Science.gov

Sample records for hr mas nmr

  1. Citron and lemon under the lens of HR-MAS NMR spectroscopy.

    PubMed

    Mucci, Adele; Parenti, Francesca; Righi, Valeria; Schenetti, Luisa

    2013-12-01

    High Resolution Magic Angle Spinning (HR-MAS) is an NMR technique that can be applied to semi-solid samples. Flavedo, albedo, pulp, seeds, and oil gland content of lemon and citron were studied through HR-MAS NMR spectroscopy, which was used directly on intact tissue specimens without any physicochemical manipulation. HR-MAS NMR proved to be a very suitable technique for detecting terpenes, sugars, organic acids, aminoacids and osmolites. It is valuable in observing changes in sugars, principal organic acids (mainly citric and malic) and ethanol contents of pulp specimens and this strongly point to its use to follow fruit ripening, or commercial assessment of fruit maturity. HR-MAS NMR was also used to derive the molar percentage of fatty acid components of lipids in seeds, which can change depending on the Citrus species and varieties. Finally, this technique was employed to elucidate the metabolic profile of mold flavedo. PMID:23871074

  2. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-01-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance. PMID:24104201

  3. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy.

    PubMed

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-10-09

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance.

  4. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  5. HR-MAS NMR Tissue Metabolomic Signatures Cross-Validated by Mass Spectrometry Distinguish Bladder Cancer from Benign Disease

    PubMed Central

    Tripathi, Pratima; Somashekar, Bagganahalli S; Ponnusamy, M.; Gursky, Amy; Dailey, Stephen; Kunju, Priya; Lee, Cheryl T.; Chinnaiyan, Arul M.; Rajendiran, Thekkelnaycke M.; Ramamoorthy, Ayyalusamy

    2013-01-01

    Effective diagnosis and surveillance of Bladder Cancer (BCa) is currently challenged by detection methods that are of poor sensitivity, particularly for low-grade tumors, resulting in unnecessary invasive procedures and economic burden. We performed HR-MAS NMR-based global metabolomic profiling and applied unsupervised principal component analysis (PCA) and hierarchical clustering performed on NMR dataset of bladder derived tissues and identified metabolic signatures that differentiate BCa from benign disease. A partial least-square discriminant analysis (PLS-DA) model (leave-one-out cross-validation) was used as diagnostic model to distinguish benign and BCa tissues. Receiver operating characteristic curve generated either from PC1 loadings of PCA or from predicted Y-values resulted in an area under curve of 0.97. Relative quantification of more than fifteen tissue metabolites derived from HR-MAS NMR showed significant differences (P < 0.001) between benign and BCa samples. Noticeably, striking metabolic signatures were observed even for early stage BCa tissues (Ta-T1) demonstrating the sensitivity in detecting BCa. With the goal of cross-validating metabolic signatures derived from HR-MAS NMR, we utilized the same tissue samples to analyze eight metabolites through gas chromatography-mass spectrometry (GC-MS)-targeted analysis, which undoubtedly complements HR-MAS NMR derived metabolomic information. Cross-validation through GC-MS clearly demonstrates the utility of straightforward, non-destructive and rapid HR-MAS NMR technique for clinical diagnosis of BCa with even greater sensitivity. In addition to its utility as a diagnostic tool, these studies will lead to a better understanding of aberrant metabolic pathways in cancer as well as the design and implementation of personalized cancer therapy through metabolic modulation. PMID:23731241

  6. Rapid identification of osmolytes in tropical microalgae and cyanobacteria by (1)H HR-MAS NMR spectroscopy.

    PubMed

    Zea Obando, Claudia; Linossier, Isabelle; Kervarec, Nelly; Zubia, Mayalen; Turquet, Jean; Faÿ, Fabienne; Rehel, Karine

    2016-06-01

    In this study, we report the chemical characterization of 47 tropical microalgae and cyanobacteria by HR-MAS. The generated data confirm the interest of HR-MAS as a rapid screening technique with the major advantage of its easiness. The sample is used as powder of freeze-dried microalgae without any extraction process before acquisition. The spectral fingerprints of strains are then tested as variables for a chemotaxonomy study to discriminate cyanobacteria and dinoflagellates. The individual factor map generated by PCA analysis succeeds in separating the two groups, essentially thanks to the presence of specific carbohydrates. Furthermore, more resolved signals enable to identify many osmolytes. More precisely the characteristics δ of 2-O-alpha-D-glucosylglycerol (GG) are observed in all 21 h-MAS spectra of tropical cyanobacteria. After specific extraction, complementary analysis by 1D and 2D-NMR spectroscopies validates the identification of this osmolyte. PMID:27130130

  7. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  8. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    PubMed

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-01-01

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery. PMID:27585291

  9. (1)H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet.

    PubMed

    Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Ferrantelli, Vincenzo; Dugo, Giacomo; Cicero, Nicola

    2015-01-01

    NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  10. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Ferrantelli, Vincenzo; Dugo, Giacomo; Cicero, Nicola

    2015-01-01

    NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication. PMID:26495154

  11. The Effect of Antitumor Glycosides on Glioma Cells and Tissues as Studied by Proton HR-MAS NMR Spectroscopy

    PubMed Central

    García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón

    2013-01-01

    The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925

  12. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    PubMed

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  13. HR-MAS NMR spectroscopy of reconstructed human epidermis: potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids.

    PubMed

    Elbayed, Karim; Berl, Valérie; Debeuckelaere, Camille; Moussallieh, François-Marie; Piotto, Martial; Namer, Izzie-Jacques; Lepoittevin, Jean-Pierre

    2013-01-18

    High-resolution magic angle spinning (HR-MAS) is a nuclear magnetic resonance (NMR) technique that enables the characterization of metabolic phenotypes/metabolite profiles of cells, tissues, and organs, under both normal and pathological conditions, without resorting to time-consuming extraction techniques. In this article, we explore a new domain of application of HR-MAS, namely, reconstructed human epidermis (RHE) and the in situ observation of chemical interactions between skin sensitizers and nucleophilic amino acids. First, the preparation, storage, and analysis of RHE were optimized, and this work demonstrated that HR-MAS NMR was well adapted for investigating RHE with spectra of good quality allowing qualitative as well as quantitative studies of metabolites. Second, in order to study the response of RHE to chemical sensitizers, the ((13)C)methyldodecanesulfonate was chosen as an NMR probe, and we compared adducts formed on human serum albumin (HSA) in solution and adducts formed in RHE. Thus, while the modification of proteins or peptides in solution takes several days to lead to a significant amount of modification, in RHE the modifications of nucleophilic amino acids were observable already at 24 h. The chemioselectivity also appeared to be different with major modifications taking place on histidine, methionine, and cysteine residues in RHE, while on HSA, significant modifications were observed on lysine residues with the formation of methylated and dimethylated amino groups. We thus demonstrated that RHE could be used to investigate in situ chemical interactions taking place between skin sensitizers and nucleophilic amino acids. This opens perspectives for the molecular understanding of the skin immune system activation by sensitizing chemicals.

  14. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    PubMed

    Diserens, G; Vermathen, M; Precht, C; Broskey, N T; Boesch, C; Amati, F; Dufour, J-F; Vermathen, P

    2015-01-01

    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

  15. 1H HR-MAS NMR Based Metabolic Profiling of Cells in Response to Treatment with a Hexacationic Ruthenium Metallaprism as Potential Anticancer Drug

    PubMed Central

    Vermathen, Martina; Paul, Lydia E. H.; Diserens, Gaëlle

    2015-01-01

    1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof. PMID:26024484

  16. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  17. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGES

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  18. Sealed rotors for in situ high temperature high pressure MAS NMR

    SciTech Connect

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  19. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  20. High-temperature MAS-NMR at high spinning speeds.

    PubMed

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  1. Multinuclear MAS NMR investigation of zeolites reacted with chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hannus, I.; Kónya, Z.; Lentz, P.; Nagy, J. B.; Kiricsi, I.

    1999-05-01

    Multinuclear ( 23Na, 27Al, 29Si, 13C) MAS NMR techniques were used for investigation of surface reaction of Y-type zeolites with CFCs (CCl 4, CCl 3F, CCl 2F 2, CClF 3, CF 4) and HCFC (CHClF 2). The hydrogen containing derivative reacts slowly. Those possessing more than 2 F atoms can be regarded as stable unreactive materials. CCl 4, CCl 3F, CCl 2F 2 react strongly with the zeolites. The reaction of HCFC with zeolites has a different mechanism to the other CFCs tested. On the basis of multinuclear NMR results a mechanism is given for the decomposition of HCFC.

  2. Spatially resolved solid-state MAS-NMR-spectroscopy.

    PubMed

    Scheler, U; Schauss, G; Blümich, B; Spiess, H W

    1996-07-01

    A comprehensive account of spatially resolved solid-state MAS NMR of 13C is given. A device generating field gradients rotating synchronously with the magic angle spinner is described. Spatial resolution and sensitivity are compared for phase and frequency encoding of spatial information. The suppression of spinning sidebands is demonstrated for both cases. Prior knowledge about the involved materials can be used for the reduction of data from spatially resolved spectra to map chemical structure. Indirect detection via 13C NMR gives access to the information about mobility from proton-wideline spectra. Two-dimensional solid-state spectroscopy with spatial resolution is demonstrated for a rotor synchronized MAS experiment which resolves molecular order as a function of space. By comparison of different experiments the factors affecting the spatial resolution are investigated.

  3. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues.

    PubMed

    Swanson, Mark G; Vigneron, Daniel B; Tabatabai, Z Laura; Males, Ryan G; Schmitt, Lars; Carroll, Peter R; James, Joyce K; Hurd, Ralph E; Kurhanewicz, John

    2003-11-01

    Proton high-resolution magic angle spinning ((1)H HR-MAS) NMR spectroscopy and quantitative histopathology were performed on the same 54 MRI/3D-MRSI-targeted postsurgical prostate tissue samples. Presurgical MRI/3D-MRSI targeted healthy and malignant prostate tissues with an accuracy of 81%. Even in the presence of substantial tissue heterogeneity, distinct (1)H HR-MAS spectral patterns were observed for different benign tissue types and prostate cancer. Specifically, healthy glandular tissue was discriminated from prostate cancer based on significantly higher levels of citrate (P = 0.04) and polyamines (P = 0.01), and lower (P = 0.02) levels of the choline-containing compounds choline, phosphocholine (PC), and glycerophosphocholine (GPC). Predominantly stromal tissue lacked both citrate and polyamines, but demonstrated significantly (P = 0.01) lower levels of choline compounds than cancer. In addition, taurine, myo-inositol, and scyllo-inositol were all higher in prostate cancer vs. healthy glandular and stromal tissues. Among cancer samples, larger increases in choline, and decreases in citrate and polyamines (P = 0.05) were observed with more aggressive cancers, and a MIB-1 labeling index correlated (r = 0.62, P = 0.01) with elevated choline. The elucidation of spectral patterns associated with mixtures of different prostate tissue types and cancer grades, and the inclusion of new metabolic markers for prostate cancer may significantly improve the clinical interpretation of in vivo prostate MRSI data.

  4. A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds.

    PubMed

    Guan, Xudong; Stark, Ruth E

    2010-01-01

    A protocol using (207)Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and FastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  5. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    PubMed Central

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  6. Multinuclear MAS NMR studies of sodalitic framework materials

    SciTech Connect

    Johnson, G.M.; Mead, P.J.; Dann, S.E.; Weller, M.T.

    2000-02-24

    A wide range of sodalite framework materials, M{sub 8}[TT{prime}O{sub 4}]{sub 6}X{sub 2} where T = Al, Ga, Si, T{prime} = Be, Al, Si, Ge, have been characterized using {sup 27}Al, {sup 29}Si, and {sup 71}Ga magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Structural parameters, such as functions of the framework T{single{underscore}bond}O{single{underscore}bond}T{prime} angle, correlate linearly with the determined chemical shift values and provide relationships, as a function of T{prime}, which will facilitate characterization of more complex zeolitic compounds containing such species. The effects of changing a particular neighboring framework cation on the resonance position is controlled by variations in both framework bond angles/distances and electrostatic effects; these contributions are resolved.

  7. Visibility of lipid resonances in HR-MAS spectra of brain biopsies subject to spinning rate variation.

    PubMed

    Precht, C; Diserens, G; Oevermann, A; Vermathen, M; Lang, J; Boesch, C; Vermathen, P

    2015-12-01

    Lipid resonances from mobile lipids can be observed by ¹H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. ¹H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89 ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

  8. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  9. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  10. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures.

    PubMed

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

  11. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures

    NASA Astrophysics Data System (ADS)

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0 < 9 T) and temperatures (T > 90 K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼100 K and ∼30 K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

  12. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures.

    PubMed

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented. PMID:26920836

  13. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  14. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    NASA Astrophysics Data System (ADS)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  15. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    NASA Astrophysics Data System (ADS)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    /Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.

  16. Identification of Metastasis-Associated Metabolic Profiles of Tumors by 1H-HR-MAS-MRS123

    PubMed Central

    Gorad, Saurabh S.; Ellingsen, Christine; Bathen, Tone F.; Mathiesen, Berit S.; Moestue, Siver A.; Rofstad, Einar K.

    2015-01-01

    Tumors develop an abnormal microenvironment during growth, and similar to the metastatic phenotype, the metabolic phenotype of cancer cells is tightly linked to characteristics of the tumor microenvironment (TME). In this study, we explored relationships between metabolic profile, metastatic propensity, and hypoxia in experimental tumors in an attempt to identify metastasis-associated metabolic profiles. Two human melanoma xenograft lines (A-07, R-18) showing different TMEs were used as cancer models. Metabolic profile was assessed by proton high resolution magic angle spinning magnetic resonance spectroscopy (1H-HR-MAS-MRS). Tumor hypoxia was detected in immunostained histological preparations by using pimonidazole as a hypoxia marker. Twenty-four samples from 10 A-07 tumors and 28 samples from 10 R-18 tumors were analyzed. Metastasis was associated with hypoxia in both A-07 and R-18 tumors, and 1H-HR-MAS-MRS discriminated between tissue samples with and tissue samples without hypoxic regions in both models, primarily because hypoxia was associated with high lactate resonance peaks in A-07 tumors and with low lactate resonance peaks in R-18 tumors. Similarly, metastatic and non-metastatic R-18 tumors showed significantly different metabolic profiles, but not metastatic and non-metastatic A-07 tumors, probably because some samples from the metastatic A-07 tumors were derived from tumor regions without hypoxic tissue. This study suggests that 1H-HR-MAS-MRS may be a valuable tool for evaluating the role of hypoxia and lactate in tumor metastasis as well as for identification of metastasis-associated metabolic profiles. PMID:26585232

  17. Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits.

    PubMed

    Bertermann, R; Kröger, N; Tacke, R

    2003-03-01

    Four different diatom species (Chaetoceros debilis, Chaetoceros didymum, Cylindrotheca fusiformis, Nitzschia angularis) were studied by solid-state (29)Si MAS NMR spectroscopy. To determine the Q(2):Q(3):Q(4) ratios in the biosilica deposits of the diatoms, quantitative (29)Si MAS NMR experiments were performed. This analysis did not reveal any differences regarding the molecular architecture of the silica (i.e. the degree of condensation of the SiOH units (2 identical with SiOH --> identical with Si-O-Si identical with + H(2)O)) from the different diatom species. However, complete cells showed significantly smaller Q(4):Q(3) ratios (1.8-1.9) than extracted cell walls (2.5-2.8), indicating the existence of intracellular pools of less condensed silica.

  18. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  19. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  20. Immobilization of soluble protein complexes in MAS solid-state NMR: Sedimentation versus viscosity.

    PubMed

    Sarkar, Riddhiman; Mainz, Andi; Busi, Baptiste; Barbet-Massin, Emeline; Kranz, Maximilian; Hofmann, Thomas; Reif, Bernd

    2016-01-01

    In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained. PMID:27017576

  1. Immobilization of soluble protein complexes in MAS solid-state NMR: Sedimentation versus viscosity.

    PubMed

    Sarkar, Riddhiman; Mainz, Andi; Busi, Baptiste; Barbet-Massin, Emeline; Kranz, Maximilian; Hofmann, Thomas; Reif, Bernd

    2016-01-01

    In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained.

  2. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  3. A 4-mm Probe for C-13 CP/MAS NMR of Solids at 21.15 T

    SciTech Connect

    Jakobsen, Hans J.; Daugaard, P; Hald, E; Rice, D; Kupce, Eriks; Ellis, Paul D. )

    2002-05-31

    With the recent announcement of a persistent 21.15 Tesla (i.e., 900 MHz for 1H NMR) narrow-bore (54 mm bore) superconducting magnet by Oxford Instruments and the associated Unity INOVA-900 console by Varian Inc. we were challenged with the task of designing a double-resonance broadband solid-state magic-angle spinning (MAS) NMR probe in particular for evaluating the 13C-{1H} cross-polarization (CP) MAS NMR experiment on this magnet and spectrometer system. In this communication we report the successful construction of an efficient X-1H/19F double resonance multinuclear MAS probe for this purpose along with our preliminary results on its performance at the 900 MHz spectrometer.

  4. Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.

    Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.

  5. 1H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study

    PubMed Central

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M.

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  6. (1)H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study.

    PubMed

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a (1)H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  7. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  8. Thermal maturity of type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR.

    PubMed

    Werner-Zwanziger, Ulrike; Lis, Grzegorz; Mastalerz, Maria; Schimmelmann, Arndt

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance.

  9. HR-MAS NMR metabolomics of 'Swingle' citrumelo rootstock genetically modified to overproduce proline.

    PubMed

    de Oliveira, Caroline S; Carlos, Eduardo F; Vieira, Luiz G E; Lião, Luciano M; Alcantara, Glaucia B

    2014-08-01

    The accumulation of proline is a typical physiological response to abiotic stresses in higher plants. 'Swingle' citrumelo, an important rootstock for citrus production, has been modified with a mutated Δ(1)-pyrroline-5-carboxylate synthetase gene (VaP5CSF129A) linked to the cauliflower mosaic virus 35S promoter to induce the overproduction of free proline. This paper presents a comparative metabolomic study of nontransgenic versus transgenic 'Swingle' citrumelo plants with high endogenous proline. (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and multivariate analysis showed significant differences in some metabolites between the nontransgenic and transgenic leaves and roots. The overproduction of proline has reduced the sucrose content in transgenic leaves, revealing a metabolic cost for these plants. In roots, the high level of free proline acts for the adjustment of cation-anion balance, causing the reduction of acetic acid content. The same sucrose level in roots indicates that they can be considered as sucrose sink. Similar behavior may be waited for fruits produced on transgenic rootstock.

  10. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed.

  11. Pulsed field gradient MAS-NMR studies of the mobility of carboplatin in cubic liquid-crystalline phases

    NASA Astrophysics Data System (ADS)

    Pampel, André; Michel, Dieter; Reszka, Regina

    2002-05-01

    A drug delivery system with cubic liquid-crystalline phase structure (cubic phase) containing the anti-cancer drug Carboplatin is studied. It is demonstrated that the combination of pulsed field gradient (PFG) NMR and MAS-NMR is a useful tool to study the biophysical properties of a cubic phase. The linewidth in 1H-NMR spectra is narrowed by MAS, which can be exploited to perform PFG diffusion NMR experiments under high-resolution conditions. Measurement of self-diffusion coefficients of all components of the cubic phase becomes possible. The influence of polyethylene glycol chains on the drug mobility is discussed. It is shown that polyethylene glycol chains interact with Carboplatin.

  12. Magnesium Silicate Dissolution Investigated by 29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg CP QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Wesolowski, David J.; Anovitz, Lawrence M.; Lipton, Andrew S.; Mueller, Karl T.

    2009-08-01

    Olivine has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of magnesium with respect to silica during weathering under acidic conditions, which has been correlated to the formation of a silicon rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. In particular, the fate of magnesium in the system is not understood and spectroscopic interrogations through nuclear magnetic resonance can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced spectroscopic techniques (29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg 2 CP QCPMG NMR) to probe leached layer formation and possible secondary phase precipitation during the dissolution of forsterite at 150 oC.

  13. Characterization of cation environments in polycrystalline forsterite by Mg-25 MAS, MQMAS, and QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Lipton, Andrew S.; Gan, Zhehong; Mueller, Karl T.

    2010-11-01

    Forsterite (Mg2SiO4) is a silicate mineral frequently studied in the Earth sciences as it has a simple crystal structure and fast dissolution kinetics (elemental release rates under typical conditions on the order of 10-7 mol/m2/s1). During the dissolution process, spectroscopic techniques are often utilized to augment solution chemical analysis and to provide data for determining reaction mechanisms. Nuclear magnetic resonance (NMR) is able to interrogate the local bonding arrangement and coordination of a particular nuclide to obtain in structural information. Although previous NMR studies have focused on the silicon and oxygen environments in forsterite, studies focusing on the two nonequivalent magnesium environments in forsterite are limited to a few single-crystal studies. In this study, we present the results of 25Mg MAS, MQMAS, and static QCMG experiments performed on a powdered sample of pure synthetic forsterite. We also present spectral fits obtained from simulation software packages, which directly provide quadrupolar parameters for 25Mg nuclei occupying each of the two nonequivalent magnesium sites in the forsterite structure. These results are compared to calculations of the electric field gradient tenor conducted in previous ab initio studies to make definitive assignments correlating each peak to their respective magnesium site in the forsterite structure. Although previous NMR investigations of forsterite have focused on single-crystal samples, we have focused on powdered forsterite as the increased surface area of powdered samples makes them more amenable to laboratory-scale dissolution studies and, ultimately, the products from chemical weathering may be monitored an quantified.

  14. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  15. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  16. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  17. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    PubMed

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations.

  18. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two.

  19. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  20. Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS

    PubMed Central

    Holland, Gregory P.; Cherry, Brian R.; Jenkins, Janelle E.; Yarger, Jeffery L.

    2009-01-01

    In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3 - 4 fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8 - 13 fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling. PMID:19857977

  1. X-ray and MAS NMR characterization of the thermal transformation of Li(Na)-Y zeolite to lithium aluminosilicates

    SciTech Connect

    Subramanian, M.A.; Corbin, D.R.; Farlee, R.D.

    1986-12-01

    The high temperature thermal transformation of Li-exchanged Na-Y zeolite has been investigated by X-ray diffraction and /sup 29/Si MAS NMR studies. At 700/sup 0/C, the zeolite was transformed into an amorphous phase and upon further heating to 800/sup 0/C, formation of lithium aluminosilicate with high-quartz structure, in addition to an amorphous phase, was noted. When heated above 900/sup 0/C, the high-quartz structure was transformed into a ..beta..-spodumene related solid solution. X-ray and MAS NMR studies indicate the ..beta..-spodumene solid solution formed has the composition close to (Li/sub 0.23/Na/sub 0.06/)A iota /sub 0.29/Si/sub 0.71/O/sub 2/, which is in agreement with chemical analysis.

  2. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  3. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A.; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional 13C-13C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-13C labelled samples, spin diffusion leads to propagation of signal enhancement to all 13C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  4. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments.

    PubMed

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional (13)C-(13)C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-(13)C labelled samples, spin diffusion leads to propagation of signal enhancement to all (13)C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  5. Characterizing crystal disorder of trospium chloride: a comprehensive,(13) C CP/MAS NMR, DSC, FTIR, and XRPD study.

    PubMed

    Urbanova, Martina; Sturcova, Adriana; Brus, Jiri; Benes, Hynek; Skorepova, Eliska; Kratochvil, Bohumil; Cejka, Jan; Sedenkova, Ivana; Kobera, Libor; Policianova, Olivia; Sturc, Antonin

    2013-04-01

    Analysis of C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray powder diffraction data of trospium chloride (TCl) products crystallized from different mixtures of water-ethanol [φ(EtOH) = 0.5-1.0] at various temperatures (0°C, 20°C) and initial concentrations (saturated solution, 30%-50% excess of solvent) revealed extensive structural variability of TCl. Although (13) C CP/MAS NMR spectra indicated broad variety of structural phases arising from molecular disorder, temperature-modulated DSC identified presence of two distinct components in the products. FTIR spectra revealed alterations in the hydrogen bonding network (ionic hydrogen bond formation), whereas the X-ray diffraction reflected unchanged unit cell parameters. These results were explained by a two-component character of TCl products in which a dominant polymorphic form is accompanied by partly separated nanocrystalline domains of a secondary phase that does not provide clear Bragg reflections. These phases slightly differ in the degree of molecular disorder, in the quality of crystal lattice and hydrogen bonding network. It is also demonstrated that, for the quality control of such complex products, (13) C CP/MAS NMR spectroscopy combined with factor analysis (FA) can satisfactorily be used for categorizing the individual samples: FA of (13) C CP/MAS NMR spectra found clear relationships between the extent of molecular disorder and crystallization conditions. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1235-1248, 2013.

  6. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  7. Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions

    SciTech Connect

    Hunger, M.; Horvath, T.

    1997-04-01

    The conversion of propan-2-ol on zeolites HY and LaNaY has been investigated by gas chromatography (GC) and in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy under continuous-flow conditions using a new MAS NMR microreactor with cylindrical catalyst bed. At reaction temperatures of T = 373 K and T = 393 K a propan-2-ol conversion of 50 and 100%, respectively, and the formation of propene, diisopropyl. ether, and small amounts of acetone was determined by GC. Applying in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy, the initial step of the reaction was found to be the physisorption of propan-2-ol on Bronsted acid sites. A formation of isopropoxy species could be excluded by {sup 13}C MAS NMR spectroscopy. {sup 1}H MAS NMR spectroscopy indicated that the Bronsted acid sites of the zeolites LaNaY and HY were hydrated by water molecules in the first part of the induction period. These water molecules were formed in result of the propan-2-ol dehydration. The strong low-field shift of the {sup 1}H MAS NMR signals of the hydrated Bronsted acid sites is due to a partial protonation of adsorbed water molecules. At T = 393 K, a significant {sup 13}C MAS NMR signal of strongly bonded acetone molecules appeared at 220 ppm in the spectra of zeolites LaNaY and HY. As demonstrated by propan-2-ol conversion on a partially dealuminated zeolite HY, this by-reaction is promoted by extra-framework aluminium species. The formation of coke precursors which caused {sup 13}C MAS NMR signals at 10-50 ppm is explained by an oligomerization of propene. In situ {sup 13}C MAS NMR experiments carried out under a continuous flow of propene showed that the above-mentioned coke precursors are also formed on partially rehydrated zeolite HY. 25 refs., 14 figs., 1 tab.

