly correlated between trimesters and stable over pregnancy. Daytime LTC was unrelated to the cortisol awakening response and the daytime slope but strongly correlated with the area under the curve from ground. The findings support the validity of LTC as a measure of cortisol during pregnancy and suggest that it is not affected by pregnancy-related changes in HPA axis function. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McCormick, Cheryl M.; Mathews, Iva Z.; Thomas, Catherine; Waters, Patti
2010-01-01
Developmental differences in hypothalamic-pituitary-adrenal (HPA) axis responsiveness to stressors and ongoing development of glucocorticoid-sensitive brain regions in adolescence suggest that similar to the neonatal period of ontogeny, adolescence may also be a sensitive period for programming effects of stressors on the central nervous system.…
Ryan, Karen K; Packard, Amy E B; Larson, Karlton R; Stout, Jayna; Fourman, Sarah M; Thompson, Abigail M K; Ludwick, Kristen; Habegger, Kirk M; Stemmer, Kerstin; Itoh, Nobuyuki; Perez-Tilve, Diego; Tschöp, Matthias H; Seeley, Randy J; Ulrich-Lai, Yvonne M
2018-01-01
In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect. Copyright © 2018 Endocrine Society.
FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity.
White, M G; Bogdan, R; Fisher, P M; Muñoz, K E; Williamson, D E; Hariri, A R
2012-10-01
Individual variation in physiological responsiveness to stress mediates risk for mental illness and is influenced by both experiential and genetic factors. Common polymorphisms in the human gene for FK506 binding protein 5 (FKBP5), which is involved in transcriptional regulation of the hypothalamic-pituitary-adrenal (HPA) axis, have been shown to interact with childhood abuse and trauma to predict stress-related psychopathology. In the current study, we examined if such gene-environment interaction effects may be related to variability in the threat-related reactivity of the amygdala, which plays a critical role in mediating physiological and behavioral adaptations to stress including modulation of the HPA axis. To this end, 139 healthy Caucasian youth completed a blood oxygen level-dependent functional magnetic resonance imaging probe of amygdala reactivity and self-report assessments of emotional neglect (EN) and other forms of maltreatment. These individuals were genotyped for 6 FKBP5 polymorphisms (rs7748266, rs1360780, rs9296158, rs3800373, rs9470080 and rs9394309) previously associated with psychopathology and/or HPA axis function. Interactions between each SNP and EN emerged such that risk alleles predicted relatively increased dorsal amygdala reactivity in the context of higher EN, even after correcting for multiple testing. Two different haplotype analyses confirmed this relationship as haplotypes with risk alleles also exhibited increased amygdala reactivity in the context of higher EN. Our results suggest that increased threat-related amygdala reactivity may represent a mechanism linking psychopathology to interactions between common genetic variants affecting HPA axis function and childhood trauma. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Wieczorek, Lindsay; Fish, Eric W; O'Leary-Moore, Shonagh K; Parnell, Scott E; Sulik, Kathleen K
2015-05-01
The range of defects that fall within fetal alcohol spectrum disorder (FASD) includes persistent behavioral problems, with anxiety and depression being two of the more commonly reported issues. Previous studies of rodent FASD models suggest that interference with hypothalamic-pituitary-adrenal (HPA) axis structure and/or function may be the basis for some of the prenatal alcohol (ethanol) exposure (PAE)-induced behavioral abnormalities. Included among the previous investigations are those illustrating that maternal alcohol treatment limited to very early stages of pregnancy (i.e., gestational day [GD]7 in mice; equivalent to the third week post-fertilization in humans) can cause structural abnormalities in areas such as the hypothalamus, pituitary gland, and other forebrain regions integral to controlling stress and behavioral responses. The current investigation was designed to further examine the sequelae of prenatal alcohol insult at this early time period, with particular attention to HPA axis-associated functional changes in adult mice. The results of this study reveal that GD7 PAE in mice causes HPA axis dysfunction, with males and females showing elevated corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, respectively, following a 15-min restraint stress exposure. Males also showed elevated CORT levels following an acute alcohol injection of 2.0 g/kg, while females displayed blunted ACTH levels. Furthermore, analysis showed that anxiety-like behavior was decreased after GD7 PAE in female mice, but was increased in male mice. Collectively, the results of this study show that early gestational alcohol exposure in mice alters long-term HPA axis activity and behavior in a sexually dimorphic manner. Copyright © 2015 Elsevier Inc. All rights reserved.
McLachlan, Kaitlyn; Rasmussen, Carmen; Oberlander, Tim F.; Loock, Christine; Pei, Jacqueline; Andrew, Gail; Reynolds, James; Weinberg, Joanne
2016-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is impacted by a multitude of pre- and postnatal factors. Developmental programming of HPA axis function by prenatal alcohol exposure (PAE) has been demonstrated in animal models and in human infants, but remains understudied in older children and adolescents. Moreover, early life adversity (ELA), which occurs at higher rates in children with PAE than in non-exposed children, may also play a role in programming the HPA or stress response system. In a cohort of children and adolescents with PAE and ELA (PAE + ELA), we evaluated HPA function through assessment of diurnal cortisol activity compared to that in typically developing controls, as well as the associations among specific ELAs, adverse outcomes, protective factors, and diurnal cortisol. Morning and evening saliva samples were taken under basal conditions from 42 children and adolescents (5–18 years) with PAE + ELA and 43 typically developing controls. High rates of ELA were shown among children with PAE, and significantly higher evening cortisol levels and a flatter diurnal slope were observed in children with PAE + ELA, compared to controls. Medication use in the PAE + ELA group was associated with lower morning cortisol levels, which were comparable to controls. Complex associations were found among diurnal cortisol patterns in the PAE + ELA group and a number of ELAs and later adverse outcomes, whereas protective factors were associated with more typical diurnal rhythms. These results complement findings from research on human infants and animal models showing dysregulated HPA function following PAE, lending weight to the suggestion that PAE and ELA may interact to sensitize the developing HPA axis. The presence of protective factors may buffer altered cortisol regulation, underscoring the importance of early assessment and interventions for children with FASD, and in particular, for the many children with FASD who also have ELA. PMID:27286932
Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress
Evanson, Nathan K.; Herman, James P.
2015-01-01
Glutamate is an important neurotransmitter in regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. PMID:25701594
Evanson, Nathan K; Herman, James P
2015-10-15
Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Takayanagi, Toshimitsu; Matsuo, Koji; Egashira, Tomoko; Mizukami, Tomoko
2015-05-01
This study investigated whether providing extremely low birthweight (ELBW) infants with a large amount of hydrocortisone had a serious suppressive effect on the later function of the hypothalamus-pituitary-adrenal (HPA) axis. We evaluated the function of the HPA axis in 58 ELBW infants receiving 9.0 ± 7.2 mg/kg of intravenous and 68.1 ± 34.1 mg/kg of oral hydrocortisone using a human corticotropin-releasing hormone stimulation test. The mean age at investigation was 12.0 ± 5.2 months. The response was judged to be normal when the maximum to minimum ratio of the plasma adrenocorticotropic hormone (ACTH) concentration was >2, the peak value of the serum cortisol concentration was >552 nmol/L, or the increment was >193 nmol/L than baseline concentration. Of the 58 infants studied, 51 (88%) displayed a normal response to both the ACTH and cortisol secretion and seven infants (12%) who were judged to be poor responders exhibited a peak cortisol value of >386 nmol/L without any episode of adrenal insufficiency. Providing ELBW infants with a daily low dose of long-term hydrocortisone therapy should not lead to a serious suppressive effect on the later function of the HPA axis, regardless of the administration method. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U
2017-08-01
Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the development of hippocampus-associated behavioral abnormalities. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Daimon, Makoto; Kamba, Aya; Murakami, Hiroshi; Takahashi, Kazuhisa; Otaka, Hideyuki; Makita, Koushi; Yanagimachi, Miyuki; Terui, Ken; Kageyama, Kazunori; Nigawara, Takeshi; Sawada, Kaori; Takahashi, Ippei; Nakaji, Shigeyuki
2016-03-01
The hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin aldosterone system (RAAS) are well known to be associated with hypertension. However, the extent of the effects is not yet well elucidated in general conditions. To separately determine the effect of the HPA axis and the RAAS on hypertension in a general population. A population-based study of 859 Japanese individuals enrolled in the 2014 Iwaki study and without hypertension or steroid treatment (age, 50.2 ± 14.7 years). Hypertension prevalence, plasma concentration of aldosterone, ACTH, cortisol, and plasma renin activity. Principal component (PC) analysis using these four hormones identified two PCs (PC1 and PC2), which represent levels of these hormones as a whole, and dominance between the HPA axis (ACTH and cortisol) and the RAAS (plasma renin activity and plasma concentration of aldosterone), respectively. Association between these PCs and hypertension was significant (PC1, high vs low, odds ratio [OR], 1.48; 95% confidence interval [CI], 1.09-2.02; and PC2, HPA axis vs RAAS dominancy, OR, 2.08; and 95% CI, 1.51-2.85). However, association between the hormone levels as a whole and hypertension became insignificant after adjustment for multiple factors including these PCs together. However, association between the HPA axis dominance and hypertension remained significant even after the adjustment (the HPA axis vs the RAAS, OR, 1.73; 95% CI, 1.20-2.48). The HPA axis dominance over the RAAS is significantly associated with hypertension in a Japanese population.
The Hypothalamic-Pituitary-Adrenal Axis and the Fetus.
Morsi, Amr; DeFranco, Donald; Witchel, Selma
2018-06-06
Glucocorticoids (GCs), cortisol in humans, influence multiple essential maturational events during gestation. In the human fetus, fetal hypothalamic-pituitary-adrenal (HPA) axis function, fetal adrenal steroidogenesis, placental 11β- hydroxysteroid dehydrogenase type 2 activity, maternal cortisol concentrations, and environmental factors impact fetal cortisol exposure. The beneficial effects of synthetic glucocorticoids (sGCs), such as dexamethasone and betamethasone, on fetal lung maturation have significantly shifted the management of preterm labor and threatened preterm birth. Accumulating evidence suggests that exposure to sGCs in utero at critical developmental stages can alter the function of organ systems and that these effects may have sequelae that extend into adult life. Maternal stress and environmental influences may also impact fetal GC exposure. This article explores the vulnerability of the fetal HPA axis to endogenous GCs and exogenous sGCs. © 2018 S. Karger AG, Basel.
Stephens, Mary Ann C.; Mahon, Pamela B.; McCaul, Mary E.; Wand, Gary S.
2016-01-01
Summary Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the TSST than do women during the follicular phase of the menstrual cycle. PMID:26773400
Ferguson, Elizabeth H; Di Florio, Arianna; Pearson, Brenda; Putnam, Karen T; Girdler, Susan; Rubinow, David R; Meltzer-Brody, Samantha
2017-06-01
It is unclear whether women with a history of postpartum depression (PPD) have residual, abnormal hypothalamic-pituitary-adrenal (HPA) axis reactivity, as has been reported in major depression (MDD). Further unclear is whether the abnormalities in HPA axis reactivity associated with MDD represent a stable, underlying predisposition or a state-dependent phenomenon. This study sought the following: (1) to determine if euthymic postpartum women with a history of depression have an abnormal HPA axis reactivity to pharmacologic and psychological challenges and (2) to compare HPA reactivity in women with histories of PPD versus MDD. As a secondary objective, we wanted to determine the influence of trauma history on HPA axis function. Forty-five parous (12-24 months postpartum), euthymic women with history of MDD (n = 15), PPD (n = 15), and controls (n = 15) completed pharmacologic (dexamethasone/corticotropin-releasing hormone (CRH) test [DEX/CRH]) and psychological (Trier social stress test [TSST]) challenges during the luteal phase. Outcome measures were cortisol and adrenocorticotropic hormone (ACTH) response after DEX/CRH, and blood pressure, heart rate, epinephrine, norepinephrine, and cortisol response during the TSST. All groups had robust cortisol and ACTH response to DEX/CRH and cortisol response to TSST. Groups did not differ significantly in cortisol or ACTH response to DEX/CRH or in blood pressure, heart rate, epinephrine, norepinephrine, or cortisol response to TSST. Cortisol/ACTH ratio did not differ significantly between groups. Trauma history was associated with decreased cortisol response to DEX/CRH in women with histories of MDD, which was not significant after correction (F 8,125 , p = 0.02, Greenhouse-Geisser corrected p = 0.11). Currently euthymic women with histories of MDD or PPD did not demonstrate residual abnormal stress responsivity following administration of either a pharmacologic or psychological stressor.
Busso, Daniel S; McLaughlin, Katie A; Sheridan, Margaret A
Dysregulation of autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis function is a putative intermediate phenotype linking childhood adversity (CA) with later psychopathology. However, associations of CAs with autonomic nervous system and HPA-axis function vary widely across studies. Here, we test a novel conceptual model discriminating between distinct forms of CA (deprivation and threat) and examine their independent associations with physiological reactivity and psychopathology. Adolescents (N = 169; mean [SD] age, 14.9 [1.4] years) with a range of interpersonal violence (e.g., maltreatment, community violence) and poverty exposure participated in the Trier Social Stress test (TSST). During the TSST, electrocardiogram, impedance cardiograph, salivary cortisol, and dehydroepiandrosterone-sulfate data were collected. We compared the associations of poverty (an indicator of deprivation) and interpersonal violence (an indicator of threat) on sympathetic, parasympathetic, and HPA-axis reactivity to the TSST, and assessed whether these differences mediated the association of adversity with internalizing and externalizing symptoms. Exposure to poverty and interpersonal violence was associated with psychopathology. Interpersonal violence, adjusting for poverty, was associated with blunted sympathetic (b = 1.44, p = .050) and HPA-axis reactivity (b = -.09; p = .021). Blunted cortisol reactivity mediated the association of interpersonal violence with externalizing, but not internalizing, psychopathology. In contrast, poverty was not associated with physiological reactivity after adjusting for interpersonal violence. We provide evidence for distinct neurobiological mechanisms through which adversity related to poverty and interpersonal violence is associated with psychopathology in adolescence. Distinguishing distinct pathways through which adversity influences mental health has implications for preventive interventions targeting youths exposed to childhood adversity.
Then Bergh, F; Kümpfel, T; Grasser, A; Rupprecht, R; Holsboer, F; Trenkwalder, C
2001-04-01
Hyperresponsiveness of the hypothalamo-pituitary-adrenal (HPA) axis in multiple sclerosis (MS), an autoimmune inflammatory disease of the central nervous system, is presumably due to diminished corticosteroid receptor function. It probably influences the immune response, but its clinical significance is not clear. Similar HPA dysregulation occurs in depression and is reversible with successful antidepressant treatment. We conducted a double blind, placebo-controlled trial to evaluate the neuroendocrine effect of cotreatment with the antidepressant moclobemide as an adjunct to oral corticosteroids in MS. Twenty-one patients with definite relapsing-remitting MS (11 females, aged 33.9 +/- 2.0 yr; Expanded Disability Status Scale score of neurological impairment, 2.0--6.5) in acute relapse were treated with placebo (n = 13) or 300 mg moclobemide (reversible monoamine oxidase A inhibitor; n = 8) for 75 days. All received oral fluocortolone from day 7 on, and the dose was tapered until day 29. Effects were evaluated using the combined dexamethasone-CRH test and clinically on days 1, 30, and 75. At baseline, the HPA axis was mildly activated, comparably for treatment groups [area under the curve for cortisol (AUC-Cort), 213.8 +/- 76.8 arbitrary units in the moclobemide group vs. 225.8 +/- 65.1 in the steroid alone group; mean +/- SEM]. In a group of healthy controls with comparable demographic characteristics, the AUC-Cort was 107.4 +/- 14.1. Moclobemide cotreatment resulted in normalization of the HPA axis response, whereas the HPA system hyperresponse was maintained with steroids alone (AUC-Cort on day 30, 85.9 +/- 22.8 vs.177.1 +/- 68.5; on day 75, 111.0 +/- 46.0 vs. 199.2 +/- 64.6). The change in Expanded Disability Status Scale was comparable for both groups. Although corticosteroids alone had no effect on the HPA response using the dexamethasone-CRH test, treatment with moclobemide combined with corticosteroids favors normalization of the HPA response in relapsing-remitting MS.
[The hypothalamic-pituitary-adrenal axis and depressive disorder: recent progress].
Kunugi, Hiroshi; Hori, Hiroaki; Numakawa, Tadahiro; Ota, Miho
2012-08-01
Depression is a stress-induced disorder and there is compelling evidence for the involvement of hypothalamic-pituitary-adrenal (HPA) axis abnormalities in the disease. Chronic hyperactivity of the HPA axis and resultant excessive glucocorticoid (hypercortisolism) may be causal to depression. We demonstrated that the dexamethasone (DEX)/CRH test is a sensitive state-dependent marker to monitor HPA axis abnormalities. Restoration from HPA axis abnormalities occurs with clinical responses to treatment. Brain-derived neurotrophic factor (BDNF) has also been implicated in depression. We found that glucocorticoid (DEX) suppresses BDNF-induced dendrite outgrowth and synaptic formation via blocking the MAPK pathway in early-developing cultured hippocampal neurons. Furthermore, we demonstrated that glucocorticoid receptor (GR) and TrkB (a specific receptor of BDNF) interact and that DEX acutely suppresses BDNF-induced glutamate release by affecting the PLC-gamma pathway in cultured cortical neurons, indicating a mechanism underlying the effect of excessive glucocorticoid on BDNF function and resultant damage in cortical neurons. In a macroscopic view using magnetic resonance imaging (MRI), we found that individuals with hypercortisolism detected by the DEX/CRH test demonstrated volume loss in gray matter and reduced neural network assessed with diffusion tensor imaging in several brain regions. Finally, we observed that individuals with hypocortisolism detected by the DEX/CRH test tend to present more distress symptoms, maladaptive coping styles, and schizotypal personality traits than their counterparts, which points to the important role of hypocortisolism as well as hypercortisolism in depression spectrum disorders.
Vargas, Ivan; Lopez-Duran, Nestor
2017-05-01
The hypothalamic-pituitary-adrenal (HPA) axis has been previously identified as one potential mechanism that may explain the link between sleep deprivation and negative health outcomes. However, few studies have examined the direct association between sleep deprivation and HPA-axis functioning, particularly in the context of stress. Therefore, the aim of the current study was to investigate the relationship between acute sleep deprivation and HPA-axis reactivity to a psychosocial stressor. Participants included 40 healthy, young adults between the ages of 18-29. The current protocol included spending two nights in the laboratory. After an adaptation night (night 1), participants were randomized into either a sleep deprivation condition (29 consecutive hours awake) or a control condition (night 2). Following the second night, all participants completed the Trier Social Stress Test (TSST). Salivary cortisol was collected before, during, and after the TSST. Results indicated that there were significant group differences in cortisol stress reactivity. Specifically, compared to participants in the control condition, participants in the sleep deprivation condition had greater baseline (i.e., pre-stress) cortisol, yet a blunted cortisol response to the TSST. Taken together, a combination of elevated baseline cortisol (and its subsequent effect on HPA-axis regulatory processes) and a relative 'ceiling' on the amount of cortisol a laboratory stressor can produce may explain why participants in the sleep deprivation condition demonstrated blunted cortisol responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise
Jankord, Ryan; McAllister, Richard M.; Ganjam, Venkataseshu K.; Laughlin, M. Harold
2009-01-01
Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NOx levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress. PMID:19144752
Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise.
Jankord, Ryan; McAllister, Richard M; Ganjam, Venkataseshu K; Laughlin, M Harold
2009-03-01
Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.
Labad, Javier; Armario, Antonio; Nadal, Roser; Solé, Montse; Gutiérrez-Zotes, Alfonso; Montalvo, Itziar; Moreno-Samaniego, Lorena; Martorell, Lourdes; Sánchez-Gistau, Vanessa; Vilella, Elisabet
2018-07-01
Hypothalamic-pituitary-adrenal (HPA) axis alterations in at-risk mental states (ARMS) resemble those observed in established psychosis but are less consistent. We aimed to explore HPA axis abnormalities in both first-episode psychosis (FEP) and ARMS patients, while controlling for psychopathological symptoms. We studied 21 ARMS, 34 FEP patients and 34 healthy subjects. Clinical assessment included psychopathological symptoms (positive, negative, disorganized, excited and depressive symptoms) and stress measures. Saliva cortisol levels were determined at awakening, 30' and 60' post-awakening, 10:00 h, 23:00 h and 10:00 h on the day after the administration of 0.25 mg of dexamethasone, which occurred at 23:00 h. Three HPA axis measures were calculated: cortisol awakening response (CAR), cortisol diurnal slope and cortisol suppression ratio of the dexamethasone suppression test (DST). There were no significant differences between groups in HPA axis measures. However, when exploring the relationship between HPA axis measures and psychopathological symptoms, in ARMS subjects (but not FEP patients), a flatter cortisol slope was associated with more prominent negative symptoms, whereas a blunted CAR was associated with excited symptoms. Although no significant differences in HPA axis measures were found between diagnostic groups, subtle abnormalities in the CAR or circadian cortisol rhythmicity might be important for the phenotype of ARMS individuals. Copyright © 2018. Published by Elsevier B.V.
Wood Heickman, Lauren K; Davallow Ghajar, Ladan; Conaway, Mark; Rogol, Alan D
2018-06-13
A meta-analysis was performed to determine the likelihood of hypothalamic-pituitary-adrenal (HPA) axis suppression following short-term cutaneous treatment of atopic dermatitis with topical corticosteroids (TCS) in pediatric patients. All published pediatric clinical trials evaluating TCS use with pre- and post-treatment HPA axis assessment by cosyntropin stimulation testing were included. Of 128 eligible trials, 12 were selected for meta-analysis with a total of 522 participants. There were 20 observed cases of HPA axis suppression (3.8%, 95% CI 2.4-5.8). The percentage of HPA axis suppression with low- (classes 6-7), medium- (classes 3-5) and high-potency (classes 1-2) TCS use was 2% (3 of 148 patients, 95% CI 0.7-5.8), 3.1% (7 of 223 patients, 95% CI 1.5-6.3), and 6.6% (10 of 151 patients, 95% CI 3.6-11.8), respectively. There is a low rate of reversible HPA axis suppression with the use of mid- to low-potency TCS compared to more potent formulations. In pediatric clinical practice, the limited use of mid- to low-potency TCS is rarely associated with clinically significant adrenal insufficiency or adrenal crisis. In the absence of signs and symptoms of adrenal insufficiency, there is little need to test the HPA axis of these patients. © 2018 S. Karger AG, Basel.
Blunted HPA axis response to stress is related to a persistent dysregulation profile in youth
Greaves-Lord, Kirstin; Althoff, Robert R.; Hudziak, James J.; Dieleman, Gwendolyn C.; Verhulst, Frank C.; van der Ende, Jan
2013-01-01
The Child Behavior Checklist Dysregulation Profile (DP) in youth has been shown to be a predictor of psychopathology later in life. We examined the activity of the Hypothalamic Pituitary Adrenal (HPA) axis in youth with remitted, new, persistent, and no DP. Data from 489 youth (47% boys) participating in a Dutch longitudinal general population study were included (Wave 1 mean age=11.5, Wave 2=14.2). Wave 2 diurnal cortisol patterns and levels in response to a laboratory stress paradigm were compared in youth with DP at Wave 1 only, Wave 2 only, both Waves, and neither Wave. Youth with the DP at Wave 2 only or at both time points showed blunted cortisol responses to stress relative to the other two groups. There were no group or sex differences in diurnal cortisol activity. More research is needed to determine how the association between DP symptoms and HPA axis functioning changes over time. PMID:23603315
Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole; Kaplan, Bonnie J
2013-04-01
Despite little evidence to suggest that HPA axis responses to psychological provocation are attenuated during pregnancy, it is widely held that dampening of the HPA axis response to psychological distress serves a protective function for the mother and fetus. The current study was designed to assess changes in biobehavioral coherence between psychological distress and cortisol over the course of pregnancy. Ambulatory assessment of ecologically relevant psychological distress and salivary cortisol were repeated in all three trimesters for 82 pregnant women. Samples were collected 5 times per day over the course of 2 days in each trimester. Psychological distress and cortisol were positively associated, β=.024, p<.01, indicating that increases in psychological distress were associated with increases in cortisol. Gestational age did not moderate this association, β=.0009, p=.13, suggesting that negative psychological experiences remain potent stimuli for the HPA axis during pregnancy. Biobehavioral coherence between ecologically relevant experiences of psychological distress and cortisol is not attenuated with advancing gestation. Copyright © 2013 Elsevier B.V. All rights reserved.
Perioperative corticosteroid management for patients with inflammatory bowel disease.
Hicks, Caitlin W; Wick, Elizabeth C; Salvatori, Roberto; Ha, Christina Y
2015-01-01
Guidelines on the appropriate use of perioperative steroids in patients with inflammatory bowel disease (IBD) are lacking. As a result, corticosteroid supplementation during and after colorectal surgery procedures has been shown to be highly variable. A clearer understanding of the indications for perioperative corticosteroid administration relative to preoperative corticosteroid dosing and duration of therapy is essential. In this review, we outline the basic tenets of the hypothalamic-pituitary-adrenal (HPA) axis and its normal response to stress, describe how corticosteroid use is thought to affect this system, and provide an overview of the currently available data on perioperative corticosteroid supplementation including the limited evidence pertaining to patients with inflammatory bowel disease. Based on currently existing data, we define "adrenal suppression," and propose a patient-based approach to perioperative corticosteroid management in the inflammatory bowel disease population based on an individual's historical use of corticosteroids, the type of surgery they are undergoing, and HPA axis testing when applicable. Patients without adrenal suppression (<5 mg prednisone per day) do not require extra corticosteroid supplementation in the perioperative period; patients with adrenal suppression (>20 mg prednisone per day) should be treated with additional perioperative corticosteroid coverage above their baseline home regimen; and patients with unclear HPA axis function (>5 and <20 mg prednisone per day) should undergo preoperative HPA axis testing to determine the best management practices. The proposed management algorithm attempts to balance the risks of adrenal insufficiency and immunosuppression.
Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda
2013-01-01
Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973
Stephens, Mary Ann C; Mahon, Pamela B; McCaul, Mary E; Wand, Gary S
2016-04-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the TSST than do women during the follicular phase of the menstrual cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Eddy, Pennie; Wertheim, Eleanor H; Hale, Matthew W; Wright, Bradley J
2018-01-01
The association between effort-reward imbalance (ERI) and various health outcomes has been well documented over the past 20 years, but the mechanisms responsible for this association remain unclear. The present meta-analysis assessed the associations of ERI and overcommitment (OC) in the workplace with hypothalamic-pituitary-adrenal (HPA) axis measures. Electronic databases were searched with the phrase "effort*reward*imbalance," which yielded 319 studies leading to 56 full-text studies being screened. Thirty-two studies within 14 articles met inclusion criteria and were meta-analyzed using mixed and random effects models. Greater ERI was associated with increased HPA axis activity (r = .09, p < .001, k = 14, N = 2541). The cortisol awakening response (r = .14, p < .001, k = 9, N = 584) and cortisol waking concentrations (r = .12, p = .01, k = 6, N = 493) were the only HPA measures associated with ERI. OC was also associated with greater HPA axis activity (r = .06, p < .01, k = 10, N = 1918). Cortisol (PM) (r = .13, p = .02, k = 3, N = 295) was the only HPA measure associated with OC. ERI and OC were similarly related with HPA responsivity. However, because OC moderated the relationship between ERI and HPA axis markers, the importance of OC should not be overlooked. Because OC is likely more malleable than ERI to intervention, this may be a promising avenue for future research.
Marzouk, H F; Zuyderwijk, J; Uitterlinden, P; van Koetsveld, P; Blijd, J J; Abou-Hashim, E M; el-Kannishy, M H; de Jong, F H; Lamberts, S W
1991-11-01
Chronic administration of corticosteroids results in a suppression of the hypothalamo-pituitary-adrenocortical (HPA) axis. The time course of the recovery of the HPA axis depends on the dose and duration of corticosteroid administration. We investigated the recovery of the HPA axis after 14 days of prednisolone administration to rats at a dose of 2.0 mg/rat/day via the drinking water (188 mumol/l). The in vitro corticosterone production by dispersed adrenal cells in response to increasing concentrations of ACTH had recovered 3 days after stopping prednisolone administration. In parallel the initially suppressed plasma corticosterone concentrations had recovered after 3 days, while the pituitary ACTH content had recovered after 5 days. We investigated the possibility to enhance the speed of the recovery of the HPA axis by the simultaneous administration of two drugs with known CRF-stimulating activity via the drinking water. Caffeine in a dose of 100 mg/kg body weight enhanced the recovery of the prednisolone-suppressed HPA axis significantly. One day after the end of prednisolone administration a significant increase in the adrenal weight, in the corticosterone production by dispersed adrenal cells, as well as in the plasma corticosterone concentrations, and in the pituitary ACTH content was observed in the caffeine-treated rats. Chlorimipramine (20 mg/kg body weight), on the other hand, did not influence the prednisolone-mediated suppression of the HPA axis.(ABSTRACT TRUNCATED AT 250 WORDS)
van Haalen, Femke M; van Dijk, Elon H C; Dekkers, Olaf M; Bizino, Maurice B; Dijkman, Greet; Biermasz, Nienke R; Boon, Camiel J F; Pereira, Alberto M
2018-01-01
Central serous chorioretinopathy (CSC), a specific form of macular degeneration, has been reported as presenting manifestation of Cushing's syndrome. Furthermore, CSC has been associated with both exogenous hypercortisolism and endogenous Cushing's syndrome. It is important to know whether CSC patients should be screened for Cushing's syndrome. Although hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in CSC has been suggested, no detailed evaluation of the HPA axis has been performed in a large cohort of CSC patients. This study aimed to investigate whether Cushing's syndrome prevalence is increased among chronic CSC (cCSC) patients and whether detailed endocrinological phenotyping indicates hyperactivity of the HPA axis. Cross-sectional study. 86 cCSC patients and 24 controls. Prevalence of Cushing's syndrome, HPA axis activity. None of the cCSC patients met the clinical or biochemical criteria of Cushing's syndrome. However, compared to controls, HPA axis activity was increased in cCSC patients, reflected by higher 24 h urinary free cortisol, and accompanying higher waist circumference and diastolic blood pressure, whereas circadian cortisol rhythm and feedback were not different. Chronic CSC patients did not report more stress or stress-related problems on questionnaires. No case of Cushing's syndrome was revealed in a large cohort of cCSC patients. Therefore, we advise against screening for Cushing's syndrome in CSC patients, unless additional clinical features are present. However, our results indicate that cCSC is associated with hyperactivity of the HPA axis, albeit not accompanied with perception of more psychosocial stress.
Busso, Daniel S.; McLaughlin, Katie A.; Sheridan, Margaret A.
2016-01-01
Objective Dysregulation of autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis function is a putative intermediate phenotype linking childhood adversity (CA) with later psychopathology. However, associations of CAs with ANS and HPA-axis function vary widely across studies. Here, we test a novel conceptual model discriminating between distinct forms of CA (deprivation and threat) and examine their independent associations with physiological reactivity and psychopathology. Methods Adolescents (N = 169; mean age = 14.9 years; S.D.=1.4) with a range of interpersonal violence (e.g., maltreatment, community violence) and poverty exposure participated in the Trier Social Stress Test (TSST). During the TSST, electrocardiogram, impedance cardiograph, salivary cortisol and dehydroepiandrosterone-sulphate (DHEA-S) data were collected. We compared the associations of poverty (an indicator of deprivation) and interpersonal violence (an indicator of threat) on sympathetic, parasympathetic, and HPA-axis reactivity to the TSST, and assessed whether these differences mediated the association of adversity with internalizing and externalizing symptoms. Results Exposure to poverty and interpersonal violence was associated with psychopathology. Interpersonal violence, adjusting for poverty, was associated with blunted sympathetic (β=1.44, p=.050) and HPA-axis reactivity (β=−.09, p=.021). Blunted cortisol reactivity mediated the association of interpersonal violence with externalizing, but not internalizing, psychopathology. In contrast, poverty was not associated with physiological reactivity after adjusting for interpersonal violence. Conclusions We provide evidence for distinct neurobiological mechanisms through which adversity related to poverty and interpersonal violence are associated with psychopathology in adolescence. Distinguishing distinct pathways through which adversity influences mental health has implications for preventive interventions targeting youths exposed to childhood adversity. PMID:27428857
Champagne, Cory; Tift, Michael; Houser, Dorian; Crocker, Daniel
2015-01-01
Stressful disturbances activate the hypothalamic–pituitary–adrenal (HPA) axis and result in the release of glucocorticoid (GC) hormones. This characteristic stress response supports immediate energetic demands and subsequent recovery from disturbance. Increased baseline GC concentrations may indicate chronic stress and can impair HPA axis function during exposure to additional stressors. Levels of GCs, however, vary seasonally and with life-history stage, potentially confounding their interpretation. Our objective was to evaluate HPA axis function across variations in baseline GC levels. Northern elephant seals show substantial baseline variation in GC levels during their annual moulting period. We therefore conducted measurements early, in the middle and at the end of moulting; we simulated an acute stressor by administering adrenocorticotrophic hormone and evaluated the changes in circulating hormones and metabolites over the following 2 h. The stress response was characterized by increases in both cortisol and aldosterone (F7,105 = 153 and 25.3, respectively; P < 0.001). These hormones increased in parallel and the slopes of their relationship varied by study group, suggesting they are regulated in a co-ordinated manner during acute stress in this species. There was no detectable difference in the total release of cortisol or aldosterone among study groups, indicating that the HPA axis remained sensitive to stimulation by adrenocorticotrophic hormone despite varying baseline levels of GCs. Acute stress influenced carbohydrate and fat metabolism in all study groups, but protein catabolism was affected to a far lesser degree. These findings suggest that elephant seals, and potentially other pinniped species, are resilient to moderate variations in baseline GC levels and remain capable of mounting a response to additional stressors. PMID:27293689
Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping
2017-11-01
Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.
Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development
Rao, Raghavendra
2015-01-01
Permanent brain injury is a complication of recurrent hypoglycemia during development. Recurrent hypoglycemia also has adverse consequences on the neuroendocrine system. Hypoglycemia-associated autonomic failure, characterized by ineffective glucose counterregulation during hypoglycemia, is well described in children and adults on insulin therapy for diabetes mellitus. Whether recurrent hypoglycemia also has a programming effect on the hypothalamus-pituitary-adrenal cortex (HPA) axis has not been well studied. Hypoglycemia is a potent stress that leads to increased glucocorticoid secretion in all age groups, including the perinatal period. Other conditions associated with exposure to excess glucocorticoid in the perinatal period have a programming effect on the HPA axis activity. Limited animal data suggest the possibility of similar programming effect after recurrent hypoglycemia in the postnatal period. The age at exposure to hypoglycemia likely determines the HPA axis response in adulthood. Recurrent hypoglycemia in the early postnatal period likely leads to a hyperresponsive HPA axis, whereas recurrent hypoglycemia in the late postnatal period lead to a hyporesponsive HPA axis in adulthood. The age-specific programming effects may determine the neuroendocrine response during hypoglycemia and other stressful events in individuals with history of recurrent hypoglycemia during development. PMID:26343738
Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development.
Rao, Raghavendra
2015-08-28
Permanent brain injury is a complication of recurrent hypoglycemia during development. Recurrent hypoglycemia also has adverse consequences on the neuroendocrine system. Hypoglycemia-associated autonomic failure, characterized by ineffective glucose counterregulation during hypoglycemia, is well described in children and adults on insulin therapy for diabetes mellitus. Whether recurrent hypoglycemia also has a programming effect on the hypothalamus-pituitary-adrenal cortex (HPA) axis has not been well studied. Hypoglycemia is a potent stress that leads to increased glucocorticoid secretion in all age groups, including the perinatal period. Other conditions associated with exposure to excess glucocorticoid in the perinatal period have a programming effect on the HPA axis activity. Limited animal data suggest the possibility of similar programming effect after recurrent hypoglycemia in the postnatal period. The age at exposure to hypoglycemia likely determines the HPA axis response in adulthood. Recurrent hypoglycemia in the early postnatal period likely leads to a hyperresponsive HPA axis, whereas recurrent hypoglycemia in the late postnatal period lead to a hyporesponsive HPA axis in adulthood. The age-specific programming effects may determine the neuroendocrine response during hypoglycemia and other stressful events in individuals with history of recurrent hypoglycemia during development.
Blunted Diurnal Cortisol Activity in Healthy Adults with Childhood Adversity.
Kuras, Yuliya I; Assaf, Naomi; Thoma, Myriam V; Gianferante, Danielle; Hanlin, Luke; Chen, Xuejie; Fiksdal, Alexander; Rohleder, Nicolas
2017-01-01
Childhood adversity, such as neglect, or physical, emotional, or sexual abuse, is prevalent in the U.S. and worldwide, and connected to an elevated incidence of disease in adulthood. A pathway in this relationship might be altered hypothalamic-pituitary-adrenal (HPA) axis functioning, as a result of differential hippocampal development in early life. A blunted diurnal cortisol slope is a precursor for many disorders. While studies have focused on HPA reactivity in relation to childhood adversity, there has been markedly less research on basal HPA functioning in those with low-to-moderate adversity. Based on previous research, we hypothesized that adults with low-to-moderate childhood adversity would have altered HPA axis functioning, as evidenced by a blunted diurnal cortisol slope and altered cortisol awakening response (CAR). Healthy adults aged 18-65 ( n = 61 adults; 31 males and 30 females) completed the Childhood Trauma Questionnaire. Participants provided at-home saliva samples on two consecutive days at wake-up, and 30 min, 1, 4, 9, and 13 h later; samples were averaged over the 2 days. We found that low-to-moderate childhood adversity predicted lower morning cortisol (β = -0.34, p = 0.007, R 2 = 0.21), as well as a blunted cortisol slope (β = 2.97, p = 0.004, R 2 = 0.22), but found no association with CAR (β = 0.19, p = 0.14, R 2 = 0.12). Overall, we found that in healthy participants, low-to-moderate adversity in childhood is associated with altered basal HPA activity in adulthood. Our findings indicate that even low levels of childhood adversity may predispose individuals to disease associated with HPA dysregulation in later life.
Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis
NASA Astrophysics Data System (ADS)
Čupić, Željko; Marković, Vladimir M.; Maćešić, Stevan; Stanojević, Ana; Damjanović, Svetozar; Vukojević, Vladana; Kolar-Anić, Ljiljana
2016-03-01
Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.
Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction
Ben-Zvi, Amos; Vernon, Suzanne D.; Broderick, Gordon
2009-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning. PMID:19165314
McBeth, J; Silman, A J; Gupta, A; Chiu, Y H; Ray, D; Morriss, R; Dickens, C; King, Y; Macfarlane, G J
2007-01-01
To test the hypothesis that abnormalities in the hypothalamic-pituitary-adrenal (HPA) stress-response system would act as an effect moderator between HPA function and the onset of chronic widespread pain (CWP). We conducted a population-based prospective cohort study. Current pain and psychosocial status were ascertained in 11,000 subjects. Of the 768 eligible subjects free of CWP but at future risk based on their psychosocial profile, 463 were randomly selected, and 267 (57.7%) consented to assessment of their HPA axis function. Diurnal function was measured by assessing levels of salivary cortisol in the morning (9:00 AM) and evening (10:00 PM). Serum cortisol levels were measured after an overnight low-dose (0.25 mg) dexamethasone suppression test and a potentially stressful clinical examination. All subjects were followed up 15 months later to identify cases of new-onset CWP. A total of 241 subjects (94.9%) completed the followup study, and 28 (11.6%) reported the new onset of CWP. High levels of cortisol post-dexamethasone (odds ratio [OR] 3.53, 95% confidence interval [95% CI] 1.17-10.65), low levels in morning saliva (OR 1.43, 95% CI 0.52-3.94), and high levels in evening saliva (OR 2.32, 95% CI 0.64-8.42) were all associated with CWP. These 3 factors were found to be independent and additive predictors of CWP (OR for all 3 factors 8.5, 95% CI 1.5-47.9) in analyses controlling for age, sex, depression, sleep disturbance, recent traumatic life events, and pain status. One or more of these 3 HPA factors identified 26 (92.9%) cases of new-onset CWP. Among a group of psychologically at-risk subjects, dysfunction of the HPA axis helps to distinguish those who will and will not develop new-onset CWP.
McLachlan, Kaitlyn; Rasmussen, Carmen; Oberlander, Tim F; Loock, Christine; Pei, Jacqueline; Andrew, Gail; Reynolds, James; Weinberg, Joanne
2016-06-01
The hypothalamic-pituitary-adrenal (HPA) axis is impacted by a multitude of pre- and postnatal factors. Developmental programming of HPA axis function by prenatal alcohol exposure (PAE) has been demonstrated in animal models and in human infants, but remains understudied in older children and adolescents. Moreover, early life adversity (ELA), which occurs at higher rates in children with PAE than in non-exposed children, may also play a role in programming the stress response system. In a cohort of children and adolescents with PAE and ELA (PAE + ELA), we evaluated HPA function through assessment of diurnal cortisol activity compared to that in typically developing controls, as well as the associations among specific ELAs, adverse outcomes, protective factors, and diurnal cortisol. Morning and evening saliva samples were taken under basal conditions from 42 children and adolescents (5-18 years) with PAE + ELA and 43 typically developing controls. High rates of ELA were shown among children with PAE, and significantly higher evening cortisol levels and a flatter diurnal slope were observed in children with PAE + ELA, compared to controls. Medication use in the PAE + ELA group was associated with lower morning cortisol levels, which were comparable to controls. Complex associations were found among diurnal cortisol patterns in the PAE + ELA group and a number of ELAs and later adverse outcomes, whereas protective factors were associated with more typical diurnal rhythms. These results complement findings from research on human infants and animal models showing dysregulated HPA function following PAE, lending weight to the suggestion that PAE and ELA may interact to sensitize the developing HPA axis. The presence of protective factors may buffer altered cortisol regulation, underscoring the importance of early assessment and interventions for children with FASD, and in particular, for the many children with FASD who also have ELA. Copyright © 2016 Elsevier Inc. All rights reserved.
Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho
2017-11-14
The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.
ERIC Educational Resources Information Center
Fisher, Philip A.; Kim, Hyoun K.; Bruce, Jacqueline; Pears, Katherine C.
2012-01-01
Dysregulated hypothalamic-pituitary-adrenocortical (HPA) axis stress response has been reported among individuals with prenatal substance exposure and those with early adversity exposure. However, few researchers have examined the combined effects of these risk factors. Patterns of HPA reactivity among maltreated foster children with and without…
Schüle, Cornelius; Zill, Peter; Baghai, Thomas C; Eser, Daniela; Zwanzger, Peter; Wenig, Nadine; Rupprecht, Rainer; Bondy, Brigitta
2006-09-01
Data suggest that both neurotrophic and hypothalamic-pituitary-adrenocortical (HPA) systems are involved in the pathophysiology of depression. The aim of the present study was to investigate whether the non-conservative brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has an impact on HPA axis activity in depressed patients. At admission, the dexamethasone/CRH (DEX/CRH) test was performed in 187 drug-free in-patients suffering from major depression or depressed state of bipolar disorder (DSM-IV criteria). Moreover, genotyping of BDNF Val66Met polymorphism was carried out using the fluorescence resonance energy transfer method (FRET). Homozygous carriers of the Met/Met genotype showed a significantly higher HPA axis activity during the DEX/CRH test than patients carrying the Val/Val or Val/Met genotype (ACTH, cortisol). Our results further contribute to the hypothesized association between HPA axis dysregulation and reduced neuroplasticity in depression and are consistent with the assumption that BDNF is a stress-responsive intercellular messenger modifying HPA axis activity.
Knutson, Nathan
2010-01-01
Prostaglandins, generated within the fetal brain, are integral components of the mechanism controlling the fetal hypothalamus-pituitary-adrenal (HPA) axis. Previous studies in this laboratory demonstrated that prostaglandin G/H synthase isozyme 2 (PGHS-2) inhibition reduces the fetal HPA axis response to cerebral hypoperfusion, blocks the preparturient rise in fetal plasma ACTH concentration, and delays parturition. We also discovered that blockade of N-methyl-d-aspartate (NMDA) receptors reduces the fetal ACTH response to cerebral hypoperfusion. The present study was designed to test the hypothesis that PGHS-2 action and the downstream effect of HPA axis stimulation are stimulated by NMDA-mediated glutamatergic neurotransmission. Chronically catheterized late-gestation fetal sheep (n = 8) were injected with NMDA (1 mg iv). All responded with increases in fetal plasma ACTH and cortisol concentrations. Pretreatment with resveratrol (100 mg iv, n = 5), a specific inhibitor of PGHS-1, did not alter the magnitude of the HPA axis response to NMDA. Pretreatment with nimesulide (10 mg iv, n = 6), a specific inhibitor of PGHS-2, significantly reduced the HPA axis response to NMDA. To further explore this interaction, we injected NMDA in six chronically catheterized fetal sheep that were chronically infused with nimesulide (n = 6) at a rate of 1 mg/day into the lateral cerebral ventricle for 5–7 days. In this group, there was no significant ACTH response to NMDA. Finally, we tested whether the HPA axis response to prostaglandin E2 (PGE2) is mediated by NMDA receptors. Seven chronically catheterized late-gestation fetal sheep were injected with 100 ng of PGE2, which significantly increased fetal plasma ACTH and cortisol concentrations. Pretreatment with ketamine (10 mg iv), an NMDA antagonist, did not alter the ACTH or cortisol response to PGE2. We conclude that generation of prostanoids via the action of PGHS-2 in the fetal brain augments the fetal HPA axis response to NMDA-mediated glutamatergic stimulation. PMID:20445154
Keating, Charlotte; Dawood, Tye; Barton, David A; Lambert, Gavin W; Tilbrook, Alan J
2013-04-29
Oxytocin is known for its capacity to facilitate social bonding, reduce anxiety and for its actions on the stress hypothalamopituitary adrenal (HPA) axis. Since oxytocin can physiologically suppress activity of the HPA axis, clinical applications of this neuropeptide have been proposed in conditions where the function of the HPA axis is dysregulated. One such condition is major depressive disorder (MDD). Dysregulation of the HPA system is the most prominent endocrine change seen with MDD, and normalizing the HPA axis is one of the major targets of recent treatments. The potential clinical application of oxytocin in MDD requires improved understanding of its relationship to the symptoms and underlying pathophysiology of MDD. Previous research has investigated potential correlations between oxytocin and symptoms of MDD, including a link between oxytocin and treatment related symptom reduction. The outcomes of studies investigating whether antidepressive treatment (pharmacological and non-pharmacological) influences oxytocin concentrations in MDD, have produced conflicting outcomes. These outcomes suggest the need for an investigation of the influence of a single treatment class on oxytocin concentrations, to determine whether there is a relationship between oxytocin, the HPA axis (e.g., oxytocin and cortisol) and MDD. Our objective was to measure oxytocin and cortisol in patients with MDD before and following treatment with selective serotonin reuptake inhibitors, SSRI. We sampled blood from arterial plasma. Patients with MDD were studied at the same time twice; pre- and post- 12 weeks treatment, in an unblinded sequential design (clinicaltrials.govNCT00168493). Results did not reveal differences in oxytocin or cortisol concentrations before relative to following SSRI treatment, and there were no significant relationships between oxytocin and cortisol, or these two physiological variables and psychological symptom scores, before or after treatment. These outcomes demonstrate that symptoms of MDD were reduced following effective treatment with an SSRI, and further, stress physiology was unlikely to be a key factor in this outcome. Further research is required to discriminate potential differences in underlying stress physiology for individuals with MDD who respond to antidepressant treatment, relative to those who experience treatment resistance.
Atrazine (ATR) has recently been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis in rodents. The current study investigated the effect of ATR and two of its chlorinated metabolites, desisopropylatrazine (DIA) and diamino-s-chlorotriazine (DACT), on the HPA axis in...
Experimental gastritis leads to anxiety- and depression-like behaviors in female but not male rats
2013-01-01
Human and animals studies support the idea that there is a gender-related co-morbidity of pain-related and inflammatory gastrointestinal (GI) diseases with psychological disorders. This co-morbidity is the evidence for the existence of GI-brain axis which consists of immune (cytokines), neural (vagus nerve) and neuroendocrine (HPA axis) pathways. Psychological stress causes disturbances in GI physiology, such as altered GI barrier function, changes in motility and secretion, development of visceral hypersensitivity, and dysfunction of inflammatory responses. Whether GI inflammation would exert impact on psychological behavior is not well established. We examined the effect of experimental gastritis on anxiety- and depression-like behaviors in male and female Sprague–Dawley rats, and evaluated potential mechanisms of action. Gastritis was induced by adding 0.1% (w/v) iodoacetamide (IAA) to the sterile drinking water for 7 days. Sucrose preference test assessed the depression-like behavior, open field test and elevated plus maze evaluated the anxiety-like behavior. IAA treatment induced gastric inflammation in rats of either gender. No behavioral abnormality or dysfunction of GI-brain axis was observed in male rats with IAA-induced gastritis. Anxiety- and depression-like behaviors were apparent and the HPA axis was hyperactive in female rats with IAA-induced gastritis. Our results show that gastric inflammation leads to anxiety- and depression-like behaviors in female but not male rats via the neuroendocrine (HPA axis) pathway, suggesting that the GI inflammation can impair normal brain function and induce changes in psychological behavior in a gender-related manner through the GI-to-brain signaling. PMID:24345032
NASA Astrophysics Data System (ADS)
Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo
2018-04-01
Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.
Doane, Leah D; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle; Griffith, James W; Adam, Emma K
2013-08-01
Alterations in hypothalamic-pituitary-adrenal (HPA) axis functioning have been associated with major depression disorder (MDD) and some anxiety disorders. Few researchers have tested the possibility that high levels of recent life stress or elevations in negative emotion may partially account for the HPA axis alterations observed in these disorders. In a sample of 300 adolescents from the Youth Emotion Project, we examined associations between MDD and anxiety disorders, dimensional measures of internalizing symptomatology, life stress, mood on the days of cortisol testing, and HPA axis functioning. Adolescents with a past MDD episode and those with a recent MDD episode comorbid with an anxiety disorder had flatter diurnal cortisol slopes than adolescents without a history of internalizing disorders. Higher reports of general distress, a dimension of internalizing symptomatology, were also associated with flatter slopes. Negative emotion, specifically sadness and loneliness, was associated with flatter slopes and partially accounted for the associations between comorbid MDD and anxiety disorders and cortisol. The associations between past MDD and cortisol slopes were not accounted for by negative emotion, dimensional variation in internalizing symptomatology, or levels of life stress, indicating that flatter cortisol slopes may also be a "scar" marker of past experiences of MDD.
Maternal early-life trauma and affective parenting style: the mediating role of HPA-axis function.
Juul, Sarah H; Hendrix, Cassandra; Robinson, Brittany; Stowe, Zachary N; Newport, D Jeffrey; Brennan, Patricia A; Johnson, Katrina C
2016-02-01
A history of childhood trauma is associated with increased risk for psychopathology and interpersonal difficulties in adulthood and, for those who have children, impairments in parenting and increased risk of negative outcomes in offspring. Physiological and behavioral mechanisms are poorly understood. In the current study, maternal history of childhood trauma was hypothesized to predict differences in maternal affect and HPA axis functioning. Mother-infant dyads (N = 255) were assessed at 6 months postpartum. Mothers were videotaped during a 3-min naturalistic interaction, and their behavior was coded for positive, neutral, and negative affect. Maternal salivary cortisol was measured six times across the study visit, which also included an infant stressor paradigm. Results showed that childhood trauma history predicted increased neutral affect and decreased mean cortisol in the mothers and that cortisol mediated the association between trauma history and maternal affect. Maternal depression was not associated with affective measures or cortisol. Results suggest that early childhood trauma may disrupt the development of the HPA axis, which in turn impairs affective expression during mother-infant interactions in postpartum women. Interventions aimed at treating psychiatric illness in postpartum women may benefit from specific components to assess and treat trauma-related symptoms and prevent secondary effects on parenting.
Cannabinoids and glucocorticoids modulate emotional memory after stress.
Akirav, Irit
2013-12-01
Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flannery, Jessica E; Beauchamp, Kathryn G; Fisher, Philip A
2017-02-01
There is growing evidence that social support can buffer the physiological stress response, specifically cortisol reactivity. We use a developmental framework to review the importance of social buffering in early childhood, a period of heightened plasticity for programming of the hypothalamic-pituitary-adrenal (HPA) axis. The social environment, in which parents play the largest role in early life, is a critical agent in the developmental trajectory of the HPA axis. A prevailing model of social buffering primarily focuses on the role of social support in the context of acute stressors and cortisol response. This review expands this model to provide evidence of the mechanism of social buffering, or lack thereof, across periods of chronic stress by applying the social buffer model to children involved in the child welfare system. We also highlight current interventions that capitalize on the mechanism of social buffering to modify HPA axis functioning across childhood. Last, we synthesize our findings using the social buffering framework to inform future targeted interventions.
Gadek-Michalska, A; Bugajski, J
2003-09-01
The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.