  8. Effects of fluoride on in vitro enamel demineralization analyzed by ¹⁹F MAS-NMR.

    PubMed

    Mohammed, N R; Kent, N W; Lynch, R J M; Karpukhina, N; Hill, R; Anderson, P

    2013-01-01

    The mechanistic action of fluoride on inhibition of enamel demineralization was investigated using (19)F magic angle spinning nuclear magnetic resonance (MAS-NMR). The aim of this study was to monitor the fluoride-mineral phase formed on the enamel as a function of the concentration of fluoride ions [F(-)] in the demineralizing medium. The secondary aim was to investigate fluorapatite formation on enamel in the mechanism of fluoride anti-caries efficacy. Enamel blocks were immersed into demineralization solutions of 0.1 M acetic acid (pH 4) with increasing concentrations of fluoride up to 2,262 ppm. At and below 45 ppm [F(-)] in the solution, (19)F MAS-NMR showed fluoride-substituted apatite formation, and above 45 ppm, calcium fluoride (CaF2) formed in increasing proportions. Further increases in [F(-)] caused no further reduction in demineralization, but increased the proportion of CaF2 formed. Additionally, the combined effect of strontium and fluoride on enamel demineralization was also investigated using (19)F MAS-NMR. The presence of 43 ppm [Sr(2+)] in addition to 45 ppm [F(-)] increases the fraction of fluoride-substituted apatite, but delays formation of CaF2 when compared to the demineralization of enamel in fluoride-only solution. PMID:23712030

  9. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    SciTech Connect

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel Delevoye, Laurent

    2008-02-15

    Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

  10. Development of a rapid method for the quantification of cellulose in tobacco by (13)C CP/MAS NMR.

    PubMed

    Jiang, Jinhui; Hu, Yonghua; Tian, Zhenfeng; Chen, Kaibo; Ge, Shaolin; Xu, Yingbo; Tian, Dong; Yang, Jun

    2016-01-01

    A method was developed for rapid quantitative determination of cellulose in tobacco by utilizing (13)C cross polarization magic angle spinning NMR spectroscopy ((13)C CP/MAS NMR). Sample powder was loaded into NMR rotor, which was customized rotor containing a matched silicon tube as an intensity reference. (13)C CP/MAS NMR spectra of tobacco samples were processed with spectral deconvolution to obtain the area of the C-1 resonance at 105.5ppm and the internal standard at 0ppm. The ratio between the area of 105.5ppm and 0ppm of a set of standard cellulose samples was used to construct a calibration curve. The cellulose content of a tobacco sample was determined by comparison of the ratio between the area of 105.5ppm and 0ppm to the calibration curve. Results of this developed method showed good agreement with those obtained from chemical analysis. The proposed method has such advantages of accuracy, quickness and efficiency, and could be an alternative to chemical analyses of cellulose.

  11. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  12. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    SciTech Connect

    Mao, Kanmi; Pruski, Marek

    2009-09-10

    Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.

  13. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation

    NASA Astrophysics Data System (ADS)

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    15N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated 15N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that 15N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.

  14. 13C CP MAS NMR and GIAO-CHF calculations of coumarins.

    PubMed

    Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona

    2003-01-01

    13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available.

  15. Quantification of ammonia binding sites in Davison (Type 3A) zeolite desiccant : a solid-state Nitrogen-15 MAS NMR spectroscopy investigation.

    SciTech Connect

    Alam, Todd Michael; Holland, Gregory P.; Cherry, Brian Ray

    2004-01-01

    The quantitative analysis of ammonia binding sites in the Davison (Type 3A) zeolite desiccant using solid-state {sup 15}N MAS NMR spectroscopy is reported. By utilizing 15N enriched ammonia ({sup 15}NH{sub 3}) gas, the different adsorption/binding sites within the zeolite were investigated as a function of NH{sub 3} loading. Using {sup 15}N MAS NMR multiple sites were resolved that have distinct cross-polarization dynamics and chemical shift behavior. These differences in the {sup 15}N NMR were used to characterize the adsorption environments in both the pure 3A zeolite and the silicone-molded forms of the desiccant.

  16. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A 13C MAS NMR Study

    PubMed Central

    Ciesielski, Filip; Griffin, David C.; Loraine, Jessica; Rittig, Michael; Delves-Broughton, Joss; Bonev, Boyan B.

    2016-01-01

    The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state 13C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol 13C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B. PMID:27379235

  17. CaCl 2 -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29 Si MAS NMR

    DOE PAGES

    Li, Qinfei; Ge, Yong; Geng, Guoqing; Bae, Sungchul; Monteiro, Paulo J. M.

    2015-01-01

    Tmore » he effect of calcium chloride (CaCl 2 ) on tricalcium silicate (C 3 S) hydration was investigated by scanning transmission X-ray microscopy (STXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29 Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system.he Ca L 3,2 -edge NEXAFS spectra obtained by examining C 3 S hydration in the presence of CaCl 2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H), which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C 3 S. Based on the Ca L 3,2 -edge spectra and chemical component mapping, we concluded that CaCl 2 prefers to coexist with unhydrated C 3 S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl 2 increases the degree of silicate polymerization of C-S-H in agreement with the 29 Si CP/MAS NMR results, which show that the presence of CaCl 2 in hydrated C 3 S considerably accelerates the formation of middle groups ( Q 2 ) and branch sites ( Q 3 ) in the silicate chains of C-S-H gel at 1-day hydration.« less

  18. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  19. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-01

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  20. Processing of CP MAS kinetics: Towards NMR crystallography for complex solids

    NASA Astrophysics Data System (ADS)

    Dagys, Laurynas; Klimavicius, Vytautas; Balevicius, Vytautas

    2016-09-01

    Variable temperature and high data point density measurements of 1H-31P cross-polarization kinetics in the powdered ammonium dihydrogen phosphate (ADP) have been carried out in the range of -40 °C to +90 °C upon 7 and 10 kHz MAS. The advanced route of processing CP MAS kinetic data has been developed. It is based on reducing the incoherent far range order spin couplings and extracting the CP oscillatory term with the sequent mathematical treatment. The proper replica has been found, which allowed to reduce the Fourier-Bessel (Hankel) transform calculating the angularly averaged and purely distance-depending spin distribution profile to the routine Fourier transform. The shortest 31P-1H distances determined by CP MAS kinetics get between the values obtained by neutron and X-ray diffraction, whereas those for more remote protons are slightly larger. The changes in P⋯H distances are hardly noticeable, though a certain trend to increase upon the heating can be deduced. The clearly pronounced effect was the increase of the spin-diffusion rate constant upon heating. It allows to state that the communication between interacting spins is the process extremely easy to activate.

  1. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  2. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  3. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  4. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp

  5. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  6. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, chi, equals cos(-1)(1/3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to +/-1 degrees via coherence transfer between the two different satellite transitions ST(+)(m(I)=+3/2<-->+1/2) and ST(-)(m(I)=-1/2<-->-3/2) midway through the t(1) period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na (I=3/2), 87 Rb (I=3/2), 27 Al (I=5/2), and 59 Co (I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less "t(1) noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions

  7. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by 13C CP/MAS NMR and 1H DQMAS NMR

    PubMed Central

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  8. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    PubMed

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  9. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.

  10. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  11. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    PubMed Central

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  12. Effects of T2-relaxation in MAS NMR spectra of the satellite transitions for quadrupolar nuclei: a 27Al MAS and single-crystal NMR study of alum KAl(SO 4) 2 · 12H 2O

    NASA Astrophysics Data System (ADS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jørgen

    2005-04-01

    Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO 4) 2 · 12H 2O), recorded in the temperature range from -76 to 92 °C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse ( T2) relaxation times for the two inner ( m = 1/2 ↔ m = 3/2 and m = -1/2 ↔ m = -3/2) and correspondingly for the two outer ( m = 3/2 ↔ m = 5/2 and m = -3/2 ↔ m = -5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 °C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant ( T1 = 0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear ( 27Al- 1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.

  13. Coal structure at reactive sites by sup 1 H- sup 13 C- sup 19 F double cross polarization (DCP)/MAS sup 13 C NMR spectroscopy

    SciTech Connect

    Hagaman, E.W.; Woody, M.C. )

    1989-01-01

    The solid state NMR technique, {sup 1}H-{sup 13}C-{sup 31}P double cross polarization (DCP)/MAS {sup 13}C-NMR spectroscopy, uses the direct dipolar interaction between {sup 13}C-{sup 31}P spin pairs in organophosphorus substances to identify the subset of carbons within a spherical volume element of 0.4 nm radius centered on the {sup 31}P atom. In combination with chemical manipulation of coals designed to introduce phosphorus containing functionality into the organic matrix, the NMR experiment becomes a method to examine selectively the carbon bonding network at the reactive sites in the coal. This approach generates a statistical structure description of the coal at the reaction centers in contrast to bulk carbon characterization using conventional {sup 1}H-{sup 13}C CP/MAS {sup 13}C NMR spectroscopy. 3 refs.

  14. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  15. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins.

    PubMed

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2008-07-01

    Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the (15)N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken alpha-spectrin, which was re-crystallized in H(2)O/D(2)O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated Cu(II) to enable rapid data acquisition. PMID:18462963

  16. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ball, Thomas J.; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using 87Rb (spin I = 3/2) and 27Al ( I = 5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  17. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    1999-11-19

    {sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.

  18. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  19. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  20. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    PubMed Central

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  1. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase -Zeolite-Catalyzed Conversion of Cyclohexanol in Water

    SciTech Connect

    Vjunov, Aleksei; Hu, Mary Y.; Feng, Ju; Camaioni, Donald M.; Mei, Donghai; Hu, Jian Z.; Zhao, Chen; Lercher, Johannes A.

    2014-01-07

    The catalytic conversion of cyclohexanol on zeolite HBEA in hot liquid water leads to dehydration as well as alkylation products. A novel micro autoclave suitable for application in MAS NMR at high temperatures and pressures is developed and successfully applied to obtain new insight into the mechanistic pathway leading to an understanding of the reactions under selected experimental conditions.

  2. Signal intensities in ¹H-¹³C CP and INEPT MAS NMR of liquid crystals.

    PubMed

    Nowacka, A; Bongartz, N A; Ollila, O H S; Nylander, T; Topgaard, D

    2013-05-01

    Spectral editing with CP and INEPT in (13)C MAS NMR enables identification of rigid and mobile molecular segments in concentrated assemblies of surfactants, lipids, and/or proteins. In order to get stricter definitions of the terms "rigid" and "mobile", as well as resolving some ambiguities in the interpretation of CP and INEPT data, we have developed a theoretical model for calculating the CP and INEPT intensities as a function of rotational correlation time τc and C-H bond order parameter SCH, taking the effects of MAS into account. According to the model, the range of τc can at typical experimental settings (5kHz MAS, 1ms ramped CP at 80-100kHz B1 fields) be divided into four regimes: fast (τc<1ns), fast-intermediate (τc≈0.1μs), intermediate (τc≈1μs), and slow (τc>0.1ms). In the fast regime, the CP and INEPT intensities are independent of τc, but strongly dependent on |SCH|, with a cross-over from dominating INEPT to dominating CP at |SCH|>0.1. In the intermediate regime, neither CP nor INEPT yield signal on account of fast T1ρ and T2 relaxation. In both the fast-intermediate and slow regimes, there is exclusively CP signal. The theoretical predictions are tested by experiments on the glass-forming surfactant n-octyl-β-d-maltoside, for which τc can be varied continuously in the nano- to millisecond range by changing the temperature and the hydration level. The atomistic details of the surfactant dynamics are investigated with MD simulations. Based on the theoretical model, we propose a procedure for calculating CP and INEPT intensities directly from MD simulation trajectories. While MD shows that there is a continuous gradient of τc from the surfactant polar headgroup towards the methyl group at the end of the hydrocarbon chain, analysis of the experimental CP and INEPT data indicates that this gradient gets steeper with decreasing temperature and hydration level, eventually spanning four orders of magnitude at completely dry conditions.

  3. 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations.

    PubMed

    Heise, Henrike; Seidel, Karsten; Etzkorn, Manuel; Becker, Stefan; Baldus, Marc

    2005-03-01

    Two types of 3D MAS NMR experiments are introduced, which combine standard (NC,CC) transfer schemes with (1H,1H) mixing to simultaneously detect connectivities and structural constraints of uniformly 15N,13C-labeled proteins with high spectral resolution. The homonuclear CCHHC and CCC experiments are recorded with one double-quantum evolution dimension in order to avoid a cubic diagonal in the spectrum. Depending on the second transfer step, spin systems or proton-proton contacts can be determined with reduced spectral overlap. The heteronuclear NHHCC experiment encodes NH-HC proton-proton interactions, which are indicative for the backbone conformation of the protein. The third dimension facilitates the identification of the amino acid spin system. Experimental results on U-[15N,13C]valine and U-[15N,13C]ubiquitin demonstrate their usefulness for resonance assignments and for the determination of structural constraints. Furthermore, we give a detailed analysis of alternative multidimensional sampling schemes and their effect on sensitivity and resolution. PMID:15705514

  4. 13C MAS NMR evidence for a homogeneously ordered environment of tyrosine M210 in reaction centres of Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Shochat, S.; Gast, P.; Hoff, A. J.; Boender, G. J.; van Leeuwen, S.; van Liemt, W. B. S.; Vijgenboom, E.; Raap, J.; Lugtenburg, J.; de Groot, H. J. M.

    1995-01-01

    The initial electron transfer time in the photosynthetic reaction centre of Rhodobacter sphaeroides is highly sensitive to the replacement of tyrosine M210 by a tryptophan residue. Low-temperature magic angle spinning 13C NMR is used to study Rhodobacter sphaeroides 2.4.1 (M)Y210W mutant reaction centres that are labelled with [4'- 13C]tyrosine. The response of (M)Y210 in R26 is assigned unambiguously to the most upfield narrow signal (linewidth 34 Hz) at σi = 152.2 ppm, in the region where non-hydrogen bonded tyrosine signals are expected. From the comparison with the signal of labelled R26 it follows that the chemical environment of the (M)Y210 label is unique. The Y(M)210 is in a structurally and electrostatically homogeneous region on the sensitivity scale of the MAS NMR technique. The environment of M210 is structurally stable and the observation of a narrow line shows that the (M)Y210 side chain can be considered static with respect to rotational diffusion on time scales as long as 10 -2s. The narrow signals from the remaining labels in the protein interior for the 2.4.1 (M)Y210W mutant are remarkably similar to those observed for R26. Using a commonly accepted ratio of 150 ppm shift per positive charge equivalent for aromatic carbons, the chemical shift differences between mutant and R26 translate into small variations of the order of 10 -3 electronic equivalents of charge polarization. Also the linewidths are similar, except for a narrow response at σi = 156.4 ppm that sharpens slightly in the (M)Y210W mutant. Thus, the influence of the (M)Y210W mutation on the global electrostatic properties and structure of the protein, as probed by the tyrosine labels, is minimal. This strongly argues against an explanation of slow and non-exponential electron transfer kinetics in the (M)Y210W RC in terms of loss of structural integrity upon mutation. In contrast, the NMR results strongly support current opinions that (M)Y210 contributes to the fine-tuning of the

  5. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  6. Magnesium silicate dissolution investigated by S1-29 MAS, H-1 Si-29 CPMAS, Mg-25 QCPMG, and H-1 Mg-25 CP QCPMG NMR

    SciTech Connect

    Davis, M C; Brouwer, Piet W; Wesolowski, David J; Anovitz, Lawrence {Larry} M

    2009-07-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg2SiO4) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  7. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  8. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    NASA Astrophysics Data System (ADS)

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-γ nucleus.

  9. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions.

    PubMed

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state (33)S (spin I=3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH(4))(2)WS(4) and (NH(4))(2)MoS(4). These materials all exhibit (33)S quadrupole coupling constants (C(Q)) in the range 0.1-1.0 MHz, with precise C(Q) values being determined from analysis of the PT enhanced (33)S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I=3/2 nuclei with similar C(Q) values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance (33)S MAS NMR, a time saving which is extremely welcome for this important low-gamma nucleus. PMID:18082436

  10. Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

    2015-01-01

    6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

  11. (sup 6)Li and (sup 7)MAS NMR and In Situ X-Ray Diffraction Studies of Lithium Manganate Cathode Materials

    SciTech Connect

    Lee, Young Joo; Wang, Francis; Grey, Clare P.; Mukerjee, Sanjeev; McBreen, James

    1998-11-30

    {sup 6}Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn{sub 2}O{sub 4}, Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}Mn{sub 4}O{sub 9}, and Li{sub 2}Mn{sub 2}O{sub 4}) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the Li{sub x}Mn{sub 2}O{sub 4} cathode materials following electrochemical Li{sup +} deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x <0.4 (Li{sub x}Mn{sub 2}O{sub 4}) is seen by both NMR and diffraction.

  12. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  13. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  14. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  15. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  16. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.

  17. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  18. Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Yan, Si; Sun, Shangjin; Han, Yun; Byeon, In-Ja L.; Ahn, Jinwoo; Concel, Jason; Samoson, Ago; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    We present a family of homonuclear 13C-13C magic angle spinning spin diffusion experiments, based on R2nv (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for 13C-13C correlation spectroscopy in biological and organic systems, and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R211, R221, and R222 sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2nv display different polarization transfer efficiency-dependencies on isotropic chemical shift differences: R221 recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R211 and R222 exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10–20 kHz), all R2nv sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-13C,15N]-alanine and the [U-13C,15N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-13C,15N CA protein, U-13C,15N enriched dynein light chain DLC8, and sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2nv symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy. PMID:21361320

  19. Probing the interface of core shell particles of GaPO 4 and AlPO 4 by 31P MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Jayakumar, O. D.; Vishwanadh, B.; Sudarsan, V.

    2011-02-01

    Hexagonal GaPO 4, pseudo-hexagonal AlPO 4 and the core shell particles of these phosphates have been prepared in ethylene glycol medium at 180 °C, followed by annealing at 900 °C for 24 h and investigated by powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) techniques. The 31P NMR studies of these core shell particles showed a multi-component NMR pattern consisting of five peaks originating due to the distinct structural configurations formed by the varying number of Al 3+ and Ga 3+ as the next nearest neighbors around the probe 31P nuclei of the PO 4 tetrahedron. Existence of different PO 4 structural units with varying number of Al 3+ and Ga 3+ as its next nearest neighbors around P nucleus at the interface of the core shell particles has been confirmed. These results clearly indicate the bond formation at the interface between the core and shell material for these particles.

  20. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  1. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  2. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  3. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs

    NASA Astrophysics Data System (ADS)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  4. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  5. A {sup 11}B and {sup 7}Li MAS-NMR study of sol-gel lithium triborate glass subjected to thermal densification

    SciTech Connect

    Mustarelli, P.; Quartarone, E.; Benevelli, F.

    1997-06-01

    The effects of thermal densification on a sol-gel lithium triborate glass have been studied by {sup 11}B and {sup 7}Li NMR both static and at the magic angle (MAS). {sup 11}B spectra show that the boron average coordination is similar in sol-gel and melt-quenched samples and it does not change upon annealing. {sup 7}Li T{sub 1} is shorter ({approximately}8.5 s) in sol-gel glass as prepared than in its melt-quenched counterpart ({approximately}13 s) due to dipolar-dipolar Li-H interaction. {sup 7}Li longitudinal relaxation behavior captures a part of a complex devitrification process which is driven by the loss of both residual solvent and moisture.

  6. Asymmetric simultaneous phase-inversion cross-polarization in solid-state MAS NMR: Relaxing selective polarization transfer condition between two dilute spins

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Fu, Riqiang; Li, Jianping; Yang, Jun

    2014-05-01

    Double cross polarization (DCP) has been widely used for heteronuclear polarization transfer between 13C and 15N in solid-state magic-angle spinning (MAS) NMR. However, DCP is such sensitive to experimental settings that small variations or deviations in RF fields would deteriorate its efficiency. Here, we report on asymmetric simultaneous phase-inversion cross polarization (referred as aSPICP) for selective polarization transfer between low-γ 13C and 15N spins. We have demonstrated through simulations and experiments using biological solids that the asymmetric duration in the simultaneous phase-inversion cross polarization scheme leads to efficient polarization transfer between 13C and 15N even with large chemical shift anisotropies in the presence of B1 field variations or mismatch of the Hartmann-Hahn conditions. This could be very useful in the aspect of long-duration experiments for membrane protein studies at high fields.

  7. Conformations of solid 2-methyl-4-( p-X-phenylazo)imidazoles by 13C CP MAS NMR spectroscopy and PM3 semi-empirical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota

    1999-03-01

    Solid 2-methyl-4-( p-X-phenylazo)imidazoles form hydrogen bonded chains with N-H⋯N bonds and C-H⋯O or C-H⋯N interaction. Depending on the nature and orientation of the substituents X it was possible to identify one tautomer if XH ( 2), Br ( 3), NO 2 ( 4) and the two, a- and b-tautomers in the crystal unit if XOCH 3 ( 1). The 13C CP MAS NMR spectra of ( 4) indicate the presence of phenyl ring dynamics. A preferred structure present in the solid state is that with different lengths of C1'-N and C4-N bonds and with higher dipole moment.

  8. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  9. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  10. Structural elucidation of b-(Y,Sc){sub 2}Si{sub 2}O{sub 7} : combined use of {sub 89}Y MAS NMR and powder diffraction.

    SciTech Connect

    Allix, M.; Alba, M. D.; Florian, P.; Fernandez-Carrion, A. J.; Suchomel, M. R.; Escudero, A.; Suard, E.; Becerro, A. I.

    2011-08-01

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180{sup o}, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed.

  11. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  12. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  13. Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation

    NASA Astrophysics Data System (ADS)

    Neuville, Daniel R.; Cormier, Laurent; Massiot, Dominique

    2004-12-01

    Tecto-aluminosilicate and peraluminous glasses have been prepared by conventional and laser heating techniques, respectively, in the CaO-Al 2O 3-SiO 2 system. The structure of these glasses were studied using Raman spectroscopy, X-ray absorption at the Al K-edge and 27Al NMR spectroscopy with two different high fields (400 and 750 MHz). Raman spectroscopy and X-ray absorption are techniques sensitive to the network polymerization and, in particular, show different signal as a function of silica content. However, these two techniques are less sensitive than NMR to describe the local aluminium environment. For tectosilicate glasses, aluminium in five-fold coordination, [5]Al, was found and a careful quantification allows the determination of a significant amount of [5]Al (7% in the anorthite glass). The proportion of [5]Al increases for the peraluminous glasses with small amounts (<2%) of six-fold coordination, [6]Al. The presence of [5]Al agrees with previous observations of the existence of nonbridging oxygens (NBOs) in tectosilicate compositions. However, the proportion of [5]Al in the present study indicates that no major proportion of triclusters (oxygen coordinated to three (Si,Al)O 4 tetrahedra) is required to explain these NBOS.

  14. Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: A sup 13 C MAS NMR study

    SciTech Connect

    Hamilton, J.A. ); Fujito, D.T.; Hammer, C.F. )

    1991-03-19

    The weakly polar lipids cholesteryl ester, triacylglycerol, and diacylglycerol incorporate to a limited extent into the lamellar structure of small unilamellar vesicles. The localization of the carbonyl group(s) at the aqueous interface was detected by ({sup 13}C)carbonyl chemical shift changes relative to the neat unhydrated lipid. This study uses {sup 13}C NMR to investigate the interactions of thes lipids with unsonicated (multilamellar) phosphatidylcholine, a model system for cellular membranes and surfaces of emulsion particles with low curvature. Magic angle spinning reduced the broad lines of the unsonicated dispersions to narrow lines comparable to those from sonicated dispersions. ({sup 13}C)Carbonyl chemical shifts revealed incorporation of the three lipids into the lamellar structure of the unsonicated phospholipids and a partial hydration of the carbonyl groups similar to that observed in small vesicles. Other properties of interfacial weakly polar lipids in multilayers were similar to those in small unilamellar bilayers. There is thus a general tendency of weakly polar lipids to incorparate at least to a small extent into the lamellar structure of phospholipids and take on interfacial properties that are distinct from their bulk-phase properties. This pool of surface-located lipid is likely to be directly involved in enzymatyic transformations and protein-mediated transport. The {sup 13}C magic angle spinning NMR method may be generally useful for determining the orientation of molecules in model membranes.

  15. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    SciTech Connect

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  16. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. PMID:26042706

  17. Al speciation in tropical podzols of the upper Amazon Basin: A solid-state 27Al MAS and MQMAS NMR study

    NASA Astrophysics Data System (ADS)

    Bardy, Marion; Bonhomme, Christian; Fritsch, Emmanuel; Maquet, Jocelyne; Hajjar, Redouane; Allard, Thierry; Derenne, Sylvie; Calas, Georges

    2007-07-01

    In the upper Amazon Basin, aluminum previously accumulated in lateritic formations is massively remobilised in soils by podzolization and exported in waters. We have investigated the speciation of aluminum in the clay-size fractions of eight horizons of waterlogged podzols lying in a depression of a plateau. The horizons illustrate the main steps involved in the podzolization of laterites. They belong to eluviated topsoil A horizons and illuviated subsoil Bhs, Bh and 2BCs horizons of weakly and better-expressed podzols located at the margin and centre of the depression. For the first time, aluminum speciation is quantitatively assessed in soils by spectroscopic methods, namely FTIR, 27Al magic angle spinning (MAS) and multiple-quantum magic angle spinning (MQMAS), nuclear magnetic resonance (NMR). The results thus obtained are compared to chemical extraction data. Solid-state 27Al MAS NMR spectra enable to distinguish Al bound to organic compounds from that incorporated in secondary mineral phases detected by FTIR. MQMAS experiments additionally show that both chemical shifts and quadrupolar constants are distributed for Al nuclei linked with organic compounds. Similar amounts of chelated Al are obtained from NMR spectra and chemical extractions. The study enables to highlight three major steps in the fate of aluminum. (i) Aluminum is first released by mineral weathering, feeds complexing sites of organic matter and accumulates in subsurface Bhs horizons of weakly expressed podzols (acidocomplexolysis). (ii) Complexes of aluminum with organic matter (Al-OM) then migrate downwards in sandy horizons of better-expressed podzols and accumulate at depth in less permeable 2BCs horizons. (iii) The minor amounts of aluminum present in the 2BCs horizon of the downslope podzol show that aluminum is eventually exported towards the river network, either complexed with organic matter or as Al 3+ ions after desorption from organic compounds, due to decreasing pH or

  18. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  19. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2016-05-01

    Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in

  20. Atomic structure and dehydration mechanism of amorphous silica: Insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Na; Lee, Sung Keun

    2013-11-01

    Detailed knowledge of the atomic structure of hydrous species on surface of amorphous silica and the effect of temperature and particle size on their atomic configurations are essential to understand the nature of fluids-amorphous silicates interactions and the dehydration processes in the amorphous oxides. Here, we report the 29Si, 1H MAS, and 1H-29Si heteronuclear correlation (HetCor) NMR spectra of 7 nm and 14 nm amorphous silica nanoparticles—a model system for natural amorphous silica—where previously unknown details of changes in their atomic structures with varying dehydration temperature and particle size are revealed. Diverse hydroxyl groups with varying atomic configurations and molecular water apparently show distinct dehydration trends. The dehydration (i.e., removal of water) of amorphous silica nanoparticles mostly results in the increase of isolated silanol by removing water molecules from hydrogen-bonded silanols associated water molecules. With further increase in dehydration temperature, the intensity of isolated silanol peak decreases above ˜873 K, suggesting that the condensation of isolated silanol may occur mainly above ˜873 K. The entire dehydration (and dehydroxylation) process completes at ˜1473 K. Both the water (i.e., physisorbed water and hydrogen-bonded water) and hydrogen-bonded silanol species show a dramatic change in the slope of intensity variation at ˜873 K, indicating that most of silanols is hydrogen-bonded to water rather than to other silanols. The fraction of hydrogen-bonded proton species is also much smaller in 14 nm amorphous silica nanoparticles than in 7 nm amorphous silica nanoparticles mainly due to the presences of larger fractions of water and hydrogen-bonded silanol species. 29Si NMR results show that with increasing dehydration temperature, the fraction of Q4 species apparently increases at the expense of Q2 and Q3 species. The fractions of Q2 and Q3 structures in 7 nm amorphous silica nanoparticles are

  1. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P{sub 2}O{sub 5} and TiO{sub 2} nucleants

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-06-15

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li{sub 2}O-4.0Al{sub 2}O{sub 3}-68.6SiO{sub 2}-3.0K{sub 2}O-2.6B{sub 2}O{sub 3}-0.5P{sub 2}O{sub 5}-0.9TiO{sub 2} was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by {sup 29}Si, {sup 31}P, {sup 11}B and {sup 27}Al MAS-NMR. XRD and {sup 29}Si NMR showed that lithium metasilicate (Li{sub 2}SiO{sub 3}) is the first phase to c form followed by cristobalite (SiO{sub 2}) and lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}). {sup 29}Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 {sup o}C. Since crystalline Li{sub 3}PO{sub 4}, as observed by {sup 31}P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li{sub 3}PO{sub 4} does not act as a nucleating agent for lithium silicate phases. Moreover, {sup 31}P NMR indicates the formation of M-PO{sub 4} (M=B, Al or Ti) complexes. The presence of BO{sub 3} and BO{sub 4} structural units in all the glass/glass-ceramic samples is revealed through {sup 11}B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO{sub 3}) increases at the expense of tetrahedrally coordinated B (BO{sub 4}). The {sup 27}Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization. - Graphical abstract: {sup 11}B MAS-NMR spectra of LAS glass heat treated at different temperatures, showing the evolution of the residual glass matrix during the crystallization treatment. High-field (18.8 T) NMR enables us to record high resolution spectra, from which the glass network modifications could be related to the formation of intermediate lithium silicate crystalline phases.

  2. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    PubMed

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  3. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  4. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  5. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  6. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  7. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  8. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues.

    PubMed

    André, Marion; Dumez, Jean-Nicolas; Rezig, Lamya; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2014-11-01

    High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.

  9. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  10. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  11. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  12. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  13. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law.

  14. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  15. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  16. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law. PMID:27373306

  17. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li{sub 2}O/Al{sub 2}O{sub 3} ratio

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-01-15

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi{sub 2}O-71.7SiO{sub 2}-(17.7-x)Al{sub 2}O{sub 3}-4.9K{sub 2}O-3.2B{sub 2}O{sub 3}-2.5P{sub 2}O{sub 5} (5.1<=x<=12.6) upon heat treatment were studied. {sup 29}Si, {sup 27}Al, {sup 31}P and {sup 11}B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO{sub 3} and BO{sub 4} units. {sup 27}Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, {sup 11}B (high field 18.8 T) and {sup 29}Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi{sub 2}O{sub 6}, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium metasilicate (Li{sub 2}SiO{sub 3}) and quartz (SiO{sub 2}) were identified in the {sup 29}Si NMR spectra of the glass-ceramics. {sup 31}P NMR spectra of the glass-ceramics revealed the presence of Li{sub 3}PO{sub 4} and a mixed phase (Li,K){sub 3}PO{sub 4} at low alkali concentrations. - Graphical Abstract: The {sup 11}B MAS-NMR spectra of lithium aluminum silicate (LAS) glass-ceramics indicating the formation of Li/KBSiO{sub 6} phase. This phase is isostructural with virgilite and cannot be distinguished in X-ray diffractograms.

  18. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials. II. On the mechanism of isomerization and hydrocracking

    SciTech Connect

    Ivanova, I.I.; Seirvert, M.; Pasau-Claerbout, A.; Derouane, E.G.; Blom, N.

    1996-12-01

    {sup 13}C MAS NMR spectroscopy was performed in situ to investigate the mechanisms of n-hexane isomerization and hydrocracking on Pt and Pd supported on Al-stabilized magnesia (Pt/Mg(Al)O and Pd/Mg(Al)O), and Pt on KL zeolite (Pt/KL). All the catalysts had high metal dispersion, the metal particle sizes being 13, 11, and 18 {Angstrom}, respectively. n-Hexane 1-{sup 13}C was used for in situ label tracer experiments. {sup 13}C MAS NMR spectra were obtained during the time course of the reaction at 573 and 653 K. The NMR results were then quantified, and the reaction kinetics were studied. Identification of the primary and secondary labeled reaction products led to the conclusion that both cyclic and bond-shift isomerization mechanisms operate on the three catalysts. In the case of Pt/Mg(Al)O, the cyclic mechanism accounts for 80% of the isomerization products. In the case of Pt/KL and Pd/Mg(Al)O, the contribution of bond-shift reactions increases due to restricted formation of the methylcyclopentane intermediate on the former and to suppressed hydrogenolysis of methylcyclopentane on the latter. A nonselective cyclic isomerization mechanism operates on magnesia catalysts, while on Pt/KL selective bisecondary bond rupturing occurs. Mechanistic pathways of bond-shift and hydrocracking reactions involve both 1,3- and 2,4-metallocyclobutane intermediates in the case of magnesia-supported catalysts, while in the case of the Pt/KL catalyst a 1,3-metallocyclobutane intermediate is preferentially formed. Only terminal scission occurs on Pt/KL. The Pd catalyst demonstrates enhanced activity in demethylation. The observed differences in the mechanistic pathways are explained on the basis of the specific properties of the metal and support. 64 refs., 14 figs., 6 tabs.

  19. Probing Oxide-Ion Mobility in the Mixed Ionic–Electronic Conductor La2NiO4+δ by Solid-State 17O MAS NMR Spectroscopy

    PubMed Central

    2016-01-01

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic–electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution 17O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic 17O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  20. Unique Backbone-Water Interaction Detected in Sphingomyelin Bilayers with 1H/31P and 1H/13C HETCOR MAS NMR Spectroscopy

    PubMed Central

    Holland, Gregory P.; Alam, Todd M.

    2008-01-01

    Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone. PMID:18390621

  1. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  2. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  3. In Vivo Detection of the Cyclic Osmoregulated Periplasmic Glucan of Ralstonia solanacearum by High-Resolution Magic Angle Spinning NMR

    NASA Astrophysics Data System (ADS)

    Wieruszeski, J.-M.; Bohin, A.; Bohin, J.-P.; Lippens, G.

    2001-07-01

    We investigate the mobility of the osmoregulated periplasmic glucans of Ralstonia solanacearum in the bacterial periplasm through the use of high-resolution (HR) NMR spectroscopy under static and magic angle spinning (MAS) conditions. Because the nature of periplasm is far from an isotropic aqueous solution, the molecules could be freely diffusing or rather associated to a periplasmic protein, a membrane protein, a lipid, or the peptidoglycan. HR MAS NMR spectroscopy leads to more reproducible results and allows the in vivo detection and characterization of the complex molecule.

  4. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    PubMed

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  5. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  6. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations.

    PubMed

    Clément, Raphaële J; Pell, Andrew J; Middlemiss, Derek S; Strobridge, Fiona C; Miller, Joel K; Whittingham, M Stanley; Emsley, Lyndon; Grey, Clare P; Pintacuda, Guido

    2012-10-17

    Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general.

  7. Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study.

    PubMed

    Tucker, Michael C; Doeff, Marca M; Richardson, Thomas J; Fiñones, Rita; Cairns, Elton J; Reimer, Jeffrey A

    2002-04-17

    The (7)Li NMR isotropic shift for olivine LiMPO(4) (M = Fe, Mn, Co, Ni) is assigned to hyperfine coupling between the (7)Li nucleus and the transition metal unpaired electrons on the basis of the Curie-Weiss temperature dependence of the shift. The hyperfine shift arises from a linear combination of Li-O-M through-bond interactions wherein the unpaired A' electrons contribute a negative shift and the unpaired A' ' electrons contribute a positive shift. The hyperfine coupling constant is determined for each composition.

  8. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    PubMed

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials.

  9. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    PubMed

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-01

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  10. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  11. HR, Streamlined

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2008-01-01

    Human Resources (HR) administrators are finding that as software modules are installed to automate various processes, they have more time to focus on strategic objectives. And as compliance with affirmative action and other employment regulations comes under increasing scrutiny, HR staffers are finding that software can deliver and track data with…

  12. Correlations between lithium local structure and electrochemistry of layered LiCo(1-2x)Ni(x)Mn(x)O2 oxides: 7Li MAS NMR and EPR studies.

    PubMed

    Stoyanova, Radostina; Ivanova, Svetlana; Zhecheva, Ekaterina; Samoson, Ago; Simova, Svetlana; Tzvetkova, Pavleta; Barra, Anne-Laure

    2014-02-14

    Advanced (7)Li MAS NMR technologies and high frequency EPR are combined to identify structural motifs and their relation to electrochemical properties of layered lithium-cobalt-nickel-manganese oxides LiCo1-2xNixMnxO2 (0 < x ≤ 0.5) used as cathode materials in lithium ion batteries. Structural-chemical shift regularities were established by systematic variation of the ratio of diamagnetic Co(3+) to paramagnetic Ni/Mn ions with variable valences. While EPR allows identifying the oxidation state of transition metal ions inside the layers, (7)Li NMR probes the local structure of Li with respect to transition metal ions located in two adjacent layers. For assignment of the lithium chemical shifts, we examine first magnetically diluted LiCo1-2xNixMnxO2 with x = 0.02, where paramagnetic ions are stabilized only in Mn(4+) and Ni(3+) form. Then the studies are extended towards the intermediate compositions with x = 0.10 and 0.33, containing simultaneously paramagnetic Mn(4+), Ni(3+) and Ni(2+) ions and diamagnetic Co(3+) ions. The benefit of using NMR with ultrafast spinning rates is demonstrated for the end composition LiNi0.5Mn0.5O2 having only paramagnetic Ni(2+) and Mn(2+) ions. The local structure of Li is quantified in respect of the number of Ni(2+) and Mn(4+) neighbors. It has been demonstrated that Ni(2+) and Mn(4+) are non-randomly distributed around Li and their distribution depends on the method of synthesis. The extent of local cationic order and its effect on the electrochemical properties of LiNi0.5Mn0.5O2 are discussed.

  13. The Amblygonite (LiAlPO{sub 4}F)-Montebrasite (LiAlPO{sub 4}OH) Solid Solution: A Combined powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR study

    SciTech Connect

    Groat, Lee A.; Chakoumakos, Bryan C.; Brouwer, Darren H.; Hoffman, Christina M.; Fyfe, Colin A.; Morell, Heiko; Schultz, Arthur J.

    2003-01-01

    The amblygonite-montebrasite series of minerals, common constituents of granitic pegmatites and topaz-bearing granites, show complete solid solution with ideal composition LiAlPO{sub 4}(F, OH). These compounds are ideal for studying F {leftrightarrow} OH solid solution in minerals because natural members of the series generally show little deviation from the ideal composition. In this study, we used powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR techniques to study the effect of F {leftrightarrow} OH substitution on the series. Lattice parameters refined from single-crystal neutron diffraction data show increasing b and decreasing a, c, and V with increasing F/(F + OH). The volume is highest for the OH end-member because of the presence of an additional atom (H). The a and c parameters decrease with increasing F/(F + OH) because the O-H vector is close to the a-c plane and the Al-OH/F vectors are approximately parallel to c. Lattice parameters refined from neutron powder diffraction patterns collected at lower T show that thermal contraction increases with F/(F + OH), presumably because the F anion takes up less space than the OH molecule. The results show that the OH/F position is always fully occupied. The H displacement ellipsoid shows little change with occupancy, which obviously corresponds negatively with increasing F/(F + OH). However, the Li displacement ellipsoid becomes extremely large and anisotropic with increasing F fraction. Most of the distortion is associated with the U{sub 3} eigenvalue, which lies between the c and c* directions. U{sub eq} values corresponding to the Li atom show a greater reduction with decreasing temperature than the other atoms. The temperature dependence of Li is the same regardless of F content. Even when extrapolated to absolute zero the Li displacement ellipsoid is very large, which implies a large static disorder.

  14. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  15. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    NASA Astrophysics Data System (ADS)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H.; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ˜100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  16. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation. PMID:27608994

  17. MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System

    SciTech Connect

    Cabana, Jordi; Shirakawa, Junichi; Chen, Guoying; Richardson, Thomas; Grey, Clare P.

    2009-10-09

    Li and 3IP NMR experiments were conducted on a series of single- or two-phase samples in the LiFePCvFePCM system with different overall lithium contents, and containing the two end-members and/or two metastable solid solution hases, Lio.6FeP04 or Lio.34FeP04. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for Li+-Fe2+ interactions was bserved for both Lio.6FeP04 and Lio.34FePC>4. The strength of this interaction leads to the formation of LiFePCvlike clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.

  18. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR.

    PubMed

    Wu, Chin H; De Angelis, Anna A; Opella, Stanley J

    2014-09-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped (13)C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly (13)C, (15)N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700MHz and 900MHz (1)H resonance frequencies, respectively. For the single (13)Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three (13)Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment.

  19. 13C CP/MAS NMR Studies of Hemoprotein Models with and without an Axial Hindered Base: (13)C Shielding Tensors and Comparison with Hemoproteins and X-ray Structural Data.

    PubMed

    Gerothanassis, I. P.; Momenteau, M.; Barrie, P. J.; Kalodimos, C. G.; Hawkes, G. E.

    1996-04-24

    13C cross-polarization magic-angle-spinning (CP/MAS) NMR spectra of several carbonmonoxide (93-99% (13)C enriched) hemoprotein models with 1,2-dimethylimidazole (1,2-diMeIm) and 1-methylimidazole (1-MeIm) as axial ligands are reported. This enables the (13)CO spinning sideband manifold to be measured and hence the principal components of the (13)CO chemical shift tensor to be obtained. Negative polar interactions in the binding pocket of the cap porphyrin model and inhibition of Fe-->CO back-donation result in a reduction in shielding anisotropy; on the contrary, positive distal polar interactions result in an increase in the shielding anisotropy and asymmetry parameter in some models. It appears that the axial hindered base 1,2-dimethylimidazole has little direct effect on the local geometry at the CO site, despite higher rates of CO desorption being observed for such complexes. This suggests that the mechanism by which steric interactions are released for the 1,2-diMeIm complexes compared to 1-MeIm complexes does not involve a significant increase in bending of the Fe-C-O unit. The asymmetry of the shielding tensor of all the heme model compounds studied is smaller than that found for horse myoglobin and rabbit hemoglobin.

  20. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  1. Characterization of polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, solid-state 13C CP/MAS-NMR spectroscopy, and N2 adsorption-desorption analyses.

    PubMed

    Peña, Brisa; de Ménorval, Louis-Charles; Garcia-Valls, Ricard; Gumí, Tània

    2011-11-01

    Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.

  2. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined.

  3. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  4. MAS and MI+ Comparison.

    ERIC Educational Resources Information Center

    Grice, Ila M.

    1991-01-01

    Compares the compact disc read-only-memory (CD-ROM) Magazine Article Summaries (MAS) and Magazine Index Plus Backfile (MI+) in terms of system hardware, index coverage, searching capabilities, citation display, printing citations, local holdings, and miscellaneous features and costs. Finds in favor of MAS. (DMM)

  5. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR.

    PubMed

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their (1)H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  6. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR

    PubMed Central

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their 1H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  7. Ultra-low temperature MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  8. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    PubMed Central

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  9. Slow magic angle sample spinning: a non- or minimally invasive method for high-resolution 1H nuclear magnetic resonance (NMR) metabolic profiling.

    PubMed

    Hu, Jian Zhi

    2011-01-01

    High-resolution (1)H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kilohertz or more (i.e., high-resolution magic angle spinning (hr-MAS)), is a well-established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow MAS, using the concept of two-dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimally invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow sample spinning used. Although slow MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in-depth evaluation of the principles associated with slow MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H(2)O, where an unusually large magnetic susceptibility field gradient is obtained.

  10. Slow Magic Angle Sample Spinning: A Non- or Minimally Invasive Method for High- Resolution 1H Nuclear Magnetic Resonance (NMR) Metabolic Profiling

    SciTech Connect

    Hu, Jian Z.

    2011-05-01

    High resolution 1H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kHz or more (i.e., high resolution-magic angle spinning (hr-MAS)), is a well established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow-MAS, using the concept of two dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimal invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow-sample spinning used. Although slow-MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow-MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in depth evaluation of the principles associated with slow-MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H2O, where an unusually large magnetic susceptibility field gradient is obtained.

  11. The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes.

    PubMed

    Simpson, André J; Simpson, Myrna J; Kingery, William L; Lefebvre, Brent A; Moser, Arvin; Williams, Antony J; Kvasha, Mikhail; Kelleher, Brian P

    2006-05-01

    The preferential sorption of model compounds to calcium-exchanged montmorillonite surfaces was investigated using 1H high-resolution magic-angle spinning (HR-MAS) and liquid-state NMR. Synthetic mixtures, representing the major structural categories abundant in natural organic matter (NOM), and two soil extracts were sorbed to montmorillonite. The NMR spectra indicate that, of the organic components observable by 1H HR-MAS NMR, aliphatic components preferentially sorb to the clay surface, while carbohydrates and amino acids mainly remain in the supernatant. These results may help explain the highly aliphatic nature of organic matter associated with clay fractions in natural soils and sediments. Investigations using the synthetic mixtures demonstrate a specific interaction between the clay surface and the polar region in 1-palmitoyl-3-stearoyl-rac-glycerol. Similar observations were obtained with natural soil extracts. The results presented have important implications for understanding the role of organoclay complexes in natural processes, and provides preliminary evidence that HR-MAS NMR is a powerful analytical technique for the investigation of organoclay complex structure and conformation. PMID:16649755

  12. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy.

    PubMed

    Szymanski, Christine M; Michael, Frank St; Jarrell, Harold C; Li, Jianjun; Gilbert, Michel; Larocque, Suzon; Vinogradov, Evgeny; Brisson, Jean-Robert

    2003-07-01

    Glycomics, the study of microbial polysaccharides and genes responsible for their formation, requires the continuous development of rapid and sensitive methods for the identification of glycan structures. In this study, methods for the direct analysis of sugars from 108 to 1010 cells are outlined using the human gastrointestinal pathogen, Campylobacter jejuni. Using capillary-electrophoresis coupled with sensitive electrospray mass spectrometry, we demonstrate variability in the lipid A component of C. jejuni lipooligosaccharides (LOSs). In addition, these sensitive methods have permitted the detection of phase-variable LOS core structures that were not observed previously. High resolution magic angle spinning (HR-MAS) NMR was used to examine capsular polysaccharides directly from campylobacter cells and showed profiles similar to those observed for purified polysaccharides analyzed by solution NMR. This method also exhibited the feasibility of campylobacter serotyping, mutant verification, and preliminary sugar analysis. HR-MAS NMR examination of growth from individual colonies of C. jejuni NCTC11168 indicated that the capsular glycan modifications are also phase-variable. These variants show different staining patterns on deoxycholate-PAGE and reactivity with immune sera. One of the identified modifications was a novel -OP=O(NH2)OMe phosphoramide, not observed previously in nature. In addition, HR-MAS NMR detected the N-linked glycan, GalNAc-alpha1,4-GalNAc-alpha1,4-[Glc-beta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac, where Bac is 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose, in C. jejuni and Campylobacter coli. The presence of this common heptasaccharide in multiple campylobacter isolates demonstrates the conservation of the N-linked protein glycosylation pathway in this organism and describes the first report of HR-MAS NMR detection of N-linked glycans on glycoproteins from intact bacterial cells.

  13. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  14. 14N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cp03994g Click here for additional data file.

    PubMed Central

    Haies, Ibraheem M.; Jarvis, James A.; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T. F.

    2015-01-01

    Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from 1H to the 14N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for 14N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker–Planck equations. PMID:25662410

  15. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA) by an Immobilized Polysaccharide-Based Chiral Phase

    PubMed Central

    Paixão, Márcio W.; Lourenço, Tiago C.

    2016-01-01

    This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR) was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR) titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R)-enantiomer, which is the second one to elute at the chromatographic conditions. PMID:27668862

  16. Carbon-13 CP-MAS nuclear magnetic resonance studies of teas.

    PubMed

    Martínez-Richa, Antonio; Joseph-Nathan, Pedro

    2003-05-01

    13C CP-MAS NMR spectra of green and black tea were obtained and assigned based on the solid-state NMR spectra of tropolone, (+)-catechin hydrate, gallic acid, caffeine and flavone derivatives. The peak shape and chemical shifts observed for carbonyl carbons in CP-MAS spectra of teas indicate the existence of different chemical species, mainly free phenollic acids and ester derivatives of flavonoids. The peak patterns allow to establish differences between both teas.

  17. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  18. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  19. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  20. Understanding structure-property relationships in lithium metal phosphates and oxide electrode materials: X-ray/neutron diffraction and lithium-7 MAS-NMR coupled with lithium-ion electrochemistry

    NASA Astrophysics Data System (ADS)

    Yin, Shih-Chieh

    Li-ion rechargeable battery has emerged as one of the most important portable energy carriers in the last decade. While LiCoO2 has been used as the cathode for a decade because of the good capacity and cycle retentions, tremendous efforts have been devoted to search other low cost and environmentally viable materials. Some of the promising materials such as LiFePO4, Li3V2(PO4)3, and LiNi1/3 Mn1/3Co1/3O2 were studied in this thesis. New lithium metal fluorophosphates were also discovered as potential cathode materials. The use of an aqueous solution synthesis route employing nanosized oxidized carbon black particles to inhibit LiFePO4 crystal growth was demonstrated. The resultant particle size of about 100 nm is reduced by 20 times compared to the solution synthesis method alone. Electron diffraction patterns and high resolution images from TEM experiments confirmed the single olivine phase nature of the material and the very small crystallite sizes. The 100 nm crystallites of LiFePO4-OCB showed vastly improved capacity (0.7 Li, 125mAh/g) compared to the 2mum particle. This improvement is due to contributions of decreased Li diffusion paths and improved contact with conductive carbon particles. Electrochemical PITT experiments coupled with ex-situ X-ray diffraction studies revealed the structural similarities of the delithiated monoclinic single phase compositions of LixV2(PO 4)3. (x = 2, 1, 0) From Le Bail refinements of XRD patterns, monoclinic Li3V2(PO4)3 shows only 7% volume variation upon delithiation which demonstrates its excellent intercalation characteristics. Structures of delithiated single phase compositions were further studied by both powder neutron diffraction and 7Li solid state NMR. From the structure solutions, each plateau in the V vs x curve corresponds to a two-phase transition involving the reorganization of electrons and Li ions within the lattice. The existence of charge ordering in Li2V2(PO4)3 demonstrates the electrons are pinned on both

  1. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue.

    PubMed

    Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles

    2013-08-01

    In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.

  2. HR Structure and HR Knowledge Transfer between Subsidiaries in China

    ERIC Educational Resources Information Center

    Wang-Cowham, Cindy

    2008-01-01

    Purpose: This paper attempts to examine the issue concerning human resource (HR) structures and the transfer of HR knowledge to discover whether and how HR structure facilitates the transfer of HR knowledge between subsidiaries of an MNC in China. Design/methodology/approach: The investigation, being of an exploratory nature, follows the tradition…

  3. HR Public meeting

    ScienceCinema

    None

    2016-07-12

    Cher(e)s collègues, En collaboration avec le Département HR, le Directeur général a le plaisir de vous convier à une réunion publique qui se tiendra le vendredi 25 juin 2010 à 9h30 dans l’Amphithéâtre principal (Bâtiment 500)*. Un café d’accueil y sera servi à partir de 9h. Cette réunion abordera les thèmes suivants : • Valeurs de l’Organisation (Directeur général) • Code de Conduite (Directeur général / Anne-Sylvie Catherin) • Création du nouveau rôle d’Ombudsperson (Vincent Vuillemin) Ces présentations seront suivies d’une séance de questions-réponses. Nous espérons vous retrouver nombreux le 25 juin ! Meilleures salutations, Anne-Sylvie Catherin Chef du Département des Ressources humaines *Cette réunion sera retransmise simultanément dans l’Amphithéâtre BE de Prévessin (Bâtiment 864) et également disponible à l’adresse suivante : http://webcast.cern.ch -------------------------------------------------------- Dear colleagues, In collaboration with HR Department, the Director-General would like to invite you to an information meeting which will be held on Friday 25 June 2010 at 9:30 am in the Main Auditorium (Building 500)*. A welcome coffee will be available from 9:00 am. During this meeting, information will be given about: • Organization’s values (Director-General) • Code of Conduct (Director-General / Anne-Sylvie Catherin) • New Ombudsperson role (Vincent Vuillemin) These presentations will be followed by a questions & answers session. We look forward to seeing you all on 25 June! Best regards, Anne-Sylvie Catherin Head, Human Resources Department *This meeting will be simultaneously retransmitted in BE Auditorium (Building 864) and available at the following address: http://webcast.cern.ch.