Blizard, David A; Eldridge, J Charles; Jones, Byron C
2015-05-01
The Maudsley Reactive and Maudsley Non-Reactive strains have been selectively bred for differences in open-field defecation (OFD), a putative index of stress. We investigated whether variations in the hypothalamic-pituitary-adrenal (HPA) axis are correlated with strain differences in OFD in the Maudsley model. Exposure to the open-field test did not result in increases in ACTH in male rats of either strain and there were no strain differences in the large increases in ACTH and corticosteroid that occurred in response to intermittent footshock. Parallel studies of prolactin showed that Maudsley Reactive rats had greater response to the open-field and to footshock than Maudsley Non-Reactive rats. The lack of correlation between strain differences in OFD and reactivity of the HPA axis is consistent with the idea that HPA response to stress and OFD reflect the output of different neural systems and that individual differences in emotionality, as indexed by OFD do not influence other measures of stress-reactivity in a simple manner, if at all. The reactivity of the prolactin system to the open-field test and lack of response of ACTH to the same situation is consistent with the idea that the prolactin system is sensitive to lower levels of stress than the HPA axis, a finding at variance with the presumed extreme sensitivity of the latter system. Earlier comparisons of the HPA axis in these strains implicate local factors such as neuropeptide-Y peptide in the adrenal in attenuating the response of the adrenal cortex to ACTH and hints at the complexity of regulation of the HPA axis.
Kuhlman, Kate R.; Olson, Sheryl L.; Lopez-Duran, Nestor L.
2015-01-01
In this study, we examined whether parenting and HPA-axis reactivity during middle childhood predicted increases in internalizing symptoms during the transition to adolescence, and whether HPA-axis reactivity mediated the impact of parenting on internalizing symptoms. The study included 65 children (35 boys) who were assessed at age 5, 7, and 11. Parenting behaviors were assessed via parent report at age 5 and 11. The child’s HPA-axis reactivity was measured at age 7 via a stress task. Internalizing symptoms were measured via teacher reports at age 5 and 11. High maternal warmth at age 5 predicted lower internalizing symptoms at age 11. Also, high reported maternal warmth and induction predicted lower HPA-axis reactivity. Additionally, greater HPA-axis reactivity at age 7 was associated with greater increases in internalizing symptoms from age 5 to 11. Finally, the association between age 5 maternal warmth and age 11 internalizing symptoms was partially mediated by lower cortisol in response to the stress task. Thus, parenting behaviors in early development may influence the physiological stress response system and therefore buffer the development of internalizing symptoms during preadolescence when risk for disorder onset is high. PMID:24009085
Cortisol, callous-unemotional traits, and pathways to antisocial behavior.
Hawes, David J; Brennan, John; Dadds, Mark R
2009-07-01
Two decades of research has implicated the hypothalamic-pituitary-adrenal (HPA) axis in the development of antisocial behavior in children. However, findings regarding the association between cortisol and antisocial behavior have been largely inconsistent, and the role of the HPA axis in relation to broader etiological processes remains unclear. We examine evidence that the role of the HPA axis in the development of antisocial behavior may differ across subgroups of children. A meta-analysis has supported the prediction that low levels of cortisol are associated with risk for childhood antisocial behavior, but the relationship is weaker than previously assumed. Recent studies suggest the association between cortisol levels and antisocial behavior may vary depending on type of antisocial behavior, patterns of internalizing comorbidity, and early environmental adversity. The findings are consistent with evidence that two early-onset pathways to antisocial behavior can be distinguished based on the presence or absence of callous-unemotional traits. We speculate that early adversity is important to the development of chronic antisocial behavior in children with low levels of callous-unemotional traits and HPA-axis hyperactivity, but that high levels of callous-unemotional traits and HPA-axis hypoactivity characterize a particularly severe subgroup, for whom antisocial behavior develops somewhat independently of adversity.
Kuhlman, Kate R; Olson, Sheryl L; Lopez-Duran, Nestor L
2014-07-01
In this study, we examined whether parenting and HPA-axis reactivity during middle childhood predicted increases in internalizing symptoms during the transition to adolescence, and whether HPA-axis reactivity mediated the impact of parenting on internalizing symptoms. The study included 65 children (35 boys) who were assessed at age 5, 7, and 11. Parenting behaviors were assessed via parent report at age 5 and 11. The child's HPA-axis reactivity was measured at age 7 via a stress task. Internalizing symptoms were measured via teacher reports at age 5 and 11. High maternal warmth at age 5 predicted lower internalizing symptoms at age 11. Also, high reported maternal warmth and induction predicted lower HPA-axis reactivity. Additionally, greater HPA-axis reactivity at age 7 was associated with greater increases in internalizing symptoms from age 5 to 11. Finally, the association between age 5 maternal warmth and age 11 internalizing symptoms was partially mediated by lower cortisol in response to the stress task. Thus, parenting behaviors in early development may influence the physiological stress response system and therefore buffer the development of internalizing symptoms during preadolescence when risk for disorder onset is high. © 2013 Wiley Periodicals, Inc.
Fletcher, Quinn E; Dantzer, Ben; Boonstra, Rudy
2015-12-01
Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan
2017-04-01
Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.
HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity.
Chen, Xuejie; Gianferante, Danielle; Hanlin, Luke; Fiksdal, Alexander; Breines, Juliana G; Thoma, Myriam V; Rohleder, Nicolas
2017-04-01
Inflammation is drawing attention as pathway between psychosocial stress and health, and basal HPA axis activity has been suggested to exert a consistent regulatory influence on peripheral inflammation. Here we studied the relationship between basal HPA axis activity and inflammatory and HPA axis acute stress reactivity. We recruited 48 healthy individuals and collected saliva for diurnal cortisol sampling at 6 points. Participants were previously exposed to the Trier Social Stress Test (TSST) on two consecutive days. Plasma interleukin-6 (IL-6) and salivary cortisol reactivity to acute stress were measured, and their relationships with basal HPA axis activity were analyzed. Steeper cortisol awakening response (CAR) linear increase was related with stronger cortisol stress reactivity (γ=0.015; p=0.042) and marginally significantly with greater habituation (γ=0.01; p=0.066). Greater curvilinearity of CAR was related with stronger cortisol reactivity (γ=-0.014; p=0.021) and greater cortisol habituation (γ=-0.011; p=0.006). Steeper daily linear decline was related with significant or marginally significantly stronger cortisol and IL-6 reactivity (cortisol: γ=-0.0004; p=0.06; IL-6: γ=-0.028; p=0.031) and greater habituation (cortisol: γ=-0.002; p=0.009, IL-6: γ=-0.015; p=0.033). Greater curvilinearity of daily decline was related with stronger IL-6 reactivity (γ=0.002; p=0.024) and also greater cortisol and IL-6 habituation (cortisol: γ=0.00009; p=0.03, IL-6: γ=0.001; p=0.024). Patterns of basal HPA axis activity that are related with healthier outcomes were found to be related with stronger initial cortisol and IL-6 reactivity and greater habituation. This is an important step in understanding the long-term health implications of acute stress responsiveness, and future studies should employ longitudinal designs to identify the direction of these relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa
2016-11-01
Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.
Belda, Xavier; Armario, Antonio
2009-10-01
Whereas the role of most biogenic amines in the control of the hypothalamus-pituitary-adrenal (HPA) response to stress has been extensively studied, the role of dopamine has not. We studied the effect of different dopamine receptor antagonists on HPA response to a severe stressor (immobilization, IMO) in adult male Sprague-Dawley rats. Haloperidol administration reduced adrenocorticotropin hormone and corticosterone responses to acute IMO, particularly during the post-IMO period. This effect cannot be explained by a role of dopamine to maintain a sustained activation of the HPA axis as haloperidol did not modify the response to prolonged (up to 6 h) IMO. Administration of more selective D1 and D2 receptor antagonists (SCH23390 and eticlopride, respectively) also resulted in lower and/or shorter lasting HPA response to IMO. Dopamine, acting through both D1 and D2 receptors, exerts a stimulatory role on the activation of the HPA axis in response to a severe stressor. The finding that dopamine is involved in the maintenance of post-stress activation of the HPA axis is potentially important because the actual pathological impact of HPA activation is likely to be related to the area under the curve of plasma glucocorticoid levels, which is critically dependent on how long after stress high levels of glucocorticoid are maintained.
Mustoe, Aaryn C; Taylor, Jack H; Birnie, Andrew K; Huffman, Michelle C; French, Jeffrey A
2014-09-01
Both gestational cortisol exposure (GCE) and variability in postnatal environments can shape the later-life behavioral and endocrine outcomes of the hypothalamic-pituitary-adrenal (HPA) axis. We examined the influence of GCE and social play on HPA functioning in developing marmosets. Maternal urinary cortisol samples were collected across pregnancy to determine GCE for 28 marmoset offspring (19 litters). We administered a social separation stressor to offspring at 6, 12, and 18 months of age, during which we collected urinary cortisol samples and behavioral observations. Increased GCE was associated with increased basal cortisol levels and cortisol reactivity, but the strength of this relationship decreased across age. Increased social play was associated with decreased basal cortisol levels and a marginally greater reduction in cortisol reactivity as offspring aged, regardless of offspring GCE. Thus, GCE is associated with HPA functioning, but socially enriching postnatal environments can alter the effects associated with increased fetal exposure to glucocorticoids. © 2014 Wiley Periodicals, Inc.
Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent
2007-01-01
Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.
Salivary α-amylase and cortisol after exercise in menopause: influence of long-term HRT.
Patacchioli, F R; Ghiciuc, C M; Bernardi, M; Dima-Cozma, L C; Fattorini, L; Squeo, M R; Galoppi, P; Brunelli, R; Ferrante, F; Pasquali, V; Perrone, G
2015-01-01
This observational prospective study analyzed the effect of an incremental cardiopulmonary exercise test (CPET) on the secretion of salivary biomarkers of the adrenergic nervous system and hypothalamus-pituitary-adrenal (HPA) axis activity by measuring salivary α-amylase and cortisol diurnal trajectories in the setting of long-term hormone replacement therapy (HRT). Fifteen healthy sedentary postmenopausal women who were current HRT users and 15 women who had never used HRT were consecutively recruited. α-Amylase and cortisol were measured in salivary samples collected on the CPET day and on a rest day. Cardiovascular and respiratory fitness parameters were recorded during the CPET challenge. The participants had very homogeneous somatic characteristics, and they were all in generally good health. The postmenopausal never-HRT users presented an abnormal diurnal pattern of α-amylase at baseline and a flattened response to CPET. In contrast, women on HRT had a physiological α-amylase diurnal pattern and increased salivary α-amylase production during the CPET-induced challenge. The CPET challenge physiologically activated the HPA axis activity, as shown by the increase in the concentration of salivary cortisol during the effort test. HPA axis activity was not affected by long-term HRT. Postmenopausal women using HRT exhibited a cardiorespiratory functional capacity that was significantly (p < 0.05) higher than that of non-users. Our findings show that healthy postmenopausal women present an asymmetry between adrenergic nervous system and HPA axis activities under both basal and stress conditions. HRT was able to modify the abnormal adrenergic nervous system activity, most likely by reducing the sympathetic hyperactivity that characterizes menopause.
Corticotropin-releasing hormone regulates IL-6 expression during inflammation
Venihaki, Maria; Dikkes, Pieter; Carrigan, Allison; Karalis, Katia P.
2001-01-01
Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by proinflammatory cytokines results in increased release of glucocorticoid that restrains further development of the inflammatory process. IL-6 has been suggested to stimulate the HPA axis during immune activation independent of the input of hypothalamic corticotropin-releasing hormone (CRH). We used the corticotropin-releasing hormone–deficient (Crh+/+) mouse to elucidate the effect of CRH deficiency on IL-6 expression and IL-6–induced HPA axis activation during turpentine-induced inflammation. We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise. The paradoxical increase of plasma IL-6 associated with CRH deficiency suggests that IL-6 release during inflammation is CRH-dependent. We also demonstrate that adrenal IL-6 expression is CRH-dependent, as its basal and inflammation-induced expression is blocked by CRH deficiency. Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake. Finally, we confirm that the HPA axis response is defective in Crh+/+/IL-6+/+ mice. These findings, along with the regulation of IL-6 by CRH, support the importance of the interaction between the immune system and the HPA axis in the pathophysiology of inflammatory diseases. PMID:11602623
Antidepressants recruit new neurons to improve stress response regulation
Surget, A; Tanti, A; Leonardo, E D; Laugeray, A; Rainer, Q; Touma, C; Palme, R; Griebel, G; Ibarguen-Vargas, Y; Hen, R; Belzung, C
2011-01-01
Recent research suggests an involvement of hippocampal neurogenesis in behavioral effects of antidepressants. However, the precise mechanisms through which newborn granule neurons might influence the antidepressant response remain elusive. Here, we demonstrate that unpredictable chronic mild stress in mice not only reduces hippocampal neurogenesis, but also dampens the relationship between hippocampus and the main stress hormone system, the hypothalamo-pituitary-adrenal (HPA) axis. Moreover, this relationship is restored by treatment with the antidepressant fluoxetine, in a neurogenesis-dependent manner. Specifically, chronic stress severely impairs HPA axis activity, the ability of hippocampus to modulate downstream brain areas involved in the stress response, the sensitivity of the hippocampal granule cell network to novelty/glucocorticoid effects and the hippocampus-dependent negative feedback of the HPA axis. Remarkably, we revealed that, although ablation of hippocampal neurogenesis alone does not impair HPA axis activity, the ability of fluoxetine to restore hippocampal regulation of the HPA axis under chronic stress conditions, occurs only in the presence of an intact neurogenic niche. These findings provide a mechanistic framework for understanding how adult-generated new neurons influence the response to antidepressants. We suggest that newly generated neurons may facilitate stress integration and that, during chronic stress or depression, enhancing neurogenesis enables a dysfunctional hippocampus to restore the central control on stress response systems, then allowing recovery. PMID:21537331
Sanchís-Ollé, Maria; Ortega-Sánchez, Juan A; Belda, Xavier; Gagliano, Humberto; Nadal, Roser; Armario, Antonio
2017-04-03
We have recently demonstrated that adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to repeated exposure to a stressor does not follow the rules of habituation and can be fully expressed after a single experience with severe stressors. In the present work we tested the hypothesis that adaptation could be impaired if animals experience malaise during initial exposure to the stressor. To this end, animals were allowed to drink saccharin for 30min before being exposed for 3h to immobilization on boards (IMO), a severe stressor; then they were given either saline or lithium ip after the first hour of IMO. Stress-naïve rats followed exactly the same procedure except IMO. Exposure to IMO caused a strong activation of the HPA axis whereas the effect of lithium was modest. Both IMO and lithium administration resulted in conditioned taste aversion to saccharin when evaluated 4days later. When all animals were exposed to IMO 6days later, reduced HPA response and less impact on body weight was observed in the two groups previously exposed to IMO as compared with stress-naïve rats. Therefore, lithium administration during the first IMO exposure did not affect adaptation of the HPA axis and weight gain. These results indicate that malaise per se only weakly activated the HPA axis and argue against the hypothesis that signs of physical malaise during exposure to the stressor could impair HPA adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.
Carrico, Adam W; Rodriguez, Violeta J; Jones, Deborah L; Kumar, Mahendra
2018-01-01
This study examined if methamphetamine use alone (METH + HIV-) and methamphetamine use in combination with HIV (METH + HIV+) were associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation as well as insulin resistance relative to a nonmethamphetamine-using, HIV-negative comparison group (METH-HIV-). Using an intact groups design, serum levels of HPA axis hormones in 46 METH + HIV- and 127 METH + HIV+ men who have sex with men (MSM) were compared to 136 METH-HIV- men. There were no group differences in prevailing adrenocorticotropic hormone (ACTH) or cortisol levels, but the association between ACTH and cortisol was moderated by METH + HIV+ group (β = -0.19, p < .05). Compared to METH-HIV- men, METH + HIV+ MSM displayed 10% higher log 10 cortisol levels per standard deviation lower ACTH. Both groups of methamphetamine-using MSM had lower insulin resistance and greater syndemic burden (i.e., sleep disturbance, severe depression, childhood trauma, and polysubstance use disorder) compared to METH-HIV- men. However, the disaggregated functional relationship between ACTH and cortisol in METH + HIV+ MSM was independent of these factors. Further research is needed to characterize the bio-behavioral pathways that explain dysregulated HPA axis functioning in HIV-positive, methamphetamine-using MSM. Copyright © 2017 John Wiley & Sons, Ltd.
Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P
2015-01-01
Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.
Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A.; Ulrich-Lai, Yvonne M.; Herman, James P.
2015-01-01
Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. Here, we tested the hypothesis that NTS noradrenergic A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n= 5; HPA study, n= 5], or vehicle [cardiovascular study, n= 6; HPA study, n= 4]. Rats were exposed to acute restraint stress followed by 14 days of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low frequency to high frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress. PMID:25765732
Functionally distinct smiles elicit different physiological responses in an evaluative context.
Martin, Jared D; Abercrombie, Heather C; Gilboa-Schechtman, Eva; Niedenthal, Paula M
2018-03-01
When people are being evaluated, their whole body responds. Verbal feedback causes robust activation in the hypothalamic-pituitary-adrenal (HPA) axis. What about nonverbal evaluative feedback? Recent discoveries about the social functions of facial expression have documented three morphologically distinct smiles, which serve the functions of reinforcement, social smoothing, and social challenge. In the present study, participants saw instances of one of three smile types from an evaluator during a modified social stress test. We find evidence in support of the claim that functionally different smiles are sufficient to augment or dampen HPA axis activity. We also find that responses to the meanings of smiles as evaluative feedback are more differentiated in individuals with higher baseline high-frequency heart rate variability (HF-HRV), which is associated with facial expression recognition accuracy. The differentiation is especially evident in response to smiles that are more ambiguous in context. Findings suggest that facial expressions have deep physiological implications and that smiles regulate the social world in a highly nuanced fashion.
McCormick, Cheryl M; Mathews, Iva Z
2010-06-30
Chronic exposure to stress is known to affect learning and memory in adults through the release of glucocorticoid hormones by the hypothalamic-pituitary-adrenal (HPA) axis. In adults, glucocorticoids alter synaptic structure and function in brain regions that express high levels of glucocorticoid receptors and that mediate goal-directed behaviour and learning and memory. In contrast to relatively transient effects of stress on cognitive function in adulthood, exposure to high levels of glucocorticoids in early life can produce enduring changes through substantial remodeling of the developing nervous system. Adolescence is another time of significant brain development and maturation of the HPA axis, thereby providing another opportunity for glucocorticoids to exert programming effects on neurocircuitry involved in learning and memory. These topics are reviewed, as is the emerging research evidence in rodent models highlighting that adolescence may be a period of increased vulnerability compared to adulthood in which exposure to high levels of glucocorticoids results in enduring changes in adult cognitive function. Copyright 2009 Elsevier Inc. All rights reserved.
The cortisol awakening response and major depression: examining the evidence
Dedovic, Katarina; Ngiam, Janice
2015-01-01
A vast body of literature has revealed that dysregulation of the hypothalamic–pituitary–adrenal (HPA) stress axis is associated with etiology of major depressive disorder (MDD). There are many ways that the dysregulation of the HPA axis can be assessed: by sampling diurnal basal secretion and/or in response to a stress task, pharmacological challenge, and awakening. Here, we focus on the association between cortisol awakening response (CAR), as one index of HPA axis function, and MDD, given that the nature of this association is particularly unclear. Indeed, in the following selective review, we attempt to reconcile sometimes-divergent evidence of the role of CAR in the pathway to depression. We first examine association of CAR with psychological factors that have been linked with increased vulnerability to develop depression. Then, we summarize the findings regarding the CAR profile in those with current depression, and evaluate evidence for the role of CAR following depression resolution and continued vulnerability. Finally, we showcase longitudinal studies showing the role of CAR in predicting depression onset and recurrence. Overall, the studies reveal an important, but complex, association between CAR and vulnerability to depression. PMID:25999722
Joseph, Joshua J; Golden, Sherita H
2017-03-01
Controversy exists over the role of stress and depression in the pathophysiology of type 2 diabetes mellitus. Depression has been shown to increase the risk for progressive insulin resistance and incident type 2 diabetes mellitus in multiple studies, whereas the association of stress with diabetes is less clear, owing to differences in study designs and in forms and ascertainment of stress. The biological systems involved in adaptation that mediate the link between stress and physiological functions include the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous and immune systems. The HPA axis is a tightly regulated system that represents one of the body's mechanisms for responding to acute and chronic stress. Depression is associated with cross-sectional and longitudinal alterations in the diurnal cortisol curve, including a blunted cortisol awakening response and flattening of the diurnal cortisol curve. Flattening of the diurnal cortisol curve is also associated with insulin resistance and type 2 diabetes mellitus. In this article, we review and summarize the evidence supporting HPA axis dysregulation as an important biological link between stress, depression, and type 2 diabetes mellitus. © 2016 New York Academy of Sciences.
Provenzi, Livio; Giusti, Lorenzo; Fumagalli, Monica; Tasca, Hilarj; Ciceri, Francesca; Menozzi, Giorgia; Mosca, Fabio; Morandi, Francesco; Borgatti, Renato; Montirosso, Rosario
2016-10-01
Very preterm (VPT) infants are hospitalized in the Neonatal Intensive Care Unit (NICU) and exposed to varying levels of skin-breaking procedures (pain-related stress), even in absence of severe clinical conditions. Repeated and prolonged pain exposure may alter hypothalamic-pituitary-adrenal (HPA) axis reactivity in VPT infants. During the post-discharge period, altered HPA axis reactivity has been documented in response to non-social stressors, using salivary cortisol as a biomarker. However, little is known about the effects of NICU pain-related stress on subsequent HPA axis reactivity to socio-emotional stress in infants. We examined the relationship between pain-related stress in NICU and HPA axis reactivity (i.e., salivary cortisol reactivity) to an age-appropriate socio-emotional condition in 37 healthy VPT infants compared to 53 full-term (FT) controls. The number of skin-breaking procedures was obtained across NICU stay for VPT infants. At 3 months (corrected age for prematurity), all infants participated in the maternal Face-to-Face Still-Face (FFSF) procedure, in order to assess HPA axis reactivity to socio-emotional stress (i.e., maternal unresponsiveness). VPT infants exhibited a blunted salivary cortisol reactivity, which was associated with the amount of skin-breaking procedures during NICU: greater pain-related stress predicted lower salivary cortisol reactivity, adjusting for neonatal confounders. These findings further advance our knowledge of how early exposure to pain-related stress in NICU contributes to the programming of an altered HPA axis reactivity to socio-emotional stress in 3-month-old VPT infants, even in the absence of major perinatal complications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coplan, Jeremy D.; Karim, Asif; Rozenboym, Anna; Smith, Eric L. P.; Kral, John G.; Rosenblum, Leonard A.
2017-01-01
Introduction Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term “social allostasis.” We postulate that maternal food insecurity induces a “superorganism” state through coordination of individual HPA axis response. Methods Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. Results Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our "dyadic vulnerability" index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p < 0.0001) whereas relatively “advantaged” dyads exhibited maternal cortisol increases in response to VFD exposure. Comment In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a “superorganism” version of HPA axis homeostasis, provisionally termed “social allostasis.” PMID:28880949
Safety of long-term high-volume sinonasal budesonide irrigations for chronic rhinosinusitis.
Smith, Kristine A; French, Gabrielle; Mechor, Bradford; Rudmik, Luke
2016-03-01
Off-label high-volume sinonasal budesonide irrigations are commonly used during the management of chronic rhinosinusitis (CRS). Although short-term use (4 to 8 weeks) has been demonstrated to be safe, the long-term effects on the hypothalamic-pituitary-adrenal (HPA) axis remain unclear. The objective of this study is to determine whether CRS patients using long-term (minimum greater than 12 months) budesonide sinonasal irrigations have evidence of HPA axis suppression. Patients with CRS being managed with high-volume sinonasal budesonide irrigations were recruited from 2 tertiary level rhinology clinics between March 2014 and July 2015. Inclusion criteria were as follows: (1) adult (age greater than 18 years); (2) guideline-based diagnosis of CRS; (3) previous endoscopic sinus surgery; (4) minimum of twice daily high-volume sinonasal budesonide irrigation (concentration of 1 mg per irrigation; total daily dose of 2 mg); and (5) a minimum of 12-month duration. Exclusion criteria included systemic corticosteroid use within 3 months of HPA axis testing. The primary outcomes were morning (am) serum cortisol levels and, when indicated, cosyntropin stimulation levels. A total of 35 patients fulfilled eligibility criteria and underwent HPA axis testing. Mean duration of budesonide sinonasal irrigation therapy use was 38.2 months (2.9 years). The mean ± standard deviation (SD) am serum cortisol was 431.2 ± 146.9 nmol/L (normal, 200 to 650 nmol/L). Subsequent cosyntropin stimulation tests, in indicated patients (n = 19), demonstrated no evidence of HPA axis suppression. Outcomes from this study suggest that daily high-volume sinonasal budesonide irrigations fail to produce evidence of HPA axis suppression with prolonged courses lasting longer than 2 years. © 2016 ARS-AAOA, LLC.
Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes. PMID:23483921
Mina, Theresia H; Lahti, Marius; Drake, Amanda J; Forbes, Shareen; Denison, Fiona C; Räikkönen, Katri; Norman, Jane E; Reynolds, Rebecca M
2017-09-01
Prenatal programming of hypothalamic-pituitary-adrenal (HPA) axis activity has long term implications for offspring health. Biological mechanisms underlying programming of the offspring HPA axis are poorly understood. We hypothesised that altered maternal metabolism including higher maternal obesity, glucose and lipids are novel programming factors for altered offspring HPA axis activity. Salivary cortisol levels were measured in 54 children aged 3-5 years under experimental conditions (before and after a delay of self-gratification test). Associations of child cortisol responses with maternal obesity in early pregnancy and with fasting glucose, triglycerides, HDL and total cholesterol measured in each pregnancy trimester were tested. Higher levels of maternal triglycerides and total cholesterol throughout pregnancy were associated with increased offspring cortisol reactivity. The associations were independent of maternal obesity and other confounders, suggesting that exposure to maternal lipids could be a biological mechanism of in utero programming of the offspring's HPA axis. Copyright © 2017. Published by Elsevier Ltd.
Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent
2011-01-01
Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.
While it is known that adrenal steroids impact reproduction and a variety of other physiological and behavioral fimctions, disruption of the HPA-axis is not typically considered in toxicological studies. Here we characterize changes in basal corticosterone (CORT) and progesterone...
Rabasa, Cristina; Muñoz-Abellán, Cristina; Daviu, Núria; Nadal, Roser; Armario, Antonio
2011-05-03
Factors involved in adaptation to repeated stress are not well-characterized. For instance, acute footshock (FS) of high intensity appears to be less severe than immobilization (IMO) in light of the speed of post-stress recovery of the hypothalamic-pituitary-adrenal (HPA) axis and other physiological variables. However, repeated exposure to IMO consistently resulted in reduction of the HPA response to the same stressor (adaptation), whereas failure to adapt has been usually reported after FS. Thus, in the present work we directly compared the activation of HPA axis and other physiological changes in response to both acute and repeated exposure to IMO and two intensities of FS (medium and high) in adult male rats. Control rats were exposed to the FS boxes but they did not receive shocks. Daily repeated exposure to IMO resulted in significant adaptation of the overall ACTH and corticosterone responses to the stressor. Such a reduction was also observed with repeated exposure to FS boxes and FS-medium, whereas repeated exposure to FS-high only resulted in a small reduction of the corticosterone response during the post-stress period. This suggests that some properties of FS-high make adaptation to it difficult. Interestingly, overall changes in food intake and body weight gain throughout the week of exposure to the stressors reveal a greater impact of IMO than FS-high, indicating that factors other than the intensity of a stressor, at least when evaluated in function of the above physiological variables, can influence HPA adaptation. Since FS exposure is likely to cause more pain than IMO, activation of nociceptive signals above a certain level may negatively affect HPA adaptation to repeated stressors. Copyright © 2011 Elsevier Inc. All rights reserved.
Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.
2015-01-01
Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038
HPA AXIS RELATED GENES AND RESPONSE TO PSYCHOLOGICAL THERAPIES: GENETICS AND EPIGENETICS
Roberts, Susanna; Keers, Robert; Lester, Kathryn J; Coleman, Jonathan R. I.; Breen, Gerome; Arendt, Kristian; Blatter‐Meunier, Judith; Cooper, Peter; Creswell, Cathy; Fjermestad, Krister; Havik, Odd E.; Herren, Chantal; Hogendoorn, Sanne M.; Hudson, Jennifer L.; Krause, Karen; Lyneham, Heidi J.; Morris, Talia; Nauta, Maaike; Rapee, Ronald M.; Rey, Yasmin; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly
2015-01-01
Background Hypothalamic–pituitary–adrenal (HPA) axis functioning has been implicated in the development of stress‐related psychiatric diagnoses and response to adverse life experiences. This study aimed to investigate the association between genetic and epigenetics in HPA axis and response to cognitive behavior therapy (CBT). Methods Children with anxiety disorders were recruited into the Genes for Treatment project (GxT, N = 1,152). Polymorphisms of FKBP5 and GR were analyzed for association with response to CBT. Percentage DNA methylation at the FKBP5 and GR promoter regions was measured before and after CBT in a subset (n = 98). Linear mixed effect models were used to investigate the relationship between genotype, DNA methylation, and change in primary anxiety disorder severity (treatment response). Results Treatment response was not associated with FKBP5 and GR polymorphisms, or pretreatment percentage DNA methylation. However, change in FKBP5 DNA methylation was nominally significantly associated with treatment response. Participants who demonstrated the greatest reduction in severity decreased in percentage DNA methylation during treatment, whereas those with little/no reduction in severity increased in percentage DNA methylation. This effect was driven by those with one or more FKBP5 risk alleles, with no association seen in those with no FKBP5 risk alleles. No significant association was found between GR methylation and response. Conclusions Allele‐specific change in FKBP5 methylation was associated with treatment response. This is the largest study to date investigating the role of HPA axis related genes in response to a psychological therapy. Furthermore, this is the first study to demonstrate that DNA methylation changes may be associated with response to psychological therapies in a genotype‐dependent manner. PMID:26647360
Suglia, Shakira Franco; Staudenmayer, John; Cohen, Sheldon; Enlow, Michelle Bosquet; Rich-Edwards, Janet W; Wright, Rosalind J
2010-12-01
While adult hypothalamic-pituitary-adrenocortical (HPA) axis functioning is thought to be altered by traumatic experiences, little data exist on the effects of cumulative stress on HPA functioning among pregnant women or among specific racial and ethnic groups. Individuals may be increasingly vulnerable to physiological alterations when experiencing cumulative effects of multiple stressors. These effects may be particularly relevant in urban poor communities where exposure to multiple stressors is more prevalent. The goal of this study was to explore the effects of multiple social stressors on HPA axis functioning in a sample of urban Black (n = 68) and Hispanic (n = 132) pregnant women enrolled in the Asthma Coalition on Community, Environment, and Social Stress (ACCESS). Pregnant women were administered the Revised Conflict Tactics Scale (R-CTS) survey to assess interpersonal violence, the Experiences of Discrimination (EOD) survey, the Crisis in Family Systems-Revised (CRISYS-R) negative life events survey, and the My Exposure to Violence (ETV) survey, which ascertains exposure to community violence. A cumulative stress measure was derived from these instruments. Salivary cortisol samples were collected five times per day over three days to assess area under the curve (AUC), morning change, and basal awakening response in order to characterize diurnal salivary cortisol patterns. Repeated measures mixed models, stratified by race/ethnicity, were performed adjusting for education level, age, smoking status, body mass index and weeks pregnant at time of cortisol sampling. The majority of Hispanic participants (57%) had low cumulative stress exposure, while the majority of Black participants had intermediate (35%) or high (41%) cumulative stress exposure. Results showed that among Black but not Hispanic women, cumulative stress was associated with lower morning cortisol levels, including a flatter waking to bedtime rhythm. These analyses suggest that the combined effects of cumulative stressful experiences are associated with disrupted HPA functioning among pregnant women. While the etiology of racial/ethnic differences in stress-induced HPA alterations is not clear, this warrants further research.
Medial Prefrontal Cortex and HPA Axis Roles in Generation of PTSD-Like Symptoms in SPS Model
2012-09-01
effects on ACTH and fast feedback. Psychoneuroendocrinology, 22 , 443-453. Liberzon, I., Lopez, J.F., Flagel, S.B., Vazquez, D.M. & Young, E.A. (1999...even though SPS has no effect on baseline or stress-enhanced corticosterone levels (Liberzon et al., 1997, 1999; Stout et al., 2010), increased GR...Prolonged Stress (SPS) model to examine the effect of SPS on HPA and mPFC function and how this relates to specific PTSD symptoms. Our data suggest that
Daviu, Núria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio
2014-03-01
Acute exposure to severe stressors causes marked activation of the hypothalamic-pituitary-adrenal (HPA) axis that is reflected on the day after higher resting levels of HPA hormones and sensitization of the HPA response to novel (heterotypic) stressors. However, whether a single exposure to a severe stressor or daily repeated exposure to the same (homotypic) stressor modifies these responses to the same extent has not been studied. In this experiment, we studied this issue in adult male Sprague-Dawley rats daily exposed for seven days to a severe stressor such as immobilization on boards (IMO). A first exposure to 1 h IMO resulted in a marked activation of the HPA axis as reflected in plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone, and such activation was significantly reduced after the seventh IMO. On the day after the first IMO, higher resting levels of ACTH and corticosterone and sensitization of their responses to a short exposure to an open-field (OF) were observed, together with a marked hypoactivity in this environment. Repeated exposure to IMO partially reduced hypoactivity, the increase in resting levels of HPA hormones and the ACTH responsiveness to the OF on the day after the last exposure to IMO. In contrast, corticosterone response was gradually increased, suggesting partial dissociation from ACTH. These results indicate that daily repeated exposure to the same stressor partially reduced the HPA response to the homotypic stressor as well as the sensitization of HPA axis activity observed the day after chronic stress cessation.
Brand, Sarah R.; Brennan, Patricia A.; Newport, D. Jeffrey; Smith, Alicia K.; Weiss, Tamara; Stowe, Zachary N.
2009-01-01
Summary Background Early life trauma, particularly child abuse, has been associated with aberrations in hypothalamic-pituitary-adrenal (HPA) axis functioning in adulthood. However, the relationship of early abuse and later adult neuroendocrine changes may be moderated by additional factors such as comorbid psychopathology and recent life stress. Parental exposure to child abuse may have transgenerational effects, with offspring of abuse victims showing similar neuroendocrine profiles as their mothers. The majority of previous studies in this area focus on adult offspring, and the degree to which the effects of parental child abuse can be detected earlier in the development of the offspring remains obscure. Methods The current study utilized a clinical sample of women with a history of MDD (N= 126), to examine the effects of maternal early life sexual and physical abuse (Childhood Trauma Questionnaire; CTQ) on both maternal and infant salivary cortisol levels during a laboratory stress paradigm at 6 months postpartum. Results Maternal child abuse was associated with steeper declines in cortisol in the mothers, and lower baseline cortisol in their infants. Comorbid maternal PTSD, current maternal depressive symptoms, and recent life stressors were significant moderators of maternal cortisol change. Maternal abuse history was associated with increases in cortisol levels in those mothers who experienced these additional stressors. Similarly, a history of early maternal abuse and comorbid PTSD was associated with greater increases in infant cortisol levels. Conclusions Maternal childhood abuse was associated with HPA axis function in both the mother and the infant during the postpartum period. PMID:19931984
Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak
2014-09-01
Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders. Copyright © 2014 by the Research Society on Alcoholism.
Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak
2014-01-01
Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the HPA axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin (β-EP) and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of POMC gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences such as alcohol exposure could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with Fetal Alcohol Spectrum Disorders. PMID:25069392
Weinberg, Marc S.; Bhatt, Aadra P.; Girotti, Milena; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge; Spencer, Robert L.
2009-01-01
Repeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA). Rats were presented with FO in their home cages for 30 min a day for up to 2 wk and subsequently challenged with FO or restraint. Rats displayed HPA axis activity habituation and widespread habituation of c-fos mRNA expression (in situ hybridization) throughout the brain in as few as three repeated presentations of FO. However, repeated FO exposure led to a more gradual development of sensitized HPA-axis and c-fos mRNA responses to restraint that were not fully evident until after 14 d of prior FO exposure. The sensitized response was evident in many of the same brain regions that displayed habituation, including primary sensory cortices and the prefrontal cortex. The shared spatial expression but distinct temporal development of habituation and sensitization neural response patterns suggests two independent processes with opposing influences across overlapping brain systems. PMID:18845631
In Search of HPA Axis Dysregulation in Child and Adolescent Depression
ERIC Educational Resources Information Center
Guerry, John D.; Hastings, Paul D.
2011-01-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative…
Connan, Frances; Lightman, Stafford L; Landau, Sabine; Wheeler, Michael; Treasure, Janet; Campbell, Iain C
2007-01-01
We hypothesised that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in anorexia nervosa (AN) is associated with (a) elevated arginine vasopressin (AVP) activity and (b) enhanced pituitary sensitivity to AVP, as it is in depressive illness. 16 Healthy women and 18 women with active AN participated in a combined dexamethasone (DXM)/corticotrophin releasing hormone (CRH) challenge test and an AVP challenge test. This combination of tests is designed to assess the functional contribution of AVP to HPA axis activity. 10 of the active AN group repeated participation after weight gain. The cortisol response to AVP was reduced by 138% in the active AN group, suggesting an impairment of pituitary sensitivity to AVP, which began to normalise with weight gain. The cortisol and adreno-corticotrophin (ACTH) responses to the DXM/CRH test were not significantly enhanced in the active AN group, suggesting that there was no elevated endogenous AVP activity augmenting the response to CRH in AN. Weight gain was associated with blunting of the endocrine response to the DXM/CRH test, which may have been related to rising oestrogen levels. Thus, contrary to the hypotheses, we did not find (a) evidence of upregulated AVP activity or (b) enhanced pituitary sensitivity to AVP in AN. These findings suggest that the mechanism of HPA axis hyperactivity differs in depression and AN, with greater involvement of AVP in depressive disorder and perhaps more reliance on CRH to drive the axis in AN. The powerful anorexigenic effect of CRH could contribute to the severity of weight loss associated with AN.
Effects of a Therapeutic Intervention for Foster Preschoolers on Diurnal Cortisol Activity
Fisher, Philip A.; Stoolmiller, Mike; Gunnar, Megan R.; Burraston, Bert O.
2007-01-01
Atypical diurnal patterns of hypothalamic-pituitary-adrenal (HPA) axis activity have been observed samples of individuals following early life adversity. A characteristic pattern arising from disrupted caregiving is a low early morning cortisol level that changes little from morning to evening. Less well understood is the plasticity of the HPA axis in response to subsequent supportive caregiving environments. Monthly early morning and evening cortisol levels were assessed over 12 months in a sample of 3- to 6-year-old foster children enrolled in a randomized trial of a family-based therapeutic intervention (N = 117; intervention condition n = 57; regular foster care condition n = 60), and a community comparison group of same-aged, nonmaltreated children from low-income families (n = 60). Latent growth analyses revealed stable and typical diurnal (morning-to-evening) cortisol activity among community comparison children. Foster children in the intervention condition exhibited cortisol activity that became comparable to the comparison group children over the course of the study. In contrast, children in regular foster care condition exhibited increasingly flattened morning-to-evening cortisol activity over the course of the study. In sum, improvements in caregiving following early adversity appear to have the potential to reverse or prevent disruptions in HPA axis functioning. PMID:17656028
Simic, Iva; Mitic, Milos; Djordjevic, Jelena; Radojcic, Marija; Adzic, Miroslav
2012-05-01
Chronic psychosocial isolation (CPSI) is known to cause several maladaptive changes in the limbic brain structures, which regulate the hypothalamic-pituitary-adrenal (HPA) axis activity. In this study, we focused our investigation on CPSI effects in the hypothalamus (HT) since it is a major driver of HPA axis activity. We also investigated whether the exposure to CPSI could alter the response to subsequent acute stress (30-min immobilization). In the HT, we followed cytosolic and nuclear levels of the glucocorticoid receptor (GR), as a mediator of HPA axis feedback inhibition, and its chaperones, the heat shock proteins (HSPs), hsp70 and hsp90. The CPSI did not cause any changes in either GR or HSPs levels. However, we observed increase of the GR and hsp70 in both HT cellular compartments as a response of naïve rats to acute stress, whereas the response of CPSI rats to acute stress was associated with elevation of the GR in the cytosol and decrease of HSPs in the nucleus. Thus, our data indicated reduced availability of HSPs to GR in both cytosol and nucleus of the HT under acute stress of CPSI animals, and therefore, pointed out to potentially negative effects of CPSI on GR function in the HT.
Haller, József
2018-01-01
This review argues for a central role of the lateral hypothalamus in those deviant forms of aggression, which result from chronic glucocorticoid deficiency. Currently, this nucleus is considered a key region of the mechanisms that control predatory aggression. However, recent findings demonstrate that it is strongly activated by aggression in subjects with a chronically downregulated hypothalamus-pituitary-adrenocortical (HPA) axis; moreover, this activation is causally involved in the emergence of violent aggression. The review has two parts. In the first part, we review human findings demonstrating that under certain conditions, strong stressors downregulate the HPA-axis on the long run, and that the resulting glucocorticoid deficiency is associated with violent aggression including aggressive delinquency and aggression-related psychopathologies. The second part addresses neural mechanisms in animals. We show that the experimental downregulation of HPA-axis function elicits violent aggression in rodents, and the activation of the brain circuitry that originally subserves predatory aggression accompanies this change. The lateral hypothalamus is not only an integral part of this circuitry, but can elicit deviant and violent forms of aggression. Finally, we formulate a hypothesis on the pathway that connects unfavorable social conditions to violent aggression via the neural circuitry that includes the lateral hypothalamus.
Booij, Linda; Wang, Dongsha; Lévesque, Mélissa L; Tremblay, Richard E; Szyf, Moshe
2013-01-01
The functioning of the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic (5-HT) system are known to be intertwined with mood. Alterations in these systems are often associated with depression. However, neither are sufficient to cause depression in and of themselves. It is now becoming increasingly clear that the environment plays a crucial role, particularly, the perinatal environment. In this review, we posit that early environmental stress triggers a series of epigenetic mechanisms that adapt the genome and programme the HPA axis and 5-HT system for survival in a harsh environment. We focus on DNA methylation as it is the most stable epigenetic mark. Given that DNA methylation patterns are in large part set within the perinatal period, long-term gene expression programming by DNA methylation is especially vulnerable to environmental insults during this period. We discuss specific examples of genes in the 5-HT system (serotonin transporter) and HPA axis (glucocorticoid receptor and arginine vasopressin enhancer) whose DNA methylation state is associated with early life experience and may potentially lead to depression vulnerability. We conclude with a discussion on the relevance of studying epigenetic mechanisms in peripheral tissue as a proxy for those occurring in the human brain and suggest avenues for future research.
Booij, Linda; Wang, Dongsha; Lévesque, Mélissa L.; Tremblay, Richard E.; Szyf, Moshe
2013-01-01
The functioning of the hypothalamic–pituitary–adrenal (HPA) axis and serotonergic (5-HT) system are known to be intertwined with mood. Alterations in these systems are often associated with depression. However, neither are sufficient to cause depression in and of themselves. It is now becoming increasingly clear that the environment plays a crucial role, particularly, the perinatal environment. In this review, we posit that early environmental stress triggers a series of epigenetic mechanisms that adapt the genome and programme the HPA axis and 5-HT system for survival in a harsh environment. We focus on DNA methylation as it is the most stable epigenetic mark. Given that DNA methylation patterns are in large part set within the perinatal period, long-term gene expression programming by DNA methylation is especially vulnerable to environmental insults during this period. We discuss specific examples of genes in the 5-HT system (serotonin transporter) and HPA axis (glucocorticoid receptor and arginine vasopressin enhancer) whose DNA methylation state is associated with early life experience and may potentially lead to depression vulnerability. We conclude with a discussion on the relevance of studying epigenetic mechanisms in peripheral tissue as a proxy for those occurring in the human brain and suggest avenues for future research. PMID:23440465
Raff, Hershel; Sharma, Susmeeta T; Nieman, Lynnette K
2014-04-01
The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing's syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing's syndrome). Endogenous Cushing's syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing's syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. © 2014 American Physiological Society.
Raff, Hershel; Sharma, Susmeeta T.; Nieman, Lynnette K.
2014-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing’s syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing’s syndrome). Endogenous Cushing’s syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing’s syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. PMID:24715566
Du, Xin; Pang, Terence Y.
2015-01-01
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic–pituitary–adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer’s, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies. PMID:25806005
Spiga, F; Harrison, L R; Wood, S A; Atkinson, H C; MacSweeney, C P; Thomson, F; Craighead, M; Grassie, M; Lightman, S L
2007-11-01
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised both by an ultradian pulsatile pattern of glucocorticoid secretion and an endogenous diurnal rhythm. Glucocorticoid feedback plays a major role in regulating HPA axis activity and this mechanism occurs via two different receptors: mineralocorticoid (MR) and glucocorticoid receptors (GR). In the present study, the effects of both acute and subchronic treatment with the GR antagonist Org 34850 on basal and stress-induced HPA axis activity in male rats were evaluated. To investigate the effect of Org 34850 on basal diurnal corticosterone rhythm over the 24-h cycle, an automated blood sampling system collected samples every 10 min. Acute injection of Org 34850 (10 mg/kg, s.c.) did not affect basal or stress-induced corticosterone secretion, but was able to antagonise the inhibitory effect of the glucocorticoid agonist methylprednisolone on stress-induced corticosterone secretion. However, 5 days of treatment with Org 34850 (10 mg/kg, s.c., two times a day), compared to rats treated with vehicle (5% mulgofen in 0.9% saline, 1 ml/kg, s.c.), increased corticosterone secretion over the 24-h cycle and resulted in changes in the pulsatile pattern of hormone release, but had no significant effect on adrenocorticotrophic hormone secretion or on stress-induced corticosterone secretion. Subchronic treatment with Org 34850 did not alter GR mRNA expression in the hippocampus, paraventricular nucleus of the hypothalamus or anterior-pituitary, or MR mRNA expression in the hippocampus. Our data suggest that a prolonged blockade of GRs is required to increase basal HPA axis activity. The changes observed here with ORG 34850 are consistent with inhibition of GR-mediated negative feedback of the HPA axis. In light of the evidence showing an involvement of dysfunctional HPA axis in the pathophysiology of depression, Org 34850 could be a potential treatment for mood disorders.
75 FR 10255 - FIFRA Scientific Advisory Panel; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... this meeting is a discretionary function of the Agency. The selection of scientists to serve on FIFRA SAP is based on the function of the panel and the expertise needed to address the Agency's charge to... on the hypothalamic-pituitary-adrenal (HPA) axis, immune system, prostate, brain, and the enzyme...
ERIC Educational Resources Information Center
Sheridan, Margaret A.; How, Joan; Araujo, Melanie; Schamberg, Michelle A.; Nelson, Charles A.
2013-01-01
The association of parental social status with multiple health and achievement indicators in adulthood has driven researchers to attempt to identify mechanisms by which social experience in childhood could shift developmental trajectories. Some accounts for observed linkages between parental social status in childhood and health have hypothesized…
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice
Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.
2014-01-01
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.
Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G
2014-10-15
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.
Wang, Yi; Zhang, Qiongyue; Yang, Jianzhi; Zhao, Xiaolong; He, Min; Shou, Xuefei; Li, Shiqi; Li, Yiming; Wang, Yongfei; Ye, Hongying
2015-09-01
Hypopituitarism is defined as the partial or complete defect of anterior pituitary hormone secretion. Patients with hypopituitarism usually need life-long hormone replacement therapy. However, in this case, we report a patient with panhypopituitarism whose hypothalamus-pituitary-adrenal (HPA) axis function was completely recovered after pregnancy and delivery. In this case study, we reported the case management and conducted a review of literature to identify the possible mechanism of pituitary function recovery. The patient who suffered from secondary amenorrhea was found a nonfunctioning pituitary macroadenoma, and the hormone test showed serum cortisol, FT3, FT4, thyrotropic hormone, and prolactin were at normal range. After surgical removal of the tumor which invasion in the sellar region, the patient had panhypopituitarism confirmed by the routine hormone test. Though spontaneous pregnancy is impossible in female patients with panhypopituitarism, the patient was restored fertility by the help of artificial reproductive techniques. After the confirmation of the pregnancy, levothyroixine was increased to 75 μg daily and readjusted to 150 μg daily before delivery according to the monthly measurement thyroid function. Hydrocortisone 10 mg daily replaced cortisone acetate; the dose was increased according to the symptoms of morning sickness. A single stress dose of hydrocortisone (200 mg) was used before elective cesarean delivery and was tapered to the dose of 10 mg per day in 1 week. Levothyroixine was reduced to 75 μg daily after delivery. During follow-up, her hypothalamus-pituitary-adrenal (HPA) axis function was completely recovered. The peak serum cortisol level could increase to 19.08 μg/dL by insulin-induced hypoglycemia. However, growth hormone remained unresponsive to the insulin-tolerance test, and thyroid hormone still needed exogenous supplementation. Hormone replacement therapy needed closely followed by endocrinologist and multidisciplinary cooperation during the pregnancy of patients with hypopituitarism. This case indicates that the pituitary function may partially recover after pregnancy in panhypopituitarism patients.
Farrell, Chloё; Doolin, Kelly; O' Leary, Niamh; Jairaj, Chaitra; Roddy, Darren; Tozzi, Leonardo; Morris, Derek; Harkin, Andrew; Frodl, Thomas; Nemoda, Zsófia; Szyf, Moshe; Booij, Linda; O'Keane, Veronica
2018-07-01
Depression is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis activity. A proposed mechanism to explain these alterations are changes in DNA methylation levels, secondary to early life adversity (ELA), at stress-related genes. Two gene regions that have been implicated in the literature, the glucocorticoid receptor gene (NR3C1) exon 1F and the FKBP5 gene intron 7 were examined in 67 individuals (33 depressed patients and 34 controls). We investigated whether cortisol concentrations, evaluated in 25 depressed patients and 20 controls, and measures of ELA were associated with the degree of methylation at these candidate gene regions. Mean NR3C1 exon 1F DNA methylation levels were significantly increased in the depressed cohort and the degree of methylation was found to be positively associated with morning cortisol concentrations. DNA methylation levels at specific CG sites within the NR3C1 exon 1F were related to childhood emotional abuse severity. DNA methylation at CG38 was related to both HPA axis and childhood emotional abuse measures in the depressed group. No FKBP5 differences were revealed. Our findings suggest that hypermethylation at the NR3C1 exon 1F may occur in depression. This locus-specific epigenetic change is associated with higher basal HPA axis activity, possibly reflecting acquired glucocorticoid receptor resistance. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Previously we reported that a single dose of ATR herbicide stimulated HPA axis activation in the male rat while its primary metabolite, DACT, did so to a lesser extent. In this study, we evaluated the effects of ATR, DACT, and an intermediate metabolite, DIA, on adrenocorticotrop...
Allostasis model facilitates understanding race differences in the diurnal cortisol rhythm
Skinner, Martie L.; Shirtcliff, Elizabeth A.; Haggerty, Kevin P.; Coe, Christopher L.; Catalano, Richard F.
2012-01-01
The concept of allostasis suggests that greater cumulative stress burden can influence stress-responsive physiology. Dysregulation of allostatic mediators, including the hypothalamic-pituitary-adrenal (HPA) axis, is thought to precede many other signs of age-related pathology as the persistent burden of stressors accumulates over the individual's lifespan. We predicted that even in young adulthood, HPA regulation would differ between Blacks and Whites reflecting, in part, higher rates of stressor exposure and greater potential for stressors to “get under the skin”. We examined whether stressor exposure, including experiences with racism and discrimination, explained race differences in waking cortisol and the diurnal rhythm. We also examined whether HPA functioning was associated with mental health outcomes previously linked to cortisol. Salivary cortisol was assayed in 275 young adults (127 Blacks, 148 Whites, 19 to 22 years old), four times a day across 3 days. Hierarchical linear models revealed flatter slopes for Blacks, reflecting significantly lower waking and higher bedtime cortisol levels compared to Whites. Associations of HPA functioning with stressors were typically more robust for Whites such that more stress exposure created an HPA profile that resembled that of Black young adults. For Blacks, greater stressor exposure did not further impact HPA functioning, or, when significant, was often associated with higher cortisol levels. Across both races, flatter slopes generally indicated greater HPA dysregulation and were associated with poor mental health outcomes. These differential effects were more robust for Whites. These findings support an allostatic model in which social contextual factors influence normal biorhythms, even as early as young adulthood. PMID:22018088
Hyper- and hypocortisolism in bipolar disorder - A beneficial influence of lithium on the HPA-axis?