  4. HR Public meeting

    SciTech Connect

    2010-06-25

    Cher(e)s collègues, En collaboration avec le Département HR, le Directeur général a le plaisir de vous convier à une réunion publique qui se tiendra le vendredi 25 juin 2010 à 9h30 dans l’Amphithéâtre principal (Bâtiment 500)*. Un café d’accueil y sera servi à partir de 9h. Cette réunion abordera les thèmes suivants : • Valeurs de l’Organisation (Directeur général) • Code de Conduite (Directeur général / Anne-Sylvie Catherin) • Création du nouveau rôle d’Ombudsperson (Vincent Vuillemin) Ces présentations seront suivies d’une séance de questions-réponses. Nous espérons vous retrouver nombreux le 25 juin ! Meilleures salutations, Anne-Sylvie Catherin Chef du Département des Ressources humaines *Cette réunion sera retransmise simultanément dans l’Amphithéâtre BE de Prévessin (Bâtiment 864) et également disponible à l’adresse suivante : http://webcast.cern.ch -------------------------------------------------------- Dear colleagues, In collaboration with HR Department, the Director-General would like to invite you to an information meeting which will be held on Friday 25 June 2010 at 9:30 am in the Main Auditorium (Building 500)*. A welcome coffee will be available from 9:00 am. During this meeting, information will be given about: • Organization’s values (Director-General) • Code of Conduct (Director-General / Anne-Sylvie Catherin) • New Ombudsperson role (Vincent Vuillemin) These presentations will be followed by a questions & answers session. We look forward to seeing you all on 25 June! Best regards, Anne-Sylvie Catherin Head, Human Resources Department *This meeting will be simultaneously retransmitted in BE Auditorium (Building 864) and available at the following address: http://webcast.cern.ch.

  5. HR Public meeting

    SciTech Connect

    2010-10-12

    Cher(e)s collègues, En collaboration avec le Département HR, le Directeur général a le plaisir de vous convier à une réunion publique qui se tiendra le vendredi 25 juin 2010 à 9h30 dans l’Amphithéâtre principal (Bâtiment 500)*. Un café d’accueil y sera servi à partir de 9h. Cette réunion abordera les thèmes suivants : • Valeurs de l’Organisation (Directeur général) • Code de Conduite (Directeur général / Anne-Sylvie Catherin) • Création du nouveau rôle d’Ombudsperson (Vincent Vuillemin) Ces présentations seront suivies d’une séance de questions-réponses. Nous espérons vous retrouver nombreux le 25 juin ! Meilleures salutations, Anne-Sylvie Catherin Chef du Département des Ressources humaines *Cette réunion sera retransmise simultanément dans l’Amphithéâtre BE de Prévessin (Bâtiment 864) et également disponible à l’adresse suivante : http://webcast.cern.ch -------------------------------------------------------- Dear colleagues, In collaboration with HR Department, the Director-General would like to invite you to an information meeting which will be held on Friday 25 June 2010 at 9:30 am in the Main Auditorium (Building 500)*. A welcome coffee will be available from 9:00 am. During this meeting, information will be given about: • Organization’s values (Director-General) • Code of Conduct (Director-General / Anne-Sylvie Catherin) • New Ombudsperson role (Vincent Vuillemin) These presentations will be followed by a questions & answers session. We look forward to seeing you all on 25 June! Best regards, Anne-Sylvie Catherin Head, Human Resources Department *This meeting will be simultaneously retransmitted in BE Auditorium (Building 864) and available at the following address: http://webcast.cern.ch.

  6. Solid-state NMR analysis of coals and shales from the Mesaverde Group, Green River Basin, Wyoming

    SciTech Connect

    Miknis, F.P.; MacGowan, D.B.

    1993-08-01

    Samples of coals and shales from the Almond Formation of the Mesaverde Group, Greater Green River Basin, Wyoming were analyzed using solid-state {sup 13}C nuclear magnetic resonance (NMR) techniques of cross polarization with magic-angle spinning (CP/MAS). The samples were taken from a present-day depth of burial ranging from {approximately}3,000 to {approximately}15,000 ft. In addition, CP/MAS {sup 13}C NMR measurements were made on residues from the hydrous pyrolysis of Almond coal. The hydrous pyrolysis experiments were conducted isothermally for 72 hr in the temperature range of 290 to 360{degree}C (554 to 680{degree}F). In general, the maturation trends observed by NMR for the naturally and artificially matured samples were in agreement with results obtained from other geochemical analyses. The NMR spectra of the naturally matured shale samples showed only a small aliphatic component at depths greater than about 12,000 ft, indicating little capacity for hydrocarbon generation at depths greater than this. Vitrinite reflectance measurements placed the oil window at between 4,500 and 14,500 ft. NMR measurements of the hydrous pyrolysis residues showed a clear loss of aliphatic carbon, relative to the aromatic carbon, with temperature. For the residue obtained from the highest study temperature (360{degree}C/680{degree}F), there was a 60% depletion of the hydrocarbon-producing aliphatic components. The trends in loss of aliphatic carbon with temperature suggested a means of defining a geochemical transformation ratio in terms of the loss of the aliphatic carbon fraction. A good correlation was found between the NMR transformation ratio and the production index determined by Rock-Eval pyrolysis measurements.

  7. HR Shared Services and the Realignment of HR.

    ERIC Educational Resources Information Center

    Reilly, P.

    This report examines how adopting the shared services model of human resources (HR) services delivery can help businesses achieve better alignment between their HR service and specific business needs. Chapter 1 provides background information on the research project underlying this report, which included the following data collection activities:…

  8. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Oki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2016-06-01

    Solid-state 17O Magic-Angle Spinning (MAS) nuclear magnetic resonance (NMR) spectra of 17O-enriched hexagonal ice, [17O]-Ih, between 173 and 253 K were presented. Marked changes in the line shape were clearly observed, indicating water molecular reorientation in the crystal structure. At 173 K, molecular motions were considered to be frozen and analysis of the 1D MAS spectrum yielded the following parameters: quadrupole coupling constant (CQ) = 6.6 ± 0.2 MHz and asymmetry parameter (ηQ) = 0.95 ± 0.05. At 232 K and above, contrary to the conventional explanation, pseudo-symmetric line shapes appeared in the 17O MAS NMR spectra arising from the contribution of second-order quadrupole interactions. As a chemical exchange model to describe these isotropic 17O MAS NMR spectra, a modified Ratcliffe model, which consider the effects of proton disorder, was proposed, and the resulting theoretical spectra could well reproduce the experimental spectra.

  9. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  10. The age of HR8799

    NASA Astrophysics Data System (ADS)

    Doyon, R.; Lafrenière, D.; Artigau, E.; Malo, L.; Marois, C.

    2010-10-01

    HR8799 is an A-type star hosting three gravitationally bound planetary mass companions discovered through direct imaging by Marois et al. (2008). Since mass is converted directly from luminosity using age-dependent evolutionary models, the age is a crucial parameter for assessing the physical nature of the HR8799 companions. Marois et al. presented several evidence pointing to a relatively young age for the system, between 30 and 165 Myr, while a recent asteroseismology study (Moya et al. 2010) could possibly imply an age as high as one Gyr that, if true, would bring the HR8799 companions well into the brown dwarf regime. In this paper, I will briefly review the various age indicators for HR8799 and present a Bayesian statistical analysis, through comparison of the observational properties of HR8799 with those of (old) field stars and several nearby young associations, to better constrain the age of the HR8799 system. This analysis suggests, with a high degree of confidence, that HR8799 is unlikely to be a field star and more likely to be a member of the 30-Myr old Columba association.

  11. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation.

    PubMed

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain.

  12. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  13. Is solid-state NMR enhanced by dynamic nuclear polarization?

    PubMed

    Lee, Daniel; Hediger, Sabine; De Paëpe, Gaël

    2015-01-01

    The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP.

  14. VLBI imaging and astrometry of the Gravity Probe B guide star HR 8703

    NASA Astrophysics Data System (ADS)

    Ransom, Ryan R.

    Gravity Probe B (GP-B) is the spaceborne relativity experiment developed by NASA and Stanford University to test two predictions of general relativity (GR). The experiment will use four super-conducting gyroscopes, contained in a low-earth, polar orbiting spacecraft, to precisely measure the geodetic effect and the much smaller frame-dragging effect. According to GR, each of the effects will induce precessions in the gyroscopes. For the frame-dragging effect, the predicted precession is ˜42 mas/yr (mas ≡ milliarcsecond). The precessions will be measured with respect to a "guide star," namely the RS CVn binary star HR 8703 (IM Pegasi). The goal of the GP-B experiment is to measure the precessions with a standard error of about 0.5 mas/yr or better. To achieve this level of precision, the proper motion of the guide star must be determined in an inertial reference frame with a standard error ≤0.15 mas/yr. Nineteen sets of very-long-baseline interferometry (VLBI) observations at 8.4 GHz between January 1997 and June 2001 were made of HR 8703 and two extragalactic reference sources, 3C454.3 and B2250+194, in support of GP-B. We produced VLBI images of 3C454.3 and B2250+194 for each observing session, and VLBI images of HR 8703 for all but one of the observing sessions. The images of HR 8703 show a variety of radio source structures which range from compact single-emission-region structures <1 mas in angular diameter to complex double-lobe structures with lobe separations of ˜1.5 mas. Moreover, images from temporal subsets of several observing sessions show on hour time scales both structural evolution in the emission source and motions of the radio centroid of up to ˜1 mas. This is the first time that hourly activity on or close to a star has been observed directly, apart from the activity on the Sun. Based upon an astrometric analysis of the phase-referenced positions obtained at each epoch, we have (1) made precise determinations of HR 8703's parallax and

  15. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  16. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  17. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  18. HR Positions on the Internet.

    ERIC Educational Resources Information Center

    Coghill, Carey Cox; Kirk, James J.

    The question of whether the online job market reflects the trends predicted for the job market was examined in a study of a random sample of 690 Internet job postings over a 6-month period. Each listing was categorized by type of position, desired qualifications, salary, and job specifications. Of the human resources (HR) jobs posted, 7.2% were…

  19. Putting HR outsourcing into practice.

    PubMed

    Berger, Michael

    2007-01-01

    Faced with the time-consuming responsibility of human resources (HR) management, a growing number of medical practices are outsourcing their HR to professional employer organizations (PEOs) so they can concentrate on their core business. A PEO functions as an HR department-minus the high overhead-managing daily administrative tasks such as payroll processing and related tax filings, employee benefits, and workers' compensation coverage and claims resolution. PEOs help physicians' offices keep up with the piles of paperwork that never seem to shrink, freeing doctors to focus on patient care and building their practice. Because of their volume buying power, PEOs are able to offer employees of small medical practices big-company benefits-everything from health, dental, and vision coverage to long-term disability insurance and tuition assistance. A fledgling industry only a decade ago, HR outsourcing has morphed into a blossoming industry. Enlisting the services of a PEO is now considered de rigueur in many small business circles. PMID:17828839

  20. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  1. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  2. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  3. NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France).

    PubMed

    Jégou, Camille; Kervarec, Nelly; Cérantola, Stéphane; Bihannic, Isabelle; Stiger-Pouvreau, Valérie

    2015-04-01

    Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay.

  4. NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France).

    PubMed

    Jégou, Camille; Kervarec, Nelly; Cérantola, Stéphane; Bihannic, Isabelle; Stiger-Pouvreau, Valérie

    2015-04-01

    Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay. PMID:25640118

  5. In situ NMR analysis of fluids contained in sedimentary rock

    PubMed

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press.

  6. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    A considerable effort in this project during the past few months has been focussed on the development of [sup 1]H and [sup 13]C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A [sup 13]C MAS imaging probe and a [sup 1]H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The [sup 1]H system has already produced promising preliminary results, which are briefly described in this report.

  7. eHR: An Introduction. IES Report.

    ERIC Educational Resources Information Center

    Kettley, P.; Reilly, P.

    This document introduces the concept of electronic human resources (eHR) and its application. Chapter 1 presents a brief overview of the guide's development, purpose, and structure. Chapter 2 defines the concept of eHR as "the application of conventional, Web, and voice technologies to improve HR administration, transactions, and process…

  8. Réunion publique HR

    SciTech Connect

    2010-04-30

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie Catherin

  9. High resolution magic angle spinning NMR as a tool for unveiling the molecular enantiorecognition of omeprazole by amylose-based chiral phase.

    PubMed

    Barreiro, Juliana Cristina; de Campos Lourenço, Tiago; Silva, Lorena Mara A; Venâncio, Tiago; Cass, Quezia Bezerra

    2014-03-21

    Polysaccharide-based chiral stationary phases (CSP) demonstrate great versatility and higher chiral selectivity for a variety of chiral compounds in multimodal elution modes (normal, reverse and polar organic). The main role of CSP phenyl carbamate based derivatives as chiral selectors is the formation of diastereoisomeric complexes by means of π-π interaction, dipole-dipole, hydrogen bonding and/or inclusion complex mechanisms. Nevertheless, the mechanism behind their enantioselectivity requires clarification. High resolution magic angle spinning nuclear magnetic resonance spectroscopy ((1)H HR/MAS NMR) has provided key information on the recognition process at the binding sites of the CSP surface. Herein we report the results obtained using omeprazole as a probe for these investigations.

  10. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities. PMID:27664620

  11. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities.

  12. HR-MAS MRS of the pancreas reveals reduced lipid and elevated lactate and taurine associated with early pancreatic cancer.

    PubMed

    Wang, Alan S; Lodi, Alessia; Rivera, Lee B; Izquierdo-Garcia, Jose L; Firpo, Matthew A; Mulvihill, Sean J; Tempero, Margaret A; Bergers, Gabriele; Ronen, Sabrina M

    2014-11-01

    The prognosis for patients with pancreatic cancer is extremely poor, as evidenced by the disease's five-year survival rate of ~5%. New approaches are therefore urgently needed to improve detection, treatment, and monitoring of pancreatic cancer. MRS-detectable metabolic changes provide useful biomarkers for tumor detection and response-monitoring in other cancers. The goal of this study was to identify MRS-detectable biomarkers of pancreatic cancer that could enhance currently available imaging approaches. We used (1) H high-resolution magic angle spinning MRS to probe metabolite levels in pancreatic tissue samples from mouse models and patients. In mice, the levels of lipids dropped significantly in pancreata with lipopolysaccharide-induced inflammation, in pancreata with pre-cancerous metaplasia (4 week old p48-Cre;LSL-Kras(G12D) mice), and in pancreata with pancreatic intraepithelial neoplasia, which precedes invasive pancreatic cancer (8 week old p48-Cre LSL-Kras(G12D) mice), to 26 ± 19% (p = 0.03), 19 ± 16% (p = 0.04), and 26 ± 10% (p = 0.05) of controls, respectively. Lactate and taurine remained unchanged in inflammation and in pre-cancerous metaplasia but increased significantly in pancreatic intraepithelial neoplasia to 266 ± 61% (p = 0.0001) and 999 ± 174% (p < 0.00001) of controls, respectively. Importantly, analysis of patient biopsies was consistent with the mouse findings. Lipids dropped in pancreatitis and in invasive cancer biopsies to 29 ± 15% (p = 0.01) and 26 ± 38% (p = 0.02) of normal tissue. In addition, lactate and taurine levels remained unchanged in inflammation but rose in tumor samples to 244 ± 155% (p = 0.02) and 188 ± 67% (p = 0.02), respectively, compared with normal tissue. Based on these findings, we propose that a drop in lipid levels could serve to inform on pancreatitis and cancer-associated inflammation, whereas elevated lactate and taurine could serve to identify the presence of pancreatic intraepithelial neoplasia and invasive tumor. Our findings may help enhance current imaging methods to improve early pancreatic cancer detection and monitoring.

  13. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  14. Changes in the NMR Metabolic Profile of Live Human Neuron-Like SH-SY5Y Cells Exposed to Interferon-α2.

    PubMed

    Valeria, Righi; Luisa, Schenetti; Adele, Mucci; Stefania, Benatti; Fabio, Tascedda; Nicoletta, Brunello; Carmine, Pariante M; Silvia, Alboni

    2016-03-01

    Interferon (IFN)-α2 is an extensively therapeutically used pro-inflammatory cytokine. Though its efficacy in controlling viral replication and tumor cells proliferation, administration of IFN-α2 is often associated with the development of central side effects. Magnetic resonance spectroscopy studies have demonstrated that IFN-α2 administration affects brain metabolism, however the exact nature of this effect is not completely known. We hypothesized that IFN-α2 can affect metabolic activity of human neuron-like SH-SY5Y cells which possess many characteristics of neurons and represent one of the most used models for studying mechanisms involved in neurotoxicity or neuroprotection. To test our hypothesis we have characterized the metabolic signature of live SH-SY5Y, and their conditioned media, after 24 and 72 h of exposure to vehicle or IFN-α2 (100 ng/ml) by using High Resolution-Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) spectroscopy. Our results revealed that 1) the use of HR-MAS NMR is ideally suitable for the characterization of the metabolic profile of live cells and their conditioned media without extraction procedures; and 2) a 72 h exposure to IFN-α2 increases the level of metabolites involved in maintaining energetic (including creatine and lactate) and osmotic (such as myo-inositol, scyllo-inositol, taurine and glycerophosphorylcholine) balances in neuron-like cells and of metabolic waste products (namely lactate, ethanol and acetate), glycine and glutamine in their growth media. These results may contribute to gain more knowledge about the IFN-α2 induced effect on the brain and support the interpretation of magnetic resonance spectroscopy studies performed in humans. PMID:26541470

  15. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  16. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  17. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  18. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  19. 48 CFR 538.272 - MAS price reductions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS price reductions. 538... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to maintain during the contract period the negotiated price/discount relationship (and/or term and...

  20. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-01

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  1. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  2. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR.

    PubMed

    Lange, Sascha; Franks, W Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-08-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  3. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques.

    PubMed Central

    Guo, W; Hamilton, J A

    1996-01-01

    Cholesterol and cholesteryl esters are the predominant lipids of atherosclerotic plaques. To provide fundamental data for the quantitative study of plaque lipids in situ, crystalline cholesterol (CHOL) and CHOL/cholesteryl ester (CE) mixtures with other lipids were studied by solid-state nuclear magnetic resonance with magic-angle-sample spinning. Highly distinctive spectra for three different crystalline structures of CHOL were obtained. When CHOL crystals were mixed with isotropic CE oil, solubilized CHOL (approximately 13 mol % CHOL) was detected by characteristic resonances such as C5, C6, and C3; the excess crystalline CHOL (either anhydrous or monohydrate) remained in its original crystalline structure, without being affected by the coexisting CE. By use of 13C-enriched CHOL, the solubility of CHOL in the CE liquid-crystalline phase (approximately 8 mol %) was measured. When phosphatidylcholine was hydrated in presence of CHOL and CE, magic-angle-sampling nuclear magnetic resonance revealed liquid-crystalline CHOL/phosphatidylcholine multilayers with approximately an equal molar ratio of CHOL/phosphatidylcholine. Excess CHOL existed in the monohydrate crystalline form, and CE in separate oil or crystalline phases, depending on the temperature. The magic-angle-sampling nuclear magnetic resonance protocol for identifying different lipid phases was applied to intact (ex vivo) atherosclerotic plaques of cholesterol-fed rabbits. Liquid, liquid-crystalline, and solid phases of CE were characterized. Images FIGURE 2 PMID:8913623

  4. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    SciTech Connect

    Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D.

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  5. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR

    PubMed Central

    Lange, Sascha; Franks, W. Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A.; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-01-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA–adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  6. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Skemer, A. J.; Hinz, P. M.; Desidera, S.; Esposito, S.; Gratton, R.; Marzari, F.; Skrutskie, M. F.; Biller, B. A.; Defrère, D.; Bailey, V. P.; Leisenring, J. M.; Apai, D.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Claudi, R. U.; Close, L. M.; Crepp, J. R.; De Rosa, R. J.; Eisner, J. A.; Fortney, J. J.; Henning, T.; Hofmann, K.-H.; Kopytova, T. G.; Males, J. R.; Mesa, D.; Morzinski, K. M.; Oza, A.; Patience, J.; Pinna, E.; Rajan, A.; Schertl, D.; Schlieder, J. E.; Su, K. Y. L.; Vaz, A.; Ward-Duong, K.; Weigelt, G.; Woodward, C. E.

    2015-04-01

    Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 μm), including their system architectures. Aims: We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods: We use observations of HR 8799 and the Θ1 Ori C field obtained during the same run in October 2013. Results: We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 ± 0.012 mas/pix and -0.430 ± 0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1'' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT

  7. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  8. Analysis of Radiation Induced Degradation in FPC-461 Fluoropolymers by Variable Temperature Multinuclear NMR

    SciTech Connect

    Chinn, S C; Wilson, T S; Maxwell, R S

    2004-10-27

    Solid state nuclear magnetic resonance techniques have been used to investigate aging mechanisms in a vinyl chloride:chlorotrifluoroethylene copolymer, FPC-461, due to exposure to {gamma}-radiation. Solid state {sup 1}H MAS NMR spectra revealed structural changes of the polymer upon irradiation under both air and nitrogen atmospheres. Considerable degradation is seen with {sup 1}H NMR in the vinyl chloride region of the polymer, particularly in the samples irradiated in air. {sup 19}F MAS NMR was used to investigate speciation in the chlorotrifluoroethylene blocks, though negligible changes were seen. {sup 1}H and {sup 19}F NMR at elevated temperature revealed increased segmental mobility and decreased structural heterogeneity within the polymer, yielding significant resolution enhancement over room temperature solid state detection. The effects of multi-site exchange are manifest in both the {sup 1}H and {sup 19}F NMR spectra as a line broadening and change in peak position as a function of temperature.

  9. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  10. An electromagnetic PIC code on the MasPar

    SciTech Connect

    MacNeice, P.

    1993-12-31

    A 3D electromagnetic particle-in-cell code has been rewritten to run on the MasPar. The original code; known as TRISTAN which was written by Oscar Buneman was rewritten in MPL and its data structure altered to suit the MasPar architecture and exploit the fully local property of the algorithm. We discuss the significant issues associated with porting the code and present a comparative analysis of the code run times on the MasPar and on the CRAY YMP and C90. Results of a simulation of the interaction of the solar wind with the earth`s magnetosphere are shown.

  11. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb).

  12. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb). PMID:27245403

  13. Advanced NMR approaches in the characterization of coal. [Quarterly] report No. 9

    SciTech Connect

    Maciel, G.E.

    1992-12-31

    A considerable effort in this project during the past few months has been focussed on the development of {sup 1}H and {sup 13}C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A {sup 13}C MAS imaging probe and a {sup 1}H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The {sup 1}H system has already produced promising preliminary results, which are briefly described in this report.

  14. The evaluation of different MAS techniques at low spinning rates in aqueous samples and in the presence of magnetic susceptibility gradients

    NASA Astrophysics Data System (ADS)

    Zhi Hu, Jian; Wind, Robert A.

    2002-11-01

    It was recently demonstrated that the nuclear magnetic resonance (NMR) linewidths for stationary biological samples are dictated mainly by magnetic susceptibility gradients, and that phase-altered spinning sideband (PASS) and phase-corrected magic angle turning (PHORMAT) solid-state NMR techniques employing slow and ultra-slow magic angle spinning (MAS) frequencies can be used to overcome the static susceptibility broadening to yield high-resolution, spinning sideband (SSB)-free 1H NMR spectra [Magn. Reson. Med. 46 (2001) 213; 47 (2002) 829]. An additional concern is that molecular diffusion in the presence of the susceptibility gradients may limit the minimum useful MAS frequency by broadening the lines and reducing SSB suppression at low spinning frequencies. In this article the performance of PASS, PHORMAT, total sideband suppression (TOSS), and standard MAS techniques were evaluated as a function of spinning frequency. To this end, 300 MHz (7.05 T) 1H NMR spectra were acquired via PASS, TOSS, PHORMAT, and standard MAS NMR techniques for a 230-μm-diameter spherical glass bead pack saturated with water. The resulting strong magnetic susceptibility gradients result in a static linewidth of about 3.7 kHz that is larger than observed for a natural biological sample, constituting a worst-case scenario for examination of susceptibility broadening effects. Results: (I) TOSS produces a distorted centerband and fails in suppressing the SSBs at a spinning rate below ˜1 kHz. (II) Standard MAS requires spinning speeds above a few hundred Hz to separate the centerband from the SSBs. (III) PASS produces nearly SSB-free spectra at spinning speeds as low as 30 Hz, and is only limited by T2-induced signal losses. (IV) With PHORMAT, a SSB-free isotropic projection is obtained at any spinning rate, even at an ultra-slow spinning rate as slow as 1 Hz. (V) It is found empirically that the width of the isotropic peak is proportional to F- x, where F is the spinning frequency, and x

  15. The thymus of the hairless rhino-j (hr/hr-j) mice

    PubMed Central

    SAN JOSE, I.; GARCÍA-SUÁREZ, O.; HANNESTAD, J.; CABO, R.; GAUNA, L.; REPRESA, J.; VEGA, J. A.

    2001-01-01

    The hairless (hr) gene is expressed in a large number of tissues, primarily the skin, and a mutation in the hr gene is responsible for the typical cutaneous phenotype of hairless mice. Mutant hr mouse strains show immune defects involving especially T cells and macrophages, as well as an age-related immunodeficiency and an accelerated atrophy of the thymus. These data suggest that the hr mutation causes a defect of this organ, although hr transcripts have not been detected in fetal or adult mice thymus. The present study analyses the thymus of young (3 mo) and adult (9 mo) homozygous hr-rh-j mice (a strain of hairless mice) by means of structural techniques and immunohistochemistry to selectively identify thymic epithelial cells, dendritic cells, and macrophages. There were structural alterations in the thymus of both young and adult rh-rh-j mice, which were more severe in older animals. These alterations consisted of relative cortical atrophy, enlargement of blood vessels, proliferation of perivascular connective tissue, and the appearance of cysts. hr-rh-j mice also showed a decrease in the number of epithelial and dendritic cells, and macrophages. Taken together, present results strongly suggest degeneration and accelerated age-dependent regression of the thymus in hr-rh-j mice, which could explain at least in part the immune defects reported in hairless mouse strains. PMID:11327202

  16. Journeys on the H-R diagram

    SciTech Connect

    Kaler, J.B.