Maripuu, Martin; Wikgren, Mikael; Karling, Pontus; Adolfsson, Rolf; Norrback, Karl-Fredrik
2017-04-15
A hyperactive hypothalamic-pituitary-adrenal axis (HPA-axis) is a well-known phenomenon in bipolar disorder (BD). However, hypocortisolism has also been described and found associated with depression, low quality of life and cardiovascular risk factors in BD patients. Although the pathophysiology related to hypocortisolism in BD is largely unknown, hypocortisolism is associated with chronic stress exposure and after inducing an initial rise in cortisol long-term stress may result in a transition to hypocortisolism. BD patients are throughout life often exposed to chronic stress. We therefore hypothesized that higher age would be associated with lower HPA-axis activity especially among patients without previous mood stabilizing treatment. This cross-sectional study consisted of 159 bipolar outpatients and 258 controls. A low-dose-dexamethasone-suppression-test (DST) was used to measure HPA-axis activity. Patients with BD showed a negative association between post DST cortisol and age (-3.0 nmol/l per year; p=0.007). This association gradually increased in subgroups that were naïve to lithium (-7.7 nmol/l per year; p=0.001) and "all mood stabilizers" (-11.4 nmol/l per year; p=0.004). Patients exhibiting hypercortisolism were characterized by younger age and female gender, whereas patients exhibiting hypocortisolism were characterized by long disease duration without prophylactic lithium treatment as well as absence of current lithium medication. Cross sectional study design. There was a negative association between HPA-axis activity and age in BD, rendering BD patients at risk for developing hypocortisolism. This association was most pronounced among patients without previous or current lithium prophylaxis. Copyright © 2017 Elsevier B.V. All rights reserved.
Jansen, Steffy W; Roelfsema, Ferdinand; Akintola, Abimbola A; Oei, Nicole Y; Cobbaert, Christa M; Ballieux, Bart E; van der Grond, Jeroen; Westendorp, Rudi G; Pijl, Hanno; van Heemst, Diana
2015-01-01
The hypothalamic-pituitary-adrenal (HPA)-axis is the most important neuro-endocrine stress response system of our body which is of critical importance for survival. Disturbances in HPA-axis activity have been associated with adverse metabolic and cognitive changes. Humans enriched for longevity have less metabolic and cognitive disturbances and therefore diminished activity of the HPA axis may be a potential candidate mechanism underlying healthy familial longevity. Here, we compared 24-h plasma ACTH and serum cortisol concentration profiles and different aspects of the regulation of the HPA-axis in offspring from long-lived siblings, who are enriched for familial longevity and age-matched controls. Case-control study within the Leiden Longevity study cohort consisting of 20 middle-aged offspring of nonagenarian siblings (offspring) together with 18 partners (controls). During 24 h, venous blood was sampled every 10 minutes for determination of circulatory ACTH and cortisol concentrations. Deconvolution analysis, cross approximate entropy analysis and ACTH-cortisol-dose response modeling were used to assess, respectively, ACTH and cortisol secretion parameters, feedforward and feedback synchrony and adrenal gland ACTH responsivity. Mean (95% Confidence Interval) basal ACTH secretion was higher in male offspring compared to male controls (645 (324-1286) ngl/L/24 h versus 240 (120-477) ng/L/24 h, P = 0.05). Other ACTH and cortisol secretion parameters did not differ between offspring and controls. In addition, no significant differences in feedforward and feedback synchrony and adrenal gland ACTH responsivity were observed between groups. These results suggest that familial longevity is not associated with major differences in HPA-axis activity under resting conditions, although modest, sex-specific differences may exist between groups that might be clinically relevant.
Sasayama, Daimei; Hori, Hiroaki; Iijima, Yoshimi; Teraishi, Toshiya; Hattori, Kotaro; Ota, Miho; Fujii, Takashi; Higuchi, Teruhiko; Amano, Naoji; Kunugi, Hiroshi
2011-07-05
Recently, hypothalamus-pituitary-adrenal (HPA) axis function assessed with the combined dexamethasone (DEX)/corticotropin releasing hormone (CRH) test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944) in the interleukin-1beta (IL-1β) gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years). Five tagging single nucleotide polymorphisms (SNPs) of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944) were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA) was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values < 0.01 were considered statistically significant for associations between the genotypes and the cortisol levels. The cortisol levels after DEX administration (DST-Cortisol) showed significant associations with the genotypes of rs16944 (P = 0.00049) and rs1143633 (P = 0.0060), with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol) were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into the communication between the immune system and the HPA axis.
2011-01-01
Background Recently, hypothalamus-pituitary-adrenal (HPA) axis function assessed with the combined dexamethasone (DEX)/corticotropin releasing hormone (CRH) test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944) in the interleukin-1beta (IL-1β) gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. Methods DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years). Five tagging single nucleotide polymorphisms (SNPs) of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944) were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA) was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values < 0.01 were considered statistically significant for associations between the genotypes and the cortisol levels. Results The cortisol levels after DEX administration (DST-Cortisol) showed significant associations with the genotypes of rs16944 (P = 0.00049) and rs1143633 (P = 0.0060), with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol) were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Conclusions Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into the communication between the immune system and the HPA axis. PMID:21726461
Calhoun, Casey D; Helms, Sarah W; Heilbron, Nicole; Rudolph, Karen D; Hastings, Paul D; Prinstein, Mitchell J
2014-08-01
Adolescents' peer experiences may have significant associations with biological stress-response systems, adding to or reducing allostatic load. This study examined relational victimization as a unique contributor to reactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as friendship quality and behavior as factors that may promote HPA recovery following a stressor. A total of 62 adolescents (ages 12-16; 73% female) presenting with a wide range of life stressors and adjustment difficulties completed survey measures of peer victimization and friendship quality. Cortisol samples were collected before and after a lab-based interpersonally themed social stressor task to provide measures of HPA baseline, reactivity, and recovery. Following the stressor task, adolescents discussed their performance with a close friend; observational coding yielded measures of friends' responsiveness. Adolescents also reported positive and negative friendship qualities. Results suggested that higher levels of adolescents' relational victimization were associated with blunted cortisol reactivity, even after controlling for physical forms of victimization and other known predictors of HPA functioning (i.e., life stress or depressive symptoms). Friendship qualities (i.e., low negative qualities) and specific friendship behaviors (i.e., high levels of responsiveness) contributed to greater HPA regulation; however, consistent with theories of rumination, high friend responsiveness in the context of high levels of positive friendship quality contributed to less cortisol recovery. Findings extend prior work on the importance of relational victimization and dyadic peer relations as unique and salient correlates of adaptation in adolescence.
CALHOUN, CASEY D.; HELMS, SARAH W.; HEILBRON, NICOLE; RUDOLPH, KAREN D.; HASTINGS, PAUL D.; PRINSTEIN, MITCHELL J.
2014-01-01
Adolescents’ peer experiences may have significant associations with biological stress-response systems, adding to or reducing allostatic load. This study examined relational victimization as a unique contributor to reactive hypothalamic–pituitary–adrenal (HPA) axis responses as well as friendship quality and behavior as factors that may promote HPA recovery following a stressor. A total of 62 adolescents (ages 12–16; 73% female) presenting with a wide range of life stressors and adjustment difficulties completed survey measures of peer victimization and friendship quality. Cortisol samples were collected before and after a lab-based interpersonally themed social stressor task to provide measures of HPA baseline, reactivity, and recovery. Following the stressor task, adolescents discussed their performance with a close friend; observational coding yielded measures of friends’ responsiveness. Adolescents also reported positive and negative friendship qualities. Results suggested that higher levels of adolescents’ relational victimization were associated with blunted cortisol reactivity, even after controlling for physical forms of victimization and other known predictors of HPA functioning (i.e., life stress or depressive symptoms). Friendship qualities (i.e., low negative qualities) and specific friendship behaviors (i.e., high levels of responsiveness) contributed to greater HPA regulation; however, consistent with theories of rumination, high friend responsiveness in the context of high levels of positive friendship quality contributed to less cortisol recovery. Findings extend prior work on the importance of relational victimization and dyadic peer relations as unique and salient correlates of adaptation in adolescence. PMID:25047287
Key Role of CRF in the Skin Stress Response System
Zmijewski, Michal A.; Zbytek, Blazej; Tobin, Desmond J.; Theoharides, Theoharis C.; Rivier, Jean
2013-01-01
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis. PMID:23939821
Hryhorczuk, Cecile; Décarie-Spain, Léa; Sharma, Sandeep; Daneault, Caroline; Rosiers, Christine Des; Alquier, Thierry; Fulton, Stephanie
2017-09-01
Overconsumption of dietary fat can elicit impairments in emotional processes and the response to stress. While excess dietary lipids have been shown to alter hypothalamus-pituitary-adrenal (HPA) axis function and promote anxiety-like behaviour, it is not known if such changes rely on elevated body weight and if these effects are specific to the type of dietary fat. The objective of this study was to investigate the effect of a saturated and a monounsaturated high-fat diet (HFD) on HPA axis function and anxiety-like behaviour in rats. Biochemical, metabolic and behavioural responses were evaluated following eight weeks on one of three diets: (1) a monounsaturated HFD (50%kcal olive oil), (2) a saturated HFD (50%kcal palm oil), or (3) a control low-fat diet. Weight gain was similar across the three diets while visceral fat mass was elevated by the two HFDs. The saturated HFD had specific actions to increase peak plasma levels of corticosterone and tumour-necrosis-factor-alpha and suppress mRNA expression of glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase-1 in the paraventricular nucleus of the hypothalamus. Both HFDs enhanced the corticosterone-suppressing response to dexamethasone administration without affecting the physiological response to a restraint stress and failed to increase anxiety-like behaviour as measured in the elevated-plus maze and open field tests. These findings demonstrate that prolonged intake of saturated fat, without added weight gain, increases CORT and modulates central HPA feedback processes. That saturated HFD failed to affect anxiety-like behaviour can suggest that the anxiogenic effects of prolonged high-fat feeding may rely on more pronounced metabolic dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of the Hypothalamic-Pituitary-Adrenal Axis in Developmental Programming of Health and Disease
Xiong, Fuxia; Zhang, Lubo
2012-01-01
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth. PMID:23200813
Holsen, Laura M.; Lancaster, Katie; Klibanski, Anne; Whitfield-Gabrieli, Susan; Cherkerzian, Sara; Buka, Stephen; Goldstein, Jill M.
2013-01-01
Decades of clinical and basic research indicate significant links between altered hypothalamic-pituitary-adrenal (HPA)-axis hormone dynamics and major depressive disorder (MDD). Recent neuroimaging studies of MDD highlight abnormalities in stress response circuitry regions which play a role in the regulation of the HPA-axes. However, there is a dearth of research examining these systems in parallel, especially as related to potential trait characteristics. The current study addresses this gap by investigating neural responses to a mild visual stress challenge with real-time assessment of adrenal hormones in women with MDD in remission and controls. 15 women with recurrent MDD in remission (rMDD) and 15 healthy control women were scanned on a 3T Siemens MR scanner while viewing neutral and negative (stress-evoking) stimuli. Blood samples were obtained before, during, and after scanning for measurement of HPA-axis hormone levels. Compared to controls, rMDD women demonstrated higher anxiety ratings, increased cortisol levels, and hyperactivation in the amygdala and hippocampus, p<0.05, FWE-corrected in response to the stress challenge. Among rMDD women, amygdala activation was negatively related to cortisol changes and positively associated with duration of remission. Findings presented here provide evidence for differential effects of altered HPA-axis hormone dynamics on hyperactivity in stress response circuitry regions elicited by a well-validated stress paradigm in women with recurrent MDD in remission. PMID:23891965
Holochwost, Steven J; Gariépy, Jean-Louis; Mills-Koonce, W Roger; Propper, Cathi B; Kolacz, Jacek; Granger, Douglas A
2017-07-01
This study examined individual differences in the function of the hypothalamic-pituitary-adrenal (HPA) axis with regard to age and cumulative risk during challenging laboratory tasks administered at 6, 12, 24, and 36 months. Saliva samples were collected from a majority-minority sample of N=185 children (57% African American, 50% female) prior to and following these tasks and later assayed for cortisol. Cumulative distal risk was indexed via a composite of maternal marital status, maternal education, income-to-needs ratio, the number of children in the household, and maternal age at childbirth. Probing of hierarchical models in which cortisol levels and age were nested within child revealed significant differences in cortisol as a function of both age and cumulative risk, such that children exposed to high levels of risk exhibited higher levels of cortisol both within and across age. These results highlight the sensitivity of the HPA axis to environmental context at the level of the individual, even as that sensitivity is manifest against the background of species-typical biological development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salis, Katie Lee; Bernard, Kristin; Black, Sarah R; Dougherty, Lea R; Klein, Daniel
2016-09-01
Previous literature indicates that both hypoactivity and hyperactivity of the HPA axis may be related to conduct disorder and externalizing behaviors in young children. Using a longitudinal sample of 283 typically-developing children, the current study examined both the concurrent and the longitudinal association between HPA functioning and externalizing behavior problems, such as conduct problems. Diurnal cortisol rhythms and externalizing problems were assessed at ages 6 and 9. Results suggest that concurrent HPA functioning is not significantly related to externalizing behavior at ages 6 or 9. However, more blunted cortisol rhythms at age 6 (less change across the day from morning to evening) predicted a greater increase in externalizing behavior between age 6 and age 9 than did steeper cortisol rhythms. Further analyses revealed that this association was driven by conduct problems and aggressive behavior, rather than attention problems. The relationship between HPA functioning and subsequent externalizing behavior in children adds to the limited longitudinal work on this topic, suggesting that the association changes over time. These results may serve to clarify the inconsistencies in the cross-sectional literature, particularly with respect to young school-age children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salis, Katie Lee; Bernard, Kristin; Black, Sarah R.; Dougherty, Lea R.; Klein, Daniel
2017-01-01
Previous literature indicates that both hypoactivity and hyperactivity of the HPA axis may be related to conduct disorder and externalizing behaviors in young children. Using a longitudinal sample of 283 typically-developing children, the current study examined both the concurrent and the longitudinal association between HPA functioning and externalizing behavior problems, such as conduct problems. Diurnal cortisol rhythms and externalizing problems were assessed at ages 6 and 9. Results suggest that concurrent HPA functioning is not significantly related to externalizing behavior at ages 6 or 9. However, more blunted cortisol rhythms at age 6 (less change across the day from morning to evening) predicted a greater increase in externalizing behavior between age 6 and age 9 than did steeper cortisol rhythms. Further analyses revealed that this association was driven by conduct problems and aggressive behavior, rather than attention problems. The relationship between HPA functioning and subsequent externalizing behavior in children adds to the limited longitudinal work on this topic, suggesting that the association changes over time. These results may serve to clarify the inconsistencies in the cross-sectional literature, particularly with respect to young school-age children. PMID:27266968
Rodgers, Ali B.; Morgan, Christopher P.; Bronson, Stefanie L.; Revello, Sonia; Bale, Tracy L.
2013-01-01
Neuropsychiatric disease frequently presents with an underlying hypo- or hyper- reactivity of the HPA stress axis, suggesting an exceptional vulnerability of this circuitry to external perturbations. Parental lifetime exposures to environmental challenges are associated with increased offspring neuropsychiatric disease risk, and likely contribute to stress dysregulation. While maternal influences have been extensively examined, much less is known regarding the specific role of paternal factors. To investigate the potential mechanisms by which paternal stress may contribute to offspring hypothalamic-pituitary-adrenal (HPA) axis dysregulation, we exposed mice to six weeks of chronic stress prior to breeding. As epidemiological studies support variation in paternal germ cell susceptibility to reprogramming across the lifespan, male stress exposure occurred either throughout puberty or in adulthood. Remarkably, offspring of sires from both paternal stress groups displayed significantly reduced HPA axis stress responsivity. Gene set enrichment analyses in offspring stress regulating brain regions, the paraventricular nucleus (PVN) and the bed nucleus of stria terminalis (BNST), revealed global pattern changes in transcription suggestive of epigenetic reprogramming and consistent with altered offspring stress responsivity, including increased expression of glucocorticoid-responsive genes in the PVN. In examining potential epigenetic mechanisms of germ cell transmission, we found robust changes in sperm miRNA (miR) content, where nine specific miRs were significantly increased in both paternal stress groups. Overall, these results demonstrate that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk. PMID:23699511
ERIC Educational Resources Information Center
Knack, Jennifer M.; Jensen-Campbell, Lauri A.; Baum, Andrew
2011-01-01
Adolescents (N = 107; M = 12.23 years, SD = 1.09 months) participated in a two-part study examining peer victimization, neuroendocrine functioning, and physical health. In phase 1, adolescents completed questionnaires assessing peer victimization and health. They returned for phase 2 which consisted of two sessions. In session 1, adolescents…
We previously reported that a single dose of the herbicide ATR stimulated the HPA axis in the male rat while equimolar doses of its primary metabolite, DACT, had a minimal effect. In this study, we evaluated the effects of one or four daily doses of ATR, DACT, and an intermediat...
Lenaert, Bert; Barry, Tom J; Schruers, Koen; Vervliet, Bram; Hermans, Dirk
2016-01-01
Hypothalamic-pituitary-adrenal (HPA) axis irregularities have been associated with several psychological disorders. Hence, the identification of individual difference variables that predict variations in HPA-axis activity represents an important challenge for psychiatric research. We investigated whether self-reported attentional control in emotionally demanding situations prospectively predicted changes in diurnal salivary cortisol secretion following exposure to a prolonged psychosocial stressor. Low ability to voluntarily control attention has previously been associated with anxiety and depressive symptomatology. Attentional control was assessed using the Emotional Attentional Control Scale. In students who were preparing for academic examination, salivary cortisol was assessed before (time 1) and after (time 2) examination. Results showed that lower levels of self-reported emotional attentional control at time 1 (N=90) predicted higher absolute diurnal cortisol secretion and a slower decline in cortisol throughout the day at time 2 (N=71). Difficulty controlling attention during emotional experiences may lead to chronic HPA-axis hyperactivity after prolonged exposure to stress. These results indicate that screening for individual differences may foster prediction of HPA-axis disturbances, paving the way for targeted disorder prevention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Faure, Jacqueline; Uys, Joachim D K; Marais, Lelanie; Stein, Dan J; Daniels, Willie M U
2006-09-01
Early adverse life events, followed by subsequent stressors, appear to increase susceptibility for subsequent onset of psychiatric disorders in humans. The molecular mechanisms that underlie this phenomenon remain unclear, but dysregulation of the HPA axis and alterations in neurotrophic factors have been implicated. The present study investigated the effects in rodents of early maternal separation, followed by stress in adolescence and adulthood on later HPA-axis activity and hippocampal neurotrophin levels (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3). Animals subjected to repeated stressors showed a significant decrease in basal ACTH (p < 0.05) and CORT (p < 0.05) levels when compared to controls, as well as significantly increased levels of NGF in the dorsal (p < 0.001) and ventral hippocampus (p < 0.01), and of NT-3 in the dorsal hippocampus (p < 0.01). Dysregulation of the HPA axis after multiple stressors is consistent with previous preclinical and clinical work. Given that neurotrophins are important in neuronal survival and plasticity, it is possible to speculate that their elevation reflects a compensatory mechanism.
Apter-Levi, Yael; Pratt, Maayan; Vakart, Adam; Feldman, Michal; Zagoory-Sharon, Orna; Feldman, Ruth
2016-02-01
Maternal depression across the first years of life negatively impacts children's development. One pathway of vulnerability may involve functioning of the hypothalamic-pituitary-adrenal (HPA) axis. We utilize a community cohort of 1983 women with no comorbid risk repeatedly assessed for depression from birth to six years to form two groups; chronically depressed (N=40) and non-depressed (N=91) women. At six years, mother and child underwent psychiatric diagnosis, child salivary cortisol (CT) was assessed three times during a home-visit, mother-child interaction was videotaped, and child empathy was coded from behavioral paradigms. Latent Growth curve Model using Structural Equation Modeling (SEM) estimated the links between maternal depression and mother's negative parenting and three child outcomes; psychopathology, social withdrawal, and empathy as related to child CT baseline and variability. Depressed mothers displayed more negative parenting and their children showed more Axis-I psychopathology and social withdrawal. SEM analysis revealed that maternal depression was associated with reduced CT variability, which predicted higher child psychopathology and social withdrawal. Whereas all children exhibited similar initial levels of CT, children of controls reduced CT levels over time while children of depressed mothers maintained high, non-flexible levels. Mother negativity was related to lower initial CT levels, which predicted decreased empathy. Findings suggest that chronic maternal depression may compromise children's social-emotional adjustment by diminishing HPA-system flexibility as well as limiting the mother's capacity to provide attuned and predictable caregiving. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuentes, Silvia; Carrasco, Javier; Armario, Antonio; Nadal, Roser
2014-08-01
Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23-28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors. Copyright © 2014 Elsevier Inc. All rights reserved.
Pituitary Volume Prospectively Predicts Internalizing Symptoms in Adolescence
ERIC Educational Resources Information Center
Zipursky, Amy R.; Whittle, Sarah; Yucel, Murat; Lorenzetti, Valentina; Wood, Stephen J.; Lubman, Dan I.; Simmons, Julian G.; Allen, Nicholas B.
2011-01-01
Background: Early adolescence is a critical time for the development of both internalizing and externalizing disorders. We aimed to investigate whether pituitary volume, an index of hypothalamic-pituitary-adrenal (HPA) axis function, represents a vulnerability factor for the emergence of internalizing and externalizing symptoms during adolescence…
Armario, Antonio; Vallès, Astrid; Dal-Zotto, Silvina; Márquez, Cristina; Belda, Xavier
2004-09-01
Although some laboratories have reported that a single session of stress is able to induce a long-lasting sensitisation of the hypothalamic-pituitary-adrenal (HPA) response to further exposures to stress, we have found that a single exposure to severe emotional (immobilisation, restraint or shock) or systemic (endotoxin) stressors reduces the responsiveness of the HPA to the same, but not to a novel (heterotypic), stressor, in which case a slight sensitisation was observed. Long-term desensitisation has been found to reduce not only secretion of peripheral HPA hormones (ACTH and corticosterone), but also to reduce responses of central components of the HPA axis (c-fos and CRF gene expression at the level of the paraventricular nucleus of the hypothalamus, PVN). In addition, desensitisation also applies to the impact of the stressor on food intake and, probably, to stress-induced hyperglycaemia. The development of long-term desensitisation of the HPA axis does not appear to be a universal consequence of exposure to severe stressors as it was not observed in response to insulin-induced hypoglycaemia. Whether or not the development of long-term effects of stress depend on the specific pathways activated by particular stressors remains to be tested. The observed desensitisation of the HPA axis in response to the homotypic stressor shows two special features which makes it difficult to be interpreted in terms of an habituation-like process: (a) the effect increased with time (days to weeks) elapsed between the first and second exposure to the stressor, suggesting a progressive maturational process; and (b) the stronger the stressor the greater the long-term desensitisation. Therefore, it is possible that desensitisation of the HPA axis is the sum of two different phenomena: long-term effects and habituation-like processes. The contribution of the former may be more relevant with severe stressors and longer inter-stress intervals, and that of the latter with mild stressors and repeated exposures. Long-term stress-induced changes may not take place at the level of the PVN itself, but in brain nuclei showing synaptic plasticity and putatively involved in the control of the HPA axis and other physiological responses. As for the precise areas involved, these remain to be characterized.
Effects of Early-Life Adversity on Hippocampal Structures and Associated HPA Axis Functions.
Dahmen, Brigitte; Puetz, Vanessa B; Scharke, Wolfgang; von Polier, Georg G; Herpertz-Dahlmann, Beate; Konrad, Kerstin
2018-01-01
Early-life adversity (ELA) is one of the major risk factors for serious mental and physical health risks later in life. ELA has been associated with dysfunctional neurodevelopment, especially in brain structures such as the hippocampus, and with dysfunction of the stress system, including the hypothalamic-pituitary-adrenal (HPA) axis. Children who have experienced ELA are also more likely to suffer from mental health disorders such as depression later in life. The exact interplay of aberrant neurodevelopment and HPA axis dysfunction as risks for psychopathology is not yet clear. We investigated volume differences in the bilateral hippocampus and in stress-sensitive hippocampal subfields, behavior problems, and diurnal cortisol activity in 24 children who had experienced documented ELA (including out-of-home placement) in a circumscribed duration of adversity only in their first 3 years of life in comparison to data on 25 control children raised by their biological parents. Hippocampal volumes and stress-sensitive hippocampal subfields (Cornu ammonis [CA]1, CA3, and the granule-cell layer of the dentate gyrus [GCL-DG]) were significantly smaller in children who had experienced ELA, taking psychiatric diagnoses and dimensional psychopathological symptoms into account. ELA moderated the relationship between left hippocampal volume and cortisol: in the control group, hippocampal volumes were not related to diurnal cortisol, while in ELA children, a positive linear relationship between left hippocampal volume and diurnal cortisol was present. Our findings show that ELA is associated with altered development of the hippocampus, and an altered relationship between hippocampal volume and HPA axis activity in youth in care, even after they have lived in stable and caring foster family environments for years. Altered hippocampal development after ELA could thus be associated with a risk phenotype for the development of psychiatric disorders later in life. © 2017 S. Karger AG, Basel.
Sinha, Rajita; Fox, Helen C; Hong, Kwang-Ik Adam; Hansen, Julie; Tuit, Keri; Kreek, Mary Jeanne
2011-09-01
Alcoholism is a chronic, relapsing illness in which stress and alcohol cues contribute significantly to relapse risk. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased anxiety, and high alcohol craving have been documented during early alcohol recovery, but their influence on relapse risk has not been well studied. To investigate these responses in treatment-engaged, 1-month-abstinent, recovering alcohol-dependent patients relative to matched controls (study 1) and to assess whether HPA axis function, anxiety, and craving responses are predictive of subsequent alcohol relapse and treatment outcome (study 2). Experimental exposure to stress, alcohol cues, and neutral, relaxing context to provoke alcohol craving, anxiety, and HPA axis responses (corticotropin and cortisol levels and cortisol to corticotropin ratio) and a prospective 90-day follow-up outcome design to assess alcohol relapse and aftercare treatment outcomes. Inpatient treatment in a community mental health center and hospital-based research unit. Treatment-engaged alcohol-dependent individuals and healthy controls. Time to alcohol relapse and to heavy drinking relapse. Significant HPA axis dysregulation, marked by higher basal corticotropin level and lack of stress- and cue-induced corticotropin and cortisol responses, higher anxiety, and greater stress- and cue-induced alcohol craving, was seen in the alcohol-dependent patients vs the control group. Stress- and cue-induced anxiety and stress-induced alcohol craving were associated with fewer days in aftercare alcohol treatment. High provoked alcohol craving to both stress and to cues and greater neutral, relaxed-state cortisol to corticotropin ratio (adrenal sensitivity) were each predictive of shorter time to alcohol relapse. These results identify a significant effect of high adrenal sensitivity, anxiety, and increased stress- and cue-induced alcohol craving on subsequent alcohol relapse and treatment outcomes. Findings suggest that new treatments that decrease adrenal sensitivity, stress- and cue-induced alcohol craving, and anxiety could be beneficial in improving alcohol relapse outcomes.
Eriksson, C J P; Etelälahti, T J; Apter, S J
2017-06-01
A number of studies have shown that stress and an activated hypothalamic-pituitary-adrenal (HPA) axis are associated with increased voluntary alcohol drinking. Recently, associations have been found between activated HPA and hypothalamic-pituitary-gonadal (HPG) axes in alcohol-preferring AA and non-preferring ANA, F2 (crossbred second generation from original AA and ANA), and Wistar rats. The aim of the present study has been to determine the role of corticosterone and alcohol-related testosterone-effects in subsequent alcohol drinking in AA, ANA, F2 and Wistar rats. The present study comprises of four substudies presenting new analyses of existing data, by which correlations between basal corticosterone levels, changes in testosterone levels during alcohol intoxications and subsequent voluntary alcohol consumption are investigated. The results displayed positive correlations between basal corticosterone levels and subsequent alcohol-mediated testosterone elevations, which was positively associated with voluntary alcohol consumption. The results also showed a negative correlation between basal corticosterone levels and alcohol-mediated testosterone decreases, which was negatively associated with alcohol consumption. In conclusion, the present study displays novel results, according to which the HPA axis, one hand, relates to testosterone elevation (potentially causing and/or strengthening reinforcement) during alcohol intoxication, which in turn may relate to higher voluntary alcohol consumption (AA rats). Vice versa, the HPA axis may also relate to alcohol-mediated testosterone decrease (causing testosterone reduction and disinforcement) and low-alcohol drinking (ANA, F2 and Wistar rats). In addition, the present results showed that alcohol-mediated testosterone changes may also, independently of the HPA axis, correlate with voluntary alcohol drinking, which indicate the impact of genetic factors. Thus, the role of the HPA-axis may be more related to situational stress than to intrinsic factors. In further studies, it should be investigated, whether the present results also apply to stress and human alcohol drinking. Copyright © 2017 Elsevier Inc. All rights reserved.
Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress
NASA Technical Reports Server (NTRS)
Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.
2002-01-01
Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under conditions of long total sleep deprivation but also after repeated sleep curtailment.
Thayer, Zaneta M; Wilson, Meredith A; Kim, Andrew W; Jaeggi, Adrian V
2018-03-21
Prenatal exposure to maternal stress is commonly associated with variation in Hypothalamic Pituitary Adrenal (HPA)-axis functioning in offspring. However, the strength or consistency of this response has never been empirically evaluated across vertebrate species. Here we meta-analyzed 114 results from 39 studies across 14 vertebrate species using Bayesian phylogenetic mixed-effects models. We found a positive overall effect of prenatal stress on offspring glucocorticoids (d' = 0.43) though the 95% Highest Posterior Density Interval overlapped with 0 (-0.16-0.95). Meta-regressions of potential moderators highlighted that phylogeny and life history variables predicted relatively little variation in effect size. Experimental studies (d' = 0.64) produced stronger effects than observational ones (d' = -0.01), while prenatal stress affected glucocorticoid recovery following offspring stress exposure more strongly (d' = 0.75) than baseline levels (d' = 0.48) or glucocorticoid peak response (d' = 0.36). These findings are consistent with the argument that HPA-axis sensitivity to prenatal stress is evolutionarily ancient and occurs regardless of a species' overall life history strategy. These effects may therefore be especially important for mediating intra-specific life-history variation. In addition, these findings suggest that animal models of prenatal HPA-axis programming may be appropriate for studying similar effects in humans.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Energetic stress: The reciprocal relationship between energy availability and the stress response.
Harrell, C S; Gillespie, C F; Neigh, G N
2016-11-01
The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lengua, Liliana J.; Zalewski, Maureen; Fisher, Phil; Moran, Lyndsey
2013-01-01
The effects of low income on children's adjustment might be accounted for by disruptions to hypothalamic-pituitary-adrenal (HPA)-axis activity and to the development of effortful control. Using longitudinal data and a community sample of preschool-age children (N?=?306, 36-39?months) and their mothers, recruited to over-represent low-income…
Baugh, Alexander T; Davidson, Sarah C; Hau, Michaela; van Oers, Kees
2017-09-01
Variation in the reactivity of the endocrine stress axis is thought to underlie aspects of persistent individual differences in behavior (i.e. animal personality). Previous studies, however, have focused largely on estimating baseline or peak levels of glucocorticoids (CORT), often in captive animals. In contrast, the temporal dynamics of the HPA axis-how quickly it turns on and off, for example-may better indicate how an individual copes with stressors. Moreover, these HPA components might be correlated, thereby representing endocrine suites. Using wild-caught great tits (Parus major) we tested birds for exploratory behavior using a standardized novel environment assay that serves as a validated proxy for personality. We then re-captured a subset of these birds (n=85) and characterized four components of HPA physiology: baseline, endogenous stress response, a dexamethasone (DEX) challenge to estimate the strength of negative feedback, and an adrenocorticotropic hormone (ACTH) challenge to estimate adrenal capacity. We predicted that these four HPA responses would be positively correlated and that less exploratory birds would have a more rapid onset of the stress response (a CORT elevation during the baseline bleed) and weaker negative feedback (higher CORT after DEX). We found support for the first two predictions but not the third. All four components were positively correlated with each other and less exploratory birds exhibited an elevation in CORT during the baseline bleed (<3min from capture). Less exploratory birds, however, did not exhibit weaker negative feedback following the DEX challenge, but did exhibit weaker adrenal capacity. Together, our findings provide partial support for the hypothesis that the temporal reactivity of the HPA axis is linked with consistent individual differences in behavior, with more cautious (slower exploring) individuals exhibiting a faster CORT response. Copyright © 2017 Elsevier Inc. All rights reserved.
Conrad, Cheryl D; Bimonte-Nelson, Heather A
2010-01-01
Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease. Copyright 2010 Elsevier B.V. All rights reserved.
Surapaneni, Dinesh Kumar; Adapa, Sree Rama Shiva Shanker; Preeti, Kumari; Teja, Gangineni Ravi; Veeraragavan, Muruganandam; Krishnamurthy, Sairam
2012-08-30
Shilajit has been used as a rejuvenator for ages in Indian ancient traditional medicine and has been validated for a number of pharmacological activities. The effect of processed shilajit which was standardized to dibenzo-α-pyrones (DBPs;0.43% w/w), DBP-chromoproteins (DCPs; 20.45% w/w) and fulvic acids (56.75% w/w) was evaluated in a rat model of chronic fatigue syndrome (CFS). The mitochondrial bioenergetics and the activity of hypothalamus-pituitary-adrenal (HPA) axis were evaluated for the plausible mechanism of action of shilajit. CFS was induced by forcing the rats to swim for 15mins for 21 consecutive days. The rats were treated with shilajit (25, 50 and 100mg/kg) for 21 days before exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility and the climbing period. The post-CFS anxiety level was assessed by elevated plus maze (EPM) test. Plasma corticosterone and adrenal gland weight were estimated as indices of HPA axis activity. Analysis of mitochondrial complex chain enzymes (Complex I, II, IV and V) and mitochondrial membrane potential (MMP) in prefrontal cortex (PFC) were performed to evaluate the mitochondrial bioenergetics and integrity respectively. Shilajit reversed the CFS-induced increase in immobility period and decrease in climbing behavior as well as attenuated anxiety in the EPM test. Shilajit reversed CFS-induced decrease in plasma corticosterone level and loss of adrenal gland weight indicating modulation of HPA axis. Shilajit prevented CFS-induced mitochondrial dysfunction by stabilizing the complex enzyme activities and the loss of MMP. Shilajit reversed CFS-induced mitochondrial oxidative stress in terms of NO concentration and, LPO, SOD and catalase activities. The results indicate that shilajit mitigates the effects of CFS in this model possibly through the modulation of HPA axis and preservation of mitochondrial function and integrity. The reversal of CFS-induced behavioral symptoms and mitochondrial bioenergetics by shilajit indicates mitochondria as a potential target for treatment of CFS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hostinar, Camelia E.; Sullivan, Regina M.; Gunnar, Megan R.
2013-01-01
Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as two of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the lifespan that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social. PMID:23607429
Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.
Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana
2017-10-16
The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.
Harris, Breanna N.; Saltzman, Wendy; de Jong, Trynke R.; Milnes, Matthew R.
2012-01-01
The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamicpituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24 hours, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5 mg/kg, s.c.) was required to suppress plasma CORT for 8 h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from 3H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2–4 h post-injection whereas mice injected during the morning did so at 14–16 h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays. PMID:23026495
Cardoso, Christopher; Kingdon, Danielle; Ellenbogen, Mark A
2014-11-01
A large body of research has examined the acute effects of intranasal oxytocin administration on social cognition and stress-regulation. While progress has been made with respect to understanding the effect of oxytocin administration on social cognition in clinical populations (e.g. autism, schizophrenia), less is known about its impact on the functioning of the hypothalamic-pituitary-adrenal (HPA) axis among individuals with a mental disorder. We conducted a meta-analysis on the acute effect of intranasal oxytocin administration on the cortisol response to laboratory tasks. The search yielded eighteen studies employing a randomized, placebo-controlled design (k=18, N=675). Random-effects models and moderator analyses were performed using the metafor package for the statistical program R. The overall effect size estimate was modest and not statistically significant (Hedges g=-0.151, p=0.11) with moderate heterogeneity in this effect across studies (I(2)=31%). Controlling for baseline differences in cortisol concentrations, moderation analyses revealed that this effect was larger in response to challenging laboratory tasks that produced a robust stimulation of the HPA-axis (Hedges g=-0.433, 95% CI[-0.841, -0.025]), and in clinical populations relative to healthy controls (Hedges g=-0.742, 95% CI[-1.405, -0.078]). Overall, oxytocin administration showed greater attenuation of the cortisol response to laboratory tasks that strongly activated the HPA-axis, relative to tasks that did not. The effect was more robust among clinical populations, suggesting possible increased sensitivity to oxytocin among those with a clinical diagnosis and concomitant social difficulties. These data support the view that oxytocin may play an important role in HPA dysfunction associated with psychopathology. Copyright © 2014 Elsevier Ltd. All rights reserved.
The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids
Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.
2015-01-01
The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907
Wheatland, R
2005-01-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a commonly recognized feature of many pathological conditions. Abnormal adrenal responses to experimental manipulation have been well documented in patients suffering from chronic fatigue syndrome, anorexia nervosa and major depression. Yet no defect of any single organ, gland or brain region has been identified as a cause of these abnormalities. The disruption of the HPA axis that occurs in these conditions can be understood if an interfering factor is present in these patients. Evidence indicates that this interfering factor is adrenocorticotropin hormone (ACTH) autoantibodies. Chronic high levels of ACTH autoantibodies will significantly disrupt the HPA axis and force the body to compensate for an impaired cortisol response. The resulting effect of chronic ACTH autoantibody interference is the manifestation of adrenocortical insufficient symptoms and psychological disturbances. Some symptoms of chronic fatigue syndrome, anorexia nervosa and major depression, such as anxiety, are the adverse effects of mechanisms compensating for less effective ACTH due to autoantibodies. Furthermore, these patients engage in extraordinary behaviors, such as self-injury, to increase their cortisol levels. When this compensation is inadequate, symptoms of adrenocortical insufficiency appear. Corticosteroid supplements have been demonstrated to be an effective treatment for chronic fatigue syndrome, anorexia nervosa and major depression. It allows the patients to have the corticosteroids they require for daily functioning and daily stressors. This therapy will relieve the patients of their symptoms of adrenocortical insufficiency and permit their cortisol-stimulating mechanisms to operate at levels that will not cause pathological problems.
Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser
2014-11-01
In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Lei A; de Kloet, Annette D; Smeltzer, Michael D; Cahill, Karlena M; Hiller, Helmut; Bruce, Erin B; Pioquinto, David J; Ludin, Jacob A; Katovich, Michael J; Raizada, Mohan K; Krause, Eric G
2018-05-01
This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Few long-term consequences after prolonged maternal separation in female Wistar rats
Abelson, Klas S. P.; Nylander, Ingrid; Roman, Erika
2017-01-01
Environmental factors during the early-life period are known to have long-term consequences for the adult phenotype. An intimate interplay between genes and environment shape the individual and may affect vulnerability for psychopathology in a sex-dependent manner. A rodent maternal separation model was here used to study the long-term effects of different early-life rearing conditions on adult behavior, HPA axis activity and long-term voluntary alcohol intake in female rats. Litters were subjected to 15 min (MS15) or 360 min (MS360) of daily maternal separation during postnatal day 1–21. In adulthood, the behavioral profiles were investigated using the multivariate concentric square field™ (MCSF) test or examined for HPA axis reactivity by cat-odor exposure with subsequent characterization of voluntary alcohol intake and associated changes in HPA axis activity. Adult female MS360 offspring showed mostly no, or only minor, effects on behavior, HPA axis reactivity and long-term alcohol intake relative to MS15. Instead, more pronounced effects were found dependent on changes in the natural hormonal cycle or by the choice of animal supplier. However, changes were revealed in corticosterone load after long-term alcohol access, as females subjected to MS360 had higher concentrations of fecal corticosterone. The present findings are in line with and expand on previous studies on the long-term effects of maternal separation in female rats with regard to behavior, HPA axis activity and voluntary alcohol intake. It can also be a window into further studies detailing how early-life experiences interact with other risk and protective factors to impact the adult phenotype and how possible sex differences play a role. PMID:29267376
Ralph, C.R.; Tilbrook, A.J.
2016-01-01
Activation of the hypothalamo-pituitary-adrenal (HPA) axis by psychosocial stress is attenuated during lactation. We tested the hypothesis that lactating ewes will have attenuated HPA axis responses to isolation and restraint but will have greater responses to predator stress in the form of barking dogs. We imposed two 4 h stressors: psychosocial stress (isolation and restraint of ewes) and predator stress (barking dogs). Blood was collected intravenous every 10 min from nonlactating ewes (n = 6), lactating ewes with lambs present but not able to be suckled (n = 6), and lactating ewes with lambs present and able to be suckled (n = 6). Plasma cortisol and oxytocin were measured. For nonlactating ewes, cortisol increased (P < 0.01) in response to both stressors, and these increases were greater (P < 0.01) than that in the lactating animals. For lactating ewes with lambs present but unable to be suckled, cortisol increased (P < 0.05) in response to both stressors with a greater response to barking dogs (P < 0.05). For lactating ewes with lambs present and able to be suckled, cortisol increased (P < 0.01) in response to barking dogs only. Plasma oxytocin was greater (P < 0.01) in lactating ewes than in nonlactating ewes and did not change in response to the stressors. In conclusion, lactating ewes are likely to have a greater HPA axis response to a stressor that may be perceived to threaten the welfare of themselves and/or their offspring. The role of oxytocin in attenuation of the HPA axis to stress in sheep is unclear from the current research and requires further investigation. PMID:26773370
The adrenocortical response of tufted puffin chicks to nutritional deficits
Kitaysky, A.S.; Romano, Marc D.; Piatt, John F.; Wingfield, J.C.; Kikuchi, M.
2005-01-01
In several seabirds, nutritional state of a nest-bound chick is negatively correlated with the activity of its hypothalamus-pituitary-adrenal (HPA) axis. Increased corticosterone (cort) secretion has been shown to facilitate changes in behavior that allow hungry chicks to obtain more food from parents. However, if parents are not willing/able to buffer their young from temporary food shortages, increased cort secretion could be detrimental to undernourished chicks. In a system where parents are insensitive to chick demands, low benefits and high costs of activation of the HPA-axis in hungry chicks should lead to a disassociation of the nutritional state of the young and the activity of its HPA-axis. We tested this novel hypothesis for the tufted puffin (Fratercula cirrhata), a seabird with intermittent provisioning of a nest-bound semi-precocial chick. We examined the HPA-axis activity of captive chicks exposed to the following: (1) a short-term (24 h) food deprivation; and (2) an array of prolonged (3 weeks) restrictions in feeding regimens. We found that in response to a short-term food deprivation chicks decreased baseline levels of cort and thyroid hormones. In response to prolonged restrictions, food-limited chicks exhibited signs of nutritional deficit: they had lower body mass, endogenous lipid reserves, and thyroid hormone titers compared to chicks fed ad libitum. However, baseline and maximum acute stress-induced levels of cort were also lower in food-restricted chicks compared to those of chicks fed ad libitum. These results support a major prediction of the study hypothesis that puffin chicks suppress HPA-axis activity in response to short- and long-term nutritional deficits. This physiological adaptation may allow a chick to extend its development in the nest, while eluding detrimental effects of chronic cort elevation.
Straub, Rainer H; Detert, Jaqueline; Dziurla, René; Fietze, Ingo; Loeschmann, Peter-Andreas; Burmester, Gerd R; Buttgereit, Frank
2017-01-01
Rheumatoid arthritis (RA) patients have sleep problems, and inflammation influences sleep. We demonstrated that sleep quality improves during intensified treatment with methotrexate (MTX) or etanercept (ETA). Since the hypothalamic-pituitary-adrenal (HPA) axis is involved in sleep regulation, this study investigated the interrelation between sleep parameters, inflammation as objectified by C-reactive protein (CRP), and serum cortisol and adrenocorticotropic hormone (ACTH) levels. Thirty-one eligible patients (disease activity score, DAS28CRP ≥3.2) participated in a 16-week, open, prospective study of HPA axis outcomes. MTX was initiated in 15 patients (female-to-male ratio 9/6) and ETA in 16 patients (14/2). Clinical, laboratory (after polysomnography [PSG] between 8 and 9 a.m.), sleep (PSG), and HPA axis outcome parameters (after PSG between 8 and 9 a.m.) were recorded at baseline and week 16. Clinical characteristics of patients markedly improved throughout the study (e.g., DAS28CRP: p < 0.001; CRP: p < 0.001). Sleep efficiency and wake time after sleep onset markedly improved in the ETA group. Serum cortisol and ACTH did not change during observation. At baseline, serum cortisol levels were negatively correlated to sleep efficiency; this may depend on inflammation, because controlling for CRP eliminated this negative correlation. After ETA treatment, serum cortisol had a high positive correlation with total sleep time, sleep efficiency, and a negative correlation with wake time before and after sleep onset, which was not eliminated by controlling for CRP. In RA patients, the data indicate that inflammation is an important covariate for the crosstalk of sleep and the HPA axis. © 2017 S. Karger AG, Basel.
Gerritsen, Lotte; Milaneschi, Yuri; Vinkers, Christiaan H; van Hemert, Albert M; van Velzen, Laura; Schmaal, Lianne; Penninx, Brenda Wjh
2017-11-01
Stress responses are controlled by the hypothalamus pituitary adrenal (HPA)-axis and maladaptive stress responses are associated with the onset and maintenance of stress-related disorders such as major depressive disorder (MDD). Genes that play a role in the HPA-axis regulation may likely contribute to the relation between relevant neurobiological substrates and stress-related disorders. Therefore, we performed gene-wide analyses for 30 a priori literature-based genes involved in HPA-axis regulation in 2014 subjects (34% male; mean age: 42.5) to study the relations with lifetime MDD diagnosis, cortisol awakening response, and dexamethasone suppression test (DST) levels (subsample N=1472) and hippocampal and amygdala volume (3T MR images; subsample N=225). Additionally, gene by childhood maltreatment (CM) interactions were investigated. Gene-wide significant results were found for dexamethasone suppression (CYP11A1, CYP17A1, POU1F1, AKR1D1), hippocampal volume (CYP17A1, CYP11A1, HSD3B2, PROP1, AVPRA1, SRD5A1), amygdala volume (POMC, CRH, HSD3B2), and lifetime MDD diagnosis (FKBP5 and CRH), all permutation p-values<0.05. Interactions with CM were found for several genes; the strongest interactions were found for NR3C2, where the minor allele of SNP rs17581262 was related to smaller hippocampal volume, smaller amygdala volume, higher DST levels, and higher odds of MDD diagnosis only in participants with CM. As hypothesized, several HPA-axis genes are associated with stress-related endophenotypes including cortisol response and reduced brain volumes. Furthermore, we found a pleiotropic interaction between CM and the mineralocorticoid receptor gene, suggesting that this gene plays an important moderating role in stress and stress-related disorders.
Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes
Maniam, Jayanthi; Antoniadis, Christopher; Morris, Margaret J.
2014-01-01
Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be addressed. PMID:24860550
Goel, Aneesh Paul; Nguyen, Vu Huy; Hamill-Ruth, Robin
2015-12-01
Patients who present for steroid injections are not routinely screened for potential hypothalamic-pituitary-adrenal (HPA) axis suppression from previous steroid exposure. Patients often receive various steroid therapies that are not reported by the patient or recorded in available medical records. Yet, HPA axis suppression has been reported with a single intra-articular injection. An IRB-approved quality improvement questionnaire was implemented to comprehensively screen patients for risk of HPA axis suppression secondary to prior and/or concurrent corticosteroid use. This questionnaire was given to adult patients seen in a University Pain Management Clinic, who were being considered for a steroid injection, to define the extent of exposure to corticosteroids either by mouth, topically, inhaled, or systemic/local injection within the past 6 months. Two hundred patients completed the questionnaire. Eighty-nine patients (44.5%) screened positive for significant steroid exposure with a screen score of three or above. The average score for the screen positive group was 6.31 ± 3.47 (range 3-22). Women were 1.9 times more likely to screen positive than men (53.4% vs 27.5%, P < 0.0004). Otherwise, the screen positive and screen negative groups were similar in demographic characteristics (age, BMI, and diabetes status). Our results suggest that patients receive steroids from many sources and may be at risk for HPA axis suppression. Further testing is necessary to determine if these patients indeed have biochemical evidence of adrenal suppression. Utilization of a screening questionnaire might help identify patients who should be considered for HPA axis testing prior to steroid injections. Wiley Periodicals, Inc.
Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno
2015-01-01
Stress-induced activation of the hypothalamo–pituitary–adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604
Schwandt, Melanie L; Cortes, Carlos R; Kwako, Laura E; George, David T; Momenan, Reza; Sinha, Rajita; Grigoriadis, Dimitri E; Pich, Emilio Merlo; Leggio, Lorenzo; Heilig, Markus
2016-01-01
Blockade of corticotropin-releasing factor receptor 1 (CRF1) suppresses stress-induced alcohol seeking in rodents, but clinical translation remains. Here, we first showed that the CRF1 antagonist verucerfont potently blocks hypothalamic-pituitary adrenal (HPA) axis activation in adrenalectomized rats. We then evaluated verucerfont for its ability to block HPA axis activation and reduce stress-induced alcohol craving in alcohol-dependent patients. Anxious, alcohol-dependent women (age 21–65 years, n=39) were admitted to the NIH Clinical Center and completed withdrawal treatment before enrollment if needed. One-week single-blind placebo was followed by randomized double-blind verucerfont (350 mg per day) or placebo for 3 weeks. Verucerfont effects on the HPA axis were evaluated using the dexamethasone-CRF test. Craving was evaluated using two established protocols, one that combines a social stressor with physical alcohol cue exposure, and one that uses guided imagery to present personalized stress, alcohol, or neutral stimuli. An fMRI session examined brain responses to negative affective stimuli and alcohol cues. In contrast to our recent observations with another CRF1 antagonist, pexacerfont, verucerfont potently blocked the HPA axis response to the dexamethasone-CRF test, but left alcohol craving unaffected. Right amygdala responses to negative affective stimuli were significantly attenuated by verucerfont, but responses to alcohol-associated stimuli were increased in some brain regions, including left insula. Discontinuation rates were significantly higher in the verucerfont group. Our findings provide the first translational evidence that CRF1 antagonists with slow receptor dissociation kinetics may have increased efficacy to dampen HPA axis responses. The findings do not support a clinical efficacy of CRF1 blockade in stress-induced alcohol craving and relapse. PMID:27109623
van Andel, Hans W H; Jansen, Lucres M C; Grietens, Hans; Knorth, Erik J; van der Gaag, Rutger Jan
2014-01-01
Young foster children undergo an early separation from their caregiver(s) and often experience severe stress before placement. However, a considerable part of the children do not show apparent signs of distress, making it difficult for the foster carer to be aware of the amount of stress in their foster child. Potential evidence for using salivary cortisol levels as a dimension to evaluate the amount of stress in young foster children is reviewed. Moreover, the applicability of salivary cortisol in the evaluation of stress-reducing interventions for young foster children is discussed. A systematic review was performed using the databases Medline, Psychinfo, Embase, Ebscohost, and Academic Search Premier. Nine studies were traced in which salivary cortisol was used to measure stress in children placed in family foster care or in adoptive families. Stress in general but also neglect, early loss of a caregiver, a younger age at first placement, and a higher number of placements were associated with an altered hypothalamic-pituitary-adrenal (HPA) axis function in foster children. Moreover, four studies on the effect of stress-reducing interventions on HPA-axis functioning of young foster children were found. These studies suggest that caregiver-based interventions can actually help to normalize the HPA-axis function in foster children, and that such changes co-occur with improved behavioral functioning. Although the results from the papers discussed in this review suggest that diurnal cortisol with a wake up and a bedtime measurement may be a relevant tool to evaluate stress in young foster children, this cannot yet be concluded from the present studies, because statistical data from the studies on foster care and adoption in this review were not robust and researchers used different methods to collect the salivary cortisol. Still, it is noteworthy that all studies did find the same pattern of reduced levels in relation to chronic stress (caused by maltreatment and neglect of the child).
Wang, Limin; Wang, Qian; Li, Guimei; Liu, Wendong
2015-09-01
The objective of this study was to investigate changes in the hypothalamic-pituitary-adrenal (HPA) axis after recombinant human growth hormone (rhGH) therapy. Subjects included children with growth hormone deficiency (GHD). We conducted a multicenter, retrospective study that assessed 72 GHD patients treated with rhGH during 6 months. Patients were classified into two groups: isolated GHD (IGHD; n=20) and multiple pituitary hormone deficiencies (MPHD; n=52). The HPA axis and other hormones were evaluated at baseline and every 3 months. In the MPHD group, 32 patients had adrenocorticotrophic hormone deficiency and received hydrocortisone before rhGH therapy. In the other 20/52 MPHD patients, the cortisol (COR) level was significantly reduced after rhGH therapy. Moreover, 10 patients showed low COR levels. In the IGHD group, COR levels also decreased, but remained within the normal range. During rhGH therapy, COR levels were reduced, particularly in patients with MPHD. HPA axis should be monitored during rhGH therapy.
Li-Tempel, Ting; Larra, Mauro F; Winnikes, Ulrike; Tempel, Tobias; DeRijk, Roel H; Schulz, André; Schächinger, Hartmut; Meyer, Jobst; Schote, Andrea B
2016-09-01
The hypothalamus-pituitary-adrenal (HPA) axis is a crucial endocrine system for coping with stress. A reliable and stable marker for the basal state of that system is the cortisol awakening response (CAR). We examined the influence of variants of four relevant candidate genes; the mineralocorticoid receptor gene (MR), the glucocorticoid receptor gene (GR), the serotonin transporter gene (5-HTT) and the gene encoding the brain-derived neurotrophic factor (BDNF) on CAR and self-perceived stress in 217 healthy subjects. We found that polymorphisms of GR influenced both, the basal state of the HPA axis as well as self-perceived stress. MR only associated with self-perceived stress and 5-HTT only with CAR. BDNF did not affected any of the investigated indices. In summary, we suggest that GR variants together with the CAR and supplemented with self reports on perceived stress might be useful indicators for the basal HPA axis activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Naidenko, S V; Ivanov, E A; Lukarevskiĭ, V S; Hernandez-Blanko, J A; Sorokin, P A; Litvinov, M N; Kotliar, A K; Rozhnov, V V
2011-01-01
A noninvasive evaluation method of hypothalamo-pituitary-adrenals axis (HPA) activity in the Siberian tiger was verified. Comparison of the activity level of HPA in Siberian tigers in the wild and in captivity, and their alterations over the year was carried out. Significant seasonal deviations between activity levels of HPA in tigers in captivity were not found. In the wild, this level was significantly higher, reaching the maximum from November to January, which can be related with an unfavorable influence on tigers in low temperatures and deep snow cover.
Reynaert, Marie-Line; Marrocco, Jordan; Gatta, Eleonora; Mairesse, Jérôme; Van Camp, Gilles; Fagioli, Francesca; Maccari, Stefania; Nicoletti, Ferdinando; Morley-Fletcher, Sara
Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.
Bonnavion, Patricia; Jackson, Alexander C; Carter, Matthew E; de Lecea, Luis
2015-02-19
The hypothalamic-pituitary-adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses.
Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis.
Fuite, Jim; Vernon, Suzanne D; Broderick, Gordon
2008-12-01
This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic-pituitary-adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.
Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.
Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio
2015-01-01
Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.
Wetherell, Mark A; Montgomery, Catharine
2014-04-01
Ecstasy (MDMA) is a psychostimulant drug which is increasingly associated with psychobiological dysfunction. While some recent studies suggest acute changes in neuroendocrine function, less is known about long-term changes in HPA functionality in recreational users. The current study is the first to explore the effects of ecstasy-polydrug use on psychological distress and basal functioning of the HPA axis through assessing the secretion of cortisol across the diurnal period. Seventy-six participants (21 nonusers, 29 light ecstasy-polydrug users, 26 heavy ecstasy-polydrug users) completed a substance use inventory and measures of psychological distress at baseline, then two consecutive days of cortisol sampling (on awakening, 30 min post awakening, between 1400 and 1600 hours and pre bedtime). On day 2, participants also attended the laboratory to complete a 20-min multitasking stressor. Both user groups exhibited significantly greater levels of anxiety and depression than nonusers. On day 1, all participants exhibited a typical cortisol profile, though light users had significantly elevated levels pre-bed. On day 2, heavy users demonstrated elevated levels upon awakening and all ecstasy-polydrug users demonstrated elevated pre-bed levels compared to non-users. Significant between group differences were also observed in afternoon cortisol levels and in overall cortisol secretion across the day. The increases in anxiety and depression are in line with previous observations in recreational ecstasy-polydrug users. Dysregulated diurnal cortisol may be indicative of inappropriate anticipation of forthcoming demands and hypersecretion may lead to the increased psychological and physical morbidity associated with heavy recreational use of ecstasy.
Interaction of brain noradrenergic system and the hypothalamic-pituitary-adrenal (HPA) axis in man.
Young, Elizabeth A; Abelson, James L; Cameron, Oliver G
2005-09-01
Numerous interactions between the brainstem locus coeruleus system and the HPA axis have been shown in experimental animals. This relationship is less well characterized in humans and little is known about the influence of psychiatric disorders, which disturb one of these systems, on this relationship. Untreated subjects with pure MDD (n = 13), MDD with comorbid anxiety disorders (n = 17), and pure anxiety disorders (n = 15) were recruited by advertising. Age and sex matched control subjects were recruited for each subject with a psychiatric diagnosis (n = 45). All subjects underwent a social stressor, the Trier Social Stress Test (TSST), and blood was collected for ACTH assay. These same subjects also underwent a clonidine challenge study for assessment of growth hormone release as a marker of tonic noradrenergic activation. Examining log transformed area under the curve response for each hormone, a significant negative relationship (simple regression) was observed between systems in normal subjects. This relationship was preserved in anxiety subjects. However, both pure depressed and comorbid depressed and anxiety subjects demonstrated disruption of this relationship. Under normal circumstances, noradrenergic systems can influence the magnitude of the HPA axis response to stress. However, in subjects with major depression, HPA axis activation appears autonomous of noradrenergic influence.
Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar
2015-01-01
Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.
Wieczorek, Marek; Dunn, Adrian J.
2007-01-01
Peripheral administration of interleukin-1 (IL-1) is known to activate the hypothalamo–pituitary–adrenal axis (HPA axis) and brain noradrenergic systems. We studied the relationship between these responses using in vivo microdialysis to assess the release of hypothalamic norepinephrine (NE), while simultaneously sampling blood for ACTH and corticosterone, and monitoring body temperature and behavior in freely moving rats. Rats were implanted with microdialysis probes in the medial hypothalamus, with intravenous catheters, and with telethermometers in the abdomen. Each rat was injected with saline and IL-1β (1 μg ip) in random order, monitoring microdialysate NE, body temperature and plasma ACTH and corticosterone for 2–4 h after injection. Saline injections were followed by transient increases in microdialysate NE and in plasma ACTH and corticosterone. IL-1β injections resulted in prolonged elevations of microdialysate NE, as well as plasma ACTH and corticosterone, and body temperature. IL-1β also induced shivering and a prolonged depression of locomotor activity. Pretreatment with indomethacin (10 mg/kg sc) prevented the IL-1β-induced increases in body temperature and the apparent increase in hypothalamic NE release, but only attenuated the IL-1β-induced shivering and the increase in plasma ACTH. The results indicate a close temporal relationship between the release of NE and HPA axis activation. Such a relationship is also supported by the similar effects of indomethacin pretreatment on NE and ACTH. The shivering is likely involved in the increase in body temperature, but indomethacin only attenuated the shivering while it blocked the fever. However, the effects of indomethacin clearly indicate that neither the increase in body temperature nor the increase in hypothalamic NE release was essential for HPA axis activation. These results suggest that hypothalamic NE is involved in the IL-1-induced HPA axis activation, but that this is not the only mechanism by which the HPA axis is activated by intraperitoneally injected IL-1. PMID:16330180
Wieczorek, Marek; Dunn, Adrian J
2006-09-01
Peripheral administration of interleukin-1 (IL-1) is known to activate the hypothalamo-pituitary-adrenal axis (HPA axis) and brain noradrenergic systems. We studied the relationship between these responses using in vivo microdialysis to assess the release of hypothalamic norepinephrine (NE), while simultaneously sampling blood for ACTH and corticosterone, and monitoring body temperature and behavior in freely moving rats. Rats were implanted with microdialysis probes in the medial hypothalamus, with intravenous catheters, and with telethermometers in the abdomen. Each rat was injected with saline and IL-1beta (1 microg ip) in random order, monitoring microdialysate NE, body temperature and plasma ACTH and corticosterone for 2-4 h after injection. Saline injections were followed by transient increases in microdialysate NE and in plasma ACTH and corticosterone. IL-1beta injections resulted in prolonged elevations of microdialysate NE, as well as plasma ACTH and corticosterone, and body temperature. IL-1beta also induced shivering and a prolonged depression of locomotor activity. Pretreatment with indomethacin (10 mg/kg sc) prevented the IL-1beta-induced increases in body temperature and the apparent increase in hypothalamic NE release, but only attenuated the IL-1beta-induced shivering and the increase in plasma ACTH. The results indicate a close temporal relationship between the release of NE and HPA axis activation. Such a relationship is also supported by the similar effects of indomethacin pretreatment on NE and ACTH. The shivering is likely involved in the increase in body temperature, but indomethacin only attenuated the shivering while it blocked the fever. However, the effects of indomethacin clearly indicate that neither the increase in body temperature nor the increase in hypothalamic NE release was essential for HPA axis activation. These results suggest that hypothalamic NE is involved in the IL-1-induced HPA axis activation, but that this is not the only mechanism by which the HPA axis is activated by intraperitoneally injected IL-1.
ALLEN, Camryn D.; LEE, Soon; KOOB, George F.; RIVIER, Catherine
2011-01-01
Alcohol stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Part of this influence is likely exerted directly at the level of the corticotropin-releasing factor (CRF) gene, but intermediates may also play a role. Here we review the effect of alcohol on this axis, provide new data on the effects of binge drinking during adolescence, and argue for a role of catecholaminergic circuits. Indeed, acute injection of this drug activates brain stem adrenergic and noradrenergic circuits, and their lesion, or blockade of α1 adrenergic receptors significantly blunts alcohol-induced ACTH release. As alcohol can influence the HPA axis even once discontinued, and alcohol consumption in young people is associated with increased adult drug abuse (a phenomenon possibly mediated by the HPA axis), we determined whether alcohol consumption during adolescence modified this axis. The number of CRF-immunoreactive (ir) cells/section was significantly decreased in the central nucleus of the amygdala of adolescent self-administering binge-drinking animals, compared to controls. When another group of adolescent binge-drinking rats was administered alcohol in adulthood, the number of colocalized c-fos-ir and PNMT-ir cells/brain stem section in the C3 area was significantly decreased, compared to controls. As the HPA axis response to alcohol is blunted in adult rats exposed to alcohol vapors during adolescence, a phenomenon which was not observed in our model of self-administration, it is possible that the blood alcohol levels achieved in various models play a role in the long-term consequences of exposure to alcohol early in life. Collectively, these results suggest an important role of brain catecholamines in modulating the short- and long-term consequences of alcohol administration. PMID:21300146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury of hippocampus in IUGR offspring rats.« less
Hidalgo, Vanesa; Almela, Mercedes; Pulopulos, Matias M; Salvador, Alicia
2016-09-01
There are large individual differences in age-related cognitive decline. Hypothalamic-pituitary-adrenal axis (HPA-axis) functioning has been suggested as one of the mechanisms underlying these differences. This study aimed to investigate the relationships between the diurnal cortisol cycle, measured as the cortisol awakening response (CAR), and the diurnal cortisol slope (DCS) and the memory performance of healthy older people. To do so, we assessed the verbal, visual, and working memory performance of 64 participants (32 men) from 57 to 76 years old who also provided 14 saliva samples on two consecutive weekdays to determine their diurnal cortisol cycle. The CAR was linearly and negatively associated with verbal (significantly) and visual (marginally) memory domains, but not with working memory. Sex did not moderate these relationships. Furthermore, no associations were found between the DCS and any of the three memory domains assessed. Our results indicate that the two components of the diurnal cortisol cycle have different relationships with memory performance, with the CAR being more relevant than DCS in understanding the link from HPA-axis activity and regulation to different types of memory. These results suggest that the CAR is related to memory domains dependent on hippocampal functioning (i.e., declarative memory), but not to those that are more dependent on prefrontal cortex functioning (i.e., working memory). Copyright © 2016 Elsevier Ltd. All rights reserved.
Morrow, A. Leslie; Porcu, Patrizia; Boyd, Kevin N.; Grant, Kathleen A.
2006-01-01
Activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to élévations in γ-aminobutyric acid (GABA)-ergic neuroactive steroids that enhance GABA neurotransmission and restore homeostasis following stress. This régulation of the HPA axis maintains healthy brain function and protects against neuropsychiatrie disease. Ethanol sensitivity is influenced by élévations in neuroactive steroids that enhance the GABAergic effects of ethanol, and mayprevent excessive drinking in rodents and humans. Low ethanol sensitivity is associated with greater alcohol consumption and increased risk ofalcoholism. Indeed, ethanol-dependent rats show blunted neurosteroid responses to ethanol administration that may contribute to ethanol tolérance and the propensity to drink greater amounts of ethanol. The review présents évidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolérance and increased risk of excessive drinking. Neurosteroids may have therapeutic use in alcohol withdrawal or for relapse prévention. PMID:17290803
Lapp, Hannah E; Ahmed, Sarah; Moore, Celia L; Hunter, Richard G
2018-02-21
Histories of early life stress (ELS) or social discrimination can reach levels of severity characterized as toxic to mental and physical health. Such toxic social stress during development has been linked to altered acute hypothalamic-pituitary-adrenal (HPA) response to social stress in adulthood. However, there are important individual differences in the size and direction of these effects. We explored developmental, genetic, epigenetic, and contextual sources of individual differences in the relationship between ELS, discrimination, and adult responses to acute social stress in a standard laboratory test. Additional measures included perceived status, social support, background activity of HPA axis, and genetic variants in aspects of the stress response system. Participants (n = 90) answered questions about historical and ongoing stress, provided a DNA sample to examine genetic polymorphisms and epigenetic marks, and underwent the Trier Social Stress Test (TSST) during which three saliva samples were collected to assess HPA function. Individuals who reported high levels of childhood adversity had a blunted salivary cortisol response to the TSST. Childhood adversity, discrimination experiences, and FKBP5 genotype were found to predict pretest cortisol levels. Following up on recent observations that the glucocorticoid receptor directly interacts with the mitochondrial genome, particularly the NADH dehydrogenase 6 (MT-ND6) gene, individuals who reported high childhood adversity were also found to have higher percent methylation across six CpG sites upstream of MT-ND6. These findings suggest multiple contributions across psychological, genetic, epigenetic, and social domains to vulnerability and resilience in hypothalamic-pituitary-adrenal axis regulation. Further study to examine how these multiple contributors affect developmental endpoints through integrated or independent pathways will be of use. Copyright © 2018 Elsevier Inc. All rights reserved.
Lara-Cinisomo, Sandraluz; Girdler, Susan S; Grewen, Karen; Meltzer-Brody, Samantha
2016-01-01
In this review, we offer a conceptual framework that identifies risk factors of postpartum depression (PPD) in immigrant and U.S.-born Latinas in the United States by focusing on psychosocial and neuroendocrine factors. Although the evidence of the impact psychosocial stressors have on the development of PPD has been well-documented, less is known about the biological etiology of PPD or how these complex stressors jointly increase the risk of PPD in immigrant and U.S.-born Latinas in the United States. Using PubMed, CINAHL, and Embase, we reviewed the literature from 2000 to 2015 regarding psychosocial and physiological risk factors associated with PPD to develop a conceptual model for Latinas. Our search yielded 16 relevant studies. Based on our review of the literature, we developed a biopsychosocial conceptual model of PPD for Latinas in the United States. We make arguments for an integrated model designed to assess psychosocial and physiological risk factors and PPD in a high-risk population. Our framework describes the hypothesized associations between culturally and contextually relevant psychosocial stressors, neurobiological factors (e.g., hypothalamic-pituitary-adrenal [HPA] axis response system and oxytocin signaling), and PPD in Latinas in the United States. Future studies should evaluate prospectively the impact psychosocial stressors identified here have on the development of PPD in both immigrant and U.S-born Latinas while examining neuroendocrine function, such as the HPA axis and oxytocin signaling. Our conceptual framework will allow for the reporting of main and indirect effects of psychosocial risk factors and biomarkers (e.g., HPA axis and oxytocin function) on PPD in foreign- and U.S.-born postpartum Latinas. Copyright © 2016 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Taylor, Sara B; Taylor, Adam R; Koenig, James I
2012-01-01
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1Tn), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1Tn rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1Tn and wild type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1Tn females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function. PMID:23022220
McLaughlin, Ryan J; Hill, Matthew N; Gorzalka, Boris B
2014-05-01
The prefrontal cortex (PFC) provides executive control of the brain in humans and rodents, coordinating cognitive, emotional, and behavioral responses to threatening stimuli and subsequent feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. The endocannabinoid system has emerged as a fundamental regulator of HPA axis feedback inhibition and an important modulator of emotional behavior. However, the precise role of endocannabinoid signaling within the PFC with respect to stress coping and emotionality has only recently been investigated. This review discusses the current state of knowledge regarding the localization and function of the endocannabinoid system in the PFC, its sensitivity to stress and its role in modulating the neuroendocrine and behavioral responses to aversive stimuli. We propose a model whereby steady-state endocannabinoid signaling in the medial PFC indirectly regulates the outflow of pyramidal neurons by fine-tuning GABAergic inhibition. Local activation of this population of CB1 receptors increases the downstream targets of medial PFC activation, which include inhibitory interneurons in the basolateral amygdala, inhibitory relay neurons in the bed nucleus of the stria terminalis and monoamine cell bodies such as the dorsal raphe nucleus. This ultimately produces beneficial effects on emotionality (active coping responses to stress and reduced anxiety) and assists in constraining activation of the HPA axis. Under conditions of chronic stress, or in individuals suffering from mood disorders, this system may be uniquely recruited to help maintain appropriate function in the face of adversity, while breakdown of the endocannabinoid system in the medial PFC may be, in and of itself, sufficient to produce neuropsychiatric illness. Thus, we suggest that endocannabinoid signaling in the medial PFC may represent an attractive target for the treatment of stress-related disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yarushkina, N I; Filaretova, L P
2015-01-01
Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.
Chadio, S E; Kotsampasi, B; Papadomichelakis, G; Deligeorgis, S; Kalogiannis, D; Menegatos, I; Zervas, G
2007-03-01
Epidemiological and experimental data support the hypothesis of 'fetal programming', which proposes that alterations in fetal nutrition and endocrine status lead to permanent adaptations in fetal homeostatic mechanisms, producing long-term changes in physiology and determine susceptibility to later disease. Altered hypothalamic-pituitary-adrenal (HPA) axis function has been proposed to play an important role in programming of disease risk. The aim of the present study was to examine the effects of maternal nutrient restriction imposed during different periods of gestation on the HPA axis function in sheep, at different ages postnatal. Pregnant ewes were fed a 50% nutrient-restricted diet from days 0-30 (group R1, n = 7), or from days 31-100 of gestation (group R2, n = 7) or a control 100% diet throughout pregnancy, (Control, n = 8). Blood samples were collected at 10-day intervals from day 40 of gestation to term. Lambs were born naturally and fed to appetite throughout the study period. At 2, 5.5, and 10 months of age lambs were given an i.v. injection of corticotrophin-releasing hormone (CRH) and blood samples were collected at -15, 0, 15, 30, 60, 120, and 180 min postinjection. Maternal cortisol levels were significantly higher (P < 0.05) in group R1 compared with the other two groups, whereas maternal insulin levels were lower (P < 0.05) in group R2 compared with control. Birth weight of lambs was not affected by the maternal nutritional manipulation. The area under the curve for ACTH and cortisol response to CRH challenge was greater (P < 0.05) in lambs of group R1 at two months of age, whereas no difference was detected at the ages of 5.5 and 10 months. However, significantly higher (P < 0.01) basal cortisol levels were observed in lambs of R1 group at 5.5 months of age. There was no interaction between treatment and sex for both pituitary and adrenal responses to the challenge. A significant sex effect was evident with females responding with higher ACTH and cortisol levels at the age of 5.5 months (P < 0.01, P < 0.001 respectively) and with higher cortisol levels (P < 0.01) at 10 months of age than males. It is concluded that the HPA axis is programmable by altered nutrition in utero. The sensitivity of the axis to exogenous stimulation is enhanced during early postnatal life and attenuated with age, suggesting a role for the postnatal influences in resetting of the HPA axis and emphasizing the importance of identifying the impact of maternal undernutrition at several time points after birth.
ERIC Educational Resources Information Center
McGinnis, Ellen W.; Lopez-Duran, Nestor; Martinez-Torteya, Cecilia; Abelson, James L.; Muzik, Maria
2016-01-01
Efforts to identify biological correlates of internalizing symptoms in childhood have involved examinations of HPA-axis functioning, namely Cortisol Awakening Response (CAR). However, research has not assessed the relationship between CAR and internalizing problems among children younger than 8 years. Findings with older samples have been somewhat…
Kino, Tomoshige
2015-01-01
The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.
Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.
Prévôt, Thomas D; Gastambide, François; Viollet, Cécile; Henkous, Nadia; Martel, Guillaume; Epelbaum, Jacques; Béracochéa, Daniel; Guillou, Jean-Louis
2017-07-01
Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst 2 or sst 4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst 2 or sst 4, but not sst 1 or sst 3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst 2 agonists selectively produced anxiolytic-like behaviors whereas both sst 2 and sst 4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst 2 KO mice and depressive-like behaviors observed in both sst 2 KO and sst 4 KO strains. Both hippocampal sst 2 and sst 4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.
Usta, Mirac Baris; Tuncel, Ozgur Korhan; Akbas, Seher; Aydin, Berna; Say, Gokce Nur
2016-01-01
Recent evidence shows that the hypothalamic-pituitary-adrenal (HPA) axis can be dysregulated in chronic sexual abuse victims with post-traumatic stress disorder (PTSD). We hypothesized that PTSD in adolescents exposed to a single sexual trauma may function as a chronic stressor leading to HPA-axis dysregulation. The objective of this study was to assess dehydroepiandrosterone sulphate (DHEA-S) and cortisol levels in female adolescents |with single sexual trauma-related PTSD compared to healthy controls. We assessed 20 female adolescent (age 12-18) single sexual trauma victims with PTSD from the Ondokuz Mayis University Department of Child and Adolescent Psychiatry between December 2013 and December 2014. PTSD symptoms were assessed using the Child Depression Inventory (CDI) and Child Posttraumatic Stress Reaction Index (CPSRI). Blood cortisol and DHEA-S were measured in 20 female adolescent sexual abuse victims with PTSD and 20 healthy adolescents after 12-h fasting using the chemiluminescence method. Compared to age-matched controls, female adolescent sexual abuse victims with PTSD had significantly lower DHEA-S levels (U = 70.00, Z = - 3.517, p = 0.01, r = 0.55). There was also a significant negative correlation between DHEA-S and CDI scores (Spearman r = - 0.522, p < 0.01). Decreased DHEA-S levels and correlation with depressive symptoms are evidence for a dysregulated HPA-axis in female adolescent single sexual trauma victims with PTSD. Further research is now recommended with large patient groups in order to maximize generalizations.
Cortisol Reactivity in Two-Year-Old Children Prenatally Exposed to Methamphetamine
Kirlic, Namik; Newman, Elana; LaGasse, Linda L.; Derauf, Chris; Shah, Rizwan; Smith, Lynne M.; Arria, Amelia M.; Huestis, Marilyn A.; Haning, William; Strauss, Arthur; Dellagrotta, Sheri; Dansereau, Lynne M.; Abar, Beau; Neal, Charles R.; Lester, Barry M.
2013-01-01
Objective: Until now, the functioning of the hypothalamic–pituitary–adrenal (HPA) axis in children with prenatal methamphetamine exposure (PME) had been unexamined. Previous research indicates that prenatal exposure to stimulant drugs is associated with dose-response alterations in neural growth and connectivity and consequent neurobehavioral deficits. In addition, children of drug-using parents are at an increased risk for exposure to chronic postnatal stress. In this preliminary study, we examined the associations of PME and postnatal environmental stress with cortisol stress reactivity in children with PME. Method: Participants were 2-year-old children (N = 123; 55.3% male) with PME from a multicenter longitudinal Infant, Development, Environment, and Lifestyle Study. Saliva samples were obtained before and after a stress-inducing separation task. Hierarchical multiple regression analyses examined prenatal drug exposure, methodological and postnatal stress covariates, and interactions between levels of PME and postnatal stress. Results: Mild to moderate potential for child physical abuse moderated increased cortisol reactivity in high exposed children with PME. Blunted cortisol reactivity was associated with caregiver’s postnatal alcohol use, child’s behavioral dysregulation, and the interaction between higher levels of PME and caregiver’s psychopathology. Conclusions: Consistent with the known effects of stimulant drugs and chronically stressful environments on the HPA axis and, thus, the toxic stress and allostatic load phenomena, our results imply that elevated PME may be associated with alterations in the programming of the HPA axis reflecting hyperactivity, which under significant and chronic environmental stress then may become hypoactive. PMID:23490574
Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro
2010-10-01
Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.
Kearns, David N; Gomez-Serrano, Maria A; Weiss, Stanley J; Riley, Anthony L
2006-05-15
Lewis (LEW) and Fischer (F344) rat strains differ on a number of physiological characteristics, such as hypothalamic-pituitary-adrenal (HPA) axis activity, as well as on behavioral tasks, including those that measure impulsivity and drug reward. Since autoshaping, the phenomenon where animals approach and contact reward-paired conditioned stimuli, has been linked to HPA axis functioning, impulsivity and drug taking, the present study compared LEW and F344 rats on the rate of acquisition and performance of the autoshaping response. Rats were trained on an autoshaping procedure where insertions of one retractable lever (CS(+)) were paired response-independently with food, while insertions of another lever (CS(-)) were not paired with food. LEW rats acquired the autoshaping response more rapidly and also performed the autoshaping response at a higher rate than F344 rats. No differences between the strains were observed when rats were trained on a discrimination reversal where the CS(+) and CS(-) levers were reversed or during a negative auto-maintenance phase where CS(+) lever contacts cancelled food delivery. Potential physiological mechanisms that might mediate the present results, including strain differences in HPA axis and monoamine neurotransmitter activity, are discussed. The finding that LEW (as compared to F344 rats) more readily acquire autoshaping and perform more responses is consistent with research indicating that LEW rats behave more impulsively and more readily self-administer drugs of abuse.
Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System
Burford, Natalie G.; Webster, Natalia A.; Cruz-Topete, Diana
2017-01-01
The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart. PMID:29035323
Zhou, Yan; Leri, Francesco; Ho, Ann; Kreek, Mary Jeanne
2013-01-01
It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic-pituitary-adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 minutes after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3×2.5 mg/kg/day on day 1; 3×20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 hours after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal. PMID:23771528
Belda, Xavier; Rotllant, David; Fuentes, Silvia; Delgado, Raúl; Nadal, Roser; Armario, Antonio
2008-12-01
Exposure to some predominantly emotional (electric shock) and systemic (interleukin-1beta) stressors has been found to induce long-term sensitization of the hypothalamic-pituitary-adrenal (HPA) responsiveness to further superimposed stressors. Since exposure to immobilization on wooden boards (IMO) is a severe stressor and may have interest regarding putative animal models of post-traumatic stress disorders (PTSD), we have characterized long-lasting effects of a single exposure to IMO and other stressors on the HPA response to the same (homotypic) and to novel (heterotypic) stressors and the putative mechanisms involved. A single exposure to IMO caused a long-lasting reduction of peripheral and central responses of the HPA axis, likely to be mediated by some brain areas, such as the lateral septum and the medial amygdala. This desensitization is not explained by changes in negative glucocorticoid feedback, and, surprisingly, it is positively related to the intensity of the stressors. In contrast, the HPA response to heterotypic stressors (novel environments) was enhanced, with maximal sensitization on the day after IMO. Sensitization progressively vanished over the course of 1-2 weeks and was not modulated by IMO-induced corticosterone release. Moreover, it could not be explained by changes in the sensitivity of the HPA axis to fast or intermediate/delayed negative feedback, as evaluated 1 week after exposure to IMO, using shock as the heterotypic stressor. Long-lasting stress-induced behavioral changes reminiscent of enhanced anxiety and HPA sensitization are likely to be parallel but partially independent phenomena, the former being apparently not related to the intensity of stressors.
Stephens, Mary Ann C.; Wand, Gary
2012-01-01
Stress has long been suggested to be an important correlate of uncontrolled drinking and relapse. An important hormonal response system to stress—the hypothalamic–pituitary–adrenal (HPA) axis—may be involved in this process, particularly stress hormones known as glucocorticoids and primarily cortisol. The actions of this hormone system normally are tightly regulated to ensure that the body can respond quickly to stressful events and return to a normal state just as rapidly. The main determinants of HPA axis activity are genetic background, early-life environment, and current life stress. Alterations in HPA axis regulation are associated with problematic alcohol use and dependence; however, the nature of this dysregulation appears to vary with respect to stage of alcohol dependence. Much of this research has focused specifically on the role of cortisol in the risk for, development of, and relapse to chronic alcohol use. These studies found that cortisol can interact with the brain’s reward system, which may contribute to alcohol’s reinforcing effects. Cortisol also can influence a person’s cognitive processes, promoting habit-based learning, which may contribute to habit formation and risk of relapse. Finally, cortisol levels during abstinence may be useful clinical indicators of relapse vulnerability in alcohol-dependent people. PMID:23584113
Bush, Nicole R; Obradović, Jelena; Adler, Nancy; Boyce, W Thomas
2011-11-01
Using an ethnically diverse longitudinal sample of 338 kindergarten children, this study examined the effects of cumulative contextual stressors on children's developing hypothalamic-pituitary-adrenocortical (HPA) axis regulation as an early life indicator of allostatic load. Chronic HPA axis regulation was assessed using cumulative, multiday measures of cortisol in both the fall and spring seasons of the kindergarten year. Hierarchical linear regression analyses revealed that contextual stressors related to ethnic minority status, socioeconomic status, and family adversity each uniquely predicted children's daily HPA activity and that some of those associations were curvilinear in conformation. Results showed that the quadratic, U-shaped influences of family socioeconomic status and family adversity operate in different directions to predict children's HPA axis regulation. Results further suggested that these associations differ for White and ethnic minority children. In total, this study revealed that early childhood experiences contribute to shifts in one of the principal neurobiological systems thought to generate allostatic load, confirming the importance of early prevention and intervention efforts. Moreover, findings suggested that analyses of allostatic load and developmental theories accounting for its accrual would benefit from an inclusion of curvilinear associations in tested predictive models.
Evers, Andrea W M; Verhoeven, Elisabeth W M; van Middendorp, Henriët; Sweep, Fred C G J; Kraaimaat, Floris W; Donders, A Rogier T; Eijsbouts, Agnes E; van Laarhoven, Antoinette I M; de Brouwer, Sabine J M; Wirken, Lieke; Radstake, Timothy R D J; van Riel, Piet L C M
2014-09-01
Both stressors and stress vulnerability factors together with immune and hypothalamus-pituitary-adrenal (HPA) axis activity components have been considered to contribute to disease fluctuations of chronic inflammatory diseases, such as rheumatoid arthritis (RA). The aim of the present study was to investigate whether daily stressors and worrying as stress vulnerability factor as well as immune and HPA axis activity markers predict short-term disease activity and symptom fluctuations in patients with RA. In a prospective design, daily stressors, worrying, HPA axis (cortisol) and immune system (interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, tumour necrosis factor α) markers, clinical and self-reported disease activity (disease activity score in 28 joints, RA disease activity index), and physical symptoms of pain and fatigue were monitored monthly during 6 months in 80 RA patients. Multilevel modelling indicated that daily stressors predicted increased fatigue in the next month and that worrying predicted increased self-reported disease activity, swollen joint count and pain in the next month. In addition, specific cytokines of IL-1β and IFN-γ predicted increased fatigue 1 month later. Overall, relationships remained relatively unchanged after controlling for medication use, disease duration and demographic variables. No evidence was found for immune and HPA axis activity markers as mediators of the stress-disease relationship. Daily stressors and the stress-vulnerability factor worrying predict indicators of the short-term course of RA disease activity and fatigue and pain, while specific cytokines predict short-term fluctuations of fatigue. These stress-related variables and immune markers seem to affect different aspects of disease activity or symptom fluctuations independently in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Calis, M; Gökçe, C; Ates, F; Ulker, S; Izgi, H B; Demir, H; Kirnap, M; Sofuoglu, S; Durak, A C; Tutus, A; Kelestimur, F
2004-01-01
Primary fibromyalgia syndrome (PFS) is characterized by widespread chronic pain that affects the musculoskeletal system, fatigue, anxiety, sleep disturbance, headache and postural hypotension. The pathophysiology of PFS is unknown. The hypothalamic-pituitary-adrenal (HPA) axis seems to play an important role in PFS. Both hyperactivity and hypoactivity of the HPA axis have been reported in patients with PFS. In this study we assessed the HPA axis by 1 microg ACTH stimulation test and metyrapone test in 22 patients with PFS and in 15 age-, sex-, and body mass index (BMI)- matched controls. Metyrapone (30 mg/kg) was administered orally at 23:00 h and blood was sampled at 08:30 h the following morning for 11-deoxycortisol. ACTH stimulation test was carried out by using 1 microg (iv) ACTH as a bolus injection after an overnight fast, and blood samples were drawn at 0, 30 and 60 min. Peak cortisol level (659.4 +/- 207.2 nmol/l) was lower in the patients with PFS than peak cortisol level (838.7 +/- 129.6 nmol/l) in the control subjects (p < 0.05). Ten patients (45%) with PFS had peak cortisol responses to 1 microg ACTH test lower than the lowest peak cortisol detected in healthy controls. After metyrapone test 11-deoxycortisol level was 123.7 +/- 26 nmol/l in patients with PFS and 184.2 +/- 17.3 nmol/l in the controls (p < 0.05). Ninety five percent of the patients with PFS had lower 11-deoxycortisol level after metyrapone than the lowest 11-deoxycortisol level after metyrapone detected in healthy controls. We also compared the adrenal size of the patients with that of the healthy subjects and we found that the adrenal size between the groups was similar. This study clearly shows that HPA axis is underactivated in PFS, rather than overactivated.
Calhoun, Casey D.; Hastings, Paul D.; Rudolph, Karen D.; Nock, Matthew K.; Prinstein, Mitchell J.
2014-01-01
Adopting a multi-level approach, this study examined risk factors for adolescent suicidal ideation, with specific attention to (a) hypothalamic-pituitary-adrenal (HPA) axis stress responses and (b) the interplay between HPA-axis and other risk factors from multiple domains (i.e., psychological, interpersonal and biological). Participants were 138 adolescent females (Mage=14.13 years, SD=1.40) at risk for suicidal behaviors. At baseline, lifetime suicidal ideation and a number of risk factors were assessed (i.e., depressive symptoms, impulsiveness, pubertal status and peer stress). Participants were exposed to a psychosocial stress task and HPA-axis responses were assessed by measuring cortisol levels pre- and post-stressor. At 3 months post-baseline, suicidal ideation again was assessed. Using group-based trajectory modeling, three groups of cortisol stress-response patterns were identified (i.e., hyporesponsive, normative, and hyperresponsive). As compared to females in the normative and hyporesponsive group, females in the hyperresponsive group were more likely to report a lifetime history of suicidal ideation at baseline, above and beyond the effects of the other predictors. Moreover, as compared to females in the normative group, females in the hyperresponsive group were at increased risk for reporting suicidal ideation 3 months later, after controlling for prior ideation. No interactions between cortisol group and the other risk factors were significant, with the exception of a non-significant trend between impulsiveness and cortisol group on lifetime suicidal ideation. Findings highlight the importance of HPA-axis responses to acute stressors as a risk factor for suicidal ideation among adolescents. PMID:24958308
Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul
2012-05-01
The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.
Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio
2015-08-01
There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Ait-Belgnaoui, Afifa; Durand, Henri; Cartier, Christel; Chaumaz, Gilles; Eutamene, Hélène; Ferrier, Laurent; Houdeau, Eric; Fioramonti, Jean; Bueno, Lionel; Theodorou, Vassilia
2012-11-01
Intestinal barrier impairment is incriminated in the pathophysiology of intestinal gut disorders associated with psychiatric comorbidity. Increased intestinal permeability associated with upload of lipopolysaccharides (LPS) translocation induces depressive symptoms. Gut microbiota and probiotics alter behavior and brain neurochemistry. Since Lactobacillus farciminis suppresses stress-induced hyperpermeability, we examined whether (i) L. farciminis affects the HPA axis stress response, (ii) stress induces changes in LPS translocation and central cytokine expression which may be reversed by L. farciminis, (iii) the prevention of "leaky" gut and LPS upload are involved in these effects. At the end of the following treatments female rats were submitted to a partial restraint stress (PRS) or sham-PRS: (i) oral administration of L. farciminis during 2 weeks, (ii) intraperitoneal administration of ML-7 (a specific myosin light chain kinase inhibitor), (iii) antibiotic administration in drinking water during 12 days. After PRS or sham-PRS session, we evaluated LPS levels in portal blood, plasma corticosterone and adrenocorticotropic hormone (ACTH) levels, hypothalamic corticotropin releasing factor (CRF) and pro-inflammatory cytokine mRNA expression, and colonic paracellular permeability (CPP). PRS increased plasma ACTH and corticosterone; hypothalamic CRF and pro-inflammatory cytokine expression; CPP and portal blood concentration of LPS. L. farciminis and ML-7 suppressed stress-induced hyperpermeability, endotoxemia and prevented HPA axis stress response and neuroinflammation. Antibiotic reduction of luminal LPS concentration prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines. The attenuation of the HPA axis response to stress by L. farciminis depends upon the prevention of intestinal barrier impairment and decrease of circulating LPS levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Navarria, Andrea; Tamburella, Alessandra; Iannotti, Fabio A; Micale, Vincenzo; Camillieri, Giovanni; Gozzo, Lucia; Verde, Roberta; Imperatore, Roberta; Leggio, Gian Marco; Drago, Filippo; Di Marzo, Vincenzo
2014-09-01
In recent years, several studies have explored the involvement of the deregulation of the hypothalamus-pituitary-adrenal (HPA) axis in the pathophysiology of stress-related disorders. HPA hyper-activation as a consequence of acute/chronic stress has been found to play a major role in the neurobiological changes that are responsible for the onset of such states. Currently available medications for depression, one of the most relevant stress-related disorders, present several limitations, including a time lag for treatment response and low rates of efficacy. N-Arachidonoylserotonin (AA-5-HT), a dual blocker at fatty acid amide hydrolase (FAAH, the enzyme responsible for the inactivation of the endocannabinoid anandamide) and transient receptor potential vanilloid type-1 channel (TRPV1), produces anxiolytic-like effects in mice. The present study was designed to assess the capability of AA-5-HT to reverse the behavioral despair following exposure to stress in rats and the role of the HPA-axis. Behavioral tasks were performed, and corticosterone and endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in selected brain areas critically involved in the pathophysiology of stress-related disorders (medial PFC and hippocampus) under basal and stress conditions, and in response to treatment with AA-5-HT. Our data show that AA-5-HT reverses the rat behavioral despair in the forced swim test under stress conditions, and this effect is associated with the normalization of the HPA-axis deregulation that follows stress application and only in part with elevation of anandamide levels. Blockade of FAAH and TRPV1 may thus represent a novel target to design novel therapeutic strategies for the treatment of stress-related disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wives’ and Husbands’ Cortisol Reactivity to Proximal and Distal Dimensions of Couple Conflict
Rodriguez, Aubrey J.; Margolin, Gayla
2013-01-01
Poor marital quality has been linked repeatedly to spouses’ health problems, with alterations to physiological stress-response systems, such as the hypothalamic-pituitary-adrenocortical (HPA) axis, as one putative mechanism. This study assessed wives and husbands’ HPA axis (i.e., cortisol) reactivity to marital criticism during laboratory-based conflict discussions, in the context of marital aggression experienced during the previous year. Ninety-five couples provided one saliva sample prior to – and three samples following – a triadic family conflict discussion involving their teenage child. Marital criticism during the conflict discussion was related to heightened HPA reactivity for husbands only. For wives, an interaction emerged between criticism during the conflict and previous-year marital aggression: only those wives who had experienced high levels of marital aggression demonstrated a positive association between criticism and cortisol output. Husbands thus appeared to be more physiologically reactive to the in-the-moment critical behaviors, whereas wives’ responses to proximal conflict were related to previous and perhaps more chronic experiences of marital aggression. These findings shed light on ways in which within-couple processes during family conflicts involving children contribute to individual physiological functioning, enhancing our understanding of the role of family relationships in physical health outcomes. PMID:24033248
Hypothalamic-pituitary cytokine network.
Kariagina, Anastasia; Romanenko, Dmitry; Ren, Song-Guang; Chesnokova, Vera
2004-01-01
Cytokines expressed in the brain and involved in regulating the hypothalamus-pituitary-adrenal (HPA) axis contribute to the neuroendocrine interface. Leukemia inhibitory factor (LIF) and LIF receptors are expressed in human pituitary cells and murine hypothalamus and pituitary. LIF potently induces pituitary proopiomelanocortin (POMC) gene transcription and ACTH secretion and potentiates CRH induction of POMC. In vivo, LIF, along with CRH, enhances POMC expression and ACTH secretion in response to emotional and inflammatory stress. To further elucidate specific roles for both CRH and LIF in activating the inflammatory HPA response, double-knockout mice (CRH/LIFKO) were generated by breeding the null mutants for each respective single gene. Inflammation produced by ip injection of lipopolysaccharide (1 microg/mouse) to double CRH and LIF-deficient mice elicited pituitary POMC induction similar to wild type and markedly higher than in single null animals (P<0.0.01). Double-knockout mice also demonstrated robust corticosterone response to inflammation. High pituitary POMC mRNA levels may reflect abundant TNFalpha, IL-1beta, and IL-6 activation observed in the hypothalamus and pituitary of these animals. Our results suggest that increased central proinflammatory cytokine expression can compensate for the impaired HPA axis function and activates inflammatory ACTH and corticosterone responses in mice-deficient in both CRH and LIF.
Finegood, Eric D; Rarick, Jason R D; Blair, Clancy
2017-12-01
Children who grow up in poverty are more likely to experience chronic stressors that generate "wear" on stress regulatory systems including the hypothalamus-pituitary-adrenal (HPA) axis. This can have long-term consequences for health and well-being. Prior research has examined the role of proximal family and home contributions to HPA axis functioning. However, there is evidence to suggest that more distal levels of context, including neighborhoods, also matter. Prior evidence has primarily focused on adolescents and adults, with little evidence linking the neighborhood context with HPA activity in infancy and toddlerhood. We tested whether neighborhood disadvantage (indexed by US Census data) was associated with basal salivary cortisol levels at 7, 15, and 24 months of child age in a large sample of families (N = 1,292) residing in predominately low-income and rural communities in the United States. Multilevel models indicated that neighborhood disadvantage was positively associated with salivary cortisol levels and that this effect emerged across time. This effect was moderated by the race/ethnicity of children such that the association was only observed in White children in our sample. Findings provide preliminary evidence that the neighborhood context is associated with stress regulation during toddlerhood, elucidating a need for future work to address possible mechanisms.
Finegood, Eric D.; Rarick, Jason R. D.; Blair, Clancy
2018-01-01
Children who grow up in poverty are more likely to experience chronic stressors that generate “wear” on stress regulatory systems including the hypothalamus– pituitary–adrenal (HPA) axis. This can have long-term consequences for health and well-being. Prior research has examined the role of proximal family and home contributions to HPA axis functioning. However, there is evidence to suggest that more distal levels of context, including neighborhoods, also matter. Prior evidence has primarily focused on adolescents and adults, with little evidence linking the neighborhood context with HPA activity in infancy and toddlerhood. We tested whether neighborhood disadvantage (indexed by US Census data) was associated with basal salivary cortisol levels at 7, 15, and 24 months of child age in a large sample of families (N = 1,292) residing in predominately low-income and rural communities in the United States. Multilevel models indicated that neighborhood disadvantage was positively associated with salivary cortisol levels and that this effect emerged across time. This effect was moderated by the race/ethnicity of children such that the association was only observed in White children in our sample. Findings provide preliminary evidence that the neighborhood context is associated with stress regulation during toddlerhood, elucidating a need for future work to address possible mechanisms. PMID:29162174
Chen, Frances R; Stroud, Catherine B; Vrshek-Schallhorn, Suzanne; Doane, Leah D; Granger, Douglas A
2017-10-01
The present study aimed to examine the interaction of 5-HTTLPR and early adversity on trait-like levels of cortisol. A community sample of 117 early adolescent girls (M age=12.39years) provided DNA samples for 5-HTTLPR genotyping, and saliva samples for assessing cortisol 3 times a day (waking, 30min post-waking, and bedtime) over a three-day period. Latent trait cortisol (LTC) was modeled using the first 2 samples of each day. Early adversity was assessed with objective contextual stress interviews with adolescents and their mothers. A significant 5-HTTLPR×early adversity interaction indicated that greater early adversity was associated with lower LTC levels, but only among individuals with either L/L or S/L genotype. Findings suggest that serotonergic genetic variation may influence the impact of early adversity on individual differences in HPA-axis regulation. Future research should explore whether this interaction contributes to the development of psychopathology through HPA axis functioning. Copyright © 2017 Elsevier B.V. All rights reserved.
Burton, C L; Bonanno, G A; Hatzenbuehler, M L
2014-09-01
Social support has been repeatedly associated with mental and physical health outcomes, with hypothalamic-pituitary-adrenocortical (HPA) axis activity posited as a potential mechanism. The influence of social bonds appears particularly important in the face of stigma-related stress; however, there is a dearth of research examining social support and HPA axis response among members of a stigmatized group. To address this gap in the literature, we tested in a sample of 70 lesbian, gay, and bisexual (LGB) young adults whether family support or peer support differentially predict cortisol reactivity in response to a laboratory stressor, the Trier Social Stress Test. While greater levels of family support were associated with reduced cortisol reactivity, neither peer support nor overall support satisfaction was associated with cortisol response. These findings suggest that the association between social support and neuroendocrine functioning differs according to the source of support among members of one stigmatized group. Copyright © 2014 Elsevier Ltd. All rights reserved.
Armario, Antonio
2010-07-01
Addictive drugs (opiates, ethanol, cannabinoids (CBs), nicotine, cocaine, amphetamines) induce activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the subsequent release of adrenocorticotropic hormone and glucocorticoids. The sequence of events leading to HPA activation appears to start within the brain, suggesting that activation is not secondary to peripheral homeostatic alterations. The precise neurochemical mechanisms and brain pathways involved are markedly dependent on the particular drug, although it is assumed that information eventually converges into the hypothalamic paraventricular nucleus (PVN). Whereas some drugs may act on the hypothalamus or directly within PVN neurons (i.e. ethanol), others exert their primary action outside the PVN (i.e. CBs, nicotine, cocaine). Corticotropin-releasing hormone (CRH) has a critical role in most cases, but the changes in c-fos and CRH gene expression in the PVN also reveal differences among drugs. More studies are needed to understand how addictive drugs act on this important neuroendocrine system and their functional consequences. Copyright 2010 Elsevier Ltd. All rights reserved.
van den Bos, Esther; Westenberg, P Michiel
2015-03-01
Long-term stability of individual differences in stress responses has repeatedly been demonstrated in adults, but few studies have investigated the development of stability in adolescence. The present study was the first to investigate the stability of individual differences in heart rate, parasympathetic (RMSSD, pNN50, HF), sympathetic (LF/HF, SC), and HPA-axis (salivary cortisol) responses in a youth sample (8-19 years). Responses to public speaking were measured twice over 2 years. Stability was moderate for absolute responses and task delta responses of HR, RMSSD, pNN50, and HF. Stability was lower for SC and task delta responses of LF/HF and cortisol. Anticipation delta responses showed low stability for HR and cortisol. The latter was moderated by age or puberty, so that individual differences were more stable in more mature individuals. The results support the suggestion that stress responses may be reset during adolescence, but only for the HPA axis. © 2014 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Rohleder, N.; Wirth, D.; Fraßl, W.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K. A.; Kirschbaum, C.; Gunga, H.-C.
2005-08-01
Limited data are available on the response of stress systems to microgravity. Increased activity of stress systems is reported during space flight, but unchanged or decreased activity during simulated microgravity. We here investigated the impact of head-out water immersion on the activity of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system.Eight healthy young men were exposed to a six-hour water immersion in a thermo neutral bath and a control condition. Saliva samples were taken before, during, and after interventions to assess cortisol as an index for HPA axis activity, and salivary α-amylase as an index for SAM system activity.Cortisol levels uniformly decreased during both conditions. Amylase levels increased during both conditions, but were significantly lower during the first half of water immersion compared to the control condition.In conclusion, the HPA axis is not influenced by simulated microgravity, while SAM system activity shows initial decreases during water immersion.
Belda, Xavier; Nadal, Roser; Armario, Antonio
2016-08-11
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Belda, Xavier; Nadal, Roser; Armario, Antonio
2016-01-01
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270
Parenting predicts Strange Situation cortisol reactivity among children adopted internationally.
DePasquale, Carrie E; Raby, K Lee; Hoye, Julie; Dozier, Mary
2018-03-01
The functioning of the hypothalamic pituitary adrenal (HPA) axis can be altered by adverse early experiences. Recent studies indicate that children who were adopted internationally after experiencing early institutional rearing and unstable caregiving exhibit blunted HPA reactivity to stressful situations. The present study examined whether caregiving experiences post-adoption further modulate children's HPA responses to stress. Parental sensitivity during naturalistic parent-child play interactions was assessed for 66 children (M age = 17.3 months, SD = 4.6) within a year of being adopted internationally. Approximately 8 months later, children's salivary cortisol levels were measured immediately before as well as 15 and 30 min after a series of brief separations from the mother in an unfamiliar laboratory setting. Latent growth curve modeling indicated that experiencing more parental sensitivity predicted increased cortisol reactivity to the stressor. Although half the families received an intervention designed to improve parental sensitivity, the intervention did not significantly alter children's cortisol outcomes. These findings suggest that post-adoption parental sensitivity may help normalize the HPA response to stress among children adopted internationally. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cornelisse, Sandra; Joëls, Marian; Smeets, Tom
2011-12-01
Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.
The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress.
Alexander, Nina; Osinsky, Roman; Schmitz, Anja; Mueller, Eva; Kuepper, Yvonne; Hennig, Juergen
2010-07-01
Growing evidence suggests that individual differences in HPA-axis reactivity to psychosocial stress are partly due to heritable influences. However, knowledge about the role of specific genetic variants remains very limited to date. Since brain-derived neurotrophic factor (BDNF) not only exhibits neurotrophic actions but is also involved in the regulation of hypothalamic neuropeptides, we investigated the role of a common functional polymorphism within the BDNF gene (BDNF Val66Met) in the context of endocrine and cardiovascular stress reactivity. Healthy male adults (N=100) were genotyped and exposed to a standardized laboratory stress task (Public Speaking). Saliva cortisol and self-reported mood levels were obtained at 6 time points prior to the stressor and during an extended recovery period. Furthermore, heart rate reactivity as an indicator of sympathetic activation was monitored continuously during the experimental procedure. We report a small, but significant effect of the BDNF Val66Met polymorphism on stress reactivity. More precisely, carriers of the met-allele showed a significantly attenuated HPA-axis and cardiovascular reactivity to the psychosocial stressor compared to subjects with the val/val genotype. Furthermore, the diminished physiological response in met-allele carriers was also attended by significantly lower self-reported ratings of perceived stress and nervousness. Our findings of a diminished endocrine and cardiovascular stress response in healthy male adults is consistent with a previously published study and adds further evidence for a crucial role of the BDNF Val66Met polymorphism in the modulation of stress reactivity. Copyright 2010. Published by Elsevier Ltd.
Tarter, Ralph E; Kirisci, Levent; Kirillova, Galina; Reynolds, Maureen; Gavaler, Judy; Ridenour, Ty; Horner, Michelle; Clark, Duncan; Vanyukov, Michael
2013-01-01
Research has shown involvement of hormones of the hypothalamic pituitary adrenal (HPA) axis and hypothalamic pituitary gonadal (HPG) axis in the regulation of behaviors that contribute to SUD risk and its intergenerational transmission. Neighborhood environment has also been shown to relate to hormones of these two neuroendocrine systems and behaviors associated with SUD liability. Accordingly, it was hypothesized that (1) parental SUD severity and neighborhood quality correlate with activity of the HPG axis (testosterone level) and HPA axis (cortisol stability), and (2) transmissible risk during childhood mediates these hormone variables on development of SUD measured in adulthood. Transmissible risk for SUD measured by the transmissible liability index (TLI; Vanyukov et al., 2009) along with saliva cortisol and plasma testosterone were prospectively measured in boys at ages 10-12 and 16. Neighborhood quality was measured using a composite score encompassing indicators of residential instability and economic disadvantage. SUD was assessed at age 22. Neither hormone variable cross-sectionally correlated with transmissible risk measured at ages 10-12 and 16. However, the TLI at age 10-12 predicted testosterone level and cortisol stability at age 16. Moreover, testosterone level, correlated with cortisol stability at age 16, predicted SUD at age 22. HPA and HPG axes activity do not underlie variation in TLI, however, high transmissible risk in childhood predicts neuroendocrine system activity presaging development of SUD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Newby, Elizabeth A.; Myers, Dean A.
2015-01-01
In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460
Dimensions of depression and anxiety and the hypothalamo-pituitary-adrenal axis.