    1988-05-01

    The evolution of various types of stars along the H-R diagram is discussed. Star birth and youth is addressed, and the events that occur due to core contraction, shell burning, and double-shell burning are described. The evolutionary courses of planetary nebulae, white dwarfs, and supernovas are examined.

  17. Matching Effective HR Practices with Competitive Strategy.

    ERIC Educational Resources Information Center

    Schuler, Randall S.; And Others

    1987-01-01

    Examines links between three competitive strategies (cost reduction, quality improvement, and innovation) and human resources (HR) practices. Describes a framework for ensuring that the two are made compatible and illustrates the process by showing how one $20 million business wrestled with these compatibility issues. (CH)

  18. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2

  19. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  20. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  1. HR 7275 - A new variable star

    NASA Technical Reports Server (NTRS)

    Fried, R. E.; Lovell, L. P.; Krisciunas, K.; Chamblis, C. R.; Detterline, P. K.; Landis, H. J.; Louth, H.; Eaton, J. A.; Hall, D. S.; Henry, G. W.

    1982-01-01

    Three years of photometry in V and B of the UBV system are presented to confirm the suspicion of Herbst (1973) that HR 7275 is a variable star. The photometry is used to derive the photometric period, which proves to be about 3% shorter than the spectroscopically determined optical period of 28.59 d. Total variation observed during the three years was 0.22 m in the V, and the light curve was always asymmetrical.

  2. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  3. Instability Regions in the Upper HR Diagram

    NASA Technical Reports Server (NTRS)

    deJager, Cornelis; Lobel, Alex; Nieuwenhuijzen, Hans; Stothers, Richard; Hansen, James E. (Technical Monitor)

    2001-01-01

    The following instability regions for blueward evolving supergiants are outlined and compared: (1) Areas in the Hertzsprung-Russell(HR) diagram where stars are dynamically unstable. (2) Areas where the effective acceleration in the upper part of the photospheres is negative, hence directed outward. (3) Areas where the sonic points of the stellar wind (Where wind velocity = sound velocity) are situated inside the photospheres, at a level deeper than tau(sub Ross) = 0.01. We compare the results with the positions of actual stars in the HR diagram and we find evidence that the recent strong contraction of the yellow hypergiant HR8752 was initiated in a period during which (g(sub eff)) is less than 0, whereupon the star became dynamically unstable. The instability and extreme shells around IRC+10420 are suggested to be related to three factors: (g(sub eff)) is less than 0; the sonic point is situated inside the photosphere; and the star is dynamically unstable.

  4. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  5. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  6. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  7. THE CHARA ARRAY ANGULAR DIAMETER OF HR 8799 FAVORS PLANETARY MASSES FOR ITS IMAGED COMPANIONS

    SciTech Connect

    Baines, Ellyn K.; White, Russel J.; Jones, Jeremy; Boyajian, Tabetha; McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D.; Riedel, Adric R.; Huber, Daniel; Ireland, Michael; Von Braun, Kaspar; Ridgway, Stephen T.

    2012-12-10

    HR 8799 is an hF0 mA5 {gamma} Doradus-, {lambda} Bootis-, Vega-type star best known for hosting four directly imaged candidate planetary companions. Using the CHARA Array interferometer, we measure HR 8799's limb-darkened angular diameter to be 0.342 {+-} 0.008 mas (an error of only 2%). By combining our measurement with the star's parallax and photometry from the literature, we greatly improve upon previous estimates of its fundamental parameters, including stellar radius (1.44 {+-} 0.06 R{sub Sun }), effective temperature (7193 {+-} 87 K, consistent with F0), luminosity (5.05 {+-} 0.29 L{sub Sun }), and the extent of the habitable zone (HZ; 1.62-3.32 AU). These improved stellar properties permit much more precise comparisons with stellar evolutionary models, from which a mass and age can be determined, once the metallicity of the star is known. Considering the observational properties of other {lambda} Bootis stars and the indirect evidence for youth of HR 8799, we argue that the internal abundance, and what we refer to as the effective abundance, is most likely near solar. Finally, using the Yonsei-Yale evolutionary models with uniformly scaled solar-like abundances, we estimate HR 8799's mass and age considering two possibilities: 1.516{sup +0.038}{sub -0.024} M{sub Sun} and 33{sup +7}{sub -13.2} Myr if the star is contracting toward the zero-age main sequence or 1.513{sup +0.023}{sub -0.024} M{sub Sun} and 90{sup +381}{sub -50} Myr if it is expanding from it. This improved estimate of HR 8799's age with realistic uncertainties provides the best constraints to date on the masses of its orbiting companions, and strongly suggests they are indeed planets. They nevertheless all appear to orbit well outside the HZ of this young star.

  8. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  9. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions. PMID:26857803

  10. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  11. NMR study of crystallization in MgO-CaO-SiO 2-P 2O 5 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Lan; Yue, Yong; Ye, Chao-Hui; Guo, Li-Ping; Lei, Jia-Heng

    1998-08-01

    29Si and 31P magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) measurements were employed to investigate crystallization in MgO-CaO-SiO 2-P 2O 5 bioglass-ceramics. The results suggest that wollastonite (β-CaSiO 3) is separated as a new crystalline phase, corresponding to the appearance of a sharp signal in the 29Si MAS NMR spectra, while oxyapatite (Ca 10(PO 4) 6O) forms in the process of the order of the phosphorus-rich phases increasing as a whole, corresponding to the gradual narrowing of 31P MAS NMR spectra. ZnO can make the glass stable and difficult to crystallize at a low temperature, while at a high temperature, ZnO can participate in the crystallization of β-CaSiO 3 and promote it.

  12. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  13. Conformation and topology of diacylglycerol kinase in E.coli membranes revealed by solid-state NMR spectroscopy.

    PubMed

    Chen, Yanke; Zhang, Zhengfeng; Tang, Xinqi; Li, Jianping; Glaubitz, Clemens; Yang, Jun

    2014-05-26

    Solid-state NMR is a powerful tool for studying membrane proteins in a native-like lipid environment. 3D magic angle spinning (MAS) NMR was employed to characterize the structure of E.coli diacylglycerol kinase (DAGK) reconstituted into its native E.coli lipid membranes. The secondary structure and topology of DAGK revealed by solid-state NMR are different from those determined by solution-state NMR and X-ray crystallography. This study provides a good example for demonstrating the influence of membrane environments on the structure of membrane proteins.

  14. Characterizing HR 3549 B using SPHERE

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Vigan, A.; D'Orazi, V.; Ginski, C.; Desidera, S.; Bonnefoy, M.; Gratton, R.; Langlois, M.; Marzari, F.; Messina, S.; Antichi, J.; Biller, B.; Bonavita, M.; Cascone, E.; Chauvin, G.; Claudi, R. U.; Curtis, I.; Fantinel, D.; Feldt, M.; Garufi, A.; Galicher, R.; Henning, Th.; Incorvaia, S.; Lagrange, A.-M.; Millward, M.; Perrot, C.; Salasnich, B.; Scuderi, S.; Sissa, E.; Wahhaj, Z.; Zurlo, A.

    2016-10-01

    Aims: In this work, we characterize the low-mass companion of the A0 field star HR 3549. Methods: We observed HR 3549B in imaging mode with the near-infrared branch (IFS and IRDIS) of SPHERE at the VLT, with IFS in YJ mode and IRDIS in the H band. We also acquired a medium-resolution spectrum with the IRDIS long-slit spectroscopy mode. The data were reduced using the dedicated SPHERE GTO pipeline, which is custom-designed for this instrument. We employed algorithms such as PCA and TLOCI to reduce the speckle noise. Results: The companion was clearly visible with both IRDIS and IFS. We obtained photometry in four different bands and also the astrometric position for the companion. Based on our astrometry, we confirm that it is a bound object and set constraints on its orbit. Although several uncertainties still remain, we estimate an age of ~100-150 Myr for this system, yielding a most probable mass for the companion of 40-50 MJup and Teff ~ 2300-2400 K. Compared with template spectra, this points to a spectral type between M9 and L0 for the companion, commensurate with its position on the color-magnitude diagram.

  15. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs.

  16. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Cross ambiguity functions on the MasPar MP-2

    SciTech Connect

    Carlson, D.A.; Pryor, D.V.; Frock, C.K.

    1995-12-01

    In a signal processing environment, cross ambiguity functions are often used to detect when one signal is a time and/or frequency shift of another. They consist of multiple cross-correlations, which can be computed efficiently using complex valued FFTs. This paper discusses the implementation of cross ambiguity functions on the MasPar MP-2, a SIMD processor array. Two different implementations are developed. The first computes each cross ambiguity function serially, using FFT code that parallelizes across the complete set of processors. The second uses the MasPar IORAM to realign the data so that the cross ambiguity functions can be computed in parallel. In this case, multiple FFTs are executed in parallel on subsets of the processors, which lowers the overall amount of communication required.

  18. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR.

    PubMed

    Matsuki, Yoh; Nakamura, Shinji; Fukui, Shigeo; Suematsu, Hiroto; Fujiwara, Toshimichi

    2015-10-01

    Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4-12 kHz) at cryogenic temperatures (T=35-120 K) for over a week without consuming helium at a cost for electricity of 16 kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40 K and B0=16.4 T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100 K.

  19. Commercial facility site selection simulating based on MAS

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Li, Qingquan; Zheng, Guizhou

    2008-10-01

    The location of commercial facility decides the benefit of the operator to a large degree. Existing location methods can express the static relationships between site selection result and location factors, but there still are some limites when express the dynamic and uncertain relationship between them. Hence, a dynamic, stochastic and forecastable location model should be built which can introduce the customer's behavior into the model and combine the macro pattern and micro spatial interaction. So the authors proposes Geosim-LM based on MAS. Geosim-LM has 3 kinds of agents, CustAgent, SiteAgent and GovAgent. They represent the customers, commercial fercilities and government. The land type, land price and traffic are the model environment. Then Geosim-LM is applied in the bank branches site evaluation and selection in Liwan district, Guangzhou. In existing bank branches site evaluation, there are 70% consistent in score grade between result of Geosim-LM after 200 round runing and actual rebust location. It proves the model is reliable and feasible. The conclusions can be get from the paper. MAS have advantages in location choice than existed methods. The result of Geosim-LM running can powerfully proves that building location model based on MAS is feasible.

  20. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    SciTech Connect

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  1. Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yan, Si; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-01-01

    CONSPECTUS In living organisms, biological molecules often organize into multi-component complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic-resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past ten years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and non-uniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein

  2. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  3. An advanced NMR protocol for the structural characterization of aluminophosphate glasses.

    PubMed

    van Wüllen, Leo; Tricot, Grégory; Wegner, Sebastian

    2007-10-01

    In this work a combination of complementary advanced solid-state nuclear magnetic resonance (NMR) strategies is employed to analyse the network organization in aluminophosphate glasses to an unprecedented level of detailed insight. The combined results from MAS, MQMAS and (31)P-{(27)Al}-CP-heteronuclear correlation spectroscopy (HETCOR) NMR experiments allow for a detailed speciation of the different phosphate and aluminate species present in the glass. The interconnection of these local building units to an extended three-dimensional network is explored employing heteronuclear dipolar and scalar NMR approaches to quantify P-O-Al connectivity by (31)P{(27)Al}-heteronuclear multiple quantum coherence (HMQC), -rotational echo adiabatic passage double resonance (REAPDOR) and -HETCOR NMR as well as (27)Al{(31)P}-rotational echo double resonance (REDOR) NMR experiments, complemented by (31)P-2D-J-RESolved MAS NMR experiments to probe P-O-P connectivity utilizing the through bond scalar J-coupling. The combination of the results from the various NMR approaches enables us to not only quantify the phosphate units present in the glass but also to identify their respective structural environments within the three-dimensional network on a medium length scale employing a modified Q notation, Q(n)(m),(AlO)(x), where n denotes the number of connected tetrahedral phosphate, m gives the number of aluminate species connected to a central phosphate unit and x specifies the nature of the bonded aluminate species (i.e. 4, 5 or 6 coordinate aluminium).

  4. UVBY Photometry of the Magnetic Chemically Peculiar Stars HR 1297, 36 Aurigae, and HR 2722 and the Nonmagnetic Chemically Peculiar Stars HR 1576 and alpha CANCRI

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Brunhouse, Eric F.

    1998-11-01

    Differential Strömgren uvby photometric observations from the Four College Automated Photoelectric Telescope are presented for the magnetic CP stars HR 1297, 36 Aur, and HR 2722 and the nonmagnetic CP stars HR 1576 and alpha Cnc. Both the moderately rotating HR 1576, a mercury-manganese star, and alpha Cnc, a metallic-line star, are nonvariable. For HR 1297 we refined Winzer's period to 1.06457 days. Our period of 14.366 days for 36 Aur is an alias of Winzer's period and is in keeping with the sharp-lined nature of this star. We found a more accurate period of 2.31523 days for the low-amplitude variable HR 2722.

  5. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  6. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  7. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  8. VizieR Online Data Catalog: HR 8799e and HR 8799d spectra (Zurlo+, 2016)

    NASA Astrophysics Data System (ADS)

    Zurlo, A.; Vigan, A.; Galicher, R.; Maire, A.-L.; Mesa, D.; Gratton, R.; Chauvin, G.; Kasper, M.; Moutou, C.; Bonnefoy, M.; Desidera, S.; Abe, L.; Apai, D.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Beuzit, J.-L.; Blancard, P.; Boccaletti, A.; Cantalloube, F.; Carle, M.; Cascone, E.; Charton, J.; Claudi, R. U.; Costille, A.; de Caprio, V.; Dohlen, K.; Dominik, C.; Fantinel, D.; Feautrier, P.; Feldt, M.; Fusco, T.; Gigan, P.; Girard, J. H.; Gisler, D.; Gluck, L.; Gry, C.; Henning, T.; Hugot, E.; Janson, M.; Jaquet, M.; Lagrange, A.-M.; Langlois, M.; Llored, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Mawet, D.; Meyer, M. R.; Milli, J.; Moeller-Nilsson, O.; Mouillet, D.; Origne, A.; Pavlov, A.; Petit, C.; Puget, P.; Quanz, S. P.; Rabou, P.; Ramos, J.; Rousset, G.; Roux, A.; Salasnich, B.; Salter, G.; Sauvage, J.-F.; Schmid, H. M.; Soenke, C.; Stadler, E.; Suarez, M.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Wildi, F.; Antichi, J.

    2015-11-01

    The files contain the wavelength in micrometers in the first column, the flux in W/m2/mum in the second column and the corresponding error in the third. We refer to the text for more informations /Users/alice/paper_hr8799/readme.txt. Any further question can be addressed to alice.zurlo@mail.udp.cl (2 data files).

  9. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  10. NMR studies of metalloproteins.

    PubMed

    Li, Hongyan; Sun, Hongzhe

    2012-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has long been used as an invaluable tool for structure and dynamic studies of macromolecules. Here we focus on the application of NMR spectroscopy in characterization of metalloproteins, including structural studies and identification of metal coordination spheres by hetero-/homo-nuclear metal NMR spectroscopy. Paramagnetic NMR as well as (13)C directly detected protonless NMR spectroscopy will also be addressed for application to paramagnetic metalloproteins. Moreover, these techniques offer great potential for studies of other non-metal binding macromolecules.

  11. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    PubMed

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-18

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.

  12. NMR methods in combinatorial chemistry.

    PubMed

    Shapiro, M J; Wareing, J R

    1998-06-01

    The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.

  13. Solid-State NMR Identification and Quantification of Newly Formed Aluminosilicate Phases in Weathered Kaolinite Systems

    SciTech Connect

    Crosson, Garry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary K.; O'Day, Peggy A.; Mueller, Karl T.

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3 -, 1 mol kg-1 of OH-, and pH ~13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative

  14. Réunion publique HR

    ScienceCinema

    None

    2016-07-12

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie Catherin

  15. Biomolecular solid state NMR with magic-angle spinning at 25 K

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 liters/hour of liquid helium, while the 4 mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed. PMID:18922715

  16. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

  17. The corona of HD 223460 (HR 9024)

    NASA Astrophysics Data System (ADS)

    Gondoin, P.

    2003-10-01

    HD 223460 (HR 9024), a chromospherically active late-type giant with a high X-ray luminosity, was observed by the XMM-Newton space observatory. Series of lines of highly ionized Fe and several Lyman lines of hydrogen-like ions and triplet lines of helium-like ions are visible in the reflection grating spectra, most notably from O and Ne. Analysis results suggest a scenario where the corona of HD 223460 is dominated by large magnetic structures similar in size to interconnecting loops between solar active regions but significantly hotter. The surface area coverage of these active regions may approach up to 30%. A hypothesis is that the interaction of these structures themselves induces a flaring activity on a small scale not visible in the EPIC light curves that is responsible for heating HD 223460 plasma to coronal temperatures of T >=107 K. The intense X-ray activity of HD 223460 is related to its evolutionary position at the bottom of the red giant branch. It is anticipated that its rotation will spin down in the future with the effect of decreasing its helicity-related, dynamo-driven activity and suppressing large-scale magnetic structures in its corona.

  18. NMR study of ferroelastic phase transition of tetramethylammonium tetrabromocobaltate

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Sun Ha

    2016-09-01

    Static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments were carried out on 1H, 13C, and 14N nuclei in order to understand the structural changes of the N(CH3)4 groups in [N(CH3)4]2CoBr4 near the ferroelastic phase transition temperature TC. The two chemically inequivalent N(CH3)4 groups were distinguished using 13C cross-polarization/(CP)MAS and 14N static NMR. The changes in chemical shifts, line intensities, and the spin-lattice relaxation time near TC can be correlated with the changing structural geometry, which underlies the phase transition. The 14N NMR spectra indicated a crystal symmetry change at TC, which is related to the ferroelastic domain with different orientations of the N(CH3)4 groups. The ferroelastic domain walls were confirmed by optical polarizing microscopy, and the wall orientations were described by the Sapriel theory. The transition to the ferroelastic phase was found to be related to the orientational ordering of the N(CH3)4 groups.

  19. Multinuclear NMR studies of relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua

    Multinuclear NMR of 93Nb, 45Sc, and 207Pb has been carried out to study the structure, disorder, and dynamics of a series of important solid solutions: perovskite relaxor ferroelectric materials (1-x) Pb(Mg1/3Nb 2/3)O3-x Pb(Sc1/2Nb1/2)O 3 (PMN-PSN). 93Nb NMR investigations of the local structure and cation order/disorder are presented as a function of PSN concentration, x. The superb fidelity and accuracy of 3QMAS allows us to make clear and consistent assignments of spectral intensities to the 28 possible nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb), where each number ranges from 0 to 6 and their sum is 6. For most of the 28 possible nBn configurations, isotropic chemical shifts and quadrupole product constants have been extracted from the data. The seven configurations with only larger cations, Mg 2+ and Sc3+ (and no Nb5+) are assigned to the seven observed narrow peaks, whose deconvoluted intensities facilitate quantitative evaluation of, and differentiation between, different models of B-site (chemical) disorder. The "completely random" model is ruled out and the "random site" model is shown to be in qualitative agreement with the NMR experiments. To obtain quantitative agreement with observed NMR intensities, the random site model is slightly modified by including unlike-pair interaction energies. To date, 45Sc studies have not been as fruitful as 93Nb NMR because the resolution is lower in the 45Sc spectra. The lower resolution of 45Sc spectra is due to a smaller span of isotropic chemical shift (40 ppm for 45Sc vs. 82 ppm for 93Nb) and to the lack of a fortuitous mechanism that simplifies the 93Nb spectra; for 93Nb the overlap of the isotropic chemical shifts of 6-Sc and 6-Nb configurations results in the alignment of all the 28 configurations along only seven quadrupole distribution axes. Finally we present variable temperature 207Pb static, MAS, and 2D-PASS NMR studies. Strong linear correlations between isotropic and anisotropic chemical

  20. The hot white-dwarf companions of HR 1608, HR 8210, and HD 15638

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne; Simon, Theodore; Bergeron, P.

    1993-01-01

    We have obtained low-dispersion IUE spectra of the late-type stars HD 15638 (F3 V), HR 1608 (=63 Eridani, KO IV), and HR 8210 (A8m). Each of these stars had been detected as a strong EUV source with the Wide Field Camera aboard the ROSAT satellite. The short-wavelength IUE spectrum of each star reveals the presence of a hot white-dwarf companion. We have fit the Lyman-alpha profile and UV continuum of each white dwarf using pure hydrogen models. The excellent fit of the data to the models provides confirmation of the Finley and Koester absolute calibration of the SWP camera of IUE. The UV data alone are insufficient to constrain the model gravity, but an additional constraint is provided by the photometric distance to the late-type primary. The most interesting of the three white dwarfs is the companion to HR 8210 for which our results imply a mass of 1.15 +0.05/-0.15 solar mass. This result is in good agreement with the lower limit on the mass derived from the spectroscopic orbit (greater than 1.1 solar mass), provided that the inclination is close to 90 deg.

  1. Milli-Arcsecond (MAS) Imaging of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Oktem, Figen S.; Kamalabadi, Farzad; O'Neill, John; Novo-Gradac, Anne-Marie; Daw, Adrian N.; Rabin, Douglas M.

    2016-05-01

    Dissipation in the solar corona is believed to occur in extremely thin current sheets of order 1-100 km. Emission from these hot but thin current sheets should be visible in coronal EUV emission lines. However, this spatial scale is far below the resolution of existing imaging instruments, so these dissipation sites have never been observed individually. Conventional optics cannot be manufactured with sufficient surface figure accuracy to obtain the required spatial resolution in the extreme-ultraviolet where these hot plasmas radiate. A photon sieve, a diffractive imaging element similar to a Fresnel zone plate, can be manufactured to provide a few milli-arcsec (MAS) resolution, with much more readily achievable tolerances than with conventional imaging technology. Prototype photon sieve elements have been fabricated and tested in the laboratory. A full-scale ultra-high resolution instrument will require formation flying and computational image deconvolution. Significant progress has been made in overcoming these challenges, and some recent results in these areas are discussed. A simple design for a sounding rocket concept demonstration payload is presented that obtains 80 MAS (0.080 arcsec) imaging with a 100 mm diameter photon sieve to image Fe XIV 334 and Fe XVI 335. These images will show the structure of the corona at a resolution never before obtained, and they will also allow a study of the temperature structure in the dissipation region.

  2. Pure shift NMR.

    PubMed

    Zangger, Klaus

    2015-04-01

    Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited resolution is a particular problem in proton NMR experiments, resulting in part from the limited proton chemical shift range (∼10 ppm) but even more from the splittings due to scalar coupling to nearby protons. "Pure shift" NMR spectroscopy (also known as broadband homonuclear decoupling) has been developed for disentangling overlapped proton NMR spectra. The resulting spectra are considerably simplified as they consist of single lines, reminiscent of proton-decoupled C-13 spectra at natural abundance, with no multiplet structure. The different approaches to obtaining pure shift spectra are reviewed here and several applications presented. Pure shift spectra are especially useful for highly overlapped proton spectra, as found for example in reaction mixtures, natural products and biomacromolecules.

  3. A combined deuterium NMR and quantum chemical investigation of inequivalent hydrogen bonds in organic solids.

    PubMed

    Webber, Renee; Penner, Glenn H

    2012-01-01

    Deuterium magic angle spinning (MAS) NMR spectroscopy and quantum chemical calculations are used to investigate organic solids in which inequivalent hydrogen bonds are present. The use of (2)H MAS allows one to measure the chemical shift, δ, quadrupolar coupling constant, C(Q), and asymmetry in the quadrupolar interaction, η(Q), for each type of hydrogen bond present in the system. Quantum chemical calculations of the magnetic shielding (σ, which can be related to δ) and the electric field gradient (EFG, which can be related to C(Q)) are compared to the experimental results and are discussed with respect to the relative strengths of the hydrogen bonds within each system.

  4. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-01

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR.

  5. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  6. NMR Studies of Heat-Induced Transitions in Structure and Cation Binding Environments of a Strontium-Saturated Swelling Mica

    SciTech Connect

    Bowers, Geoffrey M.; Davis, Michael C.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2007-12-03

    In this work we combined Al, Si, F, and Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to characterize the structure and interlayer cation environments in a strontium-saturated member of the swelling mica family before and after a heat induced collapse of the interlayer space.

  7. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  8. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  9. MODIS Airborne simulator (MAS) Final Report for CLASIC

    SciTech Connect

    Thomas Arnold; Steven Platnick

    2010-11-24

    The MAS was flown aboard the NASA ER-2 for the CLASIC field experiment, and for all data collected, provided calibrated and geolocated (Level-1B) radiance data for it’s 50 spectral bands (ranging in wavelength for 0.47 to 14.3 µm). From the Level-1B data, as directed in the Statement of Work, higher order (Level-2) data products were derived. The Level-2 products include: a) cloud optical thickness, b) cloud effective radius, c) cloud top height (temperature), d) cloud fraction, e) cloud phase products. Preliminary Level-1B and Level-2 products were provided during the field experiment (typically within one or two days of data collection). Final version data products were made available in December 2008 following considerable calibration analysis. Data collection, data processing (to Level-2), and discussion of the calibration work are summarized below.

  10. Anode consumption on a subsea X-mas tree

    SciTech Connect

    Lye, R.E.

    1998-12-31

    Anode consumption and coating breakdown on a X-mas tree installed at the Troll Field in the Norwegian North Sea was investigated after 5 years. A comparison with a spare tree and one tree being exposed for only 3--4 months was done. The epoxy coating has several blisters, in particular on stainless steel surfaces. Water inside the blisters has a pH of 13-14 indicating that the cathodic reaction occurs inside them. The anode dimensions indicate an overall anode consumption of approximately 20%, while the design allows 27% after 5 years. This indicates that the original design is quite conservative. If the design had been done according to present day design rules, the conservatism would be reduced; an overall anode consumption of 23% is then likely (still less than allowed 27%).