Wardenaar, Klaas J; Vreeburg, Sophie A; van Veen, Tineke; Giltay, Erik J; Veen, Gerthe; Penninx, Brenda W J H; Zitman, Frans G
2011-02-15
Results on the association between depression and the hypothalamo-pituitary-adrenal (HPA) axis have been inconsistent, possibly due to heterogeneity of the DSM-IV category of depression. Specific symptom-dimensions could be used as a more homogenous phenotype in HPA-axis research. Subjects (n = 1029) with a lifetime depression and/or anxiety disorder from the NESDA study (Netherlands Study of Depression and Anxiety) (mean age: 43.0 ± 12.7 years, 67.4% women) provided seven saliva samples to yield the cortisol awakening response (CAR), evening cortisol, and dexamethasone suppression data. The dimensions of the tripartite model (General Distress, Anhedonic Depression, and Anxious Arousal) were measured with the 30-item adapted Mood and Anxiety Symptoms Questionnaire (MASQ-D30) and analyzed in association with the cortisol measures with linear and nonlinear regression. Median (interquartile range) scores of General Distress, Anhedonic Depression, and Anxious Arousal were 20 (14-27), 36 (28-44), and 15 (12-19), respectively, indicating large variability. Nonlinear associations with the shape of an inverted U were found between General Distress, Anhedonic Depression, and Anxious Arousal on one hand and total morning secretion and the dynamic of the CAR by contrast. Both high and low severity levels were associated with a lower CAR, compared with intermediate levels of severity. Most of the associations remained significant when adjusted for covariates and the presence of DSM-IV diagnoses. Nonlinear associations were found between the CAR and the dimensions of the tripartite model. This could explain previous inconsistent findings regarding HPA-axis activity in depressed patients and illustrates the added value of symptom-dimensions for HPA-axis research. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Thomason, Moriah E.; Hamilton, J. Paul; Gotlib, Ian H.
2011-01-01
Background: Responses to stress vary greatly in young adolescents, and little is known about neural correlates of the stress response in youth. The purpose of this study was to examine whether variability in cortisol responsivity following a social stress test in young adolescents is associated with altered neural functional connectivity (FC) of…
A Protocol for Generation of a Corticosterone Model of Psychiatric Disorders.
Guest, Paul C
2017-01-01
Some patients with psychiatric disorders show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This may be due to an impaired feedback inhibition and can be seen through increased levels of circulating cortisol. Here a protocol is described to mimic this situation by subcutaneous implantation of corticosterone pellets in mice. We also present characterization of the model by looking at effects on neuronal proliferation in hippocampus, one of the main tissues known to be affected by HPA axis hyper-activation. Such tissues could be used in analyses by proteomic platforms.
Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity
Novak, Melinda A.
2012-01-01
Activity of the hypothalamic-pituitary-adrenocortical (HPA) axis is commonly assessed by measuring glucocorticoids such as cortisol (CORT). For many years, CORT was obtained primarily from blood plasma or urine, whereas later approaches added saliva and feces for noninvasive monitoring of HPA functioning. Despite the value of all these sample matrices for answering many research questions, they remain limited in the temporal range of assessment. Plasma and saliva are point samples that vary as a function of circadian rhythmicity and are susceptible to confounding by environmental disturbances. Even urine and feces generally assess HPA activity over a period of only 24 h or less. We and others have recently developed and validated methods for measuring the concentration of CORT in the body hair of animals (e.g. rhesus monkeys) and scalp hair of humans. CORT is constantly deposited in the growing hair shaft, as a consequence of which such deposition can serve as a biomarker of integrated HPA activity over weeks and months instead of minutes or hours. Since the advent of this methodological advance, hair CORT has already been used as an index of chronic HPA activity and stress in human clinical and nonclinical populations, in a variety of laboratory-housed and wild-living animal species, and in archival specimens that are many decades or even centuries old. Moreover, because human hair is known to grow at an average rate of about 1 cm/month, several studies suggest that CORT levels in hair segments that differ in proximity to the scalp can, under certain conditions, be used as a retrospective calendar of HPA activity during specific time periods preceding sample collection. PMID:22778226
Taylor, S B; Taylor, A R; Koenig, J I
2013-09-26
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1(Tn)), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1(Tn) rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1(Tn) and wild-type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild-type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1(Tn) females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Mustonen, Paula; Karlsson, Linnea; Scheinin, Noora M; Kortesluoma, Susanna; Coimbra, Bárbara; Rodrigues, Ana João; Karlsson, Hasse
2018-06-01
Prenatal environment reportedly affects the programming of developmental trajectories in offspring and the modification of risks for later morbidity. Among the increasingly studied prenatal exposures are maternal psychological distress (PD) and altered maternal hypothalamus-pituitary-adrenal (HPA) axis functioning. Both prenatal PD and maternal short-term cortisol concentrations as markers for HPA axis activity have been linked to adverse child outcomes and it has been assumed that maternal PD affects the offspring partially via altered cortisol secretion patterns. Yet, the existing literature on the interrelations between these two measures is conflicting. The assessment of cortisol levels by using hair cortisol concentration (HCC) has gained interest, as it offers a way to assess long-term cortisol levels with a single non-invasive sampling. According to our review, 6 studies assessing the associations between maternal HCC during pregnancy and various types of maternal PD have been published so far. Measures of prenatal PD range from maternal symptoms of depression or anxiety to stress related to person's life situation or pregnancy. The aim of this systematic review is to critically evaluate the potential of HCC as a biomarker for maternal PD during pregnancy. We conclude that HCC appears to be inconsistently associated with self-reported symptoms of prenatal PD, especially in the range of mild to moderate symptom levels. Self-reports on PD usually cover short time periods and they seem to depict partly different phenomena than HCC. Thus, methodological aspects are in a key role in future studies evaluating the interconnections across different types of prenatal PD and maternal HPA axis functioning. Further, studies including repetitive measurements of both HCC and PD during the prenatal period are needed, as timing of the assessments is one important source of variation among current studies. The significance of prenatal HCC in the context of offspring outcomes needs to be further investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Rikang; Yan, Fengxia; Liao, Rifang; Wan, Pei; Little, Peter J; Zheng, Wenhua
2017-05-15
Nerve growth factor (NGF) and Brain-derived neurotrophic factor (BDNF) are neurotrophic factors involved in the growth, survival and functioning of neurons. In addition, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has recently been proposed. Neuropeptide W (NPW) is an endogenous peptide ligand for the GPR7 and GPR8 and a stress mediator in the hypothalamus. It activates the HPA axis by working on hypothalamic corticotrophin-releasing hormone (CRH). No information is available about the interrelationships between neurotrophines like NGF/BDNF and NPW. We studied the effect and underlying mechanisms of NGF/BDNF on the production of NPW in PC12 cells and hypothalamus. NGF time- and concentration-dependently stimulated the expression of NPW in PC12 cells. The effect of NGF was blocked by the inhibition of PI3K/Akt signal pathway with specific inhibitors for PI3K or AktsiRNA for Akt while inhibition of ERK pathway had no effect. Moreover, BDNF concentration-dependently induced the expression of NPW mRNA and decreased the expression of NPY mRNA in primary cultured hypothalamic neurons which was also blocked by a PI3K kinase inhibitor. Finally, in vivo study showed that exogenous BDNF injected icv increased NPW production in the hypothalamus and this effect was reversed by a PI3 kinase inhibitor. These results and the fact that BDNF was able to stimulate the expression of CRH demonstrated that neurotrophines can modulate the expression of NPW in neuronal cells via the PI3K/Akt pathway and suggest that BDNF might be involved in functions of the HPA axis, at least in part by modulating the expression of NPW/NPY and CRH. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribes, Diana; Fuentes, Silvia; Torrente, Margarita
2010-02-15
Although it is known that prenatal exposure to perfluorooctane sulfonate (PFOS) can cause developmental adverse effects in mammals, the disruptive effects of this compound on hormonal systems are still controversial. Information concerning the effects of PFOS on hypothalamus adrenal (HPA) axis response to stress and corticosterone levels is not currently available. On the other hand, it is well established that stress can enhance the developmental toxicity of some chemicals. In the present study, we assessed the combined effects of maternal restraint stress and PFOS on HPA axis function in the offspring of mice. Twenty plug-positive female mice were divided inmore » two groups. Animals were given by gavage 0 and 6 mg PFOS/kg/day on gestation days 12-18. One half of the animals in each group were also subjected to restraint stress (30 min/session, 3 sessions/day) during the same period. Five plug-positive females were also included as non-manipulated controls. At 3 months of age, activity in an open-field and the stress response were evaluated in male and female mice by exposing them to 30 min of restraint stress. Male and female offspring were subsequently sacrificed and blood samples were collected to measure changes in corticosterone levels at four different moments related to stress exposure conditions: before stress exposure, immediately after 30 min of stress exposure, and recuperation levels at 60 and 90 min after stress exposure. Results indicate corticosterone levels were lower in mice prenatally exposed to restraint. In general terms, PFOS exposure decreased corticosterone levels, although this effect was only significant in females. The recuperation pattern of corticosterone was mainly affected by prenatal stress. Interactive effects between PFOS and maternal stress were sex dependent. The current results suggest that prenatal PFOS exposure induced long-lasting effects in mice.« less
Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions
Eller-Smith, Olivia C.; Nicol, Andrea L.; Christianson, Julie A.
2018-01-01
Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain. PMID:29487504
Sonnenschein, Mieke; Mommersteeg, Paula M C; Houtveen, Jan H; Sorbi, Marjolijn J; Schaufeli, Wilmar B; van Doornen, Lorenz J P
2007-05-01
The current study investigates the relationship between HPA-axis functioning and burnout symptoms by employing an electronic symptom diary. This diary method circumvents the retrospection bias induced by symptom questionnaires and allows to study relationships within-in addition to between-subjects. Forty two clinically burned-out participants completed the exhaustion subscale of the Maslach burnout inventory and kept an electronic diary for 2 weeks to assess momentary exhaustion and daily recovery through sleep. On 3 consecutive weekdays within the diary period, saliva was sampled to determine the cortisol awakening response (CAR), levels of dehydroepiandrosterone-sulphate (DHEAS) on the first 2 weekdays, and to conduct the dexamethasone suppression test (DST) on the third weekday. We found significant relationships between endocrine values and general momentary symptom severity as assessed with the diary, but not with the retrospective questionnaire-assessed burnout symptoms. Simultaneous assessments of endocrine values and burnout symptoms assessed with the diary after awakening rendered significant associations between persons, and a trend within persons. More severe burnout symptoms were consistently associated with a lower level and smaller increase of CAR, higher DHEAS levels, smaller cortisol/DHEAS ratios and a stronger suppression after DST. Burnout symptoms were significantly related to endocrine functioning in clinical burnout under the best possible conditions of symptom measurement. This adds support to the view that severity of burnout symptoms is associated with HPA-axis functioning.
Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder
Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo
2017-01-01
Objectives: Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Design: Prospective controlled study in an outpatient clinic. Methods: Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Results: Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm3 [standard deviation (SD), 227.3 mm3] in PTSD subjects vs 835.2 mm3 (SD, 302.8 mm3) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects (P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. Conclusions: The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches. PMID:29264511
Ho, Jen-Yu; Kraemer, William J; Volek, Jeff S; Vingren, Jakob L; Fragala, Maren S; Flanagan, Shawn D; Maladouangdock, Jesse; Szivak, Tunde K; Hatfield, Disa L; Comstock, Brett A; Dunn-Lewis, Courtenay; Ciccolo, Joseph T; Maresh, Carl M
2014-03-01
The purpose of this study was to examine the effects of resistance exercise on the hypothalamic-pituitary-adrenal axis (HPA) response to mental challenge, withdrawal symptoms, urge to smoke, and cognitive stress during 24-hour smoking abstinence. 8 sedentary smokers (mean±SD age: 20.1±1.7y; height: 171.6±10.8cm; body mass: 70.4±12.0kg; smoking history: 2.9±0.8y) completed a 24-hour ad libitum smoking trial (SMO) followed by two 24-hour smoking abstinence trials. During abstinence trials, participants performed six whole body resistance exercises (EX) or a control condition (CON) in the morning, followed by mental challenge tasks in the afternoon. Plasma adrenocorticotropin hormone (ACTH), and salivary and serum cortisol were measured during each visit at rest (REST), and then before (PRE-EX), immediately after (IP-EX), and 30min after exercise (30-EX); and before (PRE-MC), immediately after (IP-MC), and 30min after mental challenge (30-MC). Resistance exercise significantly (p≤0.05) elevated plasma ACTH and serum cortisol at IP-EX during EX compared with SMO and CON trials. Resting ACTH, salivary and serum cortisol concentrations at Pre-MC did not differ between EX and CON trials. The HPA axis response to mental challenge was similar after EX and CON trials. Finally, resistance exercise did not reduce withdrawal symptoms, urge to smoke, or stress. Resistance exercise did not substantially alter resting HPA hormones or the HPA response to mental challenge tasks during 24h of smoking abstinence. © 2013.
Fediuc, Sergiu; Campbell, Jonathan E; Riddell, Michael C
2006-06-01
Adaptations of the hypothalamic-pituitary-adrenal (HPA) axis to voluntary exercise in rodents are not clear, because most investigations use forced-exercise protocols, which are associated with psychological stress. In the present study, we examined the effects of voluntary wheel running on the circadian corticosterone (Cort) rhythm as well as HPA axis responsiveness to, and recovery from, restraint stress. Male Sprague-Dawley rats were divided into exercise (E) and sedentary (S) groups, with E rats having 24-h access to running wheels for 5 wk. Circadian plasma Cort levels were measured at the end of each week, except for week 5 when rats were exposed to 20 min of restraint stress, followed by 95 min of recovery. Measurements of glucocorticoid receptor content in the hippocampus and anterior pituitary were performed using Western blotting at the termination of the restraint protocol. In week 1, circadian Cort levels were twofold higher in E compared with S animals, but the levels progressively decreased in the E group throughout the training protocol to reach similar values observed in S by week 4. During restraint stress and recovery, Cort values were similar between E and S, as was glucocorticoid receptor content in the hippocampus and pituitary gland after death. Compared with E, S animals had higher plasma ACTH levels during restraint. Taken together, these data indicate that 5 wk of wheel running are associated with normal circadian Cort activity and normal negative-feedback inhibition of the HPA axis, as well as with increased adrenal sensitivity to ACTH after restraint stress.
Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.
Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O
2015-08-01
Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.
Daughters, Stacey B; Richards, Jessica M; Gorka, Stephanie M; Sinha, Rajita
2009-12-01
Substance abuse treatment programs are often characterized by high rates of premature treatment dropout, which increases the likelihood of relapse to drug use. Negative reinforcement models of addiction emphasize an individual's inability to tolerate stress as a key factor for understanding poor substance use treatment outcomes, and evidence indicates that dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to an individual's inability to respond adaptively to stress. The aim of the current study was to examine whether HPA axis response to stress is predictive of treatment retention among a sample of drug users in residential substance abuse treatment. Prospective study assessing treatment retention among 102 individuals enrolled in residential substance abuse treatment. Participants completed two computerized stress tasks, and HPA axis response to stress was measured via salivary cortisol at five time points from baseline (pre-stress) to 30 min post-stress exposure. The main outcome measures were treatment dropout (categorical) and total number of days in treatment (continuous). A significantly higher salivary cortisol response to stress was observed in treatment dropouts compared to treatment completers. Further, Cox proportional hazards survival analyses indicated that a higher peak cortisol response to stress was associated with a shorter number of days to treatment dropout. Results indicate that a higher salivary cortisol level in response to stress is associated with an inability to remain in substance abuse treatment. These findings are the first to document a biological marker of stress as a predictor of substance abuse treatment dropout, and support the development and implementation of treatments targeting this vulnerability.
Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter
2012-10-01
Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.
Maternal sensitivity and infant autonomic and endocrine stress responses.
Bosquet Enlow, Michelle; King, Lucy; Schreier, Hannah Mc; Howard, Jamie M; Rosenfield, David; Ritz, Thomas; Wright, Rosalind J
2014-07-01
Early environmental exposures may help shape the development of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis, influencing vulnerability for health problems across the lifespan. Little is known about the role of maternal sensitivity in influencing the development of the ANS in early life. To examine associations among maternal sensitivity and infant behavioral distress and ANS and HPA axis reactivity to the Repeated Still-Face Paradigm (SFP-R), a dyadic stress task. Observational repeated measures study. Thirty-five urban, sociodemographically diverse mothers and their 6-month-old infants. Changes in infant affective distress, heart rate, respiratory sinus arrhythmia (RSA), and T-wave amplitude (TWA) across episodes of the SFP-R were assessed. A measure of cortisol output (area under the curve) in the hour following cessation of the SFP-R was also obtained. Greater maternal insensitivity was associated with greater infant sympathetic activation (TWA) during periods of stress and tended to be associated with greater cortisol output following the SFP-R. There was also evidence for greater affective distress and less parasympathetic activation (RSA) during the SFP-R among infants of predominantly insensitive mothers. Caregiving quality in early life may influence the responsiveness of the sympathetic and parasympathetic branches of the ANS as well as the HPA axis. Consideration of the ANS and HPA axis systems together provides a fuller representation of adaptive versus maladaptive stress responses. The findings highlight the importance of supporting high quality caregiving in the early years of life, which is likely to promote later health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beattie, Matthew C.; Maldonado-Devincci, Antoniette M.; Porcu, Patrizia; O’Buckley, Todd K.; Daunais, James B.; Grant, Kathleen A.; Morrow, A. Leslie
2016-01-01
Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the GABAergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus, and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to HPA axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 hours/day over twelve months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 – 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13±2% (p<0.05) in the lateral amygdala and 17±2% (p<0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg≥20% of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = −0.87 and −0.72, respectively, p<0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity was observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in nonhuman primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function. PMID:26625954
Low-protein diet in puberty impairs testosterone output and energy metabolism in male rats.
de Oliveira, Júlio Cezar; de Moura, Egberto Gaspar; Miranda, Rosiane Aparecida; de Moraes, Ana Maria Praxedes; Barella, Luiz Felipe; da Conceição, Ellen Paula Santos; Gomes, Rodrigo Mello; Ribeiro, Tatiane Aparecida; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Lisboa, Patrícia Cristina; Mathias, Paulo Cezar de Freitas
2018-06-01
We examined the long-term effects of protein restriction during puberty on the function of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in male rats. Male Wistar rats from the age of 30 to 60 days were fed a low-protein diet (4%, LP). A normal-protein diet (20.5%) was reintroduced to rats from the age of 60 to 120 days. Control rats were fed a normal-protein diet throughout life (NP). Rats of 60 or 120 days old were killed. Food consumption, body weight, visceral fat deposits, lipid profile, glycemia, insulinemia, corticosteronemia, adrenocorticotropic hormone (ACTH), testosteronemia and leptinemia were evaluated. Glucose-insulin homeostasis, pancreatic-islet insulinotropic response, testosterone production and hypothalamic protein expression of the androgen receptor (AR), glucocorticoid receptor (GR) and leptin signaling pathway were also determined. LP rats were hypophagic, leaner, hypoglycemic, hypoinsulinemic and hypoleptinemic at the age of 60 days ( P < 0.05). These rats exhibited hyperactivity of the HPA axis, hypoactivity of the HPG axis and a weak insulinotropic response ( P < 0.01). LP rats at the age of 120 days were hyperphagic and exhibited higher visceral fat accumulation, hyperleptinemia and dyslipidemia; lower blood ACTH, testosterone and testosterone release; and reduced hypothalamic expression of AR, GR and SOCS3, with a higher pSTAT3/STAT3 ratio ( P < 0.05). Glucose-insulin homeostasis was disrupted and associated with hyperglycemia, hyperinsulinemia and increased insulinotropic response of the pancreatic islets. The cholinergic and glucose pancreatic-islet responses were small in 60-day-old LP rats but increased in 120-day-old LP rats. The hyperactivity of the HPA axis and the suppression of the HPG axis caused by protein restriction at puberty contributed to energy and metabolic disorders as long-term consequences. © 2018 Society for Endocrinology.
Riebe, Caitlin J; Wotjak, Carsten T
2011-07-01
Endogenous cannabinoids play an important role in the physiology and behavioral expression of stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) axis, including the release of glucocorticoids, is the fundamental hormonal response to stress. Endocannabinoid (eCB) signaling serves to maintain HPA-axis homeostasis, by buffering basal activity as well as by mediating glucocorticoid fast feedback mechanisms. Following chronic stressor exposure, eCBs are also involved in physiological and behavioral habituation processes. Behavioral consequences of stress include fear and stress-induced anxiety as well as memory formation in the context of stress, involving contextual fear conditioning and inhibitory avoidance learning. Chronic stress can also lead to depression-like symptoms. Prominent in these behavioral stress responses is the interaction between eCBs and the HPA-axis. Future directions may differentiate among eCB signaling within various brain structures/neuronal subpopulations as well as between the distinct roles of the endogenous cannabinoid ligands. Investigation into the role of the eCB system in allostatic states and recovery processes may give insight into possible therapeutic manipulations of the system in treating chronic stress-related conditions in humans.
Dynamics of neuroendocrine stress response: bistability, timing, and control of hypocortisolism
NASA Astrophysics Data System (ADS)
D'Orsogna, Maria; Chou, Tom; Kim, Lae
The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in its activity are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. We characterize ``normal'' and ``diseased'' states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones, corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH), by circulating glucocorticoids such as cortisol (CORT). Our model includes ultradian oscillations, CRH self-upregulation of CRH release, and distinguishes two components of negative feedback by cortisol on circulating CRH levels: a slow direct suppression of CRH synthesis and a fast indirect effect on CRH release. The slow regulation mechanism mediates external stress-driven transitions between the stable states in novel, intensity, duration, and timing-dependent ways. We find that the timing of traumatic events may be an important factor in determining if and how the hallmarks of depressive disorders will manifest. Our model also suggests a mechanism whereby exposure therapy of stress disorders may act to normalize downstream dysregulation of the HPA axis.
Psychobiological response to pain in female adolescents with nonsuicidal self-injury
Koenig, Julian; Rinnewitz, Lena; Warth, Marco; Hillecke, Thomas K.; Brunner, Romuald; Resch, Franz; Kaess, Michael
2017-01-01
Background Nonsuicidal self-injury (NSSI) is associated with reduced pain sensitivity and alterations in top–down processing of nociceptive information. The experience of acute pain is characterized by reactivity of the autonomic nervous system (ANS) and hypothalamic–pituitary–adrenal (HPA) axis, which to our knowledge has not been systematically investigated in the context of NSSI. Methods Adolescents fulfilling DSM-5 diagnostic criteria for NSSI and matched healthy controls received cold pain stimulation. We obtained self-reports on psychological distress and measured blood pressure, heart rate variability (HRV) and saliva cortisol. Regression analyses were used to investigate group differences on observed difference scores, adjusting for confounding variables. Results We included 30 adolescents engaging in NSSI and 30 controls in our study. Adolescents in the NSSI group showed a greater pain threshold. Groups significantly differed in their psychological response to pain. In patients with NSSI, mood and body awareness increased after painful stimulation; in controls it decreased. Tension increased in controls only. The HPA axis response to painful stimulation was increased in the NSSI compared with the control group. Analysis of ultra-short-term recordings of HRV revealed significant group differences during the anticipation of pain and recovery. Limitations Future studies should incorporate multiple measures of saliva cortisol and replicate the present findings in a naturalistic setting. Conclusion Compared with controls, individuals engaging in NSSI show psychological benefits in response to pain. Biological findings highlight decreased physiologic arousal before and prolonged arousal (ANS and HPA axis response) after painful stimulation in adolescents engaging in NSSI. Greater pain-inflicted autonomic arousal and cortisol secretion may counteract dissociative states, reduce negative affect and increase body awareness in adolescents engaging in NSSI, lending support for a neurobiological pathomechanism underlying the intraindividual and antisuicide functions of NSSI. PMID:28234208
Vyas, Sheela; Maatouk, Layal
2013-12-01
Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.
Blunted Hypothalamo-pituitary Adrenal Axis Response to Predator Odor Predicts High Stress Reactivity
Whitaker, Annie M.; Gilpin, Nicholas W.
2015-01-01
Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as ‘Avoiders’ or Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24 hours and 11 days), anxiety-like behavior (48 hours and 5 days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24 hours that persisted 11 days post-stress. Both Avoiders and Non-Avoiders exhibited heightened anxiety-like behavior at 48 hours and 5 days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and builds on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. PMID:25824191
Inflammation in Parkinson’s disease: role of glucocorticoids
Herrero, María-Trinidad; Estrada, Cristina; Maatouk, Layal; Vyas, Sheela
2015-01-01
Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD). Studies in PD patients show evidence of augmented levels of potent pro-inflammatory molecules e.g., TNF-α, iNOS, IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergic neurons are particularly vulnerable to activated glia releasing these toxic factors. Recent genetic studies point to the role of immune system in the etiology of PD, thus in combination with environmental factors, both peripheral and CNS-mediated immune responses could play important roles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are known to mediate chronic inflammation, the roles of other immune-competent cells are less well understood. Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis. Glucocorticoids (GCs) released from adrenal glands upon stimulation of HPA axis, in response to either cell injury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both through direct transcriptional action on target genes and by indirectly inhibiting transcriptional activities of transcriptional factors such as NF-κB, AP-1 or interferon regulatory factors. In PD patients, the HPA axis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GR function in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucial effect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover, GCs are also known to regulate human brain vasculature as well as blood brain barrier (BBB) permeability, any dysfunction in their actions may influence infiltration of cytotoxic molecules resulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation of glucocorticoid receptor actions is likely important in dopamine neuron degeneration through establishment of chronic inflammation. PMID:25883554
Lucas, Todd; Wegner, Rhiana; Pierce, Jennifer; Lumley, Mark A.; Laurent, Heidemarie K.; Granger, Douglas A.
2015-01-01
Objective Understanding individual differences in the psychobiology of the stress response is critical to grasping how psychosocial factors contribute to racial and ethnic health disparities. However, the ways in which environmentally sensitive biological systems coordinate in response to acute stress is not well understood. We employed a social-evaluative stressor task to investigate coordination among the autonomic nervous system (ANS), hypothalamic-pituitary-adrenal (HPA) axis, immune/inflammatory system, and neurotrophic response system in a community sample of 85 healthy African American men and women. Methods Six saliva samples – two collected before and four collected during and after the stressor – were assayed for cortisol and dehydroepiandrosterone-sulfate (DHEAs; HPA-axis markers), salivary α amylase (sAA; ANS marker), salivary c-reactive protein (sCRP; inflammatory/immune marker), and salivary nerve growth factor (sNGF; neurotrophic marker). Individual differences in perceived discrimination and racial identity were also measured. Results Factor analysis demonstrated that stress systems were largely dissociated before stressor exposure, but became aligned during event and recovery phases into functional biological stress responses (factor loadings .71to.96). Coordinated responses were related to interactions of perceived discrimination and racial identity: when racial identity was strong, high perceived discrimination was associated with low hypothalamic-pituitary-adrenal (HPA) axis arousal at baseline (B’s = .68 to.72, p < .001) and during the task (B’s =.46 to .62, p ≤ .049), and a robust inflammatory response (sCRP) during recovery (B’s =.72 to.94, p ≤ .002). Conclusion Culturally-relevant social perceptions are linked to a specific pattern of changing alignment in biological stress responses. Better understanding these links may significantly advance understanding of stress-related illnesses and health disparities. PMID:27806018
Young, Dmitri A; Neylan, Thomas C; O'Donovan, Aoife; Metzler, Thomas; Richards, Anne; Ross, Jessica A; Inslicht, Sabra S
2018-08-01
While the BDNF Val66Met polymorphism has been linked to various psychological disorders, limited focus has been on its relationship to posttraumatic stress disorder (PTSD) and early traumas such as child abuse. Therefore, we assessed whether Val66Met was associated with fear potentiated psychophysiological response and HPA axis dysfunction and whether PTSD status or child abuse history moderated these outcomes in a sample of Veterans. 226 and 173 participants engaged in a fear potentiated acoustic startle paradigm and a dexamethasone suppression test (DST) respectively. Fear conditions included no, ambiguous, and high threat conditions. Psychophysiological response measures included electromyogram (EMG), skin conductance response (SCR), and heart rate. The Clinician Administered PTSD Scale (CAPS) and the Trauma History Questionnaire (THQ) were used to assess PTSD status and child abuse history respectively. Met allele carriers exhibited greater SCR magnitudes in the no and ambiguous threat conditions (p < 0.01 and p < 0.05 respectively). Met carriers with PTSD exhibited greater physiological response magnitudes in the ambiguous (SCR, p < 0.001) and high threat conditions (SCR and heart rate, both p ≤ 0.005). Met carrier survivors of child abuse exhibited blunted heart rate magnitudes in the high threat condition (p < 0.01). Met allele carries with PTSD also exhibited greater percent cortisol suppression (p < 0.005). Limitations included small sample size and the cross-sectional nature of the data. The Val66met may impact PTSD susceptibility differentially via enhanced threat sensitivity and HPA axis dysregulation. Child abuse may moderate Val66Met's impact on threat reactivity. Future research should explore how neuronal mechanisms might mediate this risk. Published by Elsevier B.V.
HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats.
Miranda, Rosiane A; Torrezan, Rosana; de Oliveira, Júlio C; Barella, Luiz F; da Silva Franco, Claudinéia C; Lisboa, Patrícia C; Moura, Egberto G; Mathias, Paulo C F
2016-07-01
Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity. © 2016 Society for Endocrinology.
Whitaker, Annie M; Gilpin, Nicholas W
2015-08-01
Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as 'Avoiders' or 'Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24h and 11days), anxiety-like behavior (48h and 5days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24h that persisted 11days post-stress. Both Avoiders and Non-Avoiders exhibited a heightened anxiety-like behavior at 48h and 5days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and build on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. Copyright © 2015. Published by Elsevier Inc.
Xing, Hang; Zhang, Kuo; Zhang, Ruowen; Shi, Huiyan; Bi, Kaishun; Chen, Xiaohui
2015-12-01
Water extract of the fixed combination of Gardenia jasminoides Ellis fruit, Citrus aurantium L. fruit and Magnolia officinalis Rehd. et Wils. bark, traditional name - Zhi-Zi-Hou-Po (ZZHPD) is used for treatment of depressive-like symptoms in traditional Chinese medicine for centuries. The present study aimed to explore antidepressant-like effects and potential mechanisms of ZZHPD in a rat model of chronic unpredictable mild stress (CUMS). Antidepressant-like effects of ZZHPD were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system, neurotrophin and hippocampal neurogenesis. Antidepressant-like effects of ZZHPD (3.66, 7.32 and 14.64 g/kg/day) were estimated through coat state test, sucrose preference test, forced swimming test and open-field test. Effects of ZZHPD on hypothalamic-pituitary-adrenal (HPA) axis were evaluated by hormones measurement and dexamethasone suppression test. In addition, the expression of brain-derived neurotrophic factor (BDNF) in hippocampus was measured, as well as hippocampal neurogenesis was investigated by doublecortin (DCX) and 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN). The results demonstrated that ZZHPD significantly reversed the depressive-like behaviors, normalized the levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT), restored the negative feedback loop of HPA axis and improved the levels of BDNF, DCX and BrdU/NeuN compared with those in CUMS-induced rats. The above results revealed that ZZHPD exerted antidepressant-like effects possibly by normalizing HPA axis function, increasing expression of BDNF in hippocampus and promoting hippocampal neurogenesis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Witorsch, Raphael J
2016-01-01
This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.
Methylation of HPA axis related genes in men with hypersexual disorder.
Jokinen, Jussi; Boström, Adrian E; Chatzittofis, Andreas; Ciuculete, Diana M; Öberg, Katarina Görts; Flanagan, John N; Arver, Stefan; Schiöth, Helgi B
2017-06-01
Hypersexual Disorder (HD) defined as non-paraphilic sexual desire disorder with components of compulsivity, impulsivity and behavioral addiction, and proposed as a diagnosis in the DSM 5, shares some overlapping features with substance use disorder including common neurotransmitter systems and dysregulated hypothalamic-pituitary-adrenal (HPA) axis function. In this study, comprising 67 HD male patients and 39 male healthy volunteers, we aimed to identify HPA-axis coupled CpG-sites, in which modifications of the epigenetic profile are associated with hypersexuality. The genome-wide methylation pattern was measured in whole blood using the Illumina Infinium Methylation EPIC BeadChip, measuring the methylation state of over 850K CpG sites. Prior to analysis, the global DNA methylation pattern was pre-processed according to standard protocols and adjusted for white blood cell type heterogeneity. We included CpG sites located within 2000bp of the transcriptional start site of the following HPA-axis coupled genes: Corticotropin releasing hormone (CRH), corticotropin releasing hormone binding protein (CRHBP), corticotropin releasing hormone receptor 1 (CRHR1), corticotropin releasing hormone receptor 2 (CRHR2), FKBP5 and the glucocorticoid receptor (NR3C1). We performed multiple linear regression models of methylation M-values to a categorical variable of hypersexuality, adjusting for depression, dexamethasone non-suppression status, Childhood Trauma Questionnaire total score and plasma levels of TNF-alpha and IL-6. Of 76 tested individual CpG sites, four were nominally significant (p<0.05), associated with the genes CRH, CRHR2 and NR3C1. Cg23409074-located 48bp upstream of the transcription start site of the CRH gene - was significantly hypomethylated in hypersexual patients after corrections for multiple testing using the FDR-method. Methylation levels of cg23409074 were positively correlated with gene expression of the CRH gene in an independent cohort of 11 healthy male subjects. The methylation levels at the identified CRH site, cg23409074, were significantly correlated between blood and four different brain regions. CRH is an important integrator of neuroendocrine stress responses in the brain, with a key role in the addiction processes. Our results show epigenetic changes in the CRH gene related to hypersexual disorder in men. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.
2012-01-01
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795
Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.
2014-01-01
Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324
Effects of beta-phenylethylamine on the hypothalamo-pituitary-adrenal axis in the male rat.
Kosa, E; Marcilhac-Flouriot, A; Fache, M P; Siaud, P
2000-11-01
beta-Phenylethylamine (PEA) is a trace neuroactive amine implicated in the regulation of the hypothalamic-pituitary-adrenal (HPA) response to stress. To test this hypothesis, effects of subchronic levels of PEA (50 mg/kg/day treatment for 10 days) on the corticotroph function were studied. PEA treatment induces: (i) a significant increase of corticotrophin releasing hormone (CRH) immunoreactivity in the median eminence (ME), as measured by semi-quantitative immunofluorescence labeling techniques, (ii) a significant increase in CRH mRNA levels in paraventricular nuclei, as detected by in situ hybridization, and (iii) an increase in plasma adreno-corticotrophin hormone (ACTH) and corticosterone levels in responses to stress. PEA treatment has no effect on the number of binding sites and on the dissociation constant of the glucocorticoid receptors in any structure studied. Results of the dexamethasone suppression test were similar in PEA- and saline-treated rats. Taken together, these results suggest that PEA treatment stimulated the HPA axis activity levels directly via the CRH hypothalamic neurons, without altering the negative feed back control exerted by the glucocorticoids.
Banerjee, Sunayana B.; Arterbery, Adam S.; Fergus, Daniel J.; Adkins-Regan, Elizabeth
2012-01-01
Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic–pituitary–adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species—the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived). During adulthood, offspring of both groups were subjected to two stressors (restraint and isolation), and corticosterone concentrations were measured. Additionally, we measured baseline levels of the two corticosteroid receptors—glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)—in the hippocampus, hypothalamus and cerebellum. Our results suggest that maternally deprived offspring are hyper-responsive to isolation in comparison with controls. Furthermore, mRNA levels of both GR and MR receptors are altered in maternally deprived offspring in comparison with controls. Thus, absence of maternal care has lasting consequences for HPA function in a biparental species where paternal care is available. PMID:21775332
O’Donovan, Aoife; Slavich, George M; Epel, Elissa S.; Neylan, Thomas C
2015-01-01
Anxiety disorders increase risk for the early development of several diseases of aging. Elevated inflammation, a common risk factor across diseases of aging, may play a key role in the relationship between anxiety and physical disease. However, the neurobiological mechanisms linking anxiety with elevated inflammation remain unclear. In this review, we present a neurobiological model of the mechanisms by which anxiety promotes inflammation. Specifically we propose that exaggerated neurobiological sensitivity to threat in anxious individuals may lead to sustained threat perception, which is accompanied by prolonged activation of threat-related neural circuitry and threat-responsive biological systems including the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS), and inflammatory response. Over time, this pattern of responding can promote chronic inflammation through structural and functional brain changes, altered sensitivity of immune cell receptors, dysregulation of the HPA axis and ANS, and accelerated cellular aging. Chronic inflammation, in turn, increases risk for diseases of aging. Exaggerated neurobiological sensitivity to threat may thus be a treatment target for reducing disease risk in anxious individuals. PMID:23127296
Exogenous cortisol acutely influences motivated decision making in healthy young men.
Putman, Peter; Antypa, Niki; Crysovergi, Panagiota; van der Does, Willem A J
2010-02-01
The glucocorticoid (GC) hormone cortisol is the end product of the hypothalamic-pituitary-adrenal axis (HPA axis). Acute psychological stress increases HPA activity and GC release. In humans, chronic disturbances in HPA activity have been observed in affective disorders and in addictive behaviour. Recent research indicates that acute effects of GCs may be anxiolytic and increase reward sensitivity. Furthermore, cortisol acutely influences early cognitive processing of emotional stimuli. In order to extend such findings to more complex emotional-cognitive behaviour, the present study tested acute effects of 40 mg cortisol on motivated decision making in 30 healthy young men. Results showed that cortisol indeed increased risky decision making, as predicted. This effect occurred for decisions where making a risky choice could potentially yield a big reward. These results are discussed with respect to currently proposed mechanisms for cortisol's potential anxiolytic effect and GCs' involvement in reward systems.
Working-memory capacity protects model-based learning from stress.
Otto, A Ross; Raio, Candace M; Chiang, Alice; Phelps, Elizabeth A; Daw, Nathaniel D
2013-12-24
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.
ERIC Educational Resources Information Center
Zalewski, Maureen; Lengua, Liliana J.; Kiff, Cara J.; Fisher, Philip A.
2012-01-01
This study examined the relation of low income and poverty to cortisol levels, and tested potential pathways from low income to disruptions in cortisol through cumulative family risk and parenting. The sample of 306 mothers and their preschool children included 29 % families at or near poverty, 27 % families below the median income, and the…
Lopez-Duran, Nestor L.; McGinnis, Ellen; Kuhlman, Kate; Geiss, Elisa; Vargas, Ivan; Mayer, Stefanie
2017-01-01
Given the link between youth depression and stress exposure, efforts to identify related biomarkers have involved examinations of stress regulation systems, including the hypothalamic–pituitary–adrenal (HPA) axis. Despite these vast efforts, the underlying mechanisms at play, as well as factors that may explain heterogeneity of past findings, are not well understood. In this study, we simultaneously examined separate components of the HPA-axis response (e.g. activation intensity, peak levels, recovery) to the Socially Evaluated Cold-Pressor Test in a targeted sample of 115 youth (age 9–16), recruited to overrepresent youth with elevated symptoms of depression. Among youth who displayed a cortisol response to the task, depression symptoms were associated with higher peak responses but not greater rate of activation or recovery in boys only. Among those who did not respond to the task, depression symptoms were associated with greater cortisol levels throughout the visit in boys and girls. Results suggest that depression symptoms are associated with a more prolonged activation of the axis and impaired recovery to psychosocial stressors primarily in boys. We discussed two potential mechanistic explanations of the link between depression symptoms and the duration of activation: (1) inhibitory shift (i.e. point at which the ratio of inhibitory and excitatory input into the axis shifts from greater excitatory to greater inhibitory input) or (2) inhibitory threshold (i.e. level of cortisol exposure required to activate the axis’ feedback inhibition system). PMID:26115161
Can decision-making skills affect responses to psychological stress in healthy women?
Santos-Ruiz, Ana; Garcia-Rios, M Carmen; Fernandez-Sanchez, José Carlos; Perez-Garcia, Miguel; Muñoz-García, Miguel Angel; Peralta-Ramirez, Maria Isabel
2012-12-01
In recent studies showing how stress can affect an individual's decision-making process, the cognitive component of decision-making could also be considered a coping resource available to individuals when faced with a stressful situation. The Iowa Gambling Task (IGT) constitutes the standard test for the assessment of decision-making skills under conditions of uncertainty. Responses of the hypothalamic-pituitary-adrenal (HPA) axis to psychosocial stress, in turn, have been estimated by means of cortisol measurements. Our main objective in this study was to test if good and bad IGT performers show distinct HPA axis responses, when challenged in a classic psychosocial stress test. Because women have been shown to outperform men on the IGT under the influence of psychosocial stress, we chose a sample of 40 women to take the IGT before they were exposed to a public speaking task in a virtual environment. The activation of the HPA axis, involved in the stress response, was assessed by examining the levels of cortisol in the subjects' saliva at the following four stages: before the challenge, after the challenge, and 10 and 20 min after the task. Participants were divided into two groups according to their level of performance, good or poor, on the IGT. Results showed statistically significant differences between the groups for pre-exposure cortisol levels and for cortisol levels 20 min after exposure. Overall cortisol levels were significantly higher in the group with poor performance on the IGT. It appears that good decision-making, which may be an important resource for coping with stress, is associated with a lower HPA axis response to a psychosocial stressor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Buhl, Esben S; Jensen, Thomas Korgaard; Jessen, Niels; Elfving, Betina; Buhl, Christian S; Kristiansen, Steen B; Pold, Rasmus; Solskov, Lasse; Schmitz, Ole; Wegener, Gregers; Lund, Sten; Petersen, Kitt Falck
2010-05-01
Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.
Ciufolini, Simone; Gayer-Anderson, Charlotte; Fisher, Helen L; Marques, Tiago Reis; Taylor, Heather; Di Forti, Marta; Zunszain, Patricia; Morgan, Craig; Murray, Robin M; Pariante, Carmine M; Dazzan, Paola; Mondelli, Valeria
2018-05-15
Childhood abuse is highly prevalent in psychosis patients, but whether/how it affects hypothalamic-pituitary-adrenal (HPA) axis at the onset of psychosis remains unclear. We aimed to investigate the effects of severity of childhood abuse on HPA axis activity, in first-episode psychosis (FEP) and healthy controls. We recruited 169 FEP patients and 133 controls with different degrees of childhood physical and sexual abuse (i.e. no abuse exposure, non-severe abuse exposure, and severe abuse exposure). Saliva samples were collected to measure cortisol awakening response with respect to ground (CARg), increase (CARi) and diurnal (CDD) cortisol levels. Two-way ANOVA analyses were conducted to test the relationships between severity of childhood abuse and psychosis on cortisol levels in individuals with psychosis and healthy controls with and without childhood abuse history. A statistically significant interaction between childhood abuse and psychosis on CARg was found (F (2,262) = 4.60, p = 0.011, ω 2 = 0.42). Overall, controls showed a U-shaped relationship between abuse exposure and CARg, while patients showed an inverted U-shaped relationship. CARg values were markedly different between patients and controls with either no abuse history or exposure to severe childhood abuse. No significant differences were found when looking at CARi and CDD. Our results show a divergent effect of severe childhood abuse on HPA axis activity in patients with first-episode psychosis and in controls. In the presence of exposure to severe childhood abuse, a blunted CARg and a less reactive HPA axis may represent one of the biological mechanisms involved in the development of psychosis. Copyright © 2018. Published by Elsevier B.V.
Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Arranz, Maria Jesús; Vega, Daniel; Calvo, Natalia; Elices, Matilde; Sanchez-Mora, Cristina; García-Martinez, Iris; Salazar, Juliana; Carmona, Cristina; Bauzà, Joana; Prat, Mónica; Pérez, Víctor; Pascual, Juan C
2016-06-01
Current knowledge suggests that borderline personality disorder (BPD) results from the interaction between genetic and environmental factors. Research has mainly focused on monoaminergic genetic variants and their modulation by traumatic events, especially those occurring during childhood. However, to the best of our knowledge, there are no studies on the genetics of hypothalamus-pituitary-adrenal (HPA) axis, despite its vulnerability to early stress and its involvement in BPD pathogenesis. The aim of this study was to investigate the contribution of genetic variants in the HPA axis and to explore the modulating effect of childhood trauma in a large sample of BPD patients and controls. DNA was obtained from a sample of 481 subjects with BPD and 442 controls. Case-control differences in allelic frequencies of 47 polymorphisms in 10 HPA axis genes were analysed. Modulation of genetic associations by the presence of childhood trauma was also investigated by dividing the sample into three groups: BPD with trauma, BPD without trauma and controls. Two FKBP5 polymorphisms (rs4713902-C and rs9470079-A) showed significant associations with BPD. There were also associations between BPD and haplotype combinations of the genes FKBP5 and CRHR1. Two FKBP5 alleles (rs3798347-T and rs10947563-A) were more frequent in BPD subjects with history of physical abuse and emotional neglect and two CRHR2 variants (rs4722999-C and rs12701020-C) in BPD subjects with sexual and physical abuse. Our findings suggest a contribution of HPA axis genetic variants to BPD pathogenesis and reinforce the hypothesis of the modulating effect of childhood trauma in the development of this disorder.
The impact of stress systems and lifestyle on dyslipidemia and obesity in anxiety and depression.
van Reedt Dortland, Arianne K B; Vreeburg, Sophie A; Giltay, Erik J; Licht, Carmilla M M; Vogelzangs, Nicole; van Veen, Tineke; de Geus, Eco J C; Penninx, Brenda W J H; Zitman, Frans G
2013-02-01
Dyslipidemia and obesity have been observed in persons with severe anxiety or depression, and in tricyclic antidepressant (TCA) users. This likely contributes to the higher risk of cardiovascular disease (CVD) in anxiety and depressive disorders. We aimed to elucidate whether biological stress systems or lifestyle factors underlie these associations. If so, they may be useful targets for CVD prevention and intervention. Within 2850 Netherlands Study of Depression and Anxiety (NESDA) participants, we evaluated the explaining impact of biological stress systems (i.e., the hypothalamic-pituitary-adrenal [HPA] axis, autonomic nervous system [ANS] and inflammation) and lifestyle factors (i.e., tobacco and alcohol use, and physical activity) on adverse associations of anxiety and depression severity and TCA use with high and low-density lipoprotein cholesterol, triglycerides, body mass index and waist circumference. Through linear regression analyses, percentual change (%Δ) in β was determined and considered significant when %Δ>10. The inflammatory marker C-reactive protein had the most consistent impact (explaining 14-53% of the associations of anxiety and depression severity and TCA use with lipid and obesity levels), followed by tobacco use (explaining 34-43% of the associations with lipids). The ANS mediated all associations with TCA use (explaining 32-61%). The HPA axis measures did not explain any of the associations. Increased dyslipidemia and (abdominal) obesity risk in patients with more severe anxiety disorders and depression may be partly explained by chronic low-grade inflammation and smoking. TCAs may increase metabolic risk through enhanced sympathetic and decreased parasympathetic ANS activity. That the HPA axis had no impact in our sample may reflect the possibility that the HPA axis only plays a role in acute stress situations rather than under basal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Stress and psychotic transition: A literature review].
Chaumette, B; Kebir, O; Mam Lam Fook, C; Bourgin, J; Godsil, B P; Gaillard, R; Jay, T M; Krebs, M-O
2016-08-01
Psychiatric disorders are consistent with the gene x environment model, and non-specific environmental factors such as childhood trauma, urbanity, and migration have been implicated. All of these factors have in common to dysregulate the biological pathways involved in response to stress. Stress is a well-known precipitating factor implicated in psychiatric disorders such as depression, bipolar disorder, anxiety, and possibly schizophrenia. More precisely, psychosocial stress induces dysregulation of the hypothalamic-pituitary-adrenal axis (HPA) and could modify neurotransmission, which raises the question of the involvement of stress-related biological changes in psychotic disorders. Indeed, the literature reveals dysregulation of the HPA axis in schizophrenia. This dysregulation seems to be present in the prodromal phases (UHR subjects for ultra-high risk) and early schizophrenia (FEP for first episode psychosis). Thus, and following the stress-vulnerability model, stress could act directly on psychotic onset and precipitate the transition of vulnerable subjects to a full-blown psychosis. The present paper reviews the literature on stress and onset of schizophrenia, with consideration for the causal role vs. associated role of HPA axis dysregulation in schizophrenia and the factors that influence it, in particular during prodromal and earlier phases. We also discuss different methods developed to measure stress in humans. We performed a bibliographic search using the keywords 'cortisol', 'glucocorticoid', 'HPA' with 'UHR', 'CHR', 'at-risk mental state', 'first episode psychosis', 'schizotypal', 'prodromal schizophrenia' in Medline, Web of Knowledge (WOS), and EBSCO completed by a screening of the references of the selected articles. Stress has been studied for many years in schizophrenia, either by subjective methods (questionnaires), or objective methods (standardized experimental protocols) with biological sampling and/or brain imaging methods. These methods have suggested a link between dysregulation of the HPA axis and psychotic symptoms both through abnormal basal levels of cortisol and flattened reactivity to social stress. Imaging results suggest indirect modifications, including abnormal pituitary or hippocampal volume. Several factors dysregulating the HPA axis have also been highlighted, such as consumption of drugs (i.e. cannabis), childhood trauma or genetic factors (such as COMT, or MTHFR variants). Psychological stress induces subcortical dopaminergic activation attributable to hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This dysregulation is present in the prodromal phase (UHR) in patients who have experienced a first psychotic episode (FEP) and in siblings of schizophrenic patients. Stress dysregulation is a plausible hypothesis to understand the psychosis onset. The effect of stress on brain pathways could participate to the mechanisms underlying the onset of psychotic symptoms, both as a precipitating factor and as a marker of a predisposing vulnerability. This dysregulation fits into the gene x environment model: in subjects with genetic predispositions, stressful environmental factors can modify biological pathways implicated in psychiatric disorders, promoting the emergence of symptoms. However, many confounding factors obscure the literature, and further studies are needed in schizophrenic patients, UHR and FEP patients to clarify the precise role of stress in psychotic transition. Identification of stress biomarkers could help diagnosis and prognosis, and pave the way for specific care strategies based on stress-targeted therapies. Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Zhou, Yaling; Dong, Zaiquan; A, Ruhan; Liao, Zongbing; Guo, Jing; Liu, Cancan; Sun, Xueli
2016-08-29
To investigate the prevalence of impaired glucose regulation (IGR) in patients with anxiety disorders and the relationship with hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes function. From September 2013 to May 2015, a total of 646 patients with anxiety disorders who matched the criteria of the 10 th revision of the International Statistical Classification of Diseases and Related Health Problems participated in our study, which was conducted in the Psychiatric Inpatient Department of the West China Hospital of Sichuan University. The results from 75-g glucose tolerance tests, and morning (8:00 am) serum cortisol (PTC), adrenocorticotropic hormone༈ACTH), thyroid-stimulating hormone (TSH), TT3, TT4, FT3, and FT4 levels were collected. The Hamilton Anxiety Scale was administered to assess the severity of anxiety. SPSS 17.0 software was used for statistical analysis. The crude prevalence of impaired glucose regulation was 24.61% in patients with anxiety disorders patients. In the 18-40 year age group with impaired glucose regulation (IGR), both ACTH and PTC levels were higher than the control group (P<0.05). In the 61-75 year age group with IGR, the TSH level was lower and the FT4 level was higher than the control group (P<0.05). The results herein partially confirm that the prevalence of IGR in patients with anxiety disorders is high. Impaired glucose in the younger age group is closely associated with HPA axis function, while impaired glucose in the older age group is closely associated with HPT axis alteration. Therefore, routine blood glucose and endocrine function testing in patients with anxiety disorder is of clinical importance to prevent the development of diabetes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The role of cortisol and psychopathy in the cycle of violence
Green, Charles E.; Alcorn, Joseph L.; Swann, Alan C.; Moeller, F. Gerard; Lane, Scott D.
2016-01-01
Rationale Child abuse and neglect are universal risk factors for delinquency, violence, and aggression; this phenomenon is known as the cycle of violence. Additional factors—psychopathy, impulsiveness, and disruptions in the hypothalamic–pituitary–adrenal (HPA) axis—play a role in aggressive behavior but have rarely been examined in the same conceptual and experimental framework. Objectives We sought to examine the above-mentioned risk factors for aggression in a prospective study employing psychopharmacologic and psychometric techniques. Methods Sixty-seven adult participants were given an acute dose of 20 mg cortisol in a placebo-controlled, within-subject, counter-balanced dosing design. Salivary cortisol was measured at baseline and at regular intervals across a 5 h testing period. Following dosing, state-aggressive behavior was measured by a laboratory task, the Point-Subtraction Aggression Paradigm. History of child abuse/−neglect, psychopathy, impulsivity, and a trait measure of aggression were assessed through self-report questionnaires. Results Using multiple regression, a model including abuse/neglect, psychopathy, impulsivity, and baseline cortisol explained 58 % of the variance in trait aggression and 26 % of the variance in state aggression. Abuse/neglect predicted diminished HPA-axis reactivity and HPA-axis reactivity showed a trend toward predicting state and trait aggression, although it was not a significant mediating variable between abuse/neglect and aggression. Conclusions The results indicate that child maltreatment, psychopathy and HPA-axis reactivity interact to provide a confluence over aggressive behavior, and intervention efforts need to consider all these factors. PMID:23371492
Armario, Antonio; Daviu, Núria; Muñoz-Abellán, Cristina; Rabasa, Cristina; Fuentes, Silvia; Belda, Xavier; Gagliano, Humberto; Nadal, Roser
2012-07-01
Exposure to stress induces profound physiological and behavioral changes in the organisms and some of these changes may be important regarding stress-induced pathologies and animal models of psychiatric diseases. Consequences of stress are dependent on the duration of exposure to stressors (acute, chronic), but also of certain characteristics such as intensity, controllability, and predictability. If some biological variables were able to reflect these characteristics, they could be used to predict negative consequences of stress. Among the myriad of physiological changes caused by stress, only a restricted number of variables appears to reflect the intensity of the situation, mainly plasma levels of ACTH and adrenaline. Peripheral hypothalamic-pituitary-adrenal (HPA) hormones (ACTH and corticosterone) are also able to reflect fear conditioning. In contrast, the activation of the HPA axis is not consistently related to anxiety as evaluated by classical tests such as the elevated plus-maze. Similarly, there is no consistent evidence about the sensitivity of the HPA axis to psychological variables such as controllability and predictability, despite the fact that: (a) lack of control over aversive stimuli can induce behavioral alterations not seen in animals which exert control, and (b) animals showed clear preference for predictable versus unpredictable stressful situations. New studies are needed to re-evaluate the relationship between the HPA axis and psychological stress characteristics using ACTH instead of corticosterone and taking advantages of our current knowledge about the regulation of this important stress system.
Gunnar, Megan R; Talge, Nicole M; Herrera, Adriana
2009-08-01
The stress response system is comprised of an intricate interconnected network that includes the hypothalamic-pituitary-adrenocortical (HPA) axis. The HPA axis maintains the organism's capacity to respond to acute and prolonged stressors and is a focus of research on the sequelae of stress. Human studies of the HPA system have been facilitated enormously by the development of salivary assays which measure cortisol, the steroid end-product of the HPA axis. The use of salivary cortisol is prevalent in child development stress research. However, in order to measure children's acute cortisol reactivity to circumscribed stressors, researchers must put children in stressful situations which produce elevated levels of cortisol. Unfortunately, many studies on the cortisol stress response in children use paradigms that fail to produce mean elevations in cortisol. This paper reviews stressor paradigms used with infants, children, and adolescents to guide researchers in selecting effective stressor tasks. A number of different types of stressor paradigms were examined, including: public speaking, negative emotion, relationship disruption/threatening, novelty, handling, and mild pain paradigms. With development, marked changes are evident in the effectiveness of the same stressor paradigm to provoke elevations in cortisol. Several factors appear to be critical in determining whether a stressor paradigm is successful, including the availability of coping resources and the extent to which, in older children, the task threatens the social self. A consideration of these issues is needed to promote the implementation of more effective stressor paradigms in human developmental psychoendocrine research.
Oldehinkel, Albertine J; Bouma, Esther M C
2011-08-01
Adolescence is characterized by major biological, psychological, and social challenges, as well as by an increase in depression rates. This review focuses on the association between stressful experiences and depression in adolescence, and the possible role of the hypothalamus-pituitary-adrenal cortex (HPA-)axis in this link. Adolescent girls have a higher probability to develop depressive symptoms than adolescent boys and preadolescents. Increasing evidence indicates that girls' higher risk of depression is partly brought about by an increased sensitivity for stressful life events, particularly interpersonal stressors, which are highly prevalent in adolescent girls. Genetic risk factors for depression, as well as those for stress sensitivity, are often expressed differently in girls and boys. Also environmental adversity tends to affect girls' stress responses more than those of boys. These gender-specific association patterns have been reported for both sensitivity to stressful life events and HPA-axis responses to social stress. Together, the findings suggest that girls are more malleable than boys in response to internal and external influences. This postulated greater malleability may be adaptive in many circumstances, but also brings along risk, such as an increased probability of depression. Copyright © 2010 Elsevier Ltd. All rights reserved.
Measurement and meaning of salivary cortisol: a focus on health and disease in children.
Jessop, David S; Turner-Cobb, Julie M
2008-01-01
Measurement of salivary cortisol can provide important information about hypothalamic-pituitary-adrenal (HPA) axis activity under normal conditions and in response to stress. However, there are many variables relating to the measurement of cortisol in saliva which may introduce error and therefore may render difficult the comparison and interpretation of data between, and within, laboratories. This review addresses the effects of gender, age, time and location of sampling, units of measurement, assay conditions and compliance with the protocol, all of which have the potential to impact upon the precision, accuracy and reliability of salivary cortisol measurements in the literature. Some of these factors are applicable to both adults and children, but the measurement of salivary cortisol in children introduces aspects of unique variability which demand special attention. The specific focus of this review is upon the somewhat neglected area of methodological variability of salivary cortisol measurement in children. In addition to these methodological issues, the review highlights the use of salivary cortisol measurements to provide information about HPA axis dysfunction associated with psycho- and patho-physiological conditions in children. Novel applications for salivary cortisol measurements in future research into HPA axis activity in children are also discussed.
Animal models of social stress: the dark side of social interactions.
Masis-Calvo, Marianela; Schmidtner, Anna K; de Moura Oliveira, Vinícius E; Grossmann, Cindy P; de Jong, Trynke R; Neumann, Inga D
2018-05-10
Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.
Ciufolini, Simone; Dazzan, Paola; Kempton, Matthew J; Pariante, Carmine; Mondelli, Valeria
2014-11-01
We conducted a meta-analysis to investigate the HPA axis response to social stress in studies that used the Trier Social Stress Test (TSST), or comparable distressing paradigms, in individuals with either depression or schizophrenia. Sample size-adjusted effect sizes (Hedge's g statistic) were calculated to estimate the HPA axis stress response to social stress. We used a meta-regression model to take into account the moderating effect of the baseline cortisol level. Participants with depression show an activation pattern to social stress similar to that of healthy controls. Despite a normal cortisol production rate, individuals with schizophrenia have lower cortisol levels than controls both in anticipation and after exposure to social stress. Participants with depression and higher cortisol levels before the task have an increased cortisol production and reached higher cortisol levels during the task. This may be explained by the presence of an impaired negative feedback. The activation pattern present in schizophrenia may explain the reduced ability to appropriately contextualize past experiences shown by individuals with psychosis in social stressful situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mercury exposure may suppress baseline corticosterone levels in juvenile birds.
Herring, Garth; Ackerman, Joshua T; Herzog, Mark P
2012-06-05
Mercury exposure has been associated with a wide variety of negative reproductive responses in birds, however few studies have examined the potential for chick impairment via the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis regulates corticosterone levels during periods of stress. We examined the relationship between baseline fecal corticosterone metabolite concentrations and mercury concentrations in down feathers of recently hatched (<3 days) and blood of older (15-37 days) Forster's tern (Sterna forsteri) chicks in San Francisco Bay, California. Baseline fecal corticosterone metabolite concentrations were negatively correlated with mercury concentrations in blood of older chicks (decreasing by 81% across the range of observed mercury concentrations) while accounting for positive correlations between corticosterone concentrations and number of fledgling chicks within the colony and chick age. In recently hatched chicks, baseline fecal corticosterone metabolite concentrations were weakly negatively correlated with mercury concentrations in down feathers (decreasing by 45% across the range of observed mercury concentrations) while accounting for stronger positive correlations between corticosterone concentrations and colony nest abundance and date. These results indicate that chronic mercury exposure may suppress baseline corticosterone concentrations in tern chicks and suggests that a juvenile bird's ability to respond to stress may be reduced via the downregulation of the HPA axis.
Mercury exposure may suppress baseline corticosterone levels in juvenile birds
Herring, Garth; Ackerman, Joshua T.; Herzog, Mark P.
2012-01-01
Mercury exposure has been associated with a wide variety of negative reproductive responses in birds, however few studies have examined the potential for chick impairment via the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis regulates corticosterone levels during periods of stress. We examined the relationship between baseline fecal corticosterone metabolite concentrations and mercury concentrations in down feathers of recently hatched (Sterna forsteri) chicks in San Francisco Bay, California. Baseline fecal corticosterone metabolite concentrations were negatively correlated with mercury concentrations in blood of older chicks (decreasing by 81% across the range of observed mercury concentrations) while accounting for positive correlations between corticosterone concentrations and number of fledgling chicks within the colony and chick age. In recently hatched chicks, baseline fecal corticosterone metabolite concentrations were weakly negatively correlated with mercury concentrations in down feathers (decreasing by 45% across the range of observed mercury concentrations) while accounting for stronger positive correlations between corticosterone concentrations and colony nest abundance and date. These results indicate that chronic mercury exposure may suppress baseline corticosterone concentrations in tern chicks and suggests that a juvenile bird's ability to respond to stress may be reduced via the downregulation of the HPA axis.
Treatment with Synthetic Glucocorticoids and the Hypothalamus-Pituitary-Adrenal Axis
Paragliola, Rosa Maria; Papi, Giampaolo; Pontecorvi, Alfredo; Corsello, Salvatore Maria
2017-01-01
Chronic glucocorticoid (GC) treatment represents a widely-prescribed therapy for several diseases in consideration of both anti-inflammatory and immunosuppressive activity but, if used at high doses for prolonged periods, it can determine the systemic effects characteristic of Cushing’s syndrome. In addition to signs and symptoms of hypercortisolism, patients on chronic GC therapy are at risk to develop tertiary adrenal insufficiency after the reduction or the withdrawal of corticosteroids or during acute stress. This effect is mediated by the negative feedback loop on the hypothalamus-pituitary-adrenal (HPA) axis, which mainly involves corticotropin-release hormone (CRH), which represents the most important driver of adrenocorticotropic hormone (ACTH) release. In fact, after withdrawal of chronic GC treatment, reactivation of CRH secretion is a necessary prerequisite for the recovery of the HPA axis. In addition to the well-known factors which regulate the degree of inhibition of the HPA during synthetic GC therapy (type of compound, method of administration, cumulative dose, duration of the treatment, concomitant drugs which can increase the bioavailability of GCs), there is a considerable variation in individual physiology, probably related to different genetic profiles which regulate GC receptor activity. This may represent an interesting basis for possible future research fields. PMID:29053578
NASA Astrophysics Data System (ADS)
Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.
2011-12-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.
Mooney-Leber, Sean M; Brummelte, Susanne
2017-02-07
Advances in neonatal intensive care units (NICUs) have drastically increased the survival chances of preterm infants. However, preterm infants are still exposed to a wide range of stressors during their stay in the NICU, which include painful procedures and reduced maternal contact. The activation of the hypothalamic-pituitary-adrenal (HPA) axis, in response to these stressors during this critical period of brain development, has been associated with many acute and long-term adverse biobehavioral outcomes. Recent research has shown that Kangaroo care, a non-pharmacological analgesic based on increased skin-to-skin contact between the neonate and the mother, negates the adverse outcomes associated with neonatal pain and reduced maternal care, however the biological mechanism remains widely unknown. This review summarizes findings from both human and rodent literature investigating neonatal pain and reduced maternal care independently, primarily focusing on the role of the HPA axis and biobehavioral outcomes. The physiological and positive outcomes of Kangaroo care will also be discussed in terms of how dampening of the HPA axis response to neonatal pain and increased maternal care may account for positive outcomes associated with Kangaroo care. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Mitsukawa, Kayo; Mombereau, Cedric; Lötscher, Erika; Uzunov, Doncho P; van der Putten, Herman; Flor, Peter J; Cryan, John F
2006-06-01
Regulation of neurotransmission via group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) has recently been implicated in the pathophysiology of affective disorders, such as major depression and anxiety. For instance, mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) showed antidepressant and anxiolytic-like effects in a variety of stress-related paradigms, including the forced swim stress and the stress-induced hyperthermia tests. Deletion of mGluR7 reduces also amygdala- and hippocampus-dependent conditioned fear and aversion responses. Since the hypothalamic-pituitary-adrenal (HPA) axis regulates the stress response we investigate whether parameters of the HPA axis at the levels of selected mRNA transcripts and endocrine hormones are altered in mGluR7-deficient mice. Over all, mGluR7-/- mice showed only moderately lower serum levels of corticosterone and ACTH compared with mGluR7+/+ mice. More strikingly however, we found strong evidence for upregulated glucocorticoid receptor (GR)-dependent feedback suppression of the HPA axis in mice with mGluR7 deficiency: (i) mRNA transcripts of GR were significantly upregulated in the hippocampus of mGluR7-/- animals, (ii) similar increases were seen with 5-HT1A receptor transcripts, which are thought to be directly controlled by the transcription factor GR and finally (iii) mGluR7-/- mice showed elevated sensitivity to dexamethasone-induced suppression of serum corticosterone when compared with mGluR7+/+ animals. These results indicate that mGluR7 deficiency causes dysregulation of HPA axis parameters, which may account, at least in part, for the phenotype of mGluR7-/- mice in animal models for anxiety and depression. In addition, we present evidence that protein levels of brain-derived neurotrophic factor are also elevated in the hippocampus of mGluR7-/- mice, which we discuss in the context of the antidepressant-like phenotype found in those animals. We conclude that genetic ablation of mGluR7 in mice interferes at multiple sites in the neuronal circuitry and molecular pathways implicated in affective disorders.
Validation of Autonomic and Endocrine Reactivity to a Laboratory Stressor in Young Children
Roos, Leslie E.; Giuliano, Ryan J.; Beauchamp, Kathryn G.; Gunnar, Megan; Amidon, Brigette; Fisher, Philip A.
2017-01-01
The validation of laboratory paradigms that reliably induce a stress response [including hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) activation], is critical for understanding how children’s stress-response systems support emotional and cognitive function. Early childhood research to date is markedly limited, given the difficulty in establishing paradigms that reliably induce a cortisol response. Furthermore, research to date has not included a control condition or examined concurrent ANS reactivity. We addressed these limitations by characterizing the extent to which a modified matching task stressor paradigm induces HPA and ANS activation, beyond a closely matched control condition. Modifications include an unfamiliar and unfriendly assessor to increase the stressful nature of the task. Results validate the matching task as a laboratory stressor, with significant differences in HPA and ANS responsivity between conditions. The Stressor group exhibited a cortisol increase post-stressor, while the Control group was stable over time. Children in both conditions exhibited reduced parasympathetic activity to the first-half of the task, but in the second-half, only children in the Stressor condition, who were experiencing exaggerated signals of failure, exhibited further parasympathetic decline. The Stressor condition induced higher sympathetic activity (versus Control) throughout the task, with exaggerated second-half differences. Within the Stressor condition, responsivity was convergent across systems, with greater cortisol reactivity correlated with the magnitude of parasympathetic withdrawal and sympathetic engagement. Future research employing the matching task will facilitate understanding the role of HPA and ANS function in development. PMID:28024268
The stress system in the human brain in depression and neurodegeneration.
Swaab, Dick F; Bao, Ai-Min; Lucassen, Paul J
2005-05-01
Corticotropin-releasing hormone (CRH) plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis, i.e., the final common pathway in the stress response. The action of CRH on ACTH release is strongly potentiated by vasopressin, that is co-produced in increasing amounts when the hypothalamic paraventricular neurons are chronically activated. Whereas vasopressin stimulates ACTH release in humans, oxytocin inhibits it. ACTH release results in the release of corticosteroids from the adrenal that, subsequently, through mineralocorticoid and glucocorticoid receptors, exert negative feedback on, among other things, the hippocampus, the pituitary and the hypothalamus. The most important glucocorticoid in humans is cortisol, present in higher levels in women than in men. During aging, the activation of the CRH neurons is modest compared to the extra activation observed in Alzheimer's disease (AD) and the even stronger increase in major depression. The HPA-axis is hyperactive in depression, due to genetic factors or due to aversive stimuli that may occur during early development or adult life. At least five interacting hypothalamic peptidergic systems are involved in the symptoms of major depression. Increased production of vasopressin in depression does not only occur in neurons that colocalize CRH, but also in neurons of the supraoptic nucleus (SON), which may lead to increased plasma levels of vasopressin, that have been related to an enhanced suicide risk. The increased activity of oxytocin neurons in the paraventricular nucleus (PVN) may be related to the eating disorders in depression. The suprachiasmatic nucleus (SCN), i.e., the biological clock of the brain, shows lower vasopressin production and a smaller circadian amplitude in depression, which may explain the sleeping problems in this disorder and may contribute to the strong CRH activation. The hypothalamo-pituitary thyroid (HPT)-axis is inhibited in depression. These hypothalamic peptidergic systems, i.e., the HPA-axis, the SCN, the SON and the HPT-axis, have many interactions with aminergic systems that are also implicated in depression. CRH neurons are strongly activated in depressed patients, and so is their HPA-axis, at all levels, but the individual variability is large. It is hypothesized that particularly a subgroup of CRH neurons that projects into the brain is activated in depression and induces the symptoms of this disorder. On the other hand, there is also a lot of evidence for a direct involvement of glucocorticoids in the etiology and symptoms of depression. Although there is a close association between cerebrospinal fluid (CSF) levels of CRH and alterations in the HPA-axis in depression, much of the CRH in CSF is likely to be derived from sources other than the PVN. Furthermore, a close interaction between the HPA-axis and the hypothalamic-pituitary-gonadal (HPG)-axis exists. Organizing effects during fetal life as well as activating effects of sex hormones on the HPA-axis have been reported. Such mechanisms may be a basis for the higher prevalence of mood disorders in women as compared to men. In addition, the stress system is affected by changing levels of sex hormones, as found, e.g., in the premenstrual period, ante- and postpartum, during the transition phase to the menopause and during the use of oral contraceptives. In depressed women, plasma levels of estrogen are usually lower and plasma levels of androgens are increased, while testosterone levels are decreased in depressed men. This is explained by the fact that both in depressed males and females the HPA-axis is increased in activity, parallel to a diminished HPG-axis, while the major source of androgens in women is the adrenal, whereas in men it is the testes. It is speculated, however, that in the etiology of depression the relative levels of sex hormones play a more important role than their absolute levels. Sex hormone replacement therapy indeed seems to improve mood in elderly people and AD patients. Studies of rats have shown that high levels of cumulative corticosteroid exposure and rather extreme chronic stress induce neuronal damage that selectively affects hippocampal structure. Studies performed under less extreme circumstances have so far provided conflicting data. The corticosteroid neurotoxicity hypothesis that evolved as a result of these initial observations is, however, not supported by clinical and experimental observations. In a few recent postmortem studies in patients treated with corticosteroids and patients who had been seriously and chronically depressed no indications for AD neuropathology, massive cell loss, or loss of plasticity could be found, while the incidence of apoptosis was extremely rare and only seen outside regions expected to be at risk for steroid overexposure. In addition, various recent experimental studies using good stereological methods failed to find massive cell loss in the hippocampus following exposure to stress or steroids, but rather showed adaptive and reversible changes in structural parameters after stress. Thus, the HPA-axis in AD is only moderately activated, possibly due to the initial (primary) hippocampal degeneration in this condition. There are no convincing arguments to presume a causal, primary role for cortisol in the pathogenesis of AD. Although cortisol and CRH may well be causally involved in the signs and symptoms of depression, there is so far no evidence for any major irreversible damage in the human hippocampus in this disorder.
ERIC Educational Resources Information Center
Reynolds, Stacey; Lane, Shelly J.; Gennings, Chris
2010-01-01
Objective: To determine if sensory overresponsivity (SOR) is a moderating condition impacting the activity of the Hypothalamic Pituitary Adrenal (HPA) Axis in children with ADHD. Method: Participants were children with (n = 24) and without ADHD (n = 24). Children in the ADHD group were divided into SOR (ADHDs) and non-SOR (ADHDt) groups using the…
Rensen, Niki; Gemke, Reinoud Jbj; van Dalen, Elvira C; Rotteveel, Joost; Kaspers, Gertjan Jl
2017-11-06
Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate host defence against infection, which remain a cause of morbidity and death. Suppression commonly occurs in the first days after cessation of glucocorticoid therapy, but the exact duration is unclear. This review is the second update of a previously published Cochrane review. To examine the occurrence and duration of HPA axis suppression after (each cycle of) glucocorticoid therapy for childhood ALL. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 11), MEDLINE/PubMed (from 1945 to December 2016), and Embase/Ovid (from 1980 to December 2016). In addition, we searched reference lists of relevant articles, conference proceedings (the International Society for Paediatric Oncology and the American Society of Clinical Oncology from 2005 up to and including 2016, and the American Society of Pediatric Hematology/Oncology from 2014 up to and including 2016), and ongoing trial databases (the International Standard Registered Clinical/Social Study Number (ISRCTN) register via http://www.controlled-trials.com, the National Institutes of Health (NIH) register via www.clinicaltrials.gov, and the International Clinical Trials Registry Platform (ICTRP) of the World Health Organization (WHO) via apps.who.int/trialsearch) on 27 December 2016. All study designs, except case reports and patient series with fewer than 10 children, examining effects of glucocorticoid therapy for childhood ALL on HPA axis function. Two review authors independently performed study selection. One review author extracted data and assessed 'Risk of bias'; another review author checked this information. We identified 10 studies (total of 298 children; we identified two studies for this update) including two randomised controlled trials (RCTs) that assessed adrenal function. None of the included studies assessed the HPA axis at the level of the hypothalamus, the pituitary, or both. Owing to substantial differences between studies, we could not pool results. All studies had risk of bias issues. Included studies demonstrated that adrenal insufficiency occurs in nearly all children during the first days after cessation of glucocorticoid treatment for childhood ALL. Most children recovered within a few weeks, but a small number of children had ongoing adrenal insufficiency lasting up to 34 weeks.Included studies evaluated several risk factors for (prolonged) adrenal insufficiency. First, three studies including two RCTs investigated the difference between prednisone and dexamethasone in terms of occurrence and duration of adrenal insufficiency. The RCTs found no differences between prednisone and dexamethasone arms. In the other (observational) study, children who received prednisone recovered earlier than children who received dexamethasone. Second, treatment with fluconazole appeared to prolong the duration of adrenal insufficiency, which was evaluated in two studies. One of these studies reported that the effect was present only when children received fluconazole at a dose higher than 10 mg/kg/d. Finally, two studies evaluated the presence of infection, stress episodes, or both, as a risk factor for adrenal insufficiency. In one of these studies (an RCT), trial authors found no relationship between the presence of infection/stress and adrenal insufficiency. The other study found that increased infection was associated with prolonged duration of adrenal insufficiency. We concluded that adrenal insufficiency commonly occurs in the first days after cessation of glucocorticoid therapy for childhood ALL, but the exact duration is unclear. No data were available on the levels of the hypothalamus and the pituitary; therefore, we could draw no conclusions regarding these outcomes. Clinicians may consider prescribing glucocorticoid replacement therapy during periods of serious stress in the first weeks after cessation of glucocorticoid therapy for childhood ALL to reduce the risk of life-threatening complications. However, additional high-quality research is needed to inform evidence-based guidelines for glucocorticoid replacement therapy.Special attention should be paid to patients receiving fluconazole therapy, and perhaps similar antifungal drugs, as these treatments may prolong the duration of adrenal insufficiency, especially when administered at a dose higher than 10 mg/kg/d.Finally, it would be relevant to investigate further the relationship between present infection/stress and adrenal insufficiency in a larger, separate study specially designed for this purpose.
Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin
2014-12-01
Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.
Dal-Zotto, Silvina; Martí, Octavi; Delgado, Raúl; Armario, Antonio
2004-12-01
Previous work has shown that a single exposure of rats to a severe stressor (immobilization, IMO) results, days to weeks later, in a reduced response (desensitization) of the hypothalamic-pituitary-adrenal (HPA) axis to a second exposure to the same stressor. In the present work, we studied the influence of both length of exposure to IMO and circulating levels of corticosterone on the first day on the degree of desensitization of two sets of physiological variables: HPA hormones and food intake. Rats were given SC saline or ACTH administration and then exposed to IMO for 0, 1 or 20 min. Seven days later, all rats were exposed to 20 min IMO. HPA response was followed on both experimental days by repeated blood sampling and food intake was measured on a 24-h basis. Both ACTH administration and IMO activates the HPA axis and IMO reduced food intake for several days. A single previous experience with IMO enhanced the post-IMO return of HPA hormones to basal levels on day 8 and reduced the degree of anorexia. The protective effect of previous IMO on food intake was independent of, whereas that on HPA activation was positively related to, the length of exposure on day 1. Concomitant ACTH administration on day 1 did not modify the observed effects. Long-term protective effects of a single exposure to IMO are observed even with a brief exposure, but they are not potentiated by increasing corticosterone levels during the first exposure.
Gagliano, Humberto; Ortega-Sanchez, Juan Antonio; Nadal, Roser; Armario, Antonio
2017-10-01
We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.
Lindahl, Magnus S; Olovsson, Matts; Nyberg, Sigrid; Thorsen, Kim; Olsson, Tommy; Sundström Poromaa, Inger
2007-01-01
To assess the hypothalamic-pituitary-adrenal (HPA) axis at all levels, to determine the origin of the previously reported hypercortisolism in patients with functional hypothalamic amenorrhea. A secondary aim was to evaluate factors outside the central nervous system which are known to affect the HPA axis, i.e., circulating levels of interleukin-6 (IL-6), interleukin-1 receptor antagonist (IL-1Ra), and fat mass-adjusted leptin levels, in patients with functional hypothalamic amenorrhea and healthy controls. Cross-sectional study. Umeå University Hospital, Umeå, Sweden. Fifteen subjects with hypothalamic amenorrhea, and 14 age- and weight-matched controls. None. We collected blood samples four times during a 24-hour interval for analysis of cortisol, leptin, IL-1Ra, and IL-6 levels. We performed a low-dose oral dexamethasone test and a low-dose ACTH test. We measured body-fat percentage using a dual-energy X-ray absorptiometer. Patients with hypothalamic amenorrhea had increased diurnal cortisol levels (P<.001). The cortisol response to intravenous low-dose ACTH was increased in functional hypothalamic amenorrhea patients compared to control subjects (P<.01), but they had similar rates of dexamethasone suppression. Patients with hypothalamic amenorrhea also had decreased diurnal leptin (P<.05), and decreased diurnal IL-1Ra levels (P<.05), compared to controls. Body-fat percentage was the main predictor of leptin levels. The present study suggests novel links for the development of functional hypothalamic amenorrhea, including increased adrenal responsiveness and impairments in proinflammatory cytokine pathways.
Salivary Alpha-Amylase Reactivity in Breast Cancer Survivors
Wan, Cynthia; Couture-Lalande, Marie-Ève; Narain, Tasha A.; Lebel, Sophie; Bielajew, Catherine
2016-01-01
The two main components of the stress system are the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. While cortisol has been commonly used as a biomarker of HPA functioning, much less attention has been paid to the role of the SAM in this context. Studies have shown that long-term breast cancer survivors display abnormal reactive cortisol patterns, suggesting a dysregulation of their HPA axis. To fully understand the integrity of the stress response in this population, this paper explored the diurnal and acute alpha-amylase profiles of 22 breast cancer survivors and 26 women with no history of cancer. Results revealed that breast cancer survivors displayed identical but elevated patterns of alpha-amylase concentrations in both diurnal and acute profiles relative to that of healthy women, F (1, 39) = 17.95, p < 0.001 and F (1, 37) = 7.29, p = 0.010, respectively. The average area under the curve for the diurnal and reactive profiles was 631.54 ± 66.94 SEM and 1238.78 ± 111.84 SEM, respectively. This is in sharp contrast to their cortisol results, which showed normal diurnal and blunted acute patterns. The complexity of the stress system necessitates further investigation to understand the synergistic relationship of the HPA and SAM axes. PMID:27023572
Salivary Alpha-Amylase Reactivity in Breast Cancer Survivors.
Wan, Cynthia; Couture-Lalande, Marie-Ève; Narain, Tasha A; Lebel, Sophie; Bielajew, Catherine
2016-03-23
The two main components of the stress system are the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. While cortisol has been commonly used as a biomarker of HPA functioning, much less attention has been paid to the role of the SAM in this context. Studies have shown that long-term breast cancer survivors display abnormal reactive cortisol patterns, suggesting a dysregulation of their HPA axis. To fully understand the integrity of the stress response in this population, this paper explored the diurnal and acute alpha-amylase profiles of 22 breast cancer survivors and 26 women with no history of cancer. Results revealed that breast cancer survivors displayed identical but elevated patterns of alpha-amylase concentrations in both diurnal and acute profiles relative to that of healthy women, F (1, 39) = 17.95, p < 0.001 and F (1, 37) = 7.29, p = 0.010, respectively. The average area under the curve for the diurnal and reactive profiles was 631.54 ± 66.94 SEM and 1238.78 ± 111.84 SEM, respectively. This is in sharp contrast to their cortisol results, which showed normal diurnal and blunted acute patterns. The complexity of the stress system necessitates further investigation to understand the synergistic relationship of the HPA and SAM axes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odagiri, Kazumasa, E-mail: t086016a@yokohama-cu.ac.jp; Department of Radiology, Kanagawa Children's Medical Center, Yokohama; Omura, Motoko
2012-11-01
Purpose: We carried out a retrospective review of patients receiving chemoradiation therapy (CRT) for intracranial germ cell tumor (GCT) using a lower dose than those previously reported. To identify an optimal GCT treatment strategy, we evaluated treatment outcomes, growth height, and neuroendocrine functions. Methods and Materials: Twenty-two patients with GCT, including 4 patients with nongerminomatous GCT (NGGCT) were treated with CRT. The median age at initial diagnosis was 11.5 years (range, 6-19 years). Seventeen patients initially received whole brain irradiation (median dose, 19.8 Gy), and 5 patients, including 4 with NGGCT, received craniospinal irradiation (median dose, 30.6 Gy). The medianmore » radiation doses delivered to the primary site were 36 Gy for pure germinoma and 45 Gy for NGGCT. Seventeen patients had tumors adjacent to the hypothalamic-pituitary axis (HPA), and 5 had tumors away from the HPA. Results: The median follow-up time was 72 months (range, 18-203 months). The rates of both disease-free survival and overall survival were 100%. The standard deviation scores (SDSs) of final heights recorded at the last assessment tended to be lower than those at initial diagnosis. Even in all 5 patients with tumors located away from the HPA, final height SDSs decreased (p = 0.018). In 16 patients with tumors adjacent to the HPA, 8 showed metabolic changes suggestive of hypothalamic obesity and/or growth hormone deficiency, and 13 had other pituitary hormone deficiencies. In contrast, 4 of 5 patients with tumors away from the HPA did not show any neuroendocrine dysfunctions except for a tendency to short stature. Conclusions: CRT for GCT using limited radiation doses resulted in excellent treatment outcomes. Even after limited radiation doses, insufficient growth height was often observed that was independent of tumor location. Our study suggests that close follow-up of neuroendocrine functions, including growth hormone, is essential for all patients with GCT.« less
Beattie, Matthew C; Maldonado-Devincci, Antoniette M; Porcu, Patrizia; O'Buckley, Todd K; Daunais, James B; Grant, Kathleen A; Morrow, A Leslie
2017-03-01
Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the gamma-aminobutyric acid (GABA)-ergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to hypothalamic-pituitary-adrenal (HPA) axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 h/day over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 to 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13 ± 2 percent (P < 0.05) in the lateral amygdala and 17 ± 2 percent (P < 0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg ≥ 20 percent of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = -0.87 and -0.72, respectively, P < 0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity were observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in non-human primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function. © 2015 Society for the Study of Addiction.
Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model
Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C. R.; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A. S.
2017-01-01
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress. PMID:28553212
Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model.
Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C R; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A S
2017-01-01
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2 . Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second "hit" by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.
Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J
2014-09-05
Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Fisher, Philip A; Gunnar, Megan R; Dozier, Mary; Bruce, Jacqueline; Pears, Katherine C
2006-12-01
Young children in foster care are exposed to high levels of stress. These experiences place foster children at risk for poor social, academic, and mental heath outcomes. The role of adverse events in stimulating neurobiological stress responses presumably plays a role in shaping neural systems that contribute to these problems. Systematic and developmentally well-timed interventions might have the potential to change developmental trajectories and promote resilience. Moreover, understanding how specific dimensions of early adversity affect underlying stress response systems and how alterations in these systems are related to later psychosocial outcomes might facilitate more precise and targeted interventions. Data are drawn from two ongoing randomized trials involving foster infants/toddlers and preschoolers. Consistent with prior animal models of early adversity, these studies have shown that early adversity-particularly neglect, younger age at first foster placement, and higher number of placements-is associated with altered hypothalamic-pituitary-adrenal (HPA) axis function. The interventions under investigation have produced evidence that it is possible to impact many areas that have been negatively affected by early stress, including HPA axis activity, behavior, and attachment to caregivers.
Skwara, Amanda J.; Karwoski, Tracy E.; Czambel, R. Kenneth; Rubin, Robert T.; Rhodes, Michael E.
2012-01-01
In the present study, we determined the effects of environmental enrichment (EE; Kong Toys® and Nestlets®) on sexually diergic HPA axis responses to single-dose nicotine (NIC), single-dose NIC following continuous NIC administration for two weeks, and NIC withdrawal by single-dose mecamylamine (MEC) in male and female rats. Blood sampling occurred before and after MEC and NIC administrations for the determination of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Supporting and extending our previous findings, EE appeared to produce anxiolytic effects by reducing hormone responses: Male and female rats housed with EE had lower baseline ACTH and significantly lower HPA axis responses to the mild stress of saline (SAL) injection than did those housed without EE. The sexually diergic responses to single dose NIC, continuous NIC, and MEC-induced NIC withdrawal were reduced by EE in many male and female groups. ACTH responses to continuous NIC and MEC-induced NIC withdrawal were blunted to a greater extent in female EE groups than in male EE groups, suggesting that females are more sensitive to the anxiolytic effects of EE. Because EE lowered stress-responsive hormones of the HPA axis in most groups, EE may be a useful intervention for stress reduction in animal models of NIC addiction. As well, the effectiveness of EE in animal studies of NIC withdrawal may enlighten human studies addressing coping styles and tobacco cessation in men and women. PMID:22705101
Uçar, Cihat; Özgöçer, Tuba; Yildiz, Sedat
2018-01-01
Exercise activates hypothalamic-pituitary-adrenal axis (HPA) and autonomic nervous system (ANS) and generally causes beneficial changes in homeostatic balance. However, the health benefits of late-night exercise programs on the activity of HPA and ANS is not known. The aim of this study was to assess effects of late-night exercise on sleep quality and on the activities of the HPA axis (as cortisol awakening response, CAR) and the ANS (as heart rate variability, HRV) measurements in the following morning. Medical students (N.=20 males, 20-24 years old) filled Karolinska Sleep Diary on the day before exercise program. In the following morning, they provided salivary samples for the assessment of CAR (samples at 0, 15, 30 and 60 min postawakening) and had a 5-min electrocardiogram recording for the determination of HRV. In the next night, an exercise program consisting of a 90-min football match was implemented at 09:30 p.m. and all procedures were repeated. Cortisol concentrations were measured in the salivary samples and time- and frequency-domain parameters of HRV were calculated. Late-night exercise did not affect (P>0.05) sleep parameters (sleep duration, disturbed sleep, awakening problems) and CAR parameters (0, 15, 30, 60 min cortisol concentrations, mean concentration, area under the curve) but influenced HRV parameters (P<0.05). The results suggest that late-night exercise is associated with changed HRV activity rather than changes in CAR and, therefore, it might be suggested that late-night exercise affects ANS activity rather than HPA activity in the next morning.
Gunnar, Megan R.; Talge, Nicole M.; Herrera, Adriana
2009-01-01
Summary The stress response system is comprised of an intricate interconnected network that includes the hypothalamic–pituitary–adrenocortical (HPA) axis. The HPA axis maintains the organism’s capacity to respond to acute and prolonged stressors and is a focus of research on the sequelae of stress. Human studies of the HPA system have been facilitated enormously by the development of salivary assays which measure cortisol, the steroid end-product of the HPA axis. The use of salivary cortisol is prevalent in child development stress research. However, in order to measure children’s acute cortisol reactivity to circumscribed stressors, researchers must put children in stressful situations which produce elevated levels of cortisol. Unfortunately, many studies on the cortisol stress response in children use paradigms that fail to produce mean elevations in cortisol. This paper reviews stressor paradigms used with infants, children, and adolescents to guide researchers in selecting effective stressor tasks. A number of different types of stressor paradigms were examined, including: public speaking, negative emotion, relationship disruption/threatening, novelty, handling, and mild pain paradigms. With development, marked changes are evident in the effectiveness of the same stressor paradigm to provoke elevations in cortisol. Several factors appear to be critical in determining whether a stressor paradigm is successful, including the availability of coping resources and the extent to which, in older children, the task threatens the social self. A consideration of these issues is needed to promote the implementation of more effective stressor paradigms in human developmental psychoendocrine research. PMID:19321267
Kaplow, Julie B.; Shapiro, Danielle N.; Wardecker, Britney M.; Howell, Kathryn H.; Abelson, James L.; Worthman, Carol M.; Prossin, Alan R.
2018-01-01
This study examined bereaved children’s HPA-axis functioning (cortisol awakening response; CAR) in relation to psychological distress, coping, and surviving parents’ grief reactions. Participants included 38 children (20 girls) with recent parental loss (previous 6 months) and 28 of their surviving caregivers (23 women) who were assessed using self-report instruments and in-person, semistructured interviews. Interviews involved discussions about the child’s thoughts and feelings related to the loss. Participants provided 3 saliva samples at home (awakening, 30 minutes later, and evening) over 3 successive days, beginning on the day following the interview. Results show a significant relation between dampening of the child’s Day 1 CAR and more symptoms of anxiety (r = −.45), depression (r =−.40), posttraumatic stress (r = −.45), and maladaptive grief (r = −.43), as well as higher levels of avoidant coping (r= −.53). Higher levels of parental maladaptive grief were also associated (r= −.47) with a dampening of the child’s Day 1 CAR. Our results raise the possibility that blunted CAR may be a result of accumulating allostatic load and/or a result of emotionally challenging events (discussions regarding the deceased) and their subsequent processing (or lack thereof) within the family, which may be particularly stressful for those bereaved children experiencing high levels of psychological distress, avoidant coping, and parental maladaptive grief. PMID:23526635
Working-memory capacity protects model-based learning from stress
Otto, A. Ross; Raio, Candace M.; Chiang, Alice; Phelps, Elizabeth A.; Daw, Nathaniel D.
2013-01-01
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive–dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response—believed to have detrimental effects on prefrontal cortex function—should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress. PMID:24324166
Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter
2007-12-11
Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.
Clark, Allison; Mach, Núria
2016-01-01
Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more elite athletes suffer from psychological and gastrointestinal conditions that can be linked to the gut, targeting the microbiota therapeutically may need to be incorporated in athletes' diets that take into consideration dietary fiber as well as microbial taxa not currently present in athlete's gut.
Re-evaluating the treatment of acute optic neuritis
Bennett, Jeffrey L; Nickerson, Molly; Costello, Fiona; Sergott, Robert C; Calkwood, Jonathan C; Galetta, Steven L; Balcer, Laura J; Markowitz, Clyde E; Vartanian, Timothy; Morrow, Mark; Moster, Mark L; Taylor, Andrew W; Pace, Thaddeus W W; Frohman, Teresa; Frohman, Elliot M
2015-01-01
Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis. Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite ‘normal’ (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury. In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration. In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function. PMID:25355373
Martyn, Amanda C; Choleris, Elena; Gillis, Daniel J; Armstrong, John N; Amor, Talya R; McCluggage, Adam R R; Turner, Patricia V; Liang, Genqing; Cai, Kimberly; Lu, Ray
2012-12-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major part of the neuroendocrine system in animal responses to stress. It is known that the HPA axis is attenuated at parturition to prevent detrimental effects of glucocorticoid secretion including inhibition of lactation and maternal responsiveness. Luman/CREB3 recruitment factor (LRF) was identified as a negative regulator of CREB3 which is involved in the endoplasmic reticulum stress response. Here, we report a LRF gene knockout mouse line that has a severe maternal behavioral defect. LRF(-/-) females lacked the instinct to tend pups; 80% of their litters died within 24 h, while most pups survived if cross-fostered. Prolactin levels were significantly repressed in lactating LRF(-/-) dams, with glucocorticoid receptor (GR) signaling markedly augmented. In cell culture, LRF repressed transcriptional activity of GR and promoted its protein degradation. LRF was found to colocalize with the known GR repressor, RIP140/NRIP1, which inhibits the activity by GR within specific nuclear punctates that are similar to LRF nuclear bodies. Furthermore, administration of prolactin or the GR antagonist RU486 restored maternal responses in mutant females. We thus postulate that LRF plays a critical role in the attenuation of the HPA axis through repression of glucocorticoid stress signaling during parturition and the postpartum period.
Williams, M T; Davis, H N; McCrea, A E; Hennessy, M B
1999-01-01
Subjecting pregnant female rats to situations that activate the hypothalamic-pituitary-adrenal (HPA) axis can have long-term effects on the development of the offspring. Restraint under bright lights is a common method of stressing pregnant females that results in consistent behavioral changes in the offspring. We investigated the effects of gestationally administered restraint, bright lights, and heat on the HPA axis response of 21-day-old offspring following exposure to isolation in a novel environment or under resting conditions. Corticotropin-releasing factor titers in the hypothalamus were unaffected following isolation. Nonetheless, adrenocorticotropin hormone (ACTH) was found to be lower in the gestationally stressed offspring prior to or following the isolation period. Corticosterone was attenuated in gestationally stressed offspring following the postnatal stressor and there was also a tendency for the gestationally stressed females to have lower concentrations of aldosterone. Plasmatic testosterone levels were higher in the gestationally stressed males following the period of isolation. The present data suggest that the HPA axis of the offspring is differentially affected by the gestational stress procedure, that is, it is attenuated at the level of the pituitary and adrenal, but not at the level of the hypothalamus. These data have implications for behavioral differences observed in gestationally stressed animals.
Tryptophan depletion affects the autonomic stress response in generalized social anxiety disorder.
van Veen, J Frederieke; van Vliet, Irene M; de Rijk, Roel H; van Pelt, Johannes; Mertens, Bart; Fekkes, Durk; Zitman, Frans G
2009-11-01
In generalized social anxiety disorder (gSAD), serotonergic dysfunctions are found, as well as abnormalities of the autonomic nervous system (ANS) in basal conditions and of the hypothalamic pituitary adrenal (HPA) axis in response to psychological challenges. These findings raise the question whether these phenomena are interrelated. Therefore we designed a study in which two groups with nine pair wise age and gender matched gSAD patients (total of 10 men and 8 women), who were successfully treated with a selective serotonin reuptake inhibitor (SSRI), underwent a tryptophan depletion challenge (TD) or a placebo condition. A TD procedure temporarily decreases serotonergic neurotransmission. In order to activate the stress system the TD/placebo challenge was combined with a public speaking task. We assessed ANS responses, as measured with the promising new marker salivary alpha-amylase (sAA), and HPA-axis responses, as measured with salivary cortisol. The most important result was that the TD group showed a significant larger sAA response to the public speaking task as compared to the placebo group, reflecting hyperresponsivity of the ANS in this group, whereas no differences were seen in cortisol responses. This suggests that in gSAD there is a vulnerability of the ANS more than the HPA-axis.
Bernard, Nicola K; Kashy, Deborah A; Levendosky, Alytia A; Bogat, G Anne; Lonstein, Joseph S
2017-03-01
Attunement between mothers and infants in their hypothalamic-pituitary-adrenal (HPA) axis responsiveness to acute stressors is thought to benefit the child's emerging physiological and behavioral self-regulation, as well as their socioemotional development. However, there is no universally accepted definition of attunement in the literature, which appears to have resulted in inconsistent statistical analyses for determining its presence or absence, and contributed to discrepant results. We used a series of data analytic approaches, some previously used in the attunement literature and others not, to evaluate the attunement between 182 women and their 1-year-old infants in their HPA axis responsivity to acute stress. Cortisol was measured in saliva samples taken from mothers and infants before and twice after a naturalistic laboratory stressor (infant arm restraint). The results of the data analytic approaches were mixed, with some analyses suggesting attunement while others did not. The strengths and weaknesses of each statistical approach are discussed, and an analysis using a cross-lagged model that considered both time and interactions between mother and infant appeared the most appropriate. Greater consensus in the field about the conceptualization and analysis of physiological attunement would be valuable in order to advance our understanding of this phenomenon. © 2016 Wiley Periodicals, Inc.
Torner, Luz; Plotsky, Paul M; Neumann, Inga D; de Jong, Trynke R
2017-03-01
The oxytocin (OXT) system is functionally linked to the HPA axis in a reciprocal and complex manner. Certain stressors are known to cause the simultaneous release of OXT and adrenocorticotrophic hormone (ACTH) followed by corticosterone (CORT). Furthermore, brain OXT attenuates ACTH and CORT responses. Although there are some indications of CORT influencing OXT neurotransmission, specific effects of CORT on neurohypophyseal or intra-hypothalamic release of OXT have not been studied in detail. In the present set of experiments, adult male rats were adrenalectomized (ADX) or sham-operated and fitted with a jugular vein catheter and/or microdialysis probe targeting the hypothalamic paraventricular nucleus (PVN). Blood samples and dialysates were collected before and after forced swimming (FS) and analyzed for CORT, ACTH and AVP concentrations (in plasma) and OXT concentrations (in plasma and dialysates). Experimental treatments included acute infusion of CORT (70 or 175μg/kg i.v.) 5min prior to FS, or subcutaneous placement of 40% CORT pellets resulting in stable CORT levels in the normal basal range. Although ADX did not alter basal OXT concentrations either in plasma or in microdialysates from the PVN, it did cause an exaggerated peripheral secretion of OXT and a blunted intra-PVN release of OXT in response to FS. CORT pellets did not influence either of these ADX-induced effects, while acute infusion of 175μg/kg CORT rescued the stress-induced rise in OXT release within the PVN and modestly increased peripheral OXT secretion. In conclusion, these results indicate that CORT regulates both peripheral and intracerebral OXT release, but in an independent manner. Whereas the peripheral secretion of OXT occurs simultaneously to HPA axis activation in response to FS and is modestly influenced by CORT, HPA axis activation and circulating CORT strongly contribute to the stress-induced stimulation of OXT release within the PVN. Copyright © 2016 Elsevier Ltd. All rights reserved.
Culman, Juraj; Mühlenhoff, Stephan; Blume, Annegret; Hedderich, Jürgen; Lützen, Ulf; Hunt, Stephen P; Rupniak, Nadia M J; Zhao, Yi
2018-06-15
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.
Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Ren, Xinguo; Dwivedi, Yogesh; Palkovits, Miklós
2013-01-01
Introduction Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Methods Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. Results We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. Conclusions These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action, are not clear at this time. PMID:23845513
Márquez, Cristina; Nadal, Roser; Armario, Antonio
2005-02-01
Susceptibility to some stress-induced pathologies may be strongly related to individual differences in the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to stressors. However, there have been few attempts in rodents to study the reliability of the individual differences in the responsiveness of the HPA to stressors and the relationship to resting corticosterone levels. In the present work, we used a normal population of Sprague-Dawley rats, with a within-subject design. Our objectives were to study: (a) the reliability of the ACTH and corticosterone response to three different novel environments widely used in psychopharmacology and (b) the relationship between stress levels of HPA hormones and the daily pattern of corticosterone secretion (six samples over a 24-h-period). Animals were repeatedly sampled using tail-nick procedure. The novel environments were the elevated plus-maze, the hole-board and the circular corridor. Animals were sampled just after 15 min exposure to the tests and again at 15 and 30 min after the termination of exposure to them (post-tests). The hormonal levels just after the tests indicate that the hole-board seems to be more stressful than the circular corridor and the elevated plus-maze, the latter being characterized by the lowest defecation rate. Correlational analysis revealed that daily pattern of resting plasma corticosterone levels did not correlate to HPA responsiveness to the tests, suggesting no relationship between resting and stress levels of HPA hormones. In contrast, the present study demonstrates, for the first time, a good within-subject reliability of the ACTH and corticosterone responses to the three environments, suggesting that HPA responsiveness to these kind of stressors is a consistent individual trait in adult rats, despite differences in the physical characteristics of the novel environments.
Time matters - acute stress response and glucocorticoid sensitivity in early multiple sclerosis.
Kern, Simone; Rohleder, Nicolas; Eisenhofer, Graeme; Lange, Jan; Ziemssen, Tjalf
2014-10-01
Psychosocial stress has frequently been associated with disease activity and acute exacerbations in multiple sclerosis (MS). Despite this well established finding, strikingly little is known about the acute hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) stress response in MS. Twenty-six early relapsing-remitting MS (RRMS) patients and seventeen age- and sex-matched healthy control subjects (CS) took part in the Trier Social Stress Test (TSST), a well validated psycho-social laboratory stress protocol. Repeated blood samples were analyzed for stress-related cortisol and catecholamine levels as well as for glucocorticoid sensitivity (GCS) of target immune cells. Chronic and acute stress appraisals were assessed by self-report measures. RRMS patients and CS did not differ in stress-related cortisol/catecholamine levels, GCS or stress appraisal in response to the TSST. However, cortisol release as well as GCS was strongly correlated with time since diagnosis but not with neurological disability. Patients with shorter disease duration (2-12 months) expressed a significantly higher cortisol stress response while MS patients with longer disease duration (14-36 months) showed a significantly diminished HPA response as well as lower post-stress GCS. There is evidence for a time-dependent variability in the HPA stress system with an increased cortisol stress response in the first year after diagnosis along with a more blunted HPA stress response and a diminished GCS in subsequent disease stages. Data underscore the highly dynamic nature of HPA axis regulation in the MS disease process, which could possibly relate to compensatory mechanisms within a cytokine-HPA axis feedback circuit model. Copyright © 2014 Elsevier Inc. All rights reserved.
Cortisol levels in response to starting school in children at increased risk for social phobia.
Russ, Stephanie J; Herbert, Joe; Cooper, Peter; Gunnar, Megan R; Goodyer, Ian; Croudace, Tim; Murray, Lynne
2012-04-01
Research on depression has identified hyperactivity of the HPA axis as a potential contributory factor to the intergenerational transmission of affective symptoms. This has not yet been examined in the context of social phobia. The current study compared HPA axis activity in response to a universal social stressor (starting school) in children of 2 groups of women: one with social phobia and one with no history of anxiety (comparison group). To determine specificity of effects of maternal social phobia, a third group of children were also examined whose mothers had generalised anxiety disorder (GAD). Children provided salivary cortisol samples in the morning, afternoon and at bedtime across 3 time-blocks surrounding the school start: a month before starting school (baseline), the first week at school (stress response), and the end of the first school term (stress recovery). Child behavioural inhibition at 14 months was assessed to explore the influence of early temperament on later stress responses. All children displayed an elevation in morning and afternoon cortisol from baseline during the first week at school, which remained elevated until the end of the first term. Children in the social phobia group, however, also displayed an equivalent elevation in bedtime cortisol, which was not observed for comparison children or for children of mothers with GAD. Children in the social phobia group who were classified as 'inhibited' at 14 months displayed significantly higher afternoon cortisol levels overall. A persistent stress response to school in the morning and afternoon is typical for all children, but children of mothers with social phobia also display atypical elevations in evening cortisol levels when at school--signalling longer-term disruption of the circadian rhythm in HPA axis activity. This is the first study to report HPA axis disruption in children at increased risk of developing social phobia. Future research should determine whether this represents a pathway for symptom development, taking early temperament into account. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flandreau, Elizabeth I.; Bourke, Chase H.; Ressler, Kerry J.; Vale, Wylie W.; Nemeroff, Charles B.; Owens, Michael J.
2013-01-01
Summary We have previously demonstrated that viral-mediated overexpression of corticotropin-releasing factor (CRF) within the central nucleus of the amygdala (CeA) reproduces many of the behavioral and endocrine consequences of chronic stress. The present experiment sought to determine whether administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram reverses the adverse effects of CeA CRF overexpression. In a 2 × 2 design, adult male rats received bilateral infusions of a control lentivirus or a lentivirus in which a portion of the CRF promoter is used to drive increased expression of CRF peptide. Four weeks later, rats were then implanted with an Alzet minipump to deliver vehicle or 10 mg/kg/day escitalopram for a 4-week period of time. The defensive withdrawal (DW) test of anxiety and the sucrose-preference test (SPT) of anhedonia were performed both before and after pump implantation. Additional post-implant behavioral tests included the elevated plus maze (EPM) and social interaction (SI) test. Following completion of behavioral testing, the dexamethasone/CRF test was performed to assess HPA axis reactivity. Brains were collected and expression of HPA axis-relevant transcripts were measured using in situ hybridization. Amygdalar CRF overexpression increased anxiety-like behavior in the DW test at week eight, which was only partially prevented by escitalopram. In both CRF-overexpressing and control groups, escitalopram decreased hippocampal CRF expression while increasing hypothalamic and hippocampal expression of the glucocorticoid receptor (GR). These gene expression changes were associated with a significant decrease in HPA axis reactivity in rats treated with escitalopram. Interestingly, escitalopram increased the rate of weight gain only in rats overexpressing CRF. Overall these data support our hypothesis that amygdalar CRF is critical in anxiety-like behavior; because the antidepressant was unable to reverse behavioral manifestations of CeA CRF-OE. This may be a potential animal model to study treatment-resistant psychopathologies. PMID:23267723
Delayed peak response of cortisol to insulin tolerance test in patients with Prader-Willi syndrome.