  11. Tumbling motions of NH2(CH3)2 ions in [NH2(CH3)2]2ZnCl4 studied using 1H MAS NMR and 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Kim, Nam Hee; Choi, Jae Hun; Lim, Ae Ran

    2014-12-01

    The structure and the phase transition temperatures of [NH2(CH3)2]2ZnCl4 were determined using X-ray diffraction and DSC, respectively. The temperature dependence of chemical shifts and the spin-lattice relaxation time T1ρ in the rotating frame were measured for the 1H and 13C nuclei in [NH2(CH3)2]2ZnCl4. From these results, it was observed that the structural change by chemical shifts does not occur with temperature. However, T1ρ for 1H and 13C in [NH2(CH3)2]2ZnCl4 showed a minimum, and it is apparent that both T1ρ values are governed by the same tumbling motions. The activation energies of tumbling motions for 1H and 13C are nearly the same owing to the connection between CH3 and NH2 ions in the [NH2(CH3)2]+ group.

  12. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  13. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).

  14. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  15. Elemental abundances of the B and A stars Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. D.

    1992-01-01

    Fine analyses of the B and A stars, Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 are performed. Although the data cover rather limited spectral regions, still useful results were obtained. The data were mostly obtained at the KPNO coude feed telescope with CCD TI No. 3, camera 5, and grating A. The He/H ratio of HR 4817 confirms the similarity of many abundance values with those of the peculiar Mn star 53 Tauri. For the most part Gamma Gem, 7 Sex, and HR 5780 have derived abundances similar to those of other normal sharp-lined stars of similar effective temperature.

  16. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  17. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  18. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  19. Professional Development of HR Practitioners--A Phenomenographic Study

    ERIC Educational Resources Information Center

    Bailey, Moira

    2015-01-01

    Purpose: The purpose of this paper is an investigation into the experiences of professional development of human resource (HR) practitioners in the North of Scotland, and the use of non-formal learning in that development. Design/methodology/approach: In-depth semi-structured interviews from a purposively selected sample of HR practitioners were…

  20. African American Accounting Majors and the 150-hr Requirement

    ERIC Educational Resources Information Center

    Booker, Quinton; Hill, Cecil L.; Wright, Carl

    2010-01-01

    The study provides information on African American accounting majors' views regarding 150-hr issues. The authors collected data from 152 students at two schools. Students at one school supported the requirement while those at the other school did not. However, students believed that the 150-hr requirement enhances the quality of certified public…

  1. Outsourcing HR Services: The Role of Human Resource Intermediaries

    ERIC Educational Resources Information Center

    Kock, Henrik; Wallo, Andreas; Nilsson, Barbro; Hoglund, Cecilia

    2012-01-01

    Purpose: In this article, the area of interest is an emerging type of organisation called human resource intermediaries (HRIs), which focus on delivering human resource (HR) services to public sector organisations and private companies. The purpose of this article is, thus, to explore HRIs as deliverers of HR services. More specifically, the…

  2. Efficient heteronuclear decoupling in MAS solid-state NMR using non-rotor-synchronized rCW irradiation.

    PubMed

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr

    2014-09-01

    We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. PMID:25123538

  3. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  4. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  5. 17O and 29Si NMR parameters of MgSiO3 phases from high-resolution solid-state NMR spectroscopy and first-principles calculations.

    PubMed

    Ashbrook, Sharon E; Berry, Andrew J; Frost, Daniel J; Gregorovic, Alan; Pickard, Chris J; Readman, Jennifer E; Wimperis, Stephen

    2007-10-31

    The 29Si and 17O NMR parameters of six polymorphs of MgSiO3 were determined through a combination of high-resolution solid-state NMR and first-principles gauge including projector augmented wave (GIPAW) formalism calculations using periodic boundary conditions. MgSiO3 is an important component of the Earth's mantle that undergoes structural changes as a function of pressure and temperature. For the lower pressure polymorphs (ortho-, clino-, and protoenstatite), all oxygen species in the 17O high-resolution triple-quantum magic angle spinning (MAS) NMR spectra were resolved and assigned. These assignments differ from those tentatively suggested in previous work on the basis of empirical experimental correlations. The higher pressure polymorphs of MgSiO3 (majorite, akimotoite, and perovskite) are stabilized at pressures corresponding to the Earth's transition zone and lower mantle, with perovskite being the major constituent at depths >660 km. We present the first 17O NMR data for these materials and confirm previous 29Si work in the literature. The use of high-resolution multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments allows us to resolve distinct oxygen species, and full assignments are suggested. The six polymorphs exhibit a wide variety of structure types, providing an ideal opportunity to consider the variation of NMR parameters (both shielding and quadrupolar) with local structure, including changes in coordination number, local geometry (bond distances and angles), and bonding. For example, we find that, although there is a general correlation of increasing 17O chemical shift with increasing Si-O bond length, the shift observed also depends upon the exact coordination environment.

  6. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. PMID:24347399

  7. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution.

  8. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  9. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    PubMed

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  10. Mas Oncogene Signaling and Transformation Require the Small GTP-Binding Protein Rac

    PubMed Central

    Zohn, Irene E.; Symons, Marc; Chrzanowska-Wodnicka, Magdalena; Westwick, John K.; Der, Channing J.

    1998-01-01

    The Mas oncogene encodes a novel G-protein-coupled receptor that was identified originally as a transforming protein when overexpressed in NIH 3T3 cells. The mechanism and signaling pathways that mediate Mas transformation have not been determined. We observed that the foci of transformed NIH 3T3 cells caused by Mas were similar to those caused by activated Rho and Rac proteins. Therefore, we determined if Mas signaling and transformation are mediated through activation of a specific Rho family protein. First, we observed that, like activated Rac1, Mas cooperated with activated Raf and caused synergistic transformation of NIH 3T3 cells. Second, both Mas- and Rac1-transformed NIH 3T3 cells retained actin stress fibers and showed enhanced membrane ruffling. Third, like Rac, Mas induced lamellipodium formation in porcine aortic endothelial cells. Fourth, Mas and Rac1 strongly activated the JNK and p38, but not ERK, mitogen-activated protein kinases. Fifth, Mas and Rac1 stimulated transcription from common DNA promoter elements: NF-κB, serum response factor (SRF), Jun/ATF-2, and the cyclin D1 promoter. Finally, Mas transformation and some of Mas signaling (SRF and cyclin D1 but not NF-κB activation) were blocked by dominant negative Rac1. Taken together, these observations suggest that Mas transformation is mediated in part by activation of Rac-dependent signaling pathways. Thus, Rho family proteins are common mediators of transformation by a diverse variety of oncogene proteins that include Ras, Dbl family, and G-protein-coupled oncogene proteins. PMID:9488437

  11. [Biologically active substances of cornelian cherry fruits (Cornus mas L.)].

    PubMed

    Perova, I B; Zhogova, A A; Poliakova, A V; Éller, K I; Ramenskaia, G V; Samylina, I A

    2014-01-01

    10 samples of fresh-frozen cornelian cherry fruits (Cornus mas L.), collected in the Tambov and the Caucasus regions, were investigated for the total amount and composition of the main biologically active substances (BAS): anthocyanins (AC), proanthocyanidins (OPC), dihydroxycinnamic acids (DHCA), iridoids, organic acids, mono- and disaccharides and antiradical activity in the DPPH-test in vitro. Total phenolics content determined by Folin-Ciocalteu method, was 150-400 mg/100 g fresh fruit weight. The OPC content, estimated by Bate-Smith method, varied from 20-25 mg/100 g of unripe cornelian cherries to 80-430 mg/100 g of mature cornelian cherries. Total AC amount evaluated by pH-differential spectrophotometry was minimal in unripe fruits (11,2 mg/100 g), and maximal in mature fruits (92,2 mg/100 g). Profile of individual AC was determined by HPLC with UV/Vis and ESI-TOF-MS detections. 3-galactosides of cyanidin (19,0-80,3%) and pelargonidin (15,1-75,6%) were found as main anthocyanins. An original methodology for iridoid determination based on HPLC with UV and ESI-TOF-MS detection was developed. The main iridoids were identified as loganic acid, loganin, sweroside and cornuside. Total iridoids content was 130-400 mg/100 g, and loganic acid was predominant in all samples (87,6-94,8%). Only minor amount of the DHCA derivatives (<10 mg/100 g) were found. The malic acid was predominant among organic acids, the total content of which varied from 0,4 to 2,8%. Relatively high amount of ascorbic acid (35-60 mg/100 g) was found. The carbohydrates profile of cornielian cherries was represented by fructose (2,2-3,8%) and glucose (2,5-7,0%). 70% water-ethanol extracts of Cornus mas fruits have showed pronounced antiradical activity in DPPH-test (470,5-932,0 mg TE/100 g). The data on specific minor BAS can be used in the standardization and evaluation of potential biological activity of extracts and dietary supplements based on the cornelian cherry fruits. PMID:25816631

  12. [Biologically active substances of cornelian cherry fruits (Cornus mas L.)].

    PubMed

    Perova, I B; Zhogova, A A; Poliakova, A V; Éller, K I; Ramenskaia, G V; Samylina, I A

    2014-01-01

    10 samples of fresh-frozen cornelian cherry fruits (Cornus mas L.), collected in the Tambov and the Caucasus regions, were investigated for the total amount and composition of the main biologically active substances (BAS): anthocyanins (AC), proanthocyanidins (OPC), dihydroxycinnamic acids (DHCA), iridoids, organic acids, mono- and disaccharides and antiradical activity in the DPPH-test in vitro. Total phenolics content determined by Folin-Ciocalteu method, was 150-400 mg/100 g fresh fruit weight. The OPC content, estimated by Bate-Smith method, varied from 20-25 mg/100 g of unripe cornelian cherries to 80-430 mg/100 g of mature cornelian cherries. Total AC amount evaluated by pH-differential spectrophotometry was minimal in unripe fruits (11,2 mg/100 g), and maximal in mature fruits (92,2 mg/100 g). Profile of individual AC was determined by HPLC with UV/Vis and ESI-TOF-MS detections. 3-galactosides of cyanidin (19,0-80,3%) and pelargonidin (15,1-75,6%) were found as main anthocyanins. An original methodology for iridoid determination based on HPLC with UV and ESI-TOF-MS detection was developed. The main iridoids were identified as loganic acid, loganin, sweroside and cornuside. Total iridoids content was 130-400 mg/100 g, and loganic acid was predominant in all samples (87,6-94,8%). Only minor amount of the DHCA derivatives (<10 mg/100 g) were found. The malic acid was predominant among organic acids, the total content of which varied from 0,4 to 2,8%. Relatively high amount of ascorbic acid (35-60 mg/100 g) was found. The carbohydrates profile of cornielian cherries was represented by fructose (2,2-3,8%) and glucose (2,5-7,0%). 70% water-ethanol extracts of Cornus mas fruits have showed pronounced antiradical activity in DPPH-test (470,5-932,0 mg TE/100 g). The data on specific minor BAS can be used in the standardization and evaluation of potential biological activity of extracts and dietary supplements based on the cornelian cherry fruits.

  13. Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state.

    PubMed

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2010-05-01

    HNCO/HNCACO type correlation experiments are an alternative for assignment of backbone resonances in extensively deuterated proteins in the solid-state, given the fact that line widths on the order of 14-17 Hz are achieved in the carbonyl dimension without the need of high power decoupling. The achieved resolution demonstrates that MAS solid-state NMR on extensively deuterated proteins is able to compete with solution-state NMR spectroscopy if proteins are investigated with correlation times tau(c) that exceed 25 ns. PMID:20232230

  14. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  15. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  16. NMR methods for studying the structure and dynamics of oncogenic and antihistaminic peptides in biomembranes.

    PubMed

    Sizun, Christina; Aussenac, Fabien; Grelard, Axelle; Dufourc, Erick J

    2004-02-01

    We present several applications of both wide-line and magic angle spinning (MAS) solid-state NMR of bicelles in which are embedded fragments of a tyrosine kinase receptor or enkephalins. The magnetically orientable bicelle membranes are shown to be of particular interest for studying the functional properties of lipids and proteins in a state that is very close to their natural environment. Quadrupolar, dipolar and chemical shielding interactions can be used to determine minute alterations of internal membrane dynamics and the orientation of peptides with respect to the membrane plane. MAS of bicelles can in turn lead to high-resolution proton spectra of hydrated membranes. Using deuterium-proton contrast methods one can then obtain pseudo-high-resolution proton spectra of peptides or proteins embedded in deuterated membranes and determine their atomic 3D structure using quasi-conventional liquid-state NMR methods. PMID:14745798

  17. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  18. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  19. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  20. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((≡SiO)4 Si) and Q(3) ((≡SiO)3 SiOH). Spin-lattice relaxation times T 1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell. PMID:23914072

  1. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    PubMed

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-01

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer. PMID:25584993

  2. Receptor MAS protects mice against hypothermia and mortality induced by endotoxemia.

    PubMed

    Souza, Laura L; Duchene, Johan; Todiras, Mihail; Azevedo, Luciano C P; Costa-Neto, Claudio M; Alenina, Natalia; Santos, Robson A; Bader, Michael

    2014-04-01

    The renin-angiotensin (Ang) system is involved in maintaining cardiovascular function by regulating blood pressure and electrolyte homeostasis. More recently, alternative pathways within the renin-angiotensin system have been described, such as the ACE-2/Ang-(1-7)/Mas axis, with opposite effects to the ones of the ACE/Ang-II/AT1 axis. Correspondingly, our previous work reported that Ang-(1-7) via its receptor Mas inhibits the mRNA expression of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α increased by lipopolysaccharide (LPS) in mouse peritoneal macrophages. These data led us to investigate the functional role of the Ang-(1-7)/Mas axis in an in vivo LPS model. In this work, we present evidence that Ang-(1-7) via Mas significantly reduced the LPS-increased production of circulating cytokines, such as IL-6, IL-12, and CXCL-1. This inhibitory effect was mediated by Mas because it was not detectable in Mas-deficient (Mas) mice. Accordingly, IL-6, CXCL-1, and CXCL-2 levels were higher after LPS treatment in the absence of Mas. Mas mice were less resistant to LPS-induced endotoxemia, their survival rate being 50% compared with 95% in wild-type mice. Telemetric analyses showed that Mas mice presented more pronounced LPS-induced hypothermia with a 3°C lower body temperature compared with wild-type mice. Altogether, our findings suggest that Ang-(1-7) and Mas inhibit LPS-induced cytokine production and hypothermia and thereby protect mice from the fatal consequences of endotoxemia. PMID:24430551

  3. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    PubMed

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.

  4. ASASSN-16hr Is a Type Ia SN Before Maximum

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-07-01

    We obtained a spectrum of the candidate supernova ASASSN-16hr/AT 2016eja (ATel #9270) with the SPRAT spectrograph mounted on the robotic 2m Liverpool Telescope at the Roque de los Muchachos observatory (La Palma).

  5. Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces

    PubMed Central

    Breen, Nicholas F.; Li, Kun; Olsen, Gregory L.; Drobny, Gary P.

    2011-01-01

    LKα14 is a 14 amino acid peptide with a periodic sequence of leucine and lysine residues consistent with an amphipathic α-helix. This “hydrophobic periodicity” has been found to result in an α-helical secondary structure at air-water interfaces and on both polar and non-polar solid polymer surfaces. In this paper the dynamics of LKα14 peptides, selectively deuterated at a single leucine and adsorbed onto polystyrene and carboxylated polystyrene beads, are studied using 2H Magic Angle Spinning (MAS) solid state NMR over a 100 degree temperature range. We first demonstrate the sensitivity enhancement possible with 2H MAS techniques, which in turn enables us to obtain high quality 2H NMR spectra for selectively deuterated peptides adsorbed onto solid polymer surfaces. An extensive literature shows that the dynamics of leucine side chains are sensitive to the local structural environment of the protein. Therefore the degree to which the dynamics of leucine side chains and the backbone of the peptide LKα14 are influenced by surface proximity and surface chemistry is studied as a function of temperature with 2H MAS NMR. It is found that the dynamics of the leucine side chains in LKα14 depend strongly upon the orientation of the polymer on the surface, which in turn depends on whether the LKα14 peptide adsorbs onto a polar or non-polar surface. 2H MAS line shapes therefore permit probes of surface orientation over a wide temperature range. PMID:21650191

  6. 48 CFR 538.270 - Evaluation of multiple award schedule (MAS) offers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Evaluation of multiple award schedule (MAS) offers. 538.270 Section 538.270 Federal Acquisition Regulations System GENERAL... and Administering Federal Supply Schedules 538.270 Evaluation of multiple award schedule (MAS)...

  7. Psychometric Comparison of the Motivation Assessment Scale (MAS) and the Questions about Behavioral Function (QABF)

    ERIC Educational Resources Information Center

    Koritsas, S.; Iacono, T.

    2013-01-01

    Background: The Motivation Assessment Scale (MAS) and the Questions About Behavioral Function (QABF) are frequently used to assess the learned function of challenging behaviour in people with intellectual disability (ID). The aim was to explore and compare the psychometric properties of the MAS and the QABF. Method: Seventy adults with ID and…

  8. An alternative solution for computer controlled tuning and matching of existing NMR probes.

    PubMed

    Koczor, Bálint; Sedyó, Inez; Rohonczy, János

    2015-10-01

    Tuning and matching of NMR probes is necessary for many fields of NMR application including temperature dependent NMR, thermoporometry and cryoporometry, or when significantly different types of samples are measured in automation using sample changers. Mismatch of the probe is an especially critical issue in the case of high magnetic fields, polar or ionic solvents, or extreme thermal conditions. Careful tuning is particularly important for quantitative NMR measurements. Manual tuning and matching of the NMR probe is not possible in the case of automated or remotely controlled measurements. Spectrometer manufacturers offer modern probes equipped with automatic tuning/matching mechanics, like Bruker ATM™, suitable for these experiments. The disadvantages of probes with built-in ATM™ are the significantly higher price, and the non-detachable and non-portable construction. Computer controlled tuning and matching is highly desirrable in solid state NMR since no industrial solution has been developed yet for MAS NMR probes. We present an alternative solution for computer controlled tuning and matching of existing Bruker probes. Building costs are significantly lower, since only commercially available components and ICs are used.

  9. An alternative solution for computer controlled tuning and matching of existing NMR probes.

    PubMed

    Koczor, Bálint; Sedyó, Inez; Rohonczy, János

    2015-10-01

    Tuning and matching of NMR probes is necessary for many fields of NMR application including temperature dependent NMR, thermoporometry and cryoporometry, or when significantly different types of samples are measured in automation using sample changers. Mismatch of the probe is an especially critical issue in the case of high magnetic fields, polar or ionic solvents, or extreme thermal conditions. Careful tuning is particularly important for quantitative NMR measurements. Manual tuning and matching of the NMR probe is not possible in the case of automated or remotely controlled measurements. Spectrometer manufacturers offer modern probes equipped with automatic tuning/matching mechanics, like Bruker ATM™, suitable for these experiments. The disadvantages of probes with built-in ATM™ are the significantly higher price, and the non-detachable and non-portable construction. Computer controlled tuning and matching is highly desirrable in solid state NMR since no industrial solution has been developed yet for MAS NMR probes. We present an alternative solution for computer controlled tuning and matching of existing Bruker probes. Building costs are significantly lower, since only commercially available components and ICs are used. PMID:26363581

  10. Live cell NMR.

    PubMed

    Freedberg, Darón I; Selenko, Philipp

    2014-01-01

    Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas "looking into cells" is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.

  11. A generic, computerized nuclear materials accountability system (NucMAS) and its layered products

    SciTech Connect

    Davis, Jr, J M

    1989-01-01

    NucMAS provides a material balance area with a computerized data management system for nuclear materials accountability. NucMAS is a generic application. It handles the data management and reporting functions for different processing facilities by storing all process-specific information as data rather than procedure. A NucMAS application is configured for each facility it supports. NucMAS and its layered products are compatible with three types of data clients. Core NucMAS has a screen-oriented user interface to support the accountability clerk as a client. Accountability clerks enter data from operating logs and laboratory analyses one to three days after actual processing. Layered products support process operators and automated systems as near-real-time and real-time data clients. The core and layered products use a data-driven approach which results in software that is configurable and maintainable. 3 refs., 5 figs.

  12. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  13. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  14. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  15. Structural Characterization of Humic Materials Using ^13C NMR Techniques: A Comparison of Solution- and Solid-State Methods

    NASA Astrophysics Data System (ADS)

    Clewett, Catherine; Alam, Todd; Osantowski, Eric; Pullin, Michael

    2011-10-01

    The analysis of the carbon type distribution and chemical structure of natural organic matter (NOM) by ^13C NMR spectroscopy is an important technique for understanding its origins and reactivity. While prior work has used solution-state NMR techniques, solid-state NMR has the potential to provide this information using less instrument time and sample manipulation, while providing an array of advanced filtering techniques. Analyses of four isolated humic materials with ^13C solid-state magic angle spinning (MAS) NMR techniques are described, including three commercially available samples and one fulvic acid sample isolated from the Rio Grande in New Mexico. This study demonstrates the utility of solid-state ^13C NMR for aquatic NOM structural characterization, comparing these results to the existing solution-state determinations. The solid-state ^13C MAS NMR results are used to determine % carbon distribution, estimates of elemental composition (%C, %H, %(O+N)), aromatic fraction (fa), nonprotonated aromatic fraction (faN), an estimate of aromatic cluster size, and ratio of sp^2 to sp^3 carbons. A Gaussian deconvolution method is introduced that allows for a detailed analysis of carbon type.

  16. Elemental abundances of the B and A stars. 2: Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. Davis

    1994-01-01

    We extend fine analyses of the B and A stars, gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 using additional spectroscopic data from the Kitt Peak National Observatory (KPNO) coude feed telescope with a TI CCD, camera 5, and grating A, and ATLAS9 model atmospheres. In addition we study HD 60825, which had colors similar to the FHB A stars, but was found to be a Population I star. HD 60825, as is gamma Gem, is a sharp-lined early-A star with nearly solar derived abundances. HR 5780 and 7 Sex are also examples of stars which for the most part have solar abundances. The newly derived abundances for HR 4817 reveal important differences with respect to 53 Tau, a somewhat similar HgMn star.

  17. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spin–echo, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  18. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    PubMed

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  19. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  20. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  1. OBSERVATIONS AND ORBITAL ANALYSIS OF THE GIANT WHITE DWARF BINARY SYSTEM HR 5692

    SciTech Connect

    Stefanik, Robert P.; Torres, Guillermo; Latham, David W.; Landsman, Wayne; Craig, Nathaniel; Murrett, James

    2011-05-15

    We report spectroscopic observations of the red giant star HR 5692, previously known to be a binary system both from other spectroscopic work and from deviations in the astrometric motion detected by the Hipparcos satellite. Earlier International Ultraviolet Explorer (IUE) observations had shown the presence of a hot white dwarf companion to the giant primary. We have combined our radial velocity observations with other existing measurements and with the Hipparcos intermediate astrometric data to determine a complete astrometric-spectroscopic orbital solution, providing the inclination angle for the first time. We also determine an improved parallax for the system of 10.12 {+-} 0.67 mas. We derive the physical properties of the primary, and with an estimate of its mass from stellar evolution models (1.84 {+-} 0.40 M{sub sun}), we infer the mass of the white dwarf companion to be M{sub WD} = 0.59 {+-} 0.12 M{sub sun}. An analysis of an IUE white dwarf spectrum, using our parallax, yields T{sub eff} = 30, 400 {+-} 780 K, log g = 8.25 {+-} 0.15, and a mass M{sub WD} = 0.79 {+-} 0.09 M{sub sun}, in marginal agreement with the dynamical mass.

  2. Modelling the inner debris disc of HR 8799

    NASA Astrophysics Data System (ADS)

    Contro, B.; Horner, J.; Wittenmyer, R. A.; Marshall, J. P.; Hinse, T. C.

    2016-11-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km s-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km s-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.

  3. Modelling the Inner Debris Disc of HR 8799

    NASA Astrophysics Data System (ADS)

    Contro, Bruna; Horner, Jonti; Wittenmyer, Rob; Marshall, Jonathan P.; Hinse, T. C.

    2016-08-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 kms-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 kms-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.

  4. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  5. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  6. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    PubMed

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  7. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  8. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    PubMed

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  9. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique.

  10. MasABK Proteins Interact with Proteins of the Type IV Pilin System to Affect Social Motility of Myxococcus xanthus

    PubMed Central

    Fremgen, Sarah; Williams, Amanda; Furusawa, Gou; Dziewanowska, Katarzyna; Settles, Matthew; Hartzell, Patricia

    2013-01-01

    Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP) components essential for social (S) gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK. PMID:23342171

  11. Multinuclear NMR approach to coal fly ash characterization

    SciTech Connect

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  12. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    PubMed

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  13. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  14. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole.

  15. Rh18 and hrS blood groups and antibodies.

    PubMed

    Moores, P

    1994-01-01

    Anti-hrS, also known as the Shabalala antibody, is unlikely to be found in unabsorbed human serum. The term 'anti-hrS, was devised by Shapiro in 1960 to describe the antibodies remaining in the absorbed serum after anti-Rh18 had been absorbed with R2R2 red cells. R2R2-absorbed anti-Rh18 (anti-hrS), although an interesting research tool, is therefore clinically irrelevant. Unabsorbed anti-Rh18, on the other hand, is a clinically significant antibody. It is compatible not only with Rh-'deleted' and Rhnull red cells, as described by Shapiro, but is also compatible with the red cells of numbers of Southern African Blacks and Coloureds (mixed race) who have Ro, Rou or R2r phenotypes. Anti-Rh18 causes haemolytic disease of the newborn and, when uncontaminated with other antibodies, is a further reagent for resolving Rh grouping problems.