Oto, Yuji; Matsubara, Keiko; Ayabe, Tadayuki; Shiraishi, Masahisa; Murakami, Nobuyuki; Ihara, Hiroshi; Matsubara, Tomoyo; Nagai, Toshiro
2018-06-01
Deaths among children with Prader-Willi syndrome (PWS) are often related to only mild or moderate upper respiratory tract infections, and many causes of death remain unexplained. Several reports have hypothesized that patients with PWS may experience latent central adrenal insufficiency. However, whether PWS subjects suffer from alteration of the hypothalamus-pituitary-adrenal (HPA) axis remains unclear. This study aimed to explore the HPA axis on PWS. We evaluated the HPA axis in 36 PWS patients (24 males, 12 females; age range, 7 months to 12 years; median age 2.0 years; interquartile range [IQR], 1.5-3.4 years) using an insulin tolerance test (ITT) in the morning between 08:00 and 11:00. For comparison, ITT results in 37 age-matched healthy children evaluated for short stature were used as controls. In PWS patients, basal levels of adrenocorticotropic hormone (ACTH) were 13.5 pg/ml (IQR, 8.3-27.5 pg/ml) and basal levels of cortisol were 18.0 μg/dl (IQR, 14.2-23.7 μg/dl). For all patients, cortisol levels at 60 min after stimulation were within the reference range (>18.1 μg/dl), with a median peak of 41.5 μg/dl (IQR, 32.3-48.6 μg/dl). Among control children, basal level of ACTH and basal and peak levels of cortisol were 10.9 (IQR, 8.5-22.0 pg/ml), 15.6 (IQR, 11.9-21.6 μg/dl), and 27.8 μg/dl (IQR, 23.7-30.5 μg/dl), respectively. Basal and peak levels of cortisol were all within normal ranges, but peak response of cortisol to ITT was delayed in the majority of PWS patients (64%). Although the mechanism remains unclear, this delay may signify the existence of central obstacle in adjustment of the HPA axis. © 2018 Wiley Periodicals, Inc.
Pesonen, Anu-Katriina; Räikkönen, Katri; Feldt, Kimmo; Heinonen, Kati; Osmond, Clive; Phillips, David I W; Barker, David J P; Eriksson, Johan G; Kajantie, Eero
2010-06-01
Animal models have linked early maternal separation with lifelong changes in hypothalamic-pituitary-adrenocortical (HPA) axis activity. Although this is paralleled in human studies, this is often in the context of other life adversities, for example, divorce or adoption, and it is not known whether early separation in the absence of these factors has long term effects on the HPA axis. The Finnish experience in World War II created a natural experiment to test whether separation from a father serving in the armed forces or from both parents due to war evacuation are associated with alterations in HPA axis response to psychosocial stress in late adulthood. 282 subjects (M=63.5 years, SD=2.5), of whom 85 were non-separated, 129 were separated from their father, and 68 were separated from both their caregivers during WWII, were enlisted to participate in a Trier Social Stress Test (TSST), during which we measured salivary cortisol and, for 215 individuals, plasma cortisol and ACTH concentrations. We used mixed models to study whether parental separation is associated with salivary and plasma cortisol or plasma ACTH reactivity, and linear regressions to analyse differences in the baseline, or incremental area under the cortisol or ACTH curves. Participants separated from their father did not differ significantly from non-separated participants. However, those separated from both parents had higher average salivary cortisol and plasma ACTH concentrations across all time points compared to the non-separated group. They also had higher salivary cortisol reactivity to the TSST. Separated women had higher baselines in plasma cortisol and ACTH, whereas men had higher reactivity in response to stress during the TSST. Participants who had experienced the separation in early childhood were more affected than children separated during infancy or school age. Separation from parents during childhood may alter an individual's stress physiology much later in adult life. Copyright 2009 Elsevier Ltd. All rights reserved.
Lephart, Edwin D; Galindo, Edwardo; Bu, Li Hong
2003-05-15
Estrogens exhibit complex but beneficial effects on brain structure, function and behavior. Soy-derived dietary phytoestrogens protect against hormone-dependent and age-related diseases, due to their estrogen-like hormonal actions. However, the effects of phytoestrogens on brain and behavior are relatively unknown. This study examined the influence of exposing male Long-Evans rats (lifelong) to either a phytoestrogen-rich (Phyto-600) or a phytoestrogen-free (Phyto-free) diet on body weights, behavioral pain thresholds, the hypothalamic-pituitary-adrenal (HPA) hormonal stress response, hippocampal glucocorticoid receptor and brain neural cell adhesion molecules (NCAM) and synaptophysin levels using standard behavioral and biochemical techniques. Body weights were significantly decreased in Phyto-600 fed animals compared to Phyto-free values. There were no significant changes in behavioral pain thresholds, circulating corticosterone concentrations (after acute immobilization stress) or NCAM and synaptophysin levels in various brain regions by the diet treatments. However, Phyto-600 fed males displayed significantly higher plasma adrenocorticotrophin (ACTH) (post-stress) and hippocampal glucocorticoid receptor levels vs. Phyto-free values. These data suggest that (1) body weights are significantly reduced by soy-derived phytoestrogens, (2) behavioral pain thresholds (via heat stimuli) are not influenced by dietary phytoestrogens, but (3) these estrogenic molecules in the hippocampus enhance glucocorticoid receptor abundance and alter the negative feedback of stress hormones towards a female-like pattern of higher ACTH release after activation of the HPA stress axis. This study is the first to show that lifelong consumption of dietary phytoestrogens alters the HPA stress response in male rats.
Rauw, Wendy M.; Johnson, Anna K.; Gomez-Raya, Luis; Dekkers, Jack C. M.
2017-01-01
Coping styles in response to stressors have been described both in humans and in other animal species. Because coping styles are directly related to individual fitness they are part of the life history strategy. Behavioral styles trade off with other life-history traits through the acquisition and allocation of resources. Domestication and subsequent artificial selection for production traits specifically focused on selection of individuals with energy sparing mechanisms for non-production traits. Domestication resulted in animals with low levels of aggression and activity, and a low hypothalamic–pituitary–adrenal (HPA) axis reactivity. In the present work, we propose that, vice versa, selection for improved production efficiency may to some extent continue to favor docile domesticated phenotypes. It is hypothesized that both domestication and selection for improved production efficiency may result in the selection of reactive style animals. Both domesticated and reactive style animals are characterized by low levels of aggression and activity, and increased serotonin neurotransmitter levels. However, whereas domestication quite consistently results in a decrease in the functional state of the HPA axis, the reactive coping style is often found to be dominated by a high HPA response. This may suggest that fearfulness and coping behavior are two independent underlying dimensions to the coping response. Although it is generally proposed that animal welfare improves with selection for calmer animals that are less fearful and reactive to novelty, animals bred to be less sensitive with fewer desires may be undesirable from an ethical point of view. PMID:29033975
Graham, Sean P; Freidenfelds, Nicole A; McCormick, Gail L; Langkilde, Tracy
2012-05-01
As anthropogenic stressors increase exponentially in the coming decades, native vertebrates will likely face increasing threats from these novel challenges. The success or failure of the primary physiological mediator of these stressors--the HPA axis--will likely involve numerous and chaotic outcomes. Among the most challenging of these new threats are invasive species. These have the capacity to simultaneously challenge the HPA axis and the immune system as they are often associated with, or the cause of, emerging infectious diseases, and energetic tradeoffs with the HPA response can have immunosuppressive effects. To determine the effects of invasive species on the vertebrate GC response to a novel stressor, and on immunity, we examined the effects of invasive fire ants on native lizards, comparing lizards from sites with long histories with fire ants to those outside the invasion zone. We demonstrated higher baseline and acute stress (captive restraint) CORT levels in lizards from within fire ant invaded areas; females are more strongly affected than males, suggesting context-specific effects of invasion. We found no effect of fire ant invasion on the immune parameters we measured (complement bacterial lysis and antibody hemagglutination) with the exception of ectoparasite infestation. Mites were far less prevalent on lizards within fire ant invaded sites, suggesting fire ants may actually benefit lizards in this regard. This study suggests that invasive species may impose physiological stress on native vertebrates, but that the consequences of this stress may be complicated and unpredictable. Copyright © 2012 Elsevier Inc. All rights reserved.
Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E.
2013-01-01
Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5 mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588 pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA. PMID:23933156
Grundwald, Natalia J; Brunton, Paula J
2015-12-01
An adverse environment in early life is often associated with dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis and higher rates of mood disorders in adulthood. In rats, exposure to social stress during pregnancy results in hyperactive HPA axis responses to stress in the adult offspring and heightened anxiety behavior in the males, but not the females. Here we tested whether, without further intervention, the effects of prenatal stress (PNS) in the first filial generation (F1) are transmitted to the F2 generation via the maternal line. F1 control and PNS female rats were mated with control males and housed under non-stress conditions throughout pregnancy. HPA axis responses to acute stress, anxiety- and depressive-like behavior were assessed in the adult F2 offspring. ACTH and corticosterone responses to an acute stressor were markedly enhanced in F2 PNS females compared with controls. This was associated with greater corticotropin releasing hormone (Crh) mRNA expression in the paraventricular nucleus and reduced hippocampal glucocorticoid (Gr) and mineralocorticoid receptor (Mr) mRNA expression. Conversely, in the F2 PNS males, HPA axis responses to acute stress were attenuated and hippocampal Gr mRNA expression was greater compared with controls. F2 PNS males exhibited heightened anxiety-like behavior (light-dark box and elevated plus maze) compared with F2 control males. Anxiety-like behavior did not differ between F2 control and PNS females during metestrus/diestrus, however at proestrus/estrus, F2 control females displayed a reduction in anxiety-like behavior, but this effect was not observed in the F2 PNS females. Heightened anxiety in the F2 PNS males was associated with greater Crh mRNA expression in the central nucleus of the amygdala compared with controls. Moreover, Crh receptor-1 (Crhr1) mRNA expression was significantly increased, whereas Crhr2 mRNA was significantly decreased in discrete regions of the amygdala in F2 PNS males compared with controls, with no differences in the F2 females. No differences in depressive-like behavior (sucrose preference or forced swim test) were observed in either sex. In conclusion, the effects of maternal stress during pregnancy on HPA axis regulation and anxiety-like behavior can be transmitted to future generations in a sex-dependent manner. These data have implications for human neuropsychiatric disorders with developmental origins. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Visceral obesity and psychosocial stress: a generalised control theory model
NASA Astrophysics Data System (ADS)
Wallace, Rodrick
2016-07-01
The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.
Herminghuysen, D.; Plaisance, K.; Pace, R. M.; Prasad, C.
1998-01-01
Through the secretion of corticosterone, the hypothalamo-pituitary-adrenal (HPA) axis is thought to play an important role in the regulation of caloric intake and dietary fat preference. In an earlier study, we demonstrated a positive correlation between urinary corticosterone output and dietary fat preference. Furthermore, dietary fat preference was augmented following chronic but not acute hypercorticosteronemia produced by exogenous corticosterone administration. These observations led us to explore whether the HPA axis of rats exhibiting high preference for fat may have exaggerated sensitivity to corticotropin-releasing hormone (CRH). The results of these studies show a delayed and blunted but more prolonged corticosterone response to CRH in the fat-preferring rats compared with that of the carbohydrate-preferring rats.
Decreased hypothalamus volumes in generalized anxiety disorder but not in panic disorder.
Terlevic, Robert; Isola, Miriam; Ragogna, Maria; Meduri, Martina; Canalaz, Francesca; Perini, Laura; Rambaldelli, Gianluca; Travan, Luciana; Crivellato, Enrico; Tognin, Stefania; Como, Giuseppe; Zuiani, Chiara; Bazzocchi, Massimo; Balestrieri, Matteo; Brambilla, Paolo
2013-04-25
The hypothalamus is a brain structure involved in the neuroendocrine aspect of stress and anxiety. Evidence suggests that generalized anxiety disorder (GAD) and panic disorder (PD) might be accompanied by dysfunction of the hypothalamus-pituitary-adrenal axis (HPA), but so far structural alterations were not studied. We investigated hypothalamic volumes in patients with either GAD or PD and in healthy controls. Twelve GAD patients, 11 PD patients and 21 healthy controls underwent a 1.5T MRI scan. Hypothalamus volumes were manually traced by a rater blind to subjects' identity. General linear model for repeated measures (GLM-RM) was used to compare groups on hypothalamic volumes, controlling for total intracranial volume, age and sex. The hypothalamus volume was significantly reduced (p=0.04) in GAD patients, with significant reductions in both the left (p=0.02) and right side (p=0.04). Patients with PD did not differ significantly (p=0.73). Anxiety scores were inversely correlated with hypothalamic volumes. The small sample size could reduce the generalizability of the results while the lack of stress hormone measurements renders functional assessment of the hypothalamus-pituitary-adrenal axis not feasible. The present study showed decreased hypothalamic volumes in GAD patients but not in those with PD. Future longitudinal studies should combine volumetric data with measurements of stress hormones to better elucidate the role of the HPA axis in GAD. Copyright © 2012 Elsevier B.V. All rights reserved.
Dreiling, Michelle; Schiffner, Rene; Bischoff, Sabine; Rupprecht, Sven; Kroegel, Nasim; Schubert, Harald; Witte, Otto W; Schwab, Matthias; Rakers, Florian
2018-01-01
Acute stress-induced reduction of uterine blood flow (UBF) is an indirect mechanism of maternal-fetal stress transfer during late gestation. Effects of chronic psychosocial maternal stress (CMS) during early gestation, as may be experienced by many working women, on this stress signaling mechanism are unclear. We hypothesized that CMS in sheep during early gestation augments later acute stress-induced decreases of UBF, and aggravates the fetal hormonal, cardiovascular, and metabolic stress responses during later development. Six pregnant ewes underwent repeated isolation stress (CMS) between 30 and 100 days of gestation (dGA, term: 150 dGA) and seven pregnant ewes served as controls. At 110 dGA, ewes were chronically instrumented and underwent acute isolation stress. The acute stress decreased UBF by 19% in both the CMS and control groups (p < .05), but this was prolonged in CMS versus control ewes (74 vs. 30 min, p < .05). CMS increased fetal circulating baseline and stress-induced cortisol and norepinephrine concentrations indicating a hyperactive hypothalamus-pituitary-adrenal (HPA)-axis and sympathetic-adrenal-medullary system. Increased fetal norepinephrine is endogenous as maternal catecholamines do not cross the placenta. Cortisol in the control but not in the CMS fetuses was correlated with maternal cortisol blood concentrations; these findings indicate: (1) no increased maternal-fetal cortisol transfer with CMS, (2) cortisol production in CMS fetuses when the HPA-axis is normally inactive, due to early maturation of the fetal HPA-axis. CMS fetuses were better oxygenated, without shift towards acidosis compared to the controls, potentially reflecting adaptation to repeated stress. Hence, CMS enhances maternal-fetal stress transfer by prolonged reduction in UBF and increased fetal HPA responsiveness.
High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response.
Gagliano, Humberto; Delgado-Morales, Raul; Sanz-Garcia, Ancor; Armario, Antonio
2014-04-01
The hypothalamic-pituitary-adrenal (HPA) axis is activated by a wide range of stimuli, including drugs. Here we report that in male rats, a dose of sodium butyrate (NaBu) that is typically used to inhibit histone deacetylation (1200 mg/kg) increased the peripheral levels of HPA hormones and glucose. In a further experiment, we compared the effects of two different doses of NaBu (200 and 1200 mg/kg) and equimolar saline solutions on peripheral neuroendocrine markers and brain c-Fos expression to demonstrate a specific stress-like effect of NaBu that is not related to hypertonicity and to localise putatively involved brain areas. Only the high dose of NaBu increased the plasma levels of stress markers. The equimolar (hypertonic) saline solution also activated the HPA axis and the c-Fos expression in the paraventricular nucleus of the hypothalamus (PVN), a key area for the control of the HPA axis, but the effects were of a lower magnitude than those of NaBu. Regarding other brain areas, group differences in c-Fos expression were not observed in the medial prefrontal cortex or the medial amygdala, but they were observed in the central amygdala and the lateral ventral septum. However, only the latter area of the NaBu group showed enhanced c-Fos expression that was significantly higher than that after hypertonic saline. The present data indicate that high doses of NaBu appear to act as a pharmacological stressor, and this fact should be taken into account when using this drug to study the role of epigenetic processes in learning and emotional behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gartstein, Maria A; Seamon, Erich; Thompson, Stephanie F; Lengua, Liliana J
2018-05-01
Identification of early risk factors related to obesity is critical to preventative public health efforts. In this study, we investigated links between the Hypothalamic-Pituitary-Adrenal (HPA)-axis activity (diurnal cortisol pattern), geospatially operationalized exposure to neighborhood crime, and body mass index (BMI) for a sample of 5-year-old children. Greater community crime exposure and lower HPA-axis activity were hypothesized to contribute to higher BMI, with child HPA-axis moderating the association between crime exposure and BMI. Families residing within the boundaries of the City of Seattle (N = 114) provided information concerning demographic/psychosocial risk factors, used to calculate a Cumulative Risk Index, indicating the number of contextual adversities present. Child BMI and diurnal cortisol pattern (derived from assays of saliva samples) were examined, along with neighborhood crime indices computed with publically available information, based on participants' locations. Hierarchical multiple regression analyses, adjusted for covariates (cumulative risk, age, and sex), indicated that crime proximity made a unique contribution to child BMI, in the direction signaling an increase in the risk for obesity. Consistent with our hypothesis, a significant interaction was observed, indicative of moderation by diurnal cortisol pattern. Follow-up simple slope analyses demonstrated that crime exposure was significantly related to higher BMI for children with low-flat (blunted) diurnal cortisol patterns, where community crime and BMI were not significantly associated at higher levels of cortisol. Community crime exposure contributes to higher BMI as early as the preschool period, and blunted diurnal cortisol patterns may place children experiencing neighborhood adversity at greater risk for obesity.
Loneliness in older adults is associated with diminished cortisol output.
Schutter, N; Holwerda, T J; Stek, M L; Dekker, J J M; Rhebergen, D; Comijs, H C
2017-04-01
Loneliness in older adults has been associated with increased mortality and health problems. One of the assumed underlying mechanisms is dysregulation of the hypothalamic-pituitary-adrenocortical axis (HPA-axis). The purpose of this study was to investigate whether loneliness in older adults is associated with HPA-axis dysregulation and whether this association differs between depressed and non-depressed persons. Cross-sectional data of 426 lonely and non-lonely older adults in the Netherlands Study of Depression in Older Persons (NESDO) were used. Linear regression analyses and multinominal logistic regression analyses were performed to examine the association between loneliness and morning cortisol, cortisol awakening response, diurnal slope and dexamethasone suppression ratio. In all analyses, confounders were introduced. In order to examine whether the association between loneliness and cortisol measures is different in depressed versus non-depressed persons, an interaction term for loneliness x depression diagnosis was tested. Cortisol output in the first hour after awakening and dexamethasone suppression ratio was lower in lonely participants. There were no significant interactions between loneliness and depression diagnosis in the association with the cortisol measures. This study is the first to investigate the association between the HPA-axis and loneliness in a large group of older adults aged 60-93years. We found lower cortisol output in the first hour after awakening and lower dexamethasone suppression ratio in lonely older depressed and non-depressed adults. Whether diminished cortisol output is the underlying mechanism that leads to health problems in lonely older adults is an interesting object for further study. Copyright © 2017 Elsevier Inc. All rights reserved.
Sex differences in the long-lasting effects of a single exposure to immobilization stress in rats.
Gagliano, Humberto; Nadal, Roser; Armario, Antonio
2014-11-01
In male rats, a single exposure to a severe stressor such as immobilization (IMO) results in marked activation of the HPA axis and reduction of body weight gain. In addition, the HPA response to the same (homotypic) stressor is reduced, whereas the response to a different (heterotypic) stressor is enhanced for days. Although sex differences in the responsiveness of the HPA axis have been described, there are few studies about the influence of sex on long-lasting effects of stress. Thus, we have compared the consequences of a single exposure to IMO in male and female rats. Females showed a similar ACTH response to the first IMO associated with higher corticosterone, but they were more resistant than males to stress-induced loss of body weight. Unstressed females showed higher resting levels of ACTH and corticosterone, but they did not show the increase in the resting levels of HPA hormones observed in males on the day after IMO. During exposure to a different stressor (open-field) two days after IMO, enhanced corticosterone response and hypoactivity was observed in males, but not in females. Finally, a second exposure to IMO 8 days after the first one resulted in a reduction of the HPA response and of the negative impact on body weight as compared to the first exposure, and this protective effect was greater in females. In sum, IMO-exposed females showed a greater reduction of the response to a second IMO and appear to be more resistant than males to some of the negative impacts of IMO. Copyright © 2014. Published by Elsevier Inc.
Stress-linked cortisol concentrations in hair: what we know and what we need to know
Sharpley, Christopher F.; McFarlane, James R.; Slominski, Andrzej
2012-01-01
Cortisol has major impacts upon a range of physiological homeostatic mechanisms and plays an important role in stress, anxiety and depression. Although traditionally described as being solely synthesised via the hypothalamic-pituitary-adrenal (HPA) axis, recent animal and human studies indicate that cortisol may also be synthesised via a functionally-equivalent ‘peripheral’ HPA-like process within the skin, principally within hair follicles, melanocytes, epidermal melanocytes and dermal fibroblasts. Current data indicate that basal levels of cortisol within hair vary across body regions, show diurnal variation effects, respond to the onset and cessation of environmental stressors, and may demonstrate some degree of localisation in those responses. There are conflicting data regarding the presence of variability in cortisol concentrations across the length of the hair shaft, thus challenging the suggestion that hair cortisol may be used as a historical biomarker of stress and questioning the primary origin of cortisol in hair. The need to comprehensively ‘map’ the hair cortisol response for age, gender, diurnal rhythm and responsivity to stressor type is discussed, plus the major issue of if, and how, the peripheral and central HPA systems communicate. PMID:22150070
Martyn, Amanda C.; Choleris, Elena; Gillis, Daniel J.; Armstrong, John N.; Amor, Talya R.; McCluggage, Adam R. R.; Turner, Patricia V.; Liang, Genqing; Cai, Kimberly
2012-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major part of the neuroendocrine system in animal responses to stress. It is known that the HPA axis is attenuated at parturition to prevent detrimental effects of glucocorticoid secretion including inhibition of lactation and maternal responsiveness. Luman/CREB3 recruitment factor (LRF) was identified as a negative regulator of CREB3 which is involved in the endoplasmic reticulum stress response. Here, we report a LRF gene knockout mouse line that has a severe maternal behavioral defect. LRF−/− females lacked the instinct to tend pups; 80% of their litters died within 24 h, while most pups survived if cross-fostered. Prolactin levels were significantly repressed in lactating LRF−/− dams, with glucocorticoid receptor (GR) signaling markedly augmented. In cell culture, LRF repressed transcriptional activity of GR and promoted its protein degradation. LRF was found to colocalize with the known GR repressor, RIP140/NRIP1, which inhibits the activity by GR within specific nuclear punctates that are similar to LRF nuclear bodies. Furthermore, administration of prolactin or the GR antagonist RU486 restored maternal responses in mutant females. We thus postulate that LRF plays a critical role in the attenuation of the HPA axis through repression of glucocorticoid stress signaling during parturition and the postpartum period. PMID:23071095
Salivary cortisol in ambulatory assessment--some dos, some don'ts, and some open questions.
Kudielka, Brigitte M; Gierens, Andrea; Hellhammer, Dirk H; Wüst, Stefan; Schlotz, Wolff
2012-05-01
The impact of stress on health and disease is an important research topic in psychosomatic medicine. Because research on hypothalamic-pituitary-adrenal (HPA) axis regulation under controlled laboratory studies lacks ecological validity, it needs to be complemented by a research program that includes momentary ambulatory assessment. The measurement of salivary cortisol offers the possibility to trace the free steroid hormone concentrations in ambulant settings. Therefore, in this article, we first discuss the role of salivary cortisol in ambulatory monitoring. We start with a brief description of HPA axis regulation, and we then consider cortisol assessments in other organic materials, followed by a presentation of common salivary markers of HPA axis regulation suitable for ambulatory assessment. We further provide an overview on assessment designs and sources of variability within and between subjects (intervening variables), acknowledge the issue of (non)compliance, and address statistical aspects. We further give an overview of associations with psychosocial and health-related variables relevant for ambulatory assessment. Finally, we deal with preanalytical aspects of laboratory salivary cortisol analysis. The relative simplicity of salivary cortisol assessment protocols may lead to an overoptimistic view of the robustness of this method. We thus discuss several important issues related to the collection and storage of saliva samples and present empirical data on the stability of salivary cortisol measurements over time.
Humphreys, Derek; Schlesinger, Liana; Lopez, Marcelo; Araya, A Verónica
2006-12-01
The present study was designed to determine whether an association exists between HPA activity and cytokine production in major depression (MD). In 9 patients with MD and 11 control subjects of both sexes, all drug-free, activity of the HPA axis was evaluated by circadian rhythm of plasma cortisol, 24-h free urinary cortisol, an overnight 1 mg dexamethasone suppression test, and an oCRF stimulation test. Spontaneous and LPS-stimulated production of IL-1beta, IL-6, and TNFalpha by peripheral blood mononuclear cells were also determined. We found a significantly elevated spontaneous production of IL-6 in patients with MD (3541.2 +/- 726.8 vs 380.4 +/- 77.5 pg/mL in controls, p < 0.05), while LPS-stimulated production was significantly lower in patients than in control subjects (19,867.7 +/- 3649.2 vs 33,142.2 +/- 15,47.2 pg/mL, p < 0.05). The adrenocorticotropic hormone response to oCRF, evaluated as the area under the curve (AUCACTH) was significantly lower in patients than in control subjects (p = 0.02). A positive correlation between AUCACTH and LPS-stimulated IL-6 secretion was observed in patients with MD (r = 0.75, p < 0.05) but not in controls. These findings suggest that the activation of the inflammatory response described in depression might be associated with long-term hyperactivity of the HPA axis.
Ord, James; Fazeli, Alireza; Watt, Penelope J
2017-01-01
Stress represents an unavoidable aspect of human life, and pathologies associated with dysregulation of stress mechanisms - particularly psychiatric disorders - represent a significant global health problem. While it has long been observed that levels of stress experienced in the periconception period may greatly affect the offspring's risk of psychiatric disorders, the mechanisms underlying these associations are not yet comprehensively understood. In order to address this question, this chapter will take a 'top-down' approach, by first defining stress and associated concepts, before exploring the mechanistic basis of the stress response in the form of the hypothalamic-pituitary-adrenal (HPA) axis, and how dysregulation of the HPA axis can impede our mental and physical health, primarily via imbalances in glucocorticoids (GCs) and their corresponding receptors (GRs) in the brain. The current extent of knowledge pertaining to the impact of stress on developmental programming and epigenetic inheritance is then extensively discussed, including the role of chromatin remodelling associated with specific HPA axis-related genes and the possible role of regulatory RNAs as messengers of environmental stress both in the intrauterine environment and across the germ line. Furthering our understanding of the role of stress on embryonic development is crucial if we are to increase our predictive power of disease risk and devise-effective treatments and intervention strategies.
Re-evaluating the treatment of acute optic neuritis.
Bennett, Jeffrey L; Nickerson, Molly; Costello, Fiona; Sergott, Robert C; Calkwood, Jonathan C; Galetta, Steven L; Balcer, Laura J; Markowitz, Clyde E; Vartanian, Timothy; Morrow, Mark; Moster, Mark L; Taylor, Andrew W; Pace, Thaddeus W W; Frohman, Teresa; Frohman, Elliot M
2015-07-01
Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis.Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite 'normal' (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury.In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration.In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis.
Borrow, A P; Stranahan, A M; Suchecki, D; Yunes, R
2016-07-01
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis. © 2016 British Society for Neuroendocrinology.
Individual Differences in the Cortisol Responses of Neglected and Comparison Children
Sullivan, Margaret Wolan; Bennett, David S.; Lewis, Michael
2014-01-01
Neglected children’s acute hypothalamic–pituitary–adrenal axis (HPA axis) reactivity in response to a laboratory visit was contrasted with that of a comparison group. The authors examined initial salivary cortisol response upon entering the laboratory and its trajectory following a set of tasks designed to elicit negative self-evaluation in 64 children (30 with a history of neglect and 34 demographically matched comparison children). Neglected, but not comparison, children showed higher initial cortisol responses. The cortisol response of both groups showed a decline from the sample taken at lab entry, with neglected children’s cortisol exhibiting steeper decline. The groups, however, did not differ in their mean cortisol levels at 20 and 35 min post-task. The results are interpreted in terms of the meaning of initial responses as a “baseline” and as evidence for neglected children’s heightened HPA-axis reactivity as either a reflection of differences in home levels or the consequence of stress/anxiety associated with arrival at the laboratory. PMID:22752003
Individual differences in the cortisol responses of neglected and comparison children.
Sullivan, Margaret Wolan; Bennett, David S; Lewis, Michael
2013-02-01
Neglected children's acute hypothalamic-pituitary-adrenal axis (HPA axis) reactivity in response to a laboratory visit was contrasted with that of a comparison group. The authors examined initial salivary cortisol response upon entering the laboratory and its trajectory following a set of tasks designed to elicit negative self-evaluation in 64 children (30 with a history of neglect and 34 demographically matched comparison children). Neglected, but not comparison, children showed higher initial cortisol responses. The cortisol response of both groups showed a decline from the sample taken at lab entry, with neglected children's cortisol exhibiting steeper decline. The groups, however, did not differ in their mean cortisol levels at 20 and 35 min post-task. The results are interpreted in terms of the meaning of initial responses as a "baseline" and as evidence for neglected children's heightened HPA-axis reactivity as either a reflection of differences in home levels or the consequence of stress/anxiety associated with arrival at the laboratory.
van der Kooij, Anita J.; Reijmers, Theo H.; Schroën, Yan; Wang, Mei; Xu, Zhiliang; Wang, Xinchang; Kong, Hongwei; Xu, Guowang; Hankemeier, Thomas; Meulman, Jacqueline J.; van der Greef, Jan
2012-01-01
Objective The aim is to characterize subgroups or phenotypes of rheumatoid arthritis (RA) patients using a systems biology approach. The discovery of subtypes of rheumatoid arthritis patients is an essential research area for the improvement of response to therapy and the development of personalized medicine strategies. Methods In this study, 39 RA patients are phenotyped using clinical chemistry measurements, urine and plasma metabolomics analysis and symptom profiles. In addition, a Chinese medicine expert classified each RA patient as a Cold or Heat type according to Chinese medicine theory. Multivariate data analysis techniques are employed to detect and validate biochemical and symptom relationships with the classification. Results The questionnaire items ‘Red joints’, ‘Swollen joints’, ‘Warm joints’ suggest differences in the level of inflammation between the groups although c-reactive protein (CRP) and rheumatoid factor (RHF) levels were equal. Multivariate analysis of the urine metabolomics data revealed that the levels of 11 acylcarnitines were lower in the Cold RA than in the Heat RA patients, suggesting differences in muscle breakdown. Additionally, higher dehydroepiandrosterone sulfate (DHEAS) levels in Heat patients compared to Cold patients were found suggesting that the Cold RA group has a more suppressed hypothalamic-pituitary-adrenal (HPA) axis function. Conclusion Significant and relevant biochemical differences are found between Cold and Heat RA patients. Differences in immune function, HPA axis involvement and muscle breakdown point towards opportunities to tailor disease management strategies to each of the subgroups RA patient. PMID:22984493
Davenport, Matthew D.; Lutz, Corrine K.; Tiefenbacher, Stefan; Novak, Melinda A.; Meyer, Jerrold S.
2008-01-01
Background Self-injurious behavior (SIB), a disorder that afflicts many individuals within both clinical and non-clinical populations, has been linked to states of heightened stress and arousal. However, there are no published longitudinal data on the relationship between increases in stress and changes in the incidence of SIB. The present study investigated the short- and long-term behavioral and neuroendocrine responses of SIB and control monkeys to the stress of relocation. Methods Twenty adult male rhesus macaques were exposed to the stress of relocation to a new housing arrangement in a newly constructed facility. Daytime behavior, sleep, and multiple measures of hypothalamic-pituitary-adrenocortical (HPA) axis function were investigated before and after the move. Results Relocation induced a complex pattern of short- and long-term effects in the animals. The SIB animals showed a long-lasting increase in self-biting behavior as well as evidence of sleep disturbance. Both groups exhibited elevated cortisol levels in saliva, serum, and hair, and also an unexpected delayed increase in circulating concentrations of corticosteroid binding globulin (CBG). Conclusions Our results indicate that relocation is a significant stressor for rhesus macaques, and that this stressor triggers an increase in self-biting behavior as well as sleep disturbance in monkeys previously identified as suffering from SIB. These findings suggest that life stresses may similarly exacerbate SIB in humans with this disorder. The HPA axis results underscore the potential role of CBG in regulating long-term neuroendocrine responses to major stressors. PMID:18164279
Danielson, Carla Kmett; Hankin, Benjamin L.; Badanes, Lisa S.
2015-01-01
Summary Parental Posttraumatic Stress Disorder (PTSD), particularly maternal PTSD, confers risk for stress-related psychopathology among offspring. Altered hypothalamic-pituitary-adrenal (HPA) axis functioning is one mechanism proposed to explain transmission of this intergenerational risk. Investigation of this mechanism has been largely limited to general stress response (e.g., diurnal cortisol), rather than reactivity in response to an acute stressor. We examined cortisol reactivity in response to a laboratory stressor among offspring of mothers with a lifetime diagnosis of PTSD (n=36) and age- and gender- matched control offspring of mothers without PTSD (n=36). Youth (67% girls; mean age = 11.4, SD = 2.6) participated in a developmentally sensitive laboratory stressor and had salivary cortisol assessed five times (one pre-stress, one immediate post-stress, and three recovery measures, spaced 15 minutes apart). Results were consistent with the hypothesis that offspring of mothers with PTSD would exhibit a dysregulated, blunted cortisol reactivity profile and control offspring would display the expected adaptive peak in cortisol response to challenge profile. Findings were maintained after controlling for youth traumatic event history, physical anxiety symptoms, and depression, as well as maternal depression. This finding contributes to the existing literature indicating that attenuated HPA axis functioning, inclusive of hyposecretion of cortisol in response to acute stress, is robust among youth of mothers with PTSD. Future research is warranted in elucidating cortisol reactivity as a link between maternal PTSD and stress-related psychopathology vulnerability among offspring. PMID:25622009
Thayer, Zaneta M
2017-12-01
Auckland, Aotearoa /New Zealand is a culturally and ethnically diverse city. Despite popular global conceptions regarding its utopian nature, the lived experience for many individuals in Auckland attests to the substantial social, economic, and health inequalities that exist there. In particular, rapidly rising home prices constrain housing decisions and force individuals to live in less desirable neighborhoods, with potential impacts on individual health. One of the pathways through which adverse neighborhood conditions could impact health is through alterations in the functioning of the hypothalamic pituitary adrenal (HPA)-axis, which regulates the physiological stress response. This paper evaluates the relationship between perceived neighborhood safety, self-rated health, and cortisol, an end product of HPA-axis activation, among women in late pregnancy. Pregnant women living in neighborhoods where they were concerned about safety of their property had poorer self-rated health and elevated morning cortisol, even after adjusting for maternal age, material deprivation, and ethnicity. However, fear of personal safety was unrelated to self-rated health and cortisol. These results suggest that maternal health in pregnancy is sensitive to perceptions regarding neighborhood safety. Such findings are important since higher cortisol levels in pregnancy could not only influence maternal health, but also the health and development of women's children.
Dual-hormone stress reactivity predicts downstream war-zone stress-evoked PTSD.
Josephs, Robert A; Cobb, Adam R; Lancaster, Cynthia L; Lee, Han-Joo; Telch, Michael J
2017-04-01
The crucial role of the hypothalamic-pituitary-adrenal axis (HPA) in stress-related homeostasis suggests dysregulated HPA involvement in the pathogenesis of post-traumatic stress disorder (PTSD), yet most studies examining linkages between HPA axis measures and PTSD have yielded null findings. One untested explanation for this inconsistency is a failure to account for simultaneous adrenal and gonadal influence. Here we tested the singular and interactive effects of cortisol (C R ) and testosterone (T R ) reactivity as moderators of war-zone stress evoked PTSD emergence in the war-zone. U.S. soldiers (N=120) scheduled for deployment to Iraq completed pre-deployment measures of C R and T R stress reactivity to a CO 2 inhalation challenge. Once deployed, monthly assessments of exposure to traumatic war-zone stressors and PTSD symptoms were collected via a web-based assessment system. Cortisol hypo-reactivity potentiated the pathogenic impact of war-zone stressors only in soldiers for whom the CO 2 challenge did not elevate testosterone, suggesting that the dual hormone stress reactivity profile of blunted cortisol and testosterone may confer increased risk for PTSD emergence by potentiating the pathogenic effects of war-zone stressors. Findings underscore the utility of assessing both HPA and HPG stress reactivity when assessing PTSD vulnerability and may help inform efforts for enhanced soldier screening and inoculation to war-zone stressors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Mimi; Liu, Yiping; Wang, Lu; Li, Huande; Cai, Hualin; Zhang, Min; Dang, Ruili; Xue, Ying; Wu, Yanqin
2018-06-08
Low intake of omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) especially docosahexaenoic acid (DHA) is associated with postpartum depression. DHA deficiency is accompanied by impaired attention and cognition, and will precipitate psychiatric symptoms. However, the effects of dietary DHA on postpartum depression remain unclear. We established a normal pregnancy model to evaluate whether an Ω-3 PUFA-deficient diet during gestation could induce depressive-like behavior and aggravate dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in rats. A between-group design was used to assess the effects of Ω-3 PUFA content (deficiency, control and supplementary) and reproductive status (virgin or parous). We assessed depressive-like behavior and measured the fatty acid composition in the liver. The protein expressions of glucocorticoid receptor (GR) and mineralocorticoid receptor (MCR) were also measured to evaluate the HPA activity. Exposure to the Ω-3 PUFA-deficient diet resulted in an increased immobility time in a forced swimming test (FST). Additionally, our results firstly showed the decreased expression of GR in the hippocampus of parous rats that were exposed to Ω-3 PUFA-deficient diets, which may partly facilitate the hyperactivity of the HPA axis and exert detrimental effects. Moreover, the reduction of GR was ameliorated by Ω-3 PUFA supplementation, providing new evidence for Ω-3 PUFAs in the progression of postpartum depression.
Developmental Origins of Stress and Psychiatric Disorders.
Guest, Francesca L; Guest, Paul C
2018-01-01
Over the last few decades, evidence has emerged that the pathogenesis of psychiatric disorders such as schizophrenia can involve perturbations of the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems. Variations in the manifestation of these effects could be related to differences in clinical symptoms between affected individuals and to differences in treatment response. Such effects can also arise from the complex interaction between genes and environmental factors. Here, we review the effects of maternal stress on abnormalities in HPA axis regulation and the development of psychiatric disorders such as schizophrenia. Studies in this area may prove critical for increasing our understanding of the multidimensional nature of mental disorders and could lead to the development of improved diagnostics and novel therapeutic approaches for treating individuals who suffer from these conditions.
Sex, trauma, stress hormones and depression.
Young, E; Korszun, A
2010-01-01
Although few studies dispute that there are gender differences in depression, the etiology is still unknown. In this review, we cover a number of proposed factors and the evidences for and against these factors that may account for gender differences in depression. These include the possible role of estrogens at puberty, differences in exposure to childhood trauma, differences in stress perception between men and women and the biological differences in stress response. None of these factors seem to explain gender differences in depression. Finally, we do know that when depressed, women show greater hypothalamic-pituitary-adrenal (HPA) axis activation than men and that menopause with loss of estrogens show the greatest HPA axis dysregulation. It may be the constantly changing steroid milieu that contributes to these phenomena and vulnerability to depression.
Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A
2014-01-01
Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.
Lee, Richard S.; Tamashiro, Kellie L. K.; Yang, Xiaoju; Purcell, Ryan H.; Harvey, Amelia; Willour, Virginia L.; Huo, Yuqing; Rongione, Michael; Wand, Gary S.; Potash, James B.
2010-01-01
There is evidence for hypercortisolemia playing a role in the generation of psychiatric symptoms and for epigenetic variation within hypothalamic-pituitary-adrenal (HPA) axis genes mediating behavioral changes. We tested the hypothesis that expression changes would be induced in Fkbp5 and other HPA axis genes by chronic exposure to corticosterone and that these changes would occur through the epigenetic mechanism of loss or gain of DNA methylation (DNAm). We administered corticosterone (CORT) to C57BL/6J mice via their drinking water for 4 wk and tested for behavioral and physiological changes and changes in gene expression levels using RNA extracted from hippocampus, hypothalamus, and blood for the following HPA genes: Fkbp5, Nr3c1, Hsp90, Crh, and Crhr1. The CORT mice exhibited anxiety-like behavior in the elevated plus maze test. Chronic exposure to CORT also caused a significant decrease in the hippocampal and blood mRNA levels of Nr3c1 and a decrease in Hsp90 in blood and caused an increase in Fkbp5 for all tissues. Differences were seen in Fkbp5 methylation in hippocampus and hypothalamus. To isolate a single-cell type, we followed up with an HT-22 mouse hippocampal neuronal cell line exposed to CORT. After 7 d, we observed a 2.4-fold increase in Fkbp5 expression and a decrease in DNAm. In the CORT-treated mice, we also observed changes in blood DNAm in Fkbp5. Our results suggest DNAm plays a role in mediating effects of glucocorticoid exposure on Fkbp5 function, with potential consequences for behavior. PMID:20668026
Brummelte, Susanne; Chau, Cecil M Y; Cepeda, Ivan L; Degenhardt, Amanda; Weinberg, Joanne; Synnes, Anne R; Grunau, Ruth E
2015-01-01
Early life stress can alter hypothalamic pituitary adrenal (HPA) axis function. Differences in cortisol levels have been found in preterm infants exposed to substantial procedural stress during neonatal intensive care, compared to infants born full-term, but only a few studies investigated whether altered programming of the HPA axis persists past toddler age. Further, there is a dearth of knowledge of what may contribute to these changes in cortisol. This prospective cohort study examined the cortisol profiles in response to the stress of cognitive assessment, as well as the diurnal rhythm of cortisol, in children (n=129) born at varying levels of prematurity (24-32 weeks gestation) and at full-term (38-41 weeks gestation), at age 7 years. Further, we investigated the relationships among cortisol levels and neonatal procedural pain-related stress (controlling for multiple medical confounders), concurrent maternal factors (parenting stress, depressive and anxiety symptoms) and children's behavioral problems. For each aim we investigate acute cortisol response profiles to a cognitive challenge as well as diurnal cortisol patterns at home. We hypothesized that children born very preterm will differ in their pattern of cortisol secretion from children born full-term, possibly depended on concurrent child and maternal factors, and that exposure to neonatal pain-related stress would be associated with altered cortisol secretion in children born very preterm, possibly in a sex-dependent way. Saliva samples were collected from 7-year old children three times during a laboratory visit for assessment of cognitive and executive functions (pretest, mid-test, end-study day acute stress profile) and at four times over two consecutive non-school days at home (i.e. morning, mid-morning, afternoon and bedtime-diurnal rhythm profile). We found that cortisol profiles were similar in preterm and full-term children, albeit preterms had slightly higher cortisol at bedtime compared to full-term children. Importantly, in the preterm group, greater neonatal procedural pain-related stress (adjusted for morphine) was associated with lower cortisol levels on the study day (p=.044) and lower diurnal cortisol at home (p=.023), with effects found primarily in boys. In addition, child attention problems were negatively, and thought problems were positively, associated with the cortisol response during cognitive assessment on the study day in preterm children. Our findings suggest that neonatal pain/stress contributes to altered HPA axis function up to school-age in children born very preterm, and that sex may be an important factor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brummelte, Susanne; Chau, Cecil MY; Cepeda, Ivan L.; Degenhardt, Amanda; Weinberg, Joanne; Synnes, Anne R.; Grunau, Ruth E.
2014-01-01
Summary Early life stress can alter hypothalamic pituitary adrenal (HPA) axis function. Differences in cortisol levels have been found in preterm infants exposed to substantial procedural stress during neonatal intensive care, compared to infants born full-term, but only a few studies investigated whether altered programming of the HPA axis persists past toddler age. Further, there is a dearth of knowledge of what may contribute to these changes in cortisol. This prospective cohort study examined the cortisol profiles in response to the stress of cognitive assessment, as well as the diurnal rhythm of cortisol, in children (n=129) born at varying levels of prematurity (24–32 weeks gestation) and at full-term (38–41 weeks gestation), at age 7 years. Further, we investigated the relationships among cortisol levels and neonatal procedural pain-related stress (controlling for multiple medical confounders), concurrent maternal factors (parenting stress, depressive and anxiety symptoms) and children’s behavioral problems. For each aim we investigate acute cortisol response profiles to a cognitive challenge as well as diurnal cortisol patterns at home. We hypothesized that children born very preterm will differ in their pattern of cortisol secretion from children born full-term, possibly depended on concurrent child and maternal factors, and that exposure to neonatal pain-related stress would be associated with altered cortisol secretion in children born very preterm, possibly in a sex-dependent way. Saliva samples were collected from 7-year old children three times during a laboratory visit for assessment of cognitive and executive functions (pretest, mid-test, end - study day acute stress profile) and at four times over two consecutive non-school days at home (i.e. morning, mid-morning, afternoon and bedtime - diurnal rhythm profile). We found that cortisol profiles were similar in preterm and full-term children, albeit preterms had slightly higher cortisol at bedtime compared to full-term children. Importantly, in the preterm group, greater neonatal procedural pain-related stress (adjusted for morphine) was associated with lower cortisol levels on the study day (p=0.044) and lower diurnal cortisol at home (p=0.023), with effects found primarily in boys. In addition, child attention problems were negatively, and thought problems were positively, associated with the cortisol response during cognitive assessment on the study day in preterm children. Our findings suggest that neonatal pain/stress contributes to altered HPA axis function up to school-age in children born very preterm, and that sex may be an important factor. PMID:25313535
Acute social stress-induced immunomodulation in pigs high and low responders to ACTH.
Bacou, Elodie; Haurogné, Karine; Mignot, Grégoire; Allard, Marie; De Beaurepaire, Laurence; Marchand, Jordan; Terenina, Elena; Billon, Yvon; Jacques, Julien; Bach, Jean-Marie; Mormède, Pierre; Hervé, Julie; Lieubeau, Blandine
2017-02-01
Pig husbandry is known as an intensive breeding system, piglets being submitted to multiple stressful events such as early weaning, successive mixing, crowding and shipping. These stressors are thought to impair immune defences and might contribute, at least partly, to the prophylactic use of antibiotics. Robustness was recently defined as the ability of an individual to express a high-production potential in a wide variety of environmental conditions. Increasing robustness thus appears as a valuable option to improve resilience to stressors and could be obtained by selecting piglets upon their adrenocortical activity. In this study, we aimed at depicting the consequences of an acute social stress on the immune capacity of piglets genetically selected upon divergent hypothalamic-pituitary-adrenocortical (HPA) axis activity. For this purpose, we monitored neuroendocrine and immune parameters, in high- (HPA hi ) and low- (HPA lo ) responders to ACTH, just before and immediately after a one-hour mixing with unfamiliar conspecifics. As expected, stressed piglets displayed higher levels of circulating cortisol and norepinephrine. Blood cell count analysis combined to flow cytometry revealed a stress-induced leukocyte mobilization in the bloodstream with a specific recruitment of CD8α + lymphocytes. Besides, one-hour mixing decreased LPS-induced IL-8 and TNFα secretions in whole-blood assays (WBA) and reduced mononuclear cell phagocytosis. Altogether, our data demonstrate that acute social stress alters immune competence of piglets from both groups, and bring new insights in favour of good farming practices. While for most parameters high- and low-responders to ACTH behaved similarly, HPA hi piglets displayed higher number of CD4 + CD8α - T cells, as well as increased cytokine production in WBA (LPS-induced TNFα and PIL-induced IL-8), which could confer them increased resistance to pathogens. Finally, a principal component analysis including all parameters highlighted that overall stress effects were less pronounced on piglets with a strong HPA axis. Thus, selection upon adrenocortical axis activity seems to reduce the magnitude of response to stress and appears as a good tool to increase piglet robustness. Copyright © 2016 Elsevier Inc. All rights reserved.
van Santen, Aafke; Vreeburg, Sophie A; Van der Does, A J Willem; Spinhoven, Philip; Zitman, Frans G; Penninx, Brenda W J H
2011-02-01
Hypothalamus-Pituitary-Adrenal (HPA) axis dysregulation is often seen in major depression, and is thought to represent a trait vulnerability - rather than merely an illness marker - for depressive disorder and possibly anxiety disorder. Vulnerability traits associated with stress-related disorders might reflect increased sensitivity for the development of psychopathology through an association with HPA axis activity. Few studies have examined the association between psychological trait factors and the cortisol awakening response, with inconsistent results. The present study examined the relationship between multiple psychological trait factors and the cortisol awakening curve, including both the dynamic of the CAR and overall cortisol awakening levels, in a sample of persons without psychopathology, hypothesizing that persons scoring high on vulnerability traits demonstrate an elevated cortisol awakening curve. From 2981 participants of the Netherlands Study of Depression and Anxiety (NESDA), baseline data from 381 controls (aged 18-65) without previous, current and parental depression and anxiety disorders were analyzed. Psychological measures included the Big Five personality traits (neuroticism, extraversion, openness to experience, conscientiousness, and agreeableness) measured using the NEO-FFI, anxiety sensitivity assessed by the Anxiety Sensitivity Index, cognitive reactivity to sadness (hopelessness, acceptance/coping, aggression, control/perfectionism, risk aversion, and rumination) as measured by the LEIDS-R questionnaire, and mastery, assessed using the Pearlin and Schooler Mastery scale. Salivary cortisol levels were measured at awakening, and 30, 45, and 60 min afterwards. In adjusted analyses, high scores of hopelessness reactivity (β=.13, p=.02) were consistently associated with a higher cortisol awakening response. In addition, although inconsistent across analyses, persons scoring higher on extraversion, control/perfectionism reactivity, and mastery tended to show a slightly flatter CAR. No significant associations were found for neuroticism, openness to experience, agreeableness, conscientiousness, anxiety sensitivity, and acceptance/coping, aggression, or risk aversion reactivity. Of various psychological traits, only hopelessness reactivity, a trait that has been associated with depression and suicidality, is consistently associated with HPA axis dysregulation. Hopelessness reactivity may represent a predisposing vulnerability for the development of a depressive or anxiety disorder, possibly in part mediated by HPA axis activity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Xin-Hua; Song, Su-Qi; Xu, Yun
2017-01-01
Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES), a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS), after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF) and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased plasma IL-6, CRP, and TNF-α concentrations. Furthermore, RES treatment upregulated the hippocampal protein levels of BDNF and the relative ratio of p-β-catenin/β-catenin while downregulating the relative ratio of p-GSK-3β/GSK-3β. Our findings suggest that RES improved depressive behavior in CUMS rats by downregulating HPA axis hyperactivity, increasing BDNF expression and plasma IL-6, CRP, and TNF-α concentrations, and regulating the hippocampal Wnt/β-catenin pathway.
Corwin, Elizabeth J; Pajer, Kathleen; Paul, Sudeshna; Lowe, Nancy; Weber, Mary; McCarthy, Donna O
2015-10-01
More than 500,000 U.S. women develop postpartum depression (PPD) annually. Although psychosocial risks are known, the underlying biology remains unclear. Dysregulation of the immune inflammatory response and the hypothalamic-pituitary-adrenal (HPA) axis are associated with depression in other populations. While significant research on the contribution of these systems to the development of PPD has been conducted, results have been inconclusive. This is partly because few studies have focused on whether disruption in the bidirectional and dynamic interaction between the inflammatory response and the HPA axis together influence PPD. In this study, we tested the hypothesis that disruption in the inflammatory-HPA axis bidirectional relationship would increase the risk of PPD. Plasma pro- and anti-inflammatory cytokines were measured in women during the 3rd trimester of pregnancy and on Days 7 and 14, and Months 1, 2, 3, and 6 after childbirth. Saliva was collected 5 times the day preceding blood draws for determination of cortisol area under the curve (AUC) and depressive symptoms were measured using the Edinburgh Postpartum Depression Survey (EPDS). Of the 152 women who completed the EPDS, 18% were depressed according to EDPS criteria within the 6months postpartum. Cortisol AUC was higher in symptomatic women on Day 14 (p=.017). To consider the combined effects of cytokines and cortisol on predicting symptoms of PPD, a multiple logistic regression model was developed that included predictors identified in bivariate analyses to have an effect on depressive symptoms. Results indicated that family history of depression, day 14 cortisol AUC, and the day 14 IL8/IL10 ratio were significant predictors of PPD symptoms. One unit increase each in the IL8/IL10 ratio and cortisol AUC resulted in 1.50 (p=0.06) and 2.16 (p=0.02) fold increases respectively in the development of PPD. Overall, this model correctly classified 84.2% of individuals in their respective groups. Findings suggest that variability in the complex interaction between the inflammatory response and the HPA axis influence the risk of PPD. Copyright © 2015 Elsevier Inc. All rights reserved.
Geronikolou, Styliani A; Chamakou, Aikaterini; Mantzou, Aimilia; Chrousos, George; KanakaGantenbein, Christina
2015-12-01
The hypothalamic-pituitary-adrenal (HPA) axis is the main "gate-keeper" of the organism's response to every somatic or mental stress. This prospective study aims to investigate the HPA-axis response to a cellular phone call exposure after mental stress in healthy children and adolescents and to assess the possible predictive role of baseline endocrine markers to this response. Two groups of healthy school-age children aged 11-14 (12.5±1.5) years were included in the study, the one comprising those who are occasional users of a cellular phone (Group A) while the second those who do regularly use one (Group B). Blood samples were obtained from all participants at 8.00 am after a 12-hour overnight fasting for thyroid hormone, glucose, insulin, and cortisol levels determination. The participants performed the Trier Social Stress Test for Children (TSST-C) (5 minoral task followed by 5 min arithmetic task). Salivary cortisol samples were obtained at baseline, 10' and 20' min after the TSST-C and 10' and 20' after a 5 minute cellular phone call. Significant changes in the salivary cortisol levels were noted between 10' and 20' mins after the cellular phone call with different responses between the two groups. Baseline thyroid hormone levels seem to predict the cortisol response to mental stress mainly in group A, while HOMA had no impact on salivary cortisol response at any phase of the test, in either group. HPA axis response to cellular phone after mental stress in children and adolescents follow a different pattern in frequent users than in occasional users that seems to be influenced by the baseline thyroid hormone levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Hypothalamic-Pituitary-Adrenal Axis Dysfunction and Illness Progression in Bipolar Disorder
Vasconcelos-Moreno, Mirela Paiva; Gubert, Carolina; dos Santos, Bárbara Tietböhl Martins Quadros; Sartori, Juliana; Eisele, Bárbara; Ferrari, Pamela; Fijtman, Adam; Rüegg, Joëlle; Gassen, Nils Christian; Kapczinski, Flávio; Rein, Theo; Kauer-Sant’Anna, Márcia
2015-01-01
Background: Impaired stress resilience and a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis are suggested to play key roles in the pathophysiology of illness progression in bipolar disorder (BD), but the mechanisms leading to this dysfunction have never been elucidated. This study aimed to examine HPA axis activity and underlying molecular mechanisms in patients with BD and unaffected siblings of BD patients. Methods: Twenty-four euthymic patients with BD, 18 siblings of BD patients, and 26 healthy controls were recruited for this study. All subjects underwent a dexamethasone suppression test followed by analyses associated with the HPA axis and the glucocorticoid receptor (GR). Results: Patients with BD, particularly those at a late stage of illness, presented increased salivary post-dexamethasone cortisol levels when compared to controls (p = 0.015). Accordingly, these patients presented reduced ex vivo GR responsiveness (p = 0.008) and increased basal protein levels of FK506-binding protein 51 (FKBP51, p = 0.012), a co-chaperone known to desensitize GR, in peripheral blood mononuclear cells. Moreover, BD patients presented increased methylation at the FK506-binding protein 5 (FKBP5) gene. BD siblings presented significantly lower FKBP51 protein levels than BD patients, even though no differences were found in FKBP5 basal mRNA levels. Conclusions: Our data suggest that the epigenetic modulation of the FKBP5 gene, along with increased FKBP51 levels, is associated with the GR hyporesponsiveness seen in BD patients. Our findings are consistent with the notion that unaffected first-degree relatives of BD patients share biological factors that influence the disorder, and that such changes are more pronounced in the late stages of the illness. PMID:25522387
Wang, Dean-Chuan; Chen, Tsan-Ju; Lin, Ming-Lu; Jhong, Yue-Cih; Chen, Shih-Chieh
2014-09-01
Both the detrimental effects of early life adversity and the beneficial effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis have been reported. Early life exposure to di-(2-ethylhexyl)-phthalate (DEHP) may impair the development of endocrine system. In this study, we investigated the effects of lactational DEHP exposure on stress responses in late adolescent female rats and examined the protective role of treadmill running. Sprague-Dawley dams were fed with DEHP (10mg/kg per day) or vehicle during lactation. After weaning, the female offspring rats were trained to exercise on a treadmill for 5 weeks and then stressed by exploring on an elevated plus maze. The activities of HPA axis were evaluated by measuring the plasma levels of ACTH and corticosterone, the expressions of adrenal enzymes cholesterol side-chain cleavage enzyme (CYP11A1) and cytochrome P-450 11β-hydroxylase (CYP11B1), and the expression of hypothalamic glucocorticoid receptors (GR). The results demonstrate that DEHP-exposed rats exhibited enhanced anxiety-like behaviors. Increased hypothalamic GR and plasma ACTH levels, but decreased adrenal CYP11A1 and corticosterone levels, were observed in DEHP-exposed animals under stressed condition. Importantly, in DEHP-exposed animals, exercise during childhood-adolescence reduced anxiety-like behaviors by normalizing stress-induced alterations in ACTH level and adrenal CYP11A1 expression. The findings of this study suggest that treadmill running may provide beneficial effects on ameliorating the dysregulation of HPA axis in lactational DEHP-exposed adolescent female rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Pierce, Angela N.; Zhang, Zhen; Fuentes, Isabella M.; Wang, Ruipeng; Ryals, Janelle M.; Christianson, Julie A.
2015-01-01
Abstract Experiencing early life stress or injury increases a woman's likelihood of developing vulvodynia and concomitant dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. To investigate the outcome of neonatal vaginal irritation (NVI), female mouse pups were administered intravaginal zymosan on postnatal days 8 and 10 and were assessed as adults for vaginal hypersensitivity by measuring the visceromotor response to vaginal balloon distension (VBD). Western blotting and calcium imaging were performed to measure transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) in the vagina and innervating primary sensory neurons. Serum corticosterone (CORT), mast cell degranulation, and corticotropin-releasing factor receptor 1 (CRF1) expression were measured as indicators of peripheral HPA axis activation. Colorectal and hind paw sensitivity were measured to determine cross-sensitization resulting from NVI. Adult NVI mice had significantly larger visceromotor response during VBD than naive mice. TRPA1 protein expression was significantly elevated in the vagina, and calcium transients evoked by mustard oil (TRPA1 ligand) or capsaicin (TRPV1 ligand) were significantly decreased in dorsal root ganglion from NVI mice, despite displaying increased depolarization-evoked calcium transients. Serum CORT, vaginal mast cell degranulation, and CRF1 protein expression were all significantly increased in NVI mice, as were colorectal and hind paw mechanical and thermal sensitivity. Neonatal treatment with a CRF1 antagonist, NBI 35965, immediately before zymosan administration largely attenuated many of the effects of NVI. These results suggest that NVI produces chronic hypersensitivity of the vagina, as well as of adjacent visceral and distant somatic structures, driven in part by increased HPA axis activation. PMID:26098441
Nederhof, Esther; Marceau, Kristine; Shirtcliff, Elizabeth A; Hastings, Paul D; Oldehinkel, Albertine J
2015-07-01
The present study is informed by the theory of allostatic load to examine how multiple stress responsive biomarkers are related to mental health outcomes. Data are from the TRAILS study, a large prospective population study of 715 Dutch adolescents (50.9 % girls), assessed at 16.3 and 19.1 years. Reactivity measures of the hypothalamic pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) biomarkers (heart rate, HR; respiratory sinus arrhythmia, RSA; and pre-ejection period, PEP) to a social stress task were used to predict concurrent and longitudinal changes in internalizing and externalizing symptoms. Hierarchical linear modeling revealed relatively few single effects for each biomarker with the exception that high HR reactivity predicted concurrent internalizing problems in boys. More interestingly, interactions were found between HPA-axis reactivity and sympathetic and parasympathetic reactivity. Boys with high HPA reactivity and low RSA reactivity had the largest increases in internalizing problems from 16 to 19 years. Youth with low HPA reactivity along with increased ANS activation characterized by both decreases in RSA and decreases in PEP had the most concurrent externalizing problems, consistent with broad theories of hypo-arousal. Youth with high HPA reactivity along with increases in RSA but decreases in PEP also had elevated concurrent externalizing problems, which increased over time, especially within boys. This profile illustrates the utility of examining the parasympathetic and sympathetic components of the ANS which can act in opposition to one another to achieve, overall, stress responsivity. The framework of allostasis and allostatic load is supported in that examination of multiple biomarkers working together in concert was of value in understanding mental health problems concurrently and longitudinally. Findings argue against an additive panel of risk and instead illustrate the dynamic interplay of stress physiology systems.
Carneiro, Gláucia; Togeiro, Sônia Maria; Hayashi, Lílian F; Ribeiro-Filho, Fernando Flexa; Ribeiro, Artur Beltrame; Tufik, Sérgio; Zanella, Maria Teresa
2008-08-01
Obstructive sleep apnea syndrome (OSAS) increases the risk of cardiovascular events. Sympathetic nervous system and hypothalamic-pituitary-adrenal (HPA) axis activation may be the mechanism of this relationship. The aim of this study was to evaluate HPA axis and ambulatory blood pressure monitoring in obese men with and without OSAS and to determine whether nasal continuous positive airway pressure therapy (nCPAP) influenced responses. Twenty-four-hour ambulatory blood pressure monitoring and overnight cortisol suppression test with 0.25 mg of dexamethasone were performed in 16 obese men with OSAS and 13 obese men controls. Nine men with severe apnea were reevaluated 3 mo after nCPAP therapy. Body mass index and blood pressure of OSAS patients and obese controls were similar. In OSAS patients, the percentage of fall in systolic blood pressure at night (P = 0.027) and salivary cortisol suppression postdexamethasone (P = 0.038) were lower, whereas heart rate (P = 0.022) was higher compared with obese controls. After nCPAP therapy, patients showed a reduction in heart rate (P = 0.036) and a greater cortisol suppression after dexamethasone (P = 0.001). No difference in arterial blood pressure (P = 0.183) was observed after 3 mo of nCPAP therapy. Improvement in cortisol suppression was positively correlated with an improvement in apnea-hypopnea index during nCPAP therapy (r = 0.799, P = 0.010). In conclusion, men with OSAS present increased postdexamethasone cortisol levels and heart rate, which were recovered by nCPAP.
Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H
2012-11-01
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Cushing's syndrome: from physiological principles to diagnosis and clinical care
Raff, Hershel; Carroll, Ty
2015-01-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic–pituitary–adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism – Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. PMID:25480800
Lipschutz, Rebecca; Bick, Johanna; Nguyen, Victoria; Lee, Maria; Leng, Lin; Grigorenko, Elena; Bucala, Richard; Mayes, Linda C; Crowley, Michael J
2018-05-26
Emerging evidence points to interactions between inflammatory markers and stress reactivity in predicting mental health risk, but underlying mechanisms are not well understood. Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine involved in inflammatory signaling and Hypothalamus Pituitary Adrenal (HPA) axis stress-response, and has recently been identified as a candidate biomarker for depression and anxiety risk. We examined polymorphic variations of the MIF gene in association with baseline MIF levels, HPA axis reactivity, and self-reported anxiety responses to a social stressor in 74 adolescents, ages 10-14 years. Genotyping was performed for two polymorphisms, the -794 CATT5-8 tetranucleotide repeat and the -173*G/C single nucleotide polymorphism (SNP). Youth carrying the MIF-173*C and CATT7 alleles displayed attenuated cortisol reactivity when compared with non-carriers. Children with the CATT7-173*C haplotype displayed lower cortisol reactivity to the stressor compared to those without this haplotype. Additionally, the CATT5-173*C and CATT6-173*C haplotypes were associated with lower self-reported anxiety ratings across the stressor. Results extend prior work pointing to the influence of MIF signaling on neuroendocrine response to stress and suggest a potential pathophysiological pathway underlying risk for stress-related physical and mental health disorders. To our knowledge, these are the first data showing associations between the MIF gene, HPA axis reactivity, and anxiety symptoms during adolescence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kaess, Michael; Whittle, Sarah; Simmons, Julian G; Jovev, Martina; Allen, Nicholas B; Chanen, Andrew M
2017-01-01
The study aimed to investigate childhood maltreatment, sex, and borderline personality disorder (BPD) symptoms as prospective predictors of adolescent hypothalamic-pituitary-adrenal (HPA) axis reactivity. A sample of 69 adolescents (30 female and 39 male) were selected from a larger longitudinal study of adolescent development and assessed at 3 time points. BPD symptoms were assessed at T1 (approx. 12.5 years), childhood maltreatment was assessed at T2 (approx. 14.9 years), and multiple assessments of salivary cortisol (cortisol awakening response; CAR) were undertaken at T3 (approx. 15.5 years). Multivariate linear regression analysis revealed a significant main effect for childhood maltreatment but not for early BPD symptoms as a predictor of lower CAR in adolescence (p = 0.047). The association between childhood maltreatment and attenuated CAR was moderated by both early BPD symptoms (p = 0.024; no childhood maltreatment-dependent attenuation of CAR in the presence of BPD symptoms) and sex (p = 0.012; childhood maltreatment-dependent attenuation of CAR in females only). Furthermore, a 3-way BPD × childhood maltreatment × sex interaction (p = 0.041) indicated that the moderating effect of BPD symptoms was present in females only. These findings indicate that attenuation of the HPA axis occurs as a response to early maltreatment rather than being related to the early occurrence of BPD pathology. Traumatized female individuals with BPD symptoms might bypass adaptive HPA axis attenuation. © 2017 S. Karger AG, Basel.
Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A
2016-08-01
Research suggests that environmental stress contributes to health by altering the regulation of the hypothalamic pituitary adrenal (HPA) axis. Recent evidence indicates that early life stress alters trait indicators of HPA axis activity, but whether recent stress alters such indicators is unknown. Using objective contextual stress interviews with adolescent girls and their mothers, we examined the impact of recent acute and chronic stress occurring during the past year on early adolescent girls' latent trait cortisol (LTC) level. We also examined whether associations between recent stress and LTC level: a) varied according to the interpersonal nature and controllability of the stress; and b) remained after accounting for the effect of early life stress. Adolescents (n=117;M age=12.39years) provided salivary cortisol samples three times a day (waking, 30min post-waking and bedtime) over 3days. Results indicated that greater recent interpersonal acute stress and greater recent independent (i.e., uncontrollable) acute stress were each associated with a higher LTC level, over and above the effect of early adversity. In contrast, greater recent chronic stress was associated with a lower LTC level. Findings were similar in the overall sample and a subsample of participants who strictly adhered to the timed schedule of saliva sample collection. Implications for understanding the impact of recent stress on trait-like individual differences in HPA axis activity are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Horsley, C. J.; Evans, J.; Scribner, K. A.; Keil, L. C.; Dallman, M. F.
1994-01-01
9a-Fludrocortisone (9aFF) has been used to decrease orthostatic hypotension in astronauts whorl they return to earth after space flight. An earth-based model for weightlessness in space is head-down posture in man and rats. In these studies male rats were suspended head-down or not for 7 days and treated 14 and 2 hours prior to ether stress in the AM with 9aFF (20 micrograms i.u.) at -14 and -2 h or at -2 h with steroid and at -14 h with oil; controls were treated 2x with oil. Rats were decapitated 10 min after ether and ACTH and corticosterone (B) were measured. Both ACTH and B responses were greater in suspended than control rats under all three steroid conditions, and the percentage inhibition of ACTH by 9aFF was similar. Basal activity in the HPA over the 7 d suspension period was probably not elevated since adrenal and thymus weights did not differ in the ambulatory and head down groups. We conclude that headdown suspension facilitates acute stress-induced activity in the HPA axis, but that HPA axis sensitivity to corticosteroid feedback does not change.
Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S
2011-11-01
Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.
Lieberman, Richard; Armeli, Stephen; Scott, Denise M; Kranzler, Henry R; Tennen, Howard; Covault, Jonathan
2016-09-01
Alcohol use disorder (AUD) is debilitating and costly. Identification and better understanding of risk factors influencing the development of AUD remain a research priority. Although early life exposure to trauma increases the risk of adulthood psychiatric disorders, including AUD, many individuals exposed to early life trauma do not develop psychopathology. Underlying genetic factors may contribute to differential sensitivity to trauma experienced in childhood. The hypothalamic-pituitary-adrenal (HPA) axis is susceptible to long-lasting changes in function following childhood trauma. Functional genetic variation within FKBP5, a gene encoding a modulator of HPA axis function, is associated with the development of psychiatric symptoms in adulthood, particularly among individuals exposed to trauma early in life. In the current study, we examined interactions between self-reported early life trauma, past-year life stress, past-year trauma, and a single nucleotide polymorphism (rs1360780) in FKBP5 on heavy alcohol consumption in a sample of 1,845 college students from two university settings. Although we found no effect of early life trauma on heavy drinking in rs1360780*T-allele carriers, rs1360780*C homozygotes exposed to early life trauma had a lower probability of heavy drinking compared to rs1360780*C homozygotes not exposed to early life trauma (P < 0.01). The absence of an interaction between either current life stress or past-year trauma, and FKBP5 genotype on heavy drinking suggests that there exists a developmental period of susceptibility to stress that is moderated by FKBP5 genotype. These findings implicate interactive effects of early life trauma and FKBP5 genetic variation on heavy drinking. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gareau, Mélanie G; Jury, Jennifer; MacQueen, Glenda; Sherman, Philip M; Perdue, Mary H
2007-01-01
Background We previously showed that neonatal maternal separation (MS) of rat pups causes immediate and long‐term changes in intestinal physiology. Aim To examine if administration of probiotics affects MS‐induced gut dysfunction. Methods MS pups were separated from the dam for 3 h/day from days 4 to 19; non‐separated (NS) pups served as controls. Twice per day during the separation period, 108 probiotic organisms (two strains of Lactobacillus species) were administered to MS and NS pups; vehicle‐treated pups received saline. Studies were conducted on day 20, when blood was collected for corticosterone measurement as an indication of hypothalamus–pituitary–adrenal (HPA) axis activity, and colonic function was studied in tissues mounted in Ussing chambers. Ion transport was indicated by baseline and stimulated short‐circuit current (Isc); macromolecular permeability was measured by flux of horseradish peroxidase (HRP) across colonic tissues; and bacterial adherence/penetration into the mucosa was quantified by culturing tissues in selective media. Colonic function and host defence were also evaluated at day 60. Results Isc and HRP flux were significantly higher in the colon of MS versus NS pups. There was increased adhesion/penetration of total bacteria in MS pups, but a significant reduction in Lactobacillus species. Probiotic administration ameliorated the MS‐induced gut functional abnormalities and bacterial adhesion/penetration at both day 20 and 60, and reduced the elevated corticosterone levels at day 20. Conclusions The results indicate that altered enteric flora are responsible for colonic pathophysiology. Probiotics improve gut dysfunction induced by MS, at least in part by normalisation of HPA axis activity. PMID:17339238
Statistical modeling implicates neuroanatomical circuit mediating stress relief by ‘comfort’ food
Ulrich-Lai, Yvonne M.; Christiansen, Anne M.; Wang, Xia; Song, Seongho; Herman, James P.
2015-01-01
A history of eating highly-palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30% sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such ‘comfort’ foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala - medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological data sets. PMID:26246177
Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food.
Ulrich-Lai, Yvonne M; Christiansen, Anne M; Wang, Xia; Song, Seongho; Herman, James P
2016-07-01
A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.
Iob, Eleonora; Kirschbaum, Clemens; Steptoe, Andrew
2018-06-12
While positive social support is associated with lower prevalence of disease and better treatment outcomes, negative social relationships can instead have unfavourable consequences for several physical and mental health conditions. However, the specific mechanisms by which this nexus might operate remain poorly understood. Hypothalamic-pituitary-adrenal (HPA) axis hyperactivity owing to psychosocial stress has been proposed as a potential pathway underlying the link between social support and health. Hair glucocorticoids such as cortisol and cortisone are emerging as promising biomarkers of long-term retrospective HPA activation. Therefore, the aim of this investigation was to examine the effects of positive and negative experiences of social support within key relationships (i.e. spouse/partner, children, other family members, and friends) on cortisol and cortisone. These associations were tested in a sample of 2520 older adults (mean age 68.1) from the English Longitudinal Study of Ageing. Hair samples were collected in wave 6 (2012/13). To understand the impact of cumulative exposure to poor social support, the analysis used self-reported data from waves 4 (2008/09) and 6. Covariates included demographic, socioeconomic, lifestyle, and hair characteristics. In cross sectional analyses, lower positive support from all sources and specifically from children were associated with higher cortisol. Additionally, lower positive support from children was positively associated with cortisone. Similarly, higher overall negative support was related to higher cortisol, and greater negative support from children was also positively associated with cortisone. In longitudinal analyses, there was evidence for positive associations between hair glucocorticoids and cumulative exposure to poorer social support. Experiences of low positive and high negative social support, particularly from children, were both related to higher hair glucocorticoids. Hence, social relationships of poorer quality in later life may have adverse effects on the HPA axis thereby increasing the individual's susceptibility to poor health. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071; Deng, Zixin
Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats.more » F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced reproductive and developmental toxicities in F1 have hereditary effect. • Caffeine-induced programming of HPA axis in F2 has gender and parental differences.« less
Stress, Seizures, and Hypothalamic-Pituitary-Adrenal Axis Targets for the Treatment of Epilepsy
Maguire, Jamie; Salpekar, Jay A.
2012-01-01
Epilepsy is a heterogeneous condition with multiple etiologies including genetics, infection, trauma, vascular, neoplasms, and toxic exposures. The overlap of psychiatric comorbidity adds to the challenge of optimal treatment for people with epilepsy. Seizure episodes themselves may have varying triggers; however, for decades, stress has been commonly and consistently suspected to be a trigger for seizure events. This paper explores the relationship between stress and seizures and reviews clinical data as well as animal studies that increasingly corroborate the impact of stress hormones on neuronal excitability and seizure susceptibility. The basis for enthusiasm for targeting glucocorticoid receptors for the treatment of epilepsy and the mixed results of such treatment efforts are reviewed. In addition, this paper will highlight recent findings identifying a regulatory pathway controlling the body’s physiologic response to stress which represents a novel therapeutic target for modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, the HPA axis may have important clinical implications for seizure control and imply use of anticonvulsants that influence this neuronal pathway. PMID:23200771
Sleep duration partially accounts for race differences in diurnal cortisol dynamics.
Peterson, Laurel M; Miller, Karissa G; Wong, Patricia M; Anderson, Barbara P; Kamarck, Thomas W; Matthews, Karen A; Kirschbaum, Clemens; Manuck, Stephen B
2017-05-01
Emerging research demonstrates race differences in diurnal cortisol slope, an indicator of hypothalamic-pituitary-adrenocortical (HPA)-axis functioning associated with morbidity and mortality, with African Americans showing flatter diurnal slopes than their White counterparts. Sleep characteristics are associated with both race and with HPA-axis functioning. The present report examines whether sleep duration may account for race differences in cortisol dynamics. Participants were 424 employed African American and White adults (mean age = 42.8 years, 84.2% White, 53.6% female) with no cardiovascular disease (Adult Health and Behavior Project-Phase 2 [AHAB-II] cohort, University of Pittsburgh). Cortisol slope was calculated using 4 salivary cortisol readings, averaged over each of 4 days. Demographic (age, sex), psychosocial (socioeconomic status [SES], affect, discrimination), and health behaviors (smoking, alcohol use, physical activity) variables were used as covariates, and sleep (self-report and accelerometry) was also assessed. African Americans had flatter slopes than Whites (F(1, 411) = 10.45, B = .02, p = .001) in models adjusting for demographic, psychosocial, and health behavior covariates. Shorter actigraphy-assessed total sleep time was a second significant predictor of flatter cortisol slopes (F(1, 411) = 25.27, B = -.0002, p < .0001). Total sleep time partially accounted for the relationship between race and diurnal slope [confidence interval = .05 (lower = .014, upper .04)]. African Americans have flatter diurnal cortisol slopes than their White counterparts, an effect that may be partially attributable to race differences in nightly sleep duration. Sleep parameters should be considered in further research on race and cortisol. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The Associations Between Oxytocin and Trauma in Humans: A Systematic Review
Donadon, Mariana Fortunata; Martin-Santos, Rocio; Osório, Flávia de Lima
2018-01-01
Studies have shown that traumatic experiences may affect hormonal systems mediated by the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic system. This effect is the result of long-term impairments in hypothalamic structures and negative feedback mechanisms within the HPA axis, structures that mediate the response to stress. This deregulation reduces the production and release of cortisol and oxytocin (OXT), which may alter stress responses and lead to increased vulnerability to impairments from stressful experiences. The presence of gene polymorphisms might also have an impact on the vulnerability to psychopathology. We made a systematic review of articles dealing with the relationship between OXT and traumatic emotional experiences in humans. Thirty-five studies were reviewed and significant associations between experiences of emotional trauma (ET) and OXT were found. The main results showed that the presence of ET and post-traumatic stress disorder (PTSD) is strongly associated with reductions in endogenous OXT, and also that the acute effects of OXT administrations in individuals with ET tend to be anxiolytic only in less severe forms. In victims of recent traumatic experiences (RTE), OXT increased the re-experience of traumas and restored the function of different neural networks associated with fear control/extinction in PTSD patients. The results available also suggest that gene receptor polymorphisms may have a protective function in different outcomes after the experience of traumatic events. We conclude that the relationship between ET and OXT is multifaceted, complex, and mediated by contextual and individual factors. Directions for future studies are suggested considering the gaps in the available literature. PMID:29545749
Smy, Laura; Shaw, Kaitlyn; Amstutz, Ursula; Smith, Anne; Berger, Howard; Carleton, Bruce; Koren, Gideon
2016-07-20
Cortisol is a hormone involved in many physiological functions including fetal maturation and epigenetic programming during pregnancy. This study aimed to use hair cortisol as a biomarker of chronic inhaled corticosteroid (ICS) exposure and assess the potential effects of asthma on the hypothalamic-pituitary-adrenal (HPA) axis in pregnant women. We hypothesized that pregnant women with asthma treated with ICS would exhibit lower hair cortisol concentrations, indicative of adrenal suppression, compared to women with asthma not using ICS and women who do not have asthma. We performed an observational retrospective cohort study. Hair samples were analyzed from pregnant women with asthma, with (n = 56) and without (n = 31) ICS treatment, and pregnant women without asthma (n = 31). Hair samples were segmented based on the growth rate of 1 cm/month and analyzed by enzyme immunoassay to provide cortisol concentrations corresponding to preconception, trimesters 1-3, and postpartum. Hair cortisol concentrations were compared within and among the groups using non-parametric statistical tests. Hair cortisol concentrations increased across trimesters for all three groups, but this increase was dampened in women with asthma (P = 0.03 for Controls vs. ICS Treated and Controls vs. No ICS). ICS Treated women taking more than five doses per week had hair cortisol concentrations 47 % lower in third trimester than Controls. Linear regression of the third trimester hair cortisol results identified asthma as a significant factor when comparing consistent ICS use or asthma as the predictor (F(1, 25) = 9.7, P = 0.005, R(2) adj = 0.257). Hair cortisol successfully showed the expected change in cortisol over the course of pregnancy and may be a useful biomarker of HPA axis function in pregnant women with asthma. The potential impact of decreased maternal cortisol in women with asthma on perinatal outcomes remains to be determined.
Fischer, Susanne; Strawbridge, Rebecca; Vives, Andres Herane; Cleare, Anthony J
2017-02-01
Many patients with depressive disorders demonstrate resistance to psychological therapy. A frequent finding is hypothalamic-pituitary-adrenal (HPA) axis alterations. As cortisol is known to modulate cognitive processes, those patients may be less likely to profit from psychological therapy. To conduct a systematic review and meta-analysis on cortisol as a predictor of psychological therapy response. The Cochrane Library, EMBASE, MEDLINE and PsycINFO databases were searched. Records were included if they looked at patients with any depressive disorder engaging in psychological therapy, with a pre-treatment cortisol and a post-treatment symptom measure. Eight articles satisfied our selection criteria. The higher the cortisol levels before starting psychological therapy, the more symptoms patients with depression experienced at the end of treatment and/or the smaller their symptom change. Our findings suggest that patients with depression with elevated HPA functioning are less responsive to psychological therapy. © The Royal College of Psychiatrists 2017.
The Impact of PTSD Treatment on the Cortisol Awakening Response
Pacella, Maria L.; Feeny, Norah; Zoellner, Lori; Delahanty, Douglas L.
2015-01-01
Background Posttraumatic stress disorder (PTSD) is associated with abnormal functioning of the hypothalamic-pituitary-adrenal (HPA) axis; however, limited research has examined whether cortisol levels change following successful PTSD treatment. The current study examined the impact of successful PTSD treatment on the cortisol awakening response (CAR). Method Twenty-nine adults participating in a treatment trial for chronic PTSD provided saliva samples (upon waking, and 30, 45, and 60-min post-waking) before and after receiving either prolonged exposure therapy or sertraline. PTSD responder status (i.e., loss or retention of a PTSD diagnosis) served as the predictor variable. Outcome measures included area under the curve with respect to ground and increase, reflecting total cortisol output and HPA axis reactivity, respectively. Results A series of hierarchical regressions revealed no significant main effects of PTSD responder status for either CAR outcome. However, a significant gender by treatment response interaction for cortisol reactivity revealed that female treatment non-responders displayed higher cortisol reactivity following treatment than female responders, whereas cortisol reactivity did not change pre- to post-treatment for male responders. Findings remained after controlling for age, trauma history, baseline medication status, baseline PTSD, and baseline depressive symptoms. Conclusion Loss of a PTSD diagnosis may contribute to decreased cortisol reactivity in females. Neuroendocrine changes following treatment may emerge only for specific subgroups, highlighting the importance of exploring treatment moderators. PMID:25327949
Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans.
Jiang, Xinyin; Yan, Jian; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Caudill, Marie A
2012-08-01
The in utero availability of methyl donors, such as choline, may modify fetal epigenetic marks and lead to sustainable functional alterations throughout the life course. The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production and is sensitive to perinatal epigenetic programming. As an extension of a 12-wk dose-response choline feeding study conducted in third-trimester pregnant women, we investigated the effect of maternal choline intake (930 vs. 480 mg/d) on the epigenetic state of cortisol-regulating genes, and their expression, in placenta and cord venous blood. The higher maternal choline intake yielded higher placental promoter methylation of the cortisol-regulating genes, corticotropin releasing hormone (CRH; P=0.05) and glucocorticoid receptor (NR3C1; P=0.002); lower placental CRH transcript abundance (P=0.04); lower cord blood leukocyte promoter methylation of CRH (P=0.05) and NR3C1 (P=0.04); and 33% lower (P=0.07) cord plasma cortisol. In addition, placental global DNA methylation and dimethylated histone H3 at lysine 9 (H3K9me2) were higher (P=0.02) in the 930 mg choline/d group, as was the expression of select placental methyltransferases. These data collectively suggest that maternal choline intake in humans modulates the epigenetic state of genes that regulate fetal HPA axis reactivity as well as the epigenomic status of fetal derived tissues.
Marakaki, Chrisanthi; Pervanidou, Panagiota; Papassotiriou, Ioannis; Mastorakos, George; Hochberg, Ze'ev; Chrousos, George; Papadimitriou, Anastasios
2018-06-19
Concerns over anxiety and depressive symptoms in children with premature adrenarche (PA) have been recently raised. However, to date, most relevant studies are on a small number of girls. In this cross-sectional study, 82 pre-pubertal children (66 girls and 16 boys) diagnosed with PA, were compared to 63 control children regarding their psychological characteristics and hypothalamic-pituitary-adrenal (HPA) axis function, as assessed by salivary cortisol measurement. Symptoms of anxiety and depression were assessed by child self-report (Spence Children's Anxiety Scale (SCAS) and Depression self-rating scale for Children (DSRS)) and parent-report (Child Behaviour Checklist (CBCL)) tests validated for the Greek population. Salivary cortisol levels were determined directly after awakening (approximately 7am) and evening (8pm) of the same day. Morning serum DHEAS levels were assessed in PA children. Girls with PA scored significantly higher on anxiety (p = .016) and depression (p =.039) scales than controls. No group differences were noted for parent reports and children's salivary cortisol concentrations. Boys with PA did not demonstrate significant differences in any of the aforementioned parameters. Our findings suggest that girls with PA may be at higher risk for reporting symptoms of anxiety and depression than their non-PA peers. HPA axis dysregulation in this population was not documented.
Assessing the Effects of Music Listening on Psychobiological Stress in Daily Life.
Linnemann, Alexandra; Strahler, Jana; Nater, Urs M
2017-02-02
Music listening is associated with stress-reducing effects. However, most of the results on music listening and stress were gathered in experimental settings. As music listening is a popular activity of daily life, it is of utmost importance to study the effects of music listening on psychobiological stress in an everyday, daily-life setting. Here, a study protocol is presented that allows the assessment of associations between music listening and psychobiological stress in daily life by noninvasively measuring salivary cortisol (as a marker of the Hypothalamic-Pituitary-Adrenal (HPA) axis) and salivary alpha-amylase (as a marker of the Autonomic Nervous System (ANS)). The protocol includes advice on the study design (e.g., sampling protocol), the materials and methods (e.g., the assessment of psychobiological stress in daily life, the assessment of music listening, and the manual), the selection of participants (e.g., the approval of the institutional review board and inclusion criteria), and the statistical analyses (e.g., the multilevel approach). The representative results provide evidence for a stress-reducing effect of music listening in daily life. Particularly, specific reasons for listening to music (especially relaxation), as well as the presence of others while doing so, increase this stress-reducing effect. At the same time, music listening in daily life differentially affects the HPA axis and ANS functioning, thus emphasizing the need for a multi-dimensional assessment of stress in daily life.
Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén
2016-01-01
Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010
Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior.
Jin, Zeng-Liang; Liu, Jin-Xu; Liu, Xu; Zhang, Li-Ming; Ran, Yu-Hua; Zheng, Yuan-Yuan; Tang, Yu; Li, Yun-Feng; Xiong, Jie
2016-09-01
In the present study, we investigated the effectiveness of GLYX-13, an NMDA receptor glycine site functional partial agonist, to alleviate the enhanced anxiety and fear response in both a mouse and rat model of stress-induced behavioral changes that might be relevant to posttraumatic stress disorder (PTSD). Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in stress-related disease. Herein, we used these animal models to further investigate the effect of GLYX-13 on the stress hormone levels and glucocorticoid receptor (GR) expression. We found that exposure to foot shock induced long-lasting behavioral deficiencies in mice, including freezing and anxiety-like behaviors, that were significantly ameliorated by the long-term administration of GLYX-13 (5 or 10 mg/kg). Our enzyme-linked immunosorbent assay results showed that long-term administration of GLYX-13 at behaviorally effective doses (5 or 10 mg/kg) significantly decreased the elevated serum levels of both corticosterone and its upstream stress hormone adrenocorticotropic hormone in rats subjected to the TDS procedure. These results suggest that GLYX-13 exerts a therapeutic effect on PTSD-like stress responding that is accompanied by (or associated with) modulation of the HPA axis, including inhibition of stress hormone levels and upregulation of hippocampal GR expression. © The Author(s) 2016.
Mice selected for high versus low stress reactivity: a new animal model for affective disorders.
Touma, Chadi; Bunck, Mirjam; Glasl, Lisa; Nussbaumer, Markus; Palme, Rupert; Stein, Hendrik; Wolferstätter, Michael; Zeh, Ramona; Zimbelmann, Marina; Holsboer, Florian; Landgraf, Rainer
2008-07-01
Affective disorders such as major depression are among the most prevalent and costly diseases of the central nervous system, but the underlying mechanisms are still poorly understood. In recent years, it has become evident that alterations of the stress hormone system, in particular dysfunctions (hyper- or hypo-activity) of the hypothalamic-pituitary-adrenal (HPA) axis, play a prominent role in the development of major depressive disorders. Therefore, we aimed to generate a new animal model comprising these neuroendocrine core symptoms in order to unravel parameters underlying increased or decreased stress reactivity. Starting from a population of outbred mice (parental generation: 100 males and 100 females of the CD-1 strain), two breeding lines were established according to the outcome of a 'stress reactivity test' (SRT), consisting of a 15-min restraint period and tail blood samplings immediately before and after exposure to the stressor. Mice showing a very high or a very low secretion of corticosterone in the SRT, i.e. animals expressing a hyper- or a hypo-reactivity of the HPA axis, were selected for the 'high reactivity' (HR) and the 'low reactivity' (LR) breeding line, respectively. Additionally, a third breeding line was established consisting of animals with an 'intermediate reactivity' (IR) in the SRT. Already in the first generation, i.e. animals derived from breeding pairs selected from the parental generation, significant differences in the reactivity of the HPA axis between HR, IR, and LR mice were observed. Moreover, these differences were found across all subsequent generations and could be increased by selective breeding, which indicates a genetic basis of the respective phenotype. Repeated testing of individuals in the SRT furthermore proved that the observed differences in stress responsiveness are present already early in life and can be regarded as a robust genetic predisposition. Tests investigating the animal's emotionality including anxiety-related behavior, exploratory drive, locomotor activity, and depression-like behavior point to phenotypic similarities with behavioral changes observed in depressive patients. In general, HR males and females were 'hyperactive' in some behavioral paradigms, resembling symptoms of restlessness and agitation often seen in melancholic depression. LR mice, on the other hand, showed more passive-aggressive coping styles, corresponding to signs of retardation and retreat observed in atypical depression. Several morphometric and neuroendocrine findings further support this view. For example, monitoring the circadian rhythm of glucocorticoid secretion revealed clearly increased trough levels in HR mice, resulting in a flattened diurnal rhythm, again adding to the neuroendocrine similarities to patients suffering from melancholic depression. Taken together, our results suggest that distinct mechanisms influencing the function and regulation of the HPA axis are involved in the respective behavioral and neurobiological endophenotypes. Thus, the generated HR/IR/LR mouse lines can be a valuable model to elucidate molecular genetic, neuroendocrine, and behavioral parameters associated with altered stress reactivity, thereby improving our understanding of affective disorders, presumably including the symptomatology and pathophysiology of specific subtypes of major depression.
Tyrka, Audrey R.; Ridout, Kathryn K.; Parade, Stephanie H.
2017-01-01
Early childhood experiences have lasting effects on development, including the risk for psychiatric disorders. Research examining the biologic underpinnings of these associations has revealed the impact of childhood maltreatment on the physiologic stress response and activity of the hypothalamic pituitary adrenal (HPA) axis. A growing body of literature supports the hypothesis that environmental exposures mediate their biological effects via epigenetic mechanisms. Methylation, which is thought to be the most stable form of epigenetic change, is a likely mechanism by which early life exposures has lasting effects. In this review, we present recent evidence related to epigenetic regulation of genes involved in HPA axis regulation, namely the glucocorticoid receptor gene (NR3C1) and FK506 binding protein 51 (FKBP5), after childhood adversity and associations with risk for psychiatric disorders. Implications for the development of interventions and future research are discussed. PMID:27691985
Huang, Li-Tung
2014-01-01
Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961
Graham, Christine E.; Vetter, Douglas E.
2011-01-01
Cells of the inner ear face constant metabolic and structural stress. Exposure to intense sound or certain drugs destroys cochlea hair cells, which in mammals do not regenerate. Thus, an endogenous stress response system may exist within the cochlea to protect it from everyday stressors. We recently described the existence of Corticotropin-Releasing Factor (CRF) in the mouse cochlea. The CRFR1 receptor is considered the primary and canonical target of CRF signaling, and systemically it plays an essential role in coordinating the body-wide stress response via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Here we describe an essential role for CRFR1 in auditory system development and function, and offer the first description of a complete HPA equivalent signaling system resident within the cochlea. To reveal the role of CRFR1 activation in the cochlea, we have used mice carrying a null ablation of the CRFR1 gene. CRFR1−/− mice exhibited elevated auditory thresholds at all frequencies tested, indicating reduced sensitivity. Furthermore, our results suggest that CRFR1 has a developmental role affecting inner hair cell morphology and afferent and efferent synapse distribution. Given the role of HPA signaling in maintaining local homeostasis in other tissues, the presence of a cochlear HPA signaling system suggests important roles for CRFR1 activity in setting cochlear sensitivity, perhaps both neural and non-neural mechanisms. These data highlight the complex pleiotropic mechanisms modulated by CRFR1 signaling in the cochlea. PMID:21273411
McMillen, I Caroline; MacLaughlin, Severence M; Muhlhausler, Beverly S; Gentili, Sheridan; Duffield, Jaime L; Morrison, Janna L
2008-02-01
The 'developmental origins of adult health and disease' hypothesis stated that environmental factors, particularly maternal undernutrition, act in early life to programme the risks for adverse health outcomes, such as cardiovascular disease, obesity and the metabolic syndrome in adult life. Early physiological tradeoffs, including activation of the foetal hypothalamo-pituitary-adrenal (HPA) axis, confer an early fitness advantage such as foetal survival, while incurring delayed health costs. We review the evidence that such tradeoffs are anticipated from conception and that the periconceptional nutritional environment can programme the developmental trajectory of the stress axis and the systems that maintain and regulate arterial blood pressure. There is also evidence that restriction of placental growth and function, results in an increased dependence of the maintenance of arterial blood pressure on the sequential recruitment of the sympathetic nervous system and HPA axis. While the 'early origins of adult disease' hypothesis has focussed on the impact of maternal undernutrition, an increase in maternal nutritional intake and in maternal body mass intake has become more prevalent in developed countries. Exposure to overnutrition in foetal life results in a series of central and peripheral neuroendocrine responses that in turn programme development of the fat cell and of the central appetite regulatory system. While the physiological responses to foetal undernutrition result in the physiological trade off between foetal survival and poor health outcomes that emerge after reproductive senescence, exposure to early overnutrition results in poor health outcomes that emerge in childhood and adolescence. Thus, the effects of early overnutrition can directly impact on reproductive fitness and on the health of the next generation. In this context, the physiological responses to relative overnutrition in early life may directly contribute to an intergenerational cycle of obesity.
Coleman, Georgia; Gigg, John; Canal, Maria Mercè
2016-11-01
The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis
Burke, Andrew R.; Miczek, Klaus A.
2014-01-01
Rationale Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. Objectives Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic pituitary adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. Results and Conclusions Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse. PMID:24370534
Physical activity moderates stressor-induced rumination on cortisol reactivity
Puterman, Eli; O’Donovan, Aoife; Adler, Nancy E.; Tomiyama, A. Janet; Kemeny, Margaret; Wolkowitz, Owen M.; Epel, Elissa
2011-01-01
Objective Physically active individuals have lower rates of morbidity and mortality, and recent evidence indicates that physical activity may be particularly beneficial to those experiencing chronic stress. The tendency to ruminate increases and prolongs physiological stress responses, including hypothalamic-pituitary adrenal (HPA) axis responses as indexed by cortisol reactivity to stressful experiences. We examined the association between ruminating in response to a laboratory stressor task and HPA axis reactivity and recovery, and whether a physically active lifestyle moderates the associations between rumination and cortisol output trajectories. Methods Forty-six post-menopausal women underwent the Trier Social Stress Test while salivary cortisol was repeatedly measured. Twenty-five minutes after the end of the stressor, participants reported level of rumination in response to the stress. Results Findings indicate that physical activity moderated the initial rate (B = −.10, SE = .04, p < .05) and curvature (B = −.03, SE = .01, p = .06) of the relationship between rumination and log-transformed cortisol trajectory. Among sedentary participants, those who responded to the stressor with higher levels of rumination had a more rapid initial increase in cortisol (0.26 vs 0.21, p < .001), a later peak (56 vs. 39 minutes), and a delayed recovery (curvature −0.07 vs. −0.08, p < .001) compared to those with lower levels of rumination. In active participants, cortisol trajectories were equivalent, regardless of level of rumination. Conclusions In sum, individuals who maintain a physically active lifestyle may be protected against the effects of rumination on HPA axis reactivity to and recovery from acute stress. PMID:21873586
Bustamante, Angela C; Aiello, Allison E; Guffanti, Guia; Galea, Sandro; Wildman, Derek E; Uddin, Monica
2018-01-01
Exposure to childhood maltreatment increases the risk of developing mental illness later in life. Childhood maltreatment and depression have both been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis-a key regulator of the body's stress response. Additionally, HPA axis dysregulation has been implicated in the etiology of a range of mental illnesses. A substantial body of work has shown history of childhood maltreatment alters DNA methylation levels within key HPA axis genes. We therefore investigated whether one of these key genes, FKBP5 mediates the relationship between childhood maltreatment and depression, and assessed FKBP5 DNA methylation and gene expression within 112 adults from the Detroit Neighborhood Health Study (DNHS). DNA methylation was assessed in 4 regions, including the upstream promoter, downstream promoter, and two glucocorticoid response elements (GREs) via pyrosequencing using whole blood derived DNA; Taqman assays measured relative RNA expression from leukocytes. Mediation analyses were conducted using sequential linear regression. Childhood maltreatment was significantly associated with depression symptom severity (FDR < 0.006), but was not a significant predictor of DNA methylation in any of the four loci examined. FKBP5 showed elevated expression levels in participants with vs. without a history of depression (p < 0.001); no significant difference in gene expression levels was observed in relation to childhood maltreatment (p > 0.05). Our results suggest DNA methylation does not mediate the childhood maltreatment-depression association in the DNHS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Woods, Diana Lynn; Kim, Haesook; Yefimova, Maria
2013-04-01
Alterations in the sleep-wake cycle, including daytime napping, are consistently reported in persons with dementia (PWD). A dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis, indexed by elevated evening cortisol, may offer one explanation for these alterations. Alternatively, excessive daytime sleeping may alter cortisol rhythm and increase intraindividual variability, potentially contributing to increased environmental reactivity and behavioral symptoms. The purpose of this substudy (N = 12) was to examine the association between daytime napping and basal cortisol diurnal rhythm in nursing home residents with dementia. In this within-individual longitudinal design, saliva samples were obtained daily for 5 consecutive days upon waking and 30-45 min, 6 hr, and 12 hr after waking to obtain a cortisol diurnal rhythm. Behavior and sleep-wake state (nap/no nap) were observed and recorded every 20 min for 12 hr per day for 5 days. Participants were categorized as high nappers (HNs) or low nappers (LNs). There was a significant difference in evening cortisol levels (t = -2.38, p = .032) and continence (t = 3.37, p = .007) between groups, with HNs exhibiting higher evening cortisol levels. There were no other significant differences in resident characteristics between the two groups. These data suggest a link between excessive daytime napping and elevated evening cortisol in PWD consistent with findings in children. Elevated evening cortisol is an indication of a dysregulation in the HPA axis. These preliminary data support a close association between the sleep-wake cycle and HPA-axis regulation in PWD.
Jasnic, Nebojsa; Djordjevic, Jelena; Vujovic, Predrag; Lakic, Iva; Djurasevic, Sinisa; Cvijic, Gordana
2013-06-15
Thermal stressors such as low and high ambient temperature elicit an abundance of neuroendocrine responses including activation of the hypothalamo-pituitary-adrenal (HPA) axis and arginine vasopressin (AVP) release. The exposure to heat is a particularly interesting model for studying AVP action because this kind of stressor represents not only an unpleasant experience but also a threat to osmotic homeostasis. As AVP has long been recognized as a hormone involved in the modulation of HPA axis activity, the aim of this study was to elucidate the role of AVP in acutely heat-exposed rats using Nelivaptan, a selective vasopressin 1b receptor (V1bR) antagonist. Rats were exposed to high ambient temperature (38°C) for 60 min. The circulating hormones were determined by ELISA or chemiluminescence, and intrapituitary adrenocorticotropic hormone (ACTH) and V1bR level were determined by western blot. The results obtained show that V1bR blockade negatively affected the increase in blood ACTH caused by heat exposure. This treatment alone, or in combination with Nelivaptan, decreased intrapituitary V1bR levels while circulating AVP concentration was increased under the same conditions. Furthermore, a strong correlation was observed between blood ACTH and corticosterone concentration. In conclusion, our results directly confirm the positive role of AVP in the regulation of ACTH secretion from the pituitary in animals exposed to heat. Moreover, the results suggest that AVP from the general circulation influences pituitary V1bR.
Boero, Giorgia; Pisu, Maria Giuseppina; Biggio, Francesca; Muredda, Laura; Carta, Gianfranca; Banni, Sebastiano; Paci, Elena; Follesa, Paolo; Concas, Alessandra; Porcu, Patrizia; Serra, Mariangela
2018-05-01
We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Himeno, Akihiro; Satoh-Asahara, Noriko; Usui, Takeshi; Wada, Hiromichi; Tochiya, Mayu; Kono, Shigeo; Yamada-Goto, Nobuko; Katsuura, Goro; Hasegawa, Koji; Nakao, Kazuwa; Shimatsu, Akira
2012-02-01
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis can increase the risk of cardiovascular disease (CVD). However, the detailed relationships of HPA axis activity with weight reduction and CVD risk factors in obese patients have not been examined. This study was designed to elucidate the associations of salivary cortisol levels with weight reduction and CVD risk factors in obese patients. As a marker of HPA axis activity, we measured the morning salivary cortisol levels of 83 obese Japanese outpatients. We also examined metabolic parameters, inflammatory markers, and indicators of arterial stiffness, that is, the pulse wave velocity and cardio-ankle vascular index. All 83 obese patients underwent 3-month weight reduction therapy with lifestyle modification. At the baseline, multivariate regression analysis revealed that only logarithmic transformation of C-reactive protein (β = 0.258, P < .05) and cardio-ankle vascular index (β = 0.233, P < .05) were independent determinants of the salivary cortisol levels. However, other metabolic parameters were not significantly associated with the salivary cortisol levels. In addition, lower salivary cortisol levels and higher body weight at the baseline were the only independent determinants of successful weight loss through the weight reduction therapy (P < .01). The present study demonstrates that the baseline morning salivary cortisol levels are significantly associated with the levels of an inflammatory marker, arterial stiffness, and successful weight reduction in obese patients. Therefore, salivary cortisol could be a useful marker for assessing and managing body weight and CVD risk factors in obese patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Steiner, Michel A; Marsicano, Giovanni; Nestler, Eric J; Holsboer, Florian; Lutz, Beat; Wotjak, Carsten T
2008-01-01
Summary Hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity is associated with major depressive disorders, and treatment with classical antidepressants ameliorates not only psychopathological symptoms, but also the dysregulation of the HPA axis. Here, we further elucidated the role of impaired cannabinoid type 1 (CB1) receptor signaling for neuroendocrine and behavioral stress coping in the mouse forced swim test (FST). We demonstrate that the genetic inactivation of CB1 is accompanied by increased plasma corticosterone levels both under basal conditions and at different time points following exposure to the FST. The latter effect could be mimicked in C57BL/6N mice by acute, subchronic and chronic administration of the selective CB1 antagonist SR141716. Further experiments confirmed the specificity of corticosterone-elevating SR141716 actions for CB1 in CB1-deficient mice. Subchronic and chronic pharmacological blockade of CB1, but not its genetic deletion, induced antidepressant-like behavioral responses in the FST that were characterized by decreased floating and/or increased struggling behavior. The antidepressant-like behavioral effects of acute desipramine treatment in the FST were absent in CB1-deficient mice, but the dampening effects of desipramine on FST stress-induced corticosterone secretion were not compromised by CB1-deficiency. However, antidepressant-like behavioral desipramine effects were intact in C57BL/6N mice pre-treated with SR141716, indicating potential developmental deficits in CB1-deficient mice. We conclude that pharmacological blockade of CB1 signaling shares antidepressant-like behavioral effects with desipramine, but reveals opposite effects on HPA axis activity. PMID:17976922
Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K
2017-01-01
Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906
de Oliveira, Amanda R; Reimer, Adriano E; Reis, Fernando M C V; Brandão, Marcus L
2017-02-01
Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D 2 -like agonist quinpirole (VTA) and D 2 -like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.
Cushing's syndrome: from physiological principles to diagnosis and clinical care.
Raff, Hershel; Carroll, Ty
2015-02-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic-pituitary-adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism--Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Fujii, Yasuyuki; Suzuki, Kenta; Hasegawa, Yahiro; Nanba, Fumio; Toda, Toshiya; Adachi, Takahiro; Taira, Shu; Osakabe, Naomi
2018-06-11
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes. Copyright © 2018 Elsevier B.V. All rights reserved.