  16. Rh18 and hrS blood groups and antibodies.

    PubMed

    Moores, P

    1994-01-01

    Anti-hrS, also known as the Shabalala antibody, is unlikely to be found in unabsorbed human serum. The term 'anti-hrS, was devised by Shapiro in 1960 to describe the antibodies remaining in the absorbed serum after anti-Rh18 had been absorbed with R2R2 red cells. R2R2-absorbed anti-Rh18 (anti-hrS), although an interesting research tool, is therefore clinically irrelevant. Unabsorbed anti-Rh18, on the other hand, is a clinically significant antibody. It is compatible not only with Rh-'deleted' and Rhnull red cells, as described by Shapiro, but is also compatible with the red cells of numbers of Southern African Blacks and Coloureds (mixed race) who have Ro, Rou or R2r phenotypes. Anti-Rh18 causes haemolytic disease of the newborn and, when uncontaminated with other antibodies, is a further reagent for resolving Rh grouping problems. PMID:8036793

  17. The fate of the solid matter orbiting HR 4796A

    NASA Technical Reports Server (NTRS)

    Jura, M.; Ghez, A. M.; White, Russell J.; Mccarthy, D. W.; Smith, R. C.; Martin, P. G.

    1995-01-01

    We have obtained optical spectra, 2 micrometers speckle images, and an upper limit to the 800 micrometers flux for HR 4796A, and optical spectra for its physical companion separated by 7.7 arcsecs, HR 4796B. We detect H-beta, H-gamma, and the calcium H and K lines in emission from HR 4796B; these data are consistent with the hypothesis that it is later than spectral type M2 and lies substantially above the main-sequence. From the location of HR 4796B on the H-R diagram, the estimated age of this star is 3 x 10(exp 6) yr, and assuming this age for the entire system, we find from our 2 micrometers speckle data that there is no close stellar companion to HR 4796A (M greater than 0.125 solar mass) between 11 and 120 AU from the star. From the IRAS and ground-based photometry, it seems that there is a hole in the dust distribution around HR 4796A with an inner radius of between approximately 40 and approximately 200 AU. The observed circumstellar dust grains, which lie at D greater than 40 AU from the star, are likely to be at least 3 micrometers in radius in order to be gravitationally bound to HR 4796A, if the circumstellar dust cloud is optically thin. Since they are larger than almost all interstellar grains, the circumstellar dust grains probably grew by coalescence. Because the existing grains at D greater than 40 AU have undergone measurable coalescence, it is possible that particles that presumably once existed at D less than 40 AU, where the collision times were shorter than at D greater than 40 AU, grew into macroscopic objects. A likely explanation for the dust hole is that there is a companion located at about half the inner radius of the dust hole, or between 20 and 100 AU from the star. If such a companion exists, it must have a mass less than 0.125 solar mass. Since grain coalescence has occurred, this putative companion possibly could be a planet.

  18. Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins

    PubMed Central

    Gopinath, T.; Mote, Kaustubh R.; Veglia, Gianluigi

    2013-01-01

    Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein preparations that are uniformly oriented (mechanically or magnetically) so that anisotropic NMR parameters, such as dipolar and chemical shift interactions, can be measured to determine structure and orientation of membrane proteins in lipid bilayers. Traditional sample preparations involving mechanically aligned lipids often result in short relaxation times which broaden the 15N resonances and encumber the manipulation of nuclear spin coherences. The introduction of lipid bicelles as membrane mimicking systems has changed this scenario, and the more favorable relaxation properties of membrane protein 15N and 13C resonances make it possible to develop new, more elaborate pulse sequences for higher spectral resolution and sensitivity. Here, we describe our recent progress in the optimization of O-ssNMR pulse sequences. We explain the theory behind these experiments, demonstrate their application to small and medium size proteins, and describe the technical details for setting up these new experiments on the new generation of NMR spectrometers. PMID:24160761

  19. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    NASA Technical Reports Server (NTRS)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  20. BOREAS Level-2 MAS Surface Reflectance and Temperature Images in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey (Editor); Lobitz, Brad; Spanner, Michael; Strub, Richard; Lobitz, Brad

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed aircraft data products they needed to compare and spatially extend point results. The MODIS Airborne Simulator (MAS) images, along with other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes biophysical parameter maps such as surface reflectance and temperature. Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-2 MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 navigation data in a MAS scan model. The data are provided in binary image format files.

  1. BOREAS Level-1B MAS Imagery At-sensor Radiance, Relative X and Y Coordinates

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Strub, Richard; Newcomer, Jeffrey A.; Ungar, Stephen

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the MODIS Airborne Simulator (MAS) images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-1b MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C-130 INS data in a MAS scan model. The data are provided in binary image format files.

  2. Multiple wavelength microwave observations of the RS Canum Venaticorum stars UX Arietis, HR 1099, HR 5110, and II Pegasi

    SciTech Connect

    Willson, R.F.; Lang, K.R.

    1987-01-01

    The variabilities, core size and magnetic field of the RS CVn star UX Arietis was measured with the VLA at pairs of frequencies near 1415 MHz and 4835 MHz on June 10, 1985. Data were also gathered on HR 1099, HR 5110 and II Peg. UX Arietis exhibited variability on time scales ranging from 30 sec to 1 hr at 4835 MHz, but no detectable variations at 1415 MHz. An upper limit of 900 billion cm was placed on the size of the core emitting region, which is estimated to have a magnetic field strength of 15 G. The 30 sec variations are attributed to absorption by thermal plasma between the G5 and K1 companions of the UX Arietis system. 37 references.

  3. Bumping HR: Giving Principals More Say over Staffing

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    In what may come as a surprise to many, principals have remarkably little control over who teaches in their schools. For the most part, the human resources (HR) department in a district's central office, not individual school principals, makes the final call about when to hire teachers, whom to hire and in which schools they are placed.…

  4. Discovery of a Low-mass Companion Around HR 3549

    NASA Astrophysics Data System (ADS)

    Mawet, D.; David, T.; Bottom, M.; Hinkley, S.; Stapelfeldt, K.; Padgett, D.; Mennesson, B.; Serabyn, E.; Morales, F.; Kuhn, J.

    2015-10-01

    We report the discovery of a low-mass companion to HR 3549, an A0V star surrounded by a debris disk with a warm excess detected by WISE at 22 μm (10σ significance). We imaged HR 3549 B in the L band with NAOS-CONICA, the adaptive optics infrared camera of the Very Large Telescope, in January 2013 and confirmed its common proper motion in 2015 January. The companion is at a projected separation of ≃80 AU and position angle of ≃157°, so it is orbiting well beyond the warm disk inner edge of r > 10 AU. Our age estimate for this system corresponds to a companion mass in the range 15–80 MJ, spanning the brown dwarf regime, and so HR 3549 B is another recent addition to the growing list of brown dwarf desert objects with extreme mass ratios. The simultaneous presence of a warm disk and a brown dwarf around HR 3549 provides interesting empirical constraints on models of the formation of substellar companions.

  5. DISCOVERY OF A LOW-MASS COMPANION AROUND HR 3549

    SciTech Connect

    Mawet, D.; David, T.; Bottom, M.; Hinkley, S.; Stapelfeldt, K.; Padgett, D.; Mennesson, B.; Serabyn, E.; Morales, F.; Kuhn, J.

    2015-10-01

    We report the discovery of a low-mass companion to HR 3549, an A0V star surrounded by a debris disk with a warm excess detected by WISE at 22 μm (10σ significance). We imaged HR 3549 B in the L band with NAOS-CONICA, the adaptive optics infrared camera of the Very Large Telescope, in January 2013 and confirmed its common proper motion in 2015 January. The companion is at a projected separation of ≃80 AU and position angle of ≃157°, so it is orbiting well beyond the warm disk inner edge of r > 10 AU. Our age estimate for this system corresponds to a companion mass in the range 15–80 M{sub J}, spanning the brown dwarf regime, and so HR 3549 B is another recent addition to the growing list of brown dwarf desert objects with extreme mass ratios. The simultaneous presence of a warm disk and a brown dwarf around HR 3549 provides interesting empirical constraints on models of the formation of substellar companions.

  6. HR as Partner: Building Strategic Partnerships on Campus

    ERIC Educational Resources Information Center

    Connally, Sam; Neuman, Dawn

    2006-01-01

    Human resources is in an excellent position in many institutions to initiate collaboration and cooperation with other campus departments. In this article, the leaders of the departments of HR and academic resources at the University of Nevada, Las Vegas, share their insights on the importance of partnership-building on campus and describe how a…

  7. An Ounce of Prevention: The Benefits of an HR Audit

    ERIC Educational Resources Information Center

    Seals, Brenda

    2011-01-01

    During her 13 years leading a school district human resources office, the author came to recognize that managing human capital is much more than recruiting, hiring, managing personnel records, and handling performance issues. In addition to implementing initiatives to increase the efficiency with which HR officers and staff perform those tasks,…

  8. HR Manager Leadership in Quality Improvement in a College Environment

    ERIC Educational Resources Information Center

    Sharabi, Moshe

    2010-01-01

    Purpose: The purpose of this paper is to present the influence of the human resource (HR) manager on the quality of service in an academic college, and the human resource management (HRM) outcomes of the process. Design/methodology/approach: The paper relates to a customer satisfaction survey. More than 120 questionnaires were completed by the…

  9. A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato

    PubMed Central

    Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity. PMID:25501819

  10. The Consistency of the Pandemic Simulations between the SEIR Model and the MAS Model

    NASA Astrophysics Data System (ADS)

    Toyosaka, Yuki; Hirose, Hideo

    There are two main methods for pandemic simulations: the SEIR model and the MAS model. The SEIR model can deal with simulations quickly for many homogeneous populations with simple ordinary differential equations; however, the model cannot accommodate many detailed conditions. The MAS model, the multi-agent simulation, can deal with detailed simulations under the many kinds of initial and boundary conditions with simple social network models. However, the computing cost will grow exponentially as the population size becomes larger. Thus, simulations in the large-scale model would hardly be realized unless supercomputers are available. By combining these two methods, we may perform the pandemic simulations in the large-scale model with lower costs. That is, the MAS model is used in the early stage of a pandemic simulation to determine the appropriate parameters to be used in the SEIR model. With these obtained parameters, the SEIR model may then be used. To investigate the validity of this combined method, we first compare the simulation results between the SEIR model and the MAS model. Simulation results of the MAS model and the SEIR model that uses the parameters obtained by the MAS model simulation are found to be close to each other.

  11. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    PubMed

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  12. Achievement of 1020MHz NMR.

    PubMed

    Hashi, Kenjiro; Ohki, Shinobu; Matsumoto, Shinji; Nishijima, Gen; Goto, Atsushi; Deguchi, Kenzo; Yamada, Kazuhiko; Noguchi, Takashi; Sakai, Shuji; Takahashi, Masato; Yanagisawa, Yoshinori; Iguchi, Seiya; Yamazaki, Toshio; Maeda, Hideaki; Tanaka, Ryoji; Nemoto, Takahiro; Suematsu, Hiroto; Miki, Takashi; Saito, Kazuyoshi; Shimizu, Tadashi

    2015-07-01

    We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra. PMID:25978708

  13. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  14. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors

    NASA Astrophysics Data System (ADS)

    Hisao, Grant S.; Harland, Michael A.; Brown, Robert A.; Berthold, Deborah A.; Wilson, Thomas E.; Rienstra, Chad M.

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  15. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    NASA Astrophysics Data System (ADS)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  16. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning.

    PubMed

    Scheidt, Holger A; Huster, Daniel

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological importance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  17. Community Schools: Hearing before the General Subcommittee on Education of the Committee on Education and Labor, House of Representatives, Ninety-Third Congress, First Session on H.R. 972, H.R. 6697, and H.R. 10049.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    This report contains hearings before the 93rd Congress on the Community School Center Development Act, contained in bills H.R. 972, H.R. 6697, and H.R. 10049. The purpose of the act is to provide recreational, educational, and a variety of other community and social services through the establishment of community schools. The report contains the…

  18. Multiple mean motion resonances in the HR 8799 planetary system

    NASA Astrophysics Data System (ADS)

    Goździewski, Krzysztof; Migaszewski, Cezary

    2014-06-01

    HR 8799 is a nearby star hosting at least four ˜10 mJup planets in wide orbits up to ˜70 au, detected through the direct, high-contrast infrared imaging. Large companions and debris discs reported interior to ˜10 au, and exterior to ˜100 au indicate massive protoplanetary disc in the past. The dynamical state of the HR 8799 system is not yet fully resolved, due to limited astrometric data covering tiny orbital arcs. We construct a new orbital model of the HR 8799 system, assuming rapid migration of the planets after their formation in wider orbits. We found that the HR 8799 planets are likely involved in double Laplace resonance, 1e:2d:4c:8b MMR. Quasi-circular planetary orbits are coplanar with the stellar equator and inclined by ˜25° to the sky plane. This best-fitting orbital configuration matches astrometry, debris disc models, and mass estimates from cooling models. The multiple mean motion resonance (MMR) is stable for the age of the star ˜160 Myr, for at least 1 Gyr unless significant perturbations to the N-body dynamics are present. We predict four configurations with the fifth hypothetical innermost planet HR 8799f in ˜9.7 au, or ˜7.5 au orbit, extending the MMR chain to triple Laplace resonance 1f:2e:4d:8c:16b MMR or to the 1f:3e:6d:12c:24b MMR, respectively. Our findings may establish strong boundary conditions for the system formation and its early history.

  19. Solid-state 17O NMR of pharmaceutical compounds: salicylic acid and aspirin.

    PubMed

    Kong, Xianqi; Shan, Melissa; Terskikh, Victor; Hung, Ivan; Gan, Zhehong; Wu, Gang

    2013-08-22

    We report solid-state NMR characterization of the (17)O quadrupole coupling (QC) and chemical shift (CS) tensors in five site-specifically (17)O-labeled samples of salicylic acid and o-acetylsalicylic acid (Aspirin). High-quality (17)O NMR spectra were obtained for these important pharmaceutical compounds under both static and magic angle spinning (MAS) conditions at two magnetic fields, 14.0 and 21.1 T. A total of 14 (17)O QC and CS tensors were experimentally determined for the seven oxygen sites in salicylic acid and Aspirin. Although both salicylic acid and Aspirin form hydrogen bonded cyclic dimers in the solid state, we found that the potential curves for the concerted double proton transfer in these two compounds are significantly different. In particular, while the double-well potential curve in Aspirin is nearly symmetrical, it is highly asymmetrical in salicylic acid. This difference results in quite different temperature dependencies in (17)O MAS spectra of the two compounds. A careful analysis of variable-temperature (17)O MAS NMR spectra of Aspirin allowed us to obtain the energy asymmetry (ΔE) of the double-well potential, ΔE = 3.0 ± 0.5 kJ/mol. We were also able to determine a lower limit of ΔE for salicylic acid, ΔE > 10 kJ/mol. These asymmetrical features in potential energy curves were confirmed by plane-wave DFT computations, which yielded ΔE = 3.7 and 17.8 kJ/mol for Aspirin and salicylic acid, respectively. To complement the solid-state (17)O NMR data, we also obtained solid-state (1)H and (13)C NMR spectra for salicylic acid and Aspirin. Using experimental NMR parameters obtained for all magnetic nuclei present in salicylic acid and Aspirin, we found that plane-wave DFT computations can produce highly accurate NMR parameters in well-defined crystalline organic compounds.

  20. Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Ying; Kijac, Aleksandra Z.; Sligar, Stephen G.; Rienstra, Chad M.

    2006-01-01

    Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly 13C,15N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS 13C-13C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their 13C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and 13C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. PMID:16905610

  1. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  2. Solid-State NMR Characterization of Aluminum Oxide Nanofibers

    SciTech Connect

    Cross, Jennifer L; Tuttle, Ricky W; Ramsier, Rex D; Espe, Mathew

    2006-07-24

    Aluminum oxide nanofibers have been generated by an electrospinning process, creating fibers with diameters on the nanometer scale and aspect ratios greater than a thousand. These nanofibers have the potential of providing enhanced catalytic properties, due to their large surface area and controllable compositions. Solid-state NMR is being used to investigate both the bulk and surface properties of these materials. 27Al NMR has shown that no chemistry occurs during the electrospinning process, even though potentials in excess of 20 kV are applied to the sample. Thermal treatment of the fibers to convert them to alumina results in the formation of different phases, with the phases identified by the relative populations of 4-, 5-, and 6-coordinate alumina sites. Heating to 525°C or 1200°C produces a species similar to the catalytically active gamma-phase or conversion of the nanofibers into the thermodynamically stable alumina phase, respectively. 1H-27Al CP/MAS has shown that the alumina phase has a low population of surface hydroxyls, whereas the “gamma-alumina” form has a much higher fraction of 5-coordinate sites, compared to materials synthesized by traditional techniques. Organophosphates are being used as molecular probes in the characterization of the nanofiber surfaces. 31P CP/MAS data has revealed the presence of mono-, bi- and tri-denate bound phosphate groups on the surface, with the onset of surface alumina dissolution with sample heating. The application of 1H-31P HETCOR shows that the three different types of bound organophosphates are intermixed, rather than there being separate domains for each type. 31P-27Al CP is also being used to distinguish the types of surface alumina sites bound to the phosphate species.

  3. Mas receptor overexpression increased Ang-(1-7) relaxation response in renovascular hypertensive rat carotid.

    PubMed

    Olivon, V C; Aires, R D; Santiago, L B; Ramalho, L Z N; Cortes, S F; Lemos, V S

    2015-09-01

    Renin-angiotensin system (RAS) is an important factor in the pathophysiology of hypertension. Mas receptor, Angiotensin-(1-7) [Ang-(1-7)]-activated receptor, is an important RAS component and exerts protective effects in the vasculature. Ang-(1-7) vascular effects and Mas receptor expression in carotid from renovascular hypertensive (2K-1C) rats is not clear. In the present study we investigated Mas receptor vasodilator response activated by Ang-(1-7) in the carotid rings from sham and 2K-1C rats. Changes in isometric tension were recorded on organ chamber. Mas receptors expression was investigated in carotid by Western blot. Nitric oxide production was evaluated by 2,3-diaminonaphthalene (DAN) and eNOS expression and activity by immunofluoresce and western blot, respectively. Ang-(1-7) induced concentration-dependent vasodilator effect in carotid rings from sham and 2K-1C, which the hypertension increased vasodilatation response. In the 2K-1C carotid rings, A-779 (Mas receptor antagonist) reduced but not abolish the vasodilator effect of Ang-(1-7). Corroborating, Mas receptor protein expression was significantly increased in the 2K-1C rats. L-NAME and ibuprofen decreased Ang-(1-7) vasodilator response and L-NAME plus ibuprofen practically abolish the remaining vasodilatation response. Nitric oxide production is increased due increased of eNOS expression and pSer(1177) activity. Our results demonstrated that renovascular hypertension increased Mas receptors expression and nitric oxide production in the rats carotid which, consequently increased Ang-(1-7)-vasorelaxant response. PMID:26256416

  4. Coherent and stochastic averaging in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Nevzorov, Alexander A.

    2014-12-01

    A new approach for calculating solid-state NMR lineshapes of uniaxially rotating membrane proteins under the magic-angle spinning conditions is presented. The use of stochastic Liouville equation (SLE) allows one to account for both coherent sample rotation and stochastic motional averaging of the spherical dipolar powder patterns by uniaxial diffusion of the spin-bearing molecules. The method is illustrated via simulations of the dipolar powder patterns of rigid samples under the MAS conditions, as well as the recent method of rotational alignment in the presence of both MAS and rotational diffusion under the conditions of dipolar recoupling. It has been found that it is computationally more advantageous to employ direct integration over a spherical grid rather than to use a full angular basis set for the SLE solution. Accuracy estimates for the bond angles measured from the recoupled amide 1H-15N dipolar powder patterns have been obtained at various rotational diffusion coefficients. It has been shown that the rotational alignment method is applicable to membrane proteins approximated as cylinders with radii of approximately 20 Å, for which uniaxial rotational diffusion within the bilayer is sufficiently fast and exceeds the rate 2 × 105 s-1.

  5. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  6. Maternal and Child Health Care Act--1976. Supplemental Hearing Before the Subcommittee on Health and the Environment of the Committee on Interstate and Foreign Commerce, House of Representatives, Ninety-Fourth Congress, Second Session on H.R. 12937, H.R. 14309, and H.R. 14822 (Identical Bills) and H.R. 14497.

    ERIC Educational Resources Information Center

    Congress of the U. S., Washington, DC. House Committee on Interstate and Foreign Commerce.

    Contained are the proceedings of the September 13, 1976, hearing before the House of Representatives subcommittee on health and the environment on Bills H.R. 12937, H.R. 14309 and H.R. 14822, identical bills to establish a national system of maternal and child health care, and H.R. 14497, a bill to establish a national health insurance system for…

  7. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  8. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  9. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Tycko, Robert

    2014-05-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  10. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

    SciTech Connect

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.; Bao, Xinhe; Peden, Charles HF; Hu, Jian Z.

    2015-01-22

    Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.

  11. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  12. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  13. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Mellot-Draznieks, Caroline; Gervais, Christel; Blanc, Frédéric; Cheetham, Anthony K

    2015-10-14

    Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker.

  14. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Mellot-Draznieks, Caroline; Gervais, Christel; Blanc, Frédéric; Cheetham, Anthony K

    2015-10-14

    Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker. PMID:26351979

  15. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid.

    PubMed

    Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan; Gan, Zhehong; Kelly, Jeffery W; Wright, Peter E; Wemmer, David E

    2016-09-20

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range (13)C-(13)C correlation MAS spectra obtained with selectively (13)CO- and (13)Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid. PMID:27589034

  16. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  17. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  18. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system. PMID:25862330

  19. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  20. The dynamical structure of the HR8799 inner debris disk

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.

    2014-11-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.

  1. The Dynamical Structure of HR 8799's Inner Debris Disk

    NASA Astrophysics Data System (ADS)

    Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  2. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier.

    PubMed

    Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. PMID:26867091

  3. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier.

    PubMed

    Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement.

  4. Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization

    PubMed Central

    Yamamoto, Kazutoshi; Caporini, Marc A.; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-01-01

    While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can be applied towards the determination of 3D structural information. However, there are numerous challenges that need to be overcome to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges with a specific emphasis on obtaining high-resolution structural insights into electron transfer biological processes mediated by membrane-bound proteins like mammalian cytochrome b5, cytochrome P450 and cytochrome P450 reductase. In this study, we demonstrate the feasibility of using the signal-enhancement rendered by dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from 13C-labeled membrane-anchored cytochrome b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement (ε). Further, results obtained from a 2D 13C/13C chemical shift correlation MAS experiment demonstrates that it is highly possible to suppress the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution 3D structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes. PMID:25017802

  5. Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy

    PubMed Central

    Badilita, Vlad; Fassbender, Birgit; Kratt, Kai; Wong, Alan; Bonhomme, Christian; Sakellariou, Dimitris; Korvink, Jan G.; Wallrabe, Ulrike

    2012-01-01

    This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the “magic angle” of 54.74° with respect to the direction of the magnetic field (magic angle spinning – MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds. PMID:22936994

  6. 15N-15N Proton Assisted Recoupling in Magic Angle Spinning NMR

    PubMed Central

    Lewandowski, Józef R.; De Paëpe, Gaël; Eddy, Matthew T.; Griffin, Robert G.

    2009-01-01

    We describe a new magic angle spinning (MAS) NMR experiment for obtaining 15N-15N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, including identification of α-helical stretches and inter-strand connectivity in antiparallel β-sheets, which are of major interest for structural studies of membrane proteins and amyloid fibrils. The method, 15N-15N proton assisted recoupling (PAR), relies on a second order mechanism, third spin assisted recoupling (TSAR), used previously in the context of 15N-13C and 13C-13C polarization transfer schemes. In comparison to 15N-15N proton driven spin diffusion experiments, the PAR technique accelerates polarization transfer between 15N’s by a factor of ~102−103, and is furthermore applicable over the entire range of currently available MAS frequencies (10–70 kHz). PMID:19334788

  7. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  8. A "special perspectives" issue: Recent achievements and new directions in biomolecular solid state NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.

  9. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality.

    PubMed

    Terskikh, Victor V; Feurtado, J Allan; Borchardt, Shane; Giblin, Michael; Abrams, Suzanne R; Kermode, Allison R

    2005-08-01

    High-resolution 13C MAS NMR spectroscopy was used to profile a range of primary and secondary metabolites in vivo in intact whole seeds of eight different conifer species native to North America, including six of the Pinaceae family and two of the Cupressaceae family. In vivo 13C NMR provided information on the total seed oil content and fatty acid composition of the major storage lipids in a non-destructive manner. In addition, a number of monoterpenes were identified in the 13C NMR spectra of conifer seeds containing oleoresin; these compounds showed marked variability in individual seeds of Pacific silver fir within the same seed lot. In imbibed conifer seeds, the 13C NMR spectra showed the presence of considerable amounts of dissolved sucrose presumed to play a protective role in the desiccation-tolerance of seeds. The free amino acids arginine and asparagine, generated as a result of storage protein mobilization, were detected in vivo during seed germination and early seedling growth. The potential for NMR to profile metabolites in a non-destructive manner in single conifer seeds and seed populations is discussed. It is a powerful tool to evaluate seed quality because of its ability to assess reserve accumulation during seed development or at seed maturity; it can also be used to monitor reserve mobilization, which is critical for seedling emergence. PMID:15996983

  10. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  11. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  12. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  13. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  14. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  15. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  18. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  19. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. IV. 66 ANDROMEDAE, HR 6979, AND HR 9059

    SciTech Connect

    Fekel, Francis C.; Williamson, Michael H.; Tomkin, Jocelyn E-mail: jt@alexis.as.utexas.edu

    2010-04-15

    We have determined improved spectroscopic orbits for three double-lined binaries, 66 And (F4 V), HR 6979 (Am), and HR 9059 (F5 IV) using radial velocities from the 2.1 m telescope at McDonald Observatory, the coude feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 11.0 to 14.3 days, and all three systems have eccentric orbits. The new orbital dimensions (a {sub 1} sin i and a {sub 2} sin i) and minimum masses (m {sub 1} sin{sup 3} i and m {sub 2} sin{sup 3} i) have accuracies of 0.2% or better. All six components of the three binary systems are rotating more slowly than their predicted pseudosynchronous rotational velocities. Hipparcos photometry of HR 9059 shows that this system has partial eclipses. Its components are nearly identical in mass and are at the very end of their main-sequence lifetimes or perhaps have just begun to traverse the Hertsprung gap.

  20. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  1. Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei.

    PubMed

    Pöppler, Ann-Christin; Demers, Jean-Philippe; Malon, Michal; Singh, Amit Pratap; Roesky, Herbert W; Nishiyama, Yusuke; Lange, Adam

    2016-03-16

    The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

  2. Expression of the Mas receptor is upregulated in skeletal muscle wasting.

    PubMed

    Morales, María Gabriela; Abrigo, Johanna; Meneses, Carla; Cisternas, Franco; Simon, Felipe; Cabello-Verrugio, Claudio

    2015-02-01

    Skeletal muscle atrophy during sepsis, immobilization, and chronic diseases is characterized by an increase in expression and activity of the muscle-specific ubiquitin 3 ligases atrogin-1 and MuRF-1. The classical renin-angiotensin system (RAS), by high level of circulating angiotensin II (AngII) is directly involved in skeletal muscle wasting associated with cardiac and renal failure. Ang (1-7), a peptide belonging to the non-classical RAS system, produces effects that are opposite to AngII. The actions of Ang (1-7) are mediated by its binding and signalling through the Mas receptor. Our purpose is to assess the effects of atrophic stimuli AngII, lipopolysaccharide (LPS), and immobilization on the expression of the Mas receptor in skeletal muscle. For that we used gastrocnemius and tibialis anterior muscles of C57BL10 mice treated with AngII, LPS or subjected to unilateral hindlimb immobilization by casting. In addition, we used C2C12 myotubes incubated with AngII or LPS. We evaluated Mas expression by quantitative real-time PCR, Western blot immunohistochemical analysis. Skeletal muscle atrophy was corroborated by the expression of atrogin-1 and MuRF-1 and the fibre diameter. Our results show that Mas receptor expression was increased by AngII or LPS in vitro and in vivo, and upregulated by immobilization. The increase of the Mas expression was concomitantly with the upregulation of atrogin-1 and MuRF-1 and the reduction of the fibre diameter. These results from studies in vitro and in vivo demonstrate for the first time that the Mas receptor is increased under atrophic stimulus and suggest that the non-classical RAS system could have an important role in muscle wasting.

  3. High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5f chemistry.

    PubMed

    Martel, Laura; Magnani, Nicola; Vigier, Jean-Francois; Boshoven, Jacobus; Selfslag, Chris; Farnan, Ian; Griveau, Jean-Christophe; Somers, Joseph; Fanghänel, Thomas

    2014-07-01

    A massive interest has been generated lately by the improvement of solid-state magic-angle spinning (MAS) NMR methods for the study of a broad range of paramagnetic organic and inorganic materials. The open-shell cations at the origin of this paramagnetism can be metals, transition metals, or rare-earth elements. Actinide-bearing compounds and their 5f unpaired electrons remain elusive in this intensive research area due to their well-known high radiotoxicity. A dedicated effort enabling the handling of these highly radioactive materials now allows their analysis using high-resolution MAS NMR (>55 kHz). Here, the study of the local structure of a series of actinide dioxides, namely, ThO2, UO2, NpO2, PuO2, and AmO2, using solid-state (17)O MAS NMR is reported. An important increase of the spectral resolution is found due to the removal of the dipolar broadening proving the efficiency of this technique for structural analysis. The NMR parameters in these systems with numerous and unpaired 5f electrons were interpreted using an empirical approach. Single-ion model calculations were performed for the first time to determine the z component of electron spin on each of the actinide atoms, which is proportional to the shifts. A similar variation thereof was observed only for the heavier actinides of this study.

  4. A stable amorphous statin: solid-state NMR and dielectric studies on dynamic heterogeneity of simvastatin.

    PubMed

    Nunes, Teresa G; Viciosa, M Teresa; Correia, Natália T; Danède, F; Nunes, Rita G; Diogo, Hermínio P

    2014-03-01

    Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing molecular dynamics using two nondestructive techniques: solid-state NMR and dielectric relaxation spectroscopy. Glassy simvastatin was obtained by the melt quench technique. (13)C cross-polarization/magic-angle-spinning (CP/MAS) NMR spectra and (1)H MAS NMR spectra were obtained from 293 K up to 333 K (Tg ≈ 302 K). The (13)C spin-lattice relaxation times in the rotating frame, T1ρ, were measured as a function of temperature, and the correlation time and activation energy data obtained for local motions in different frequency scales revealed strong dynamic heterogeneity, which appears to be essential for the stability of the amorphous form of simvastatin. In addition, the (1)H MAS measurements presented evidence for mobility of the hydrogen atoms in hydroxyl groups which was assigned to noncooperative secondary relaxations. The complex dielectric permittivity of simvastatin was monitored in isochronal mode at five frequencies (from 0.1 to 1000 kHz), by carrying out a heating/cooling cycle allowing to obtain simvastatin in the supercooled and glassy states. The results showed that no dipolar moment was lost due to immobilization, thus confirming that no crystallization had taken place. Complementarily, the present study focused on the thermal stability of simvastatin using thermogravimetric analysis while the thermal events were followed up by differential scanning calorimetry and dielectric relaxation spectroscopy. Overall, the results confirm that the simvastatin in the glass form reveals a potential use in the solid phase formulation on the pharmaceutical industry.

  5. Muscle attachment site (MAS) patterns for species determination in European species of Lucilia (Diptera: Calliphoridae).

    PubMed

    Niederegger, Senta; Szpila, Krzysztof; Mall, Gita

    2015-03-01

    Species identification is generally assessed to be more difficult in larval stages than in adult forms. Especially closely related species such as Lucilia caesar and Lucilia illustris are difficult to identify. The aim of this study was to simplify species determination in Lucilia larvae for entomological and forensic purposes. Muscle attachment site (MAS) patterns were previously found to be a good tool for species determination in blowfly larvae. Here, distinctive MAS patterns are presented for European Lucilia ampullacea, L. caesar, L. illustris, L. richardsi, L. sericata, and L. silvarum. A joint pattern for the genus Lucilia is provided for a quick classification of a larva to the genus.

  6. LBT observations of the HR 8799 planetary system. First detection of HR 8799e in H band

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Mesa, D.; Skemer, A.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Gratton, R.; Mannucci, F.; Marzari, F.; Masciadri, E.; Close, L.; Hinz, P.; Kulesa, C.; McCarthy, D.; Males, J.; Agapito, G.; Argomedo, J.; Boutsia, K.; Briguglio, R.; Brusa, G.; Busoni, L.; Cresci, G.; Fini, L.; Fontana, A.; Guerra, J. C.; Hill, J. M.; Miller, D.; Paris, D.; Pinna, E.; Puglisi, A.; Quiros-Pacheco, F.; Riccardi, A.; Stefanini, P.; Testa, V.; Xompero, M.; Woodward, C.

    2013-01-01

    We have performed H and KS band observations of the planetary system around HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES Camera. The excellent instrument performance (Strehl ratios up to 80% in H band) enabled the detection of the innermost planet, HR 8799e, at H band for the first time. The H and KS magnitudes of HR 8799e are similar to those of planets c and d, with planet e being slightly brighter. Therefore, HR 8799e is likely slightly more massive than c and d. We also explored possible orbital configurations and their orbital stability. We confirm that the orbits of planets b, c and e are consistent with being circular and coplanar; planet d should have either an orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c. Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion resonances with c and d, while coplanar and circular orbits are allowed for a 5:2 resonance. The analysis of dynamical stability shows that the system is highly unstable or chaotic when planetary masses of about 5 MJ for b and 7 MJ for the other planets are adopted. Significant regions of dynamical stability for timescales of tens of Myr are found when adopting planetary masses of about 3.5, 5, 5, and 5 MJ for HR 8799b, c, d, and e respectively. These masses are below the current estimates based on the stellar age (30 Myr) and theoretical models of substellar objects. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  7. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    2000-06-12

    The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

  8. Full quadrupolar tensor determination by NMR using a micro-crystal spinning at the magic angle.

    PubMed

    Vasa, Suresh Kumar; van Eck, Ernst R H; Janssen, J W G; Kentgens, Arno P M

    2010-05-14

    An implementation of rotor-synchronised Magic Angle Spinning (MAS) NMR is presented to determine the quadrupolar coupling tensor values from a single crystal study for half-integer quadrupolar nuclei. Using a microcoil based probehead for studying micro crystals with superior sensitivity, we successfully determine the full quadrupolar tensor of (23)Na using a micro crystal of dimensions 210 x 210 x 700 mum of NaNO(3) as a model system. A two step simulation procedure is used to obtain the orientation of the quadrupolar tensor information from the experimental spectra and is verified by XRD analysis.

  9. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  10. The unusual interacting S star binary HR 1105

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B., III; Johnson, Hollis R.; Bopp, Bernard W.

    1994-01-01

    IUE observations of HR 1105 over its 596-day orbit show strong orbital modulation of both continuum and emission lines. These are most intense just before both conjunctions and nearly disappear near quadratures, the most intense phase being just before the hot component passes in front of the S star. High dispersion observations exhibit a blue-shifted absorption feature in Mg II, representing an outflow of material of about 55 km/s. These observations are consistent with the UV source being an optically thin gas stream between the components of the system, which is partially eclipsed when the S star is in front.

  11. 10 MMBt/Hr AFBC Commercial Demonstration Cedar Lane Farms

    SciTech Connect

    Harold M. Keener; Mary H. Wicks; Tom Machamer; Dave Hoecke; Don Bonk; Bob Brown

    2005-10-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO2 emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 4-40 MMBtu/hr size range. A cost effective and environmentally acceptable AFBC technology in this size range could displace a considerable amount of heating gas and oil with coal, while resulting in significant total cost savings to the owner/operators.

  12. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  13. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    PubMed

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz. PMID:27472380

  14. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    PubMed

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  15. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  16. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  17. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  18. Bringing human resources to the table: utilization of an HR balanced scorecard at Mayo Clinic.

    PubMed

    Fottler, Myron D; Erickson, Eric; Rivers, Patrick A

    2006-01-01

    Rather than viewing HR as a critical driver of organizational strategy and outcomes, most health care organizations see HR as a drain on the organization's bottom line. Only by aligning HR with the organizational strategy will HR leaders truly get a seat at the leadership table. HR professionals can overcome impediments and gain a seat at the table by learning the language of business and the ways in which organizational leaders use data to drive their decisions. This article shows how Mayo Clinic uses the popular Balanced Scorecard approach to align its measures of HR performance to the organization's strategic plan.

  19. Bringing human resources to the table: utilization of an HR balanced scorecard at Mayo Clinic.

    PubMed

    Fottler, Myron D; Erickson, Eric; Rivers, Patrick A

    2006-01-01

    Rather than viewing HR as a critical driver of organizational strategy and outcomes, most health care organizations see HR as a drain on the organization's bottom line. Only by aligning HR with the organizational strategy will HR leaders truly get a seat at the leadership table. HR professionals can overcome impediments and gain a seat at the table by learning the language of business and the ways in which organizational leaders use data to drive their decisions. This article shows how Mayo Clinic uses the popular Balanced Scorecard approach to align its measures of HR performance to the organization's strategic plan. PMID:16493274

  20. Sealed Rotors for In Situ High Temperature High Pressure MAS NMR†

    PubMed Central

    Hu, Jian Zhi; Hu, Mary Y.; Zhao, Zhenchao; Xu, Suochang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-01-01

    Here we present the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are used to study AlPO4-5 molecular sieve crystallization under hydrothermal conditions, high temperature high pressure cyclohexanol dehydration reaction, and low temperature metabolomics of intact biological tissue. PMID:26171928

  1. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Competitive bidding procedures for mutually exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems...

  2. Considerations for Consortia as States Transition Away from AA-MAS. NCEO Brief. Number 7

    ERIC Educational Resources Information Center

    National Center on Educational Outcomes, 2014

    2014-01-01

    States with an alternate assessment based on modified achievement standards (AA-MAS) that received a flexibility waiver from some of the requirements of No Child Left Behind are required to phase out their use of this assessment. And, on August 23, 2013, the U.S. Department of Education published a proposed rollback of regulation that allowed the…

  3. An Analysis of the Rise and Fall of the AA-MAS Policy

    ERIC Educational Resources Information Center

    Lazarus, Sheryl S.; Thurlow, Martha L.; Ysseldyke, James E.; Edwards, Lynn M.

    2015-01-01

    In 2005, to address concerns about students who might fall in the "gap" between the regular assessment and the alternate assessment based on alternate achievement standards (AA-AAS), the U.S. Department of Education announced that states could develop alternate assessments based on modified achievement standards (AA-MAS). This article…

  4. Successfully Transitioning from the AA-MAS to the General Assessment. NCEO Policy Directions. Number 22

    ERIC Educational Resources Information Center

    Lazarus, Sheryl; Thurlow, Martha; Christensen, Laurene; Shyyan, Vitaliy

    2014-01-01

    Federal policy initiatives such as the flexibility waivers for accountability are requiring that states transition away from the use of an alternate assessment based on modified achievement standards (AA-MAS). It is expected that those students who had participated in that assessment will instead participate in the state's general assessment…

  5. The Multidimensional Attitudes Scale toward Persons with Disabilities (MAS): Construction and Validation

    ERIC Educational Resources Information Center

    Findler, Liora; Vilchinsky, Noa; Werner, Shirli

    2007-01-01

    This study presents the development of a new instrument, the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Based on the multidimensional approach, it posits that attitudes are composed of three dimensions: affect, cognition, and behavior. The scale was distributed to a sample of 132 people along with a self-esteem…

  6. Genome Sequence of Streptococcus agalactiae Strain 09mas018883, Isolated from a Swedish Cow.

    PubMed

    Zubair, S; de Villiers, E P; Fuxelius, H H; Andersson, G; Johansson, K-E; Bishop, R P; Bongcam-Rudloff, E

    2013-01-01

    We announce the complete genome sequence of Streptococcus agalactiae strain 09mas018883, isolated from the milk of a cow with clinical mastitis. The availability of this genome may allow identification of candidate genes, leading to discovery of antigens that might form the basis for development of a vaccine as an alternative means of mastitis control. PMID:23846269

  7. Classification of ischaemic episodes with ST/HR diagrams.

    PubMed

    Faganeli Pucer, Jana; Demšar, Janez; Kukar, Matjaž

    2012-01-01

    Coronary artery disease is the developed world's premier cause of mortality and the most probable cause of myocardial ischaemia. More advanced diagnostic tests aside, in electrocardiogram (ECG) analysis it manifests itself as a ST segment deviation, targeted by both exercise ECG and ambulatory ECG. In ambulatory ECG, besides ischaemic ST segment deviation episodes there are also non-ischaemic heart rate related episodes which aggravate real ischaemia detection. We present methods to transform the features developed for the heart rate adjustment of ST segment depression in exercise ECG for use in ambulatory ECG. We use annotations provided by the Long-Term ST Database to plot the ST/HR diagrams and then estimate the overall and maximal slopes of the diagrams in the exercise and recovery phase for each ST segment deviation episode. We also estimate the angle at the extrema of the ST/HR diagrams. Statistical analysis shows that ischaemic ST segment deviation episodes have significantly steeper overall and maximal slopes than heart rate related episodes, which indicates the explored features' utility for distinguishing between the two types of episodes. This makes the proposed features very useful in automated ECG analysis. PMID:22874369

  8. Images of a fourth planet orbiting HR 8799.

    PubMed

    Marois, Christian; Zuckerman, B; Konopacky, Quinn M; Macintosh, Bruce; Barman, Travis

    2010-12-23

    High-contrast near-infrared imaging of the nearby star HR 8799 has shown three giant planets. Such images were possible because of the wide orbits (>25 astronomical units, where 1 au is the Earth-Sun distance) and youth (<100 Myr) of the imaged planets, which are still hot and bright as they radiate away gravitational energy acquired during their formation. An important area of contention in the exoplanet community is whether outer planets (>10 au) more massive than Jupiter form by way of one-step gravitational instabilities or, rather, through a two-step process involving accretion of a core followed by accumulation of a massive outer envelope composed primarily of hydrogen and helium. Here we report the presence of a fourth planet, interior to and of about the same mass as the other three. The system, with this additional planet, represents a challenge for current planet formation models as none of them can explain the in situ formation of all four planets. With its four young giant planets and known cold/warm debris belts, the HR 8799 planetary system is a unique laboratory in which to study the formation and evolution of giant planets at wide (>10 au) separations.

  9. Dynamical simulations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Horner, J.; Carter, A.

    2010-10-01

    HR8799 is a young (20-160 Myr) A-dwarf main sequence star with a debris disc detected by IRAS (InfraRed Astronomical Satellite). In 2008, it was one of two stars around which exoplanets were directly imaged for the first time. The presence of three Jupiter-mass planets around HR8799 provoked much interest in modelling the dynamical stability of the system. Initial simulations indicated that the observed planetary architecture was unstable on timescales much shorter than the lifetime of the star (~105 yr). Subsequent models suggested that the system could be stable if the planets were locked in a 1:2:4 mutual mean motion resonance (MMR). In this work, we have examined the influence of varying orbital eccentricity and the semi-major axis on the stability of the three-planet system, through dynamical simulations using the MERCURY n-body integrator. We find that, in agreement with previous work on this system, the 1:2:4 MMR is the most stable planetary configuration, and that the system stability is dominated by the interaction between the inner pair of planets. In contrast to previous results, we find that with small eccentricities, the three-planet system can be stable for timescales comparable to the system lifetime and, potentially, much longer.

  10. Classification of ischaemic episodes with ST/HR diagrams.

    PubMed

    Faganeli Pucer, Jana; Demšar, Janez; Kukar, Matjaž

    2012-01-01

    Coronary artery disease is the developed world's premier cause of mortality and the most probable cause of myocardial ischaemia. More advanced diagnostic tests aside, in electrocardiogram (ECG) analysis it manifests itself as a ST segment deviation, targeted by both exercise ECG and ambulatory ECG. In ambulatory ECG, besides ischaemic ST segment deviation episodes there are also non-ischaemic heart rate related episodes which aggravate real ischaemia detection. We present methods to transform the features developed for the heart rate adjustment of ST segment depression in exercise ECG for use in ambulatory ECG. We use annotations provided by the Long-Term ST Database to plot the ST/HR diagrams and then estimate the overall and maximal slopes of the diagrams in the exercise and recovery phase for each ST segment deviation episode. We also estimate the angle at the extrema of the ST/HR diagrams. Statistical analysis shows that ischaemic ST segment deviation episodes have significantly steeper overall and maximal slopes than heart rate related episodes, which indicates the explored features' utility for distinguishing between the two types of episodes. This makes the proposed features very useful in automated ECG analysis.

  11. Modeling the Asteroseismic Surface Term across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Basu, Sarbani

    2015-08-01

    Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference between the observed and the modeled frequencies, usually referred to as the “surface term.” This surface term can add significant errors to the derived stellar properties unless removed properly. In this paper, we simulate surface terms across a significant portion of the HR diagram, exploring four different masses (M=0.8,1.0,1.2, and 1.5 {M}⊙ ) at five metallicities ([{Fe}/{{H}}]=0.5,0.0,-0.5,-1.0, and -1.5) from the main sequence to red giants for stars with {T}{eff}\\lt 6500 K and explore how well the most common ways of fitting and removing the surface term actually perform. We find that the two-term model proposed by Ball & Gizon works much better than other models across a large portion of the HR diagram, including the red giants, leading us to recommend its use for future asteroseismic analyses.

  12. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  13. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  14. Phenyl galactopyranosides - 13C CPMAS NMR and conformational analysis using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wałejko, Piotr; Paradowska, Katarzyna; Bukowicki, Jarosław; Witkowski, Stanisław; Wawer, Iwona

    2015-08-01

    Structural analyses of four compounds (phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1), phenyl β-D-galactopyranoside (2), phenyl 2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside (3) and phenyl α-D-galactopyranoside (4)) have been performed using solid-state 13C MAS NMR spectroscopy and theoretical methods. Conformational analysis involved grid search and genetic algorithm (GAAGS). Low-energy conformers found by GAAGS were further optimized by DFT and chemical shifts were calculated using GIAO/DFT approach. 13C CPMAS NMR chemical shift of carbon C2 is indicative of the glycoside torsional angle. Separated or merged resonances of C2 and C6 suggest free rotation of phenyl ring in the solid phase.

  15. Solid-state /sup 13/C NMR and X-ray diffraction of dermatan sulfate

    SciTech Connect

    Winter, W.T.; Taylor, M.G.; Stevens, E.S.; Morris, E.R.; Rees, D.A.

    1986-05-29

    Dermatan sulfate in the solid state has been studied by /sup 13/C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to /sup 1/C/sub 4/ predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a /sup 4/C/sub 1/ ring form. A likely explanation of the results is that a distorted /sup 1/C/sub 4/ L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data.

  16. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    PubMed

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  17. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  18. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  19. Advanced NMR approaches in the characterization of coal. Final technical report, September 1, 1990--August 31, 1993

    SciTech Connect

    Maciel, G.E.

    1993-09-30

    This project addressed two main goals and one much smaller one. The main goals were (1) to improve the significance, reliability and information content in high-resolution NMR (nuclear magnetic resonance) characterization of coal samples and (2) to develop chemically informative NMR imaging techniques for coal. The minor goal was to explore advanced features of dynamic nuclear polarization (DNP) as a technique for coal characterization; this included the development of two DNP probes and the examination of DNP characteristics of various carbonaceous samples, including coals. {sup 13}C NMR advances for coal depended on large-sample MAS devices, employing either cross-polarization (CP) or direct polarization (DP) approaches. CP and DP spin dynamics and their relationships to quantitation and spin counting were elucidated. {sup 1}H NMR studies, based on CRAMPS, dipolar dephasing and saturation with perdeuteropyridine, led to a {sup 1}H NMR-based elucidation of chemical functionality in coal. {sup 1}H and {sup 13}C NMR imaging techniques, based on magic-angle spinning and rotating magnetic field gradients, were developed for introducing chemical shift information (hence, chemical detail) into the spatial imaging of coal. The TREV multiple-pulse sequence was found to be useful in the {sup 1}H CRAMPS imaging of samples like coal.

  20. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  1. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  2. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-01

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

  3. Double cross polarization /sup 13/C-NMR experiment in solid fossil fuel structure analysis

    SciTech Connect

    Hagaman, E.W.; Woody, M.C.

    1988-01-01

    The Double Cross Polarization /sup 13/C-MAS/NMR experiment has been used to derive a new operational classification of solid fossil fuels based on chemical reactivity. The method requires labeling reactive sites in the organic matrix with a magnetically active isotope not present in the precursor material, and using the local, isolated dipole-dipole interaction between this nucleus and nearby /sup 13/C nuclei to detect via cross polarization the carbon centers in the vicinity of the label. The technique is a marriage of chemistry and spectroscopy and the information content of the DCP spectra is defined by both partners. /sup 1/H-/sup 13/C-/sup 31/P DCP/MAS /sup 13/C-NMR spectroscopy has been used to statistically describe phenolic ortho-substitution patterns of coals via their aryl phosphinate or phosphate derivatives. In these applications of DCP NMR the new, detailed structure and/or reactivity information is realized by detection of carbon resonances one or more bonds removed from the reaction center, but in a volume element of intramolecular dimensions. To the extent that intermolecular contributions to the spectrum are detected, and not recognized as such, the structure/reactivity correlation is weakened. Direct substitution of phosphorus on the aromatic rings in the organic matrix of the coal is not readily accomplished. This environment potentially can be labeled with fluorine in a selective fashion using newly developed reagents. The possibility of determining the changes in average ring substitution patterns as a function of chemical treatment or coal diagenesis emerges. Recent developments in the field of DCP /sup 13/C NMR are presented.

  4. A Comparison of NMR Spectra Obtained for Solid-Phase-Synthesis Resins Using Conventional High-Resolution, Magic-Angle-Spinning, and High-Resolution Magic-Angle-Spinning Probes

    NASA Astrophysics Data System (ADS)

    Keifer, Paul A.; Baltusis, Laima; Rice, David M.; Tymiak, Adrienne A.; Shoolery, James N.

    It has recently been shown that high-resolution 1H NMR spectra can be obtained for samples covalently bound to polystyrene-based (Tentagel) solid-phase-synthesis resins by the use of magic-angle spinning (MAS) combined with high-resolution-probe technology. The attainable spectral resolution in the 1H and 13C NMR spectra of these resins is affected by molecular mobility and magnetic-susceptibility mismatches, both within the sample and in the probe itself. Using new high-resolution MAS probes called Nano·nmr probes, the importance of magnetic-susceptibility matching in the construction of these probes is demonstrated, and the limitations of using MAS alone to generate line narrowing in both 1H and 13C NMR are explored using a solvent-swollen functionalized Wang resin. The effects of presaturation, temperature, spin rate, and different solvents upon spectral quality have also been investigated, and advanced 1D- and 2D-experimental capability is demonstrated. This ability to generate high-resolution NMR spectra of samples still bound to the resins is expected to be of extreme interest in not only solid-phase synthesis, but also in the rapidly growing field of combinatorial chemistry.

  5. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. VIII. HR 1528, HR 6993, 2 SAGITTAE, AND 18 VULPECULAE

    SciTech Connect

    Fekel, Francis C.; Williamson, Michael H.; Tomkin, Jocelyn E-mail: michael.h.williamson@gmail.com

    2013-11-01

    Improved orbital elements for four A-star double-lined spectroscopic binaries have been determined with numerous new radial velocities. Three of the four systems, HR 1528, 2 Sge, and 18 Vul, have moderately short orbital periods of 7.05, 7.39, and 9.31 days, respectively, and also have circular or nearly circular orbits. Only HR 6993 with a period of 14.68 days has a significantly eccentric orbit. The close visual companion of 2 Sge has been detected spectroscopically, and its velocity measured. The orbital dimensions (a {sub 1} sin i and a {sub 2} sin i) and minimum masses (m {sub 1} sin{sup 3} i and m {sub 2} sin{sup 3} i) of the short-period binary components all have accuracies of 0.5% or better. We determine basic properties of the individual stars and compare them with solar-abundance evolutionary tracks to estimate their masses. Half of the eight components may be synchronously or pseudosynchronously rotating.

  6. Hormonal profile and reproductive performance in lactation deficient (OFA hr/hr) and normal (Sprague-Dawley) female rats.

    PubMed

    Valdez, Susana R; Penissi, Alicia B; Deis, Ricardo P; Jahn, Graciela A

    2007-04-01

    Lactation deficiency may have important consequences on infant health, particularly in populations of low socioeconomic status. The OFA hr/hr (OFA) strain of rats, derived from Sprague-Dawley (SD) rats, has deficient lactation and is a good model of lactation failure. We examined the reproductive performance and hormonal profiles in OFA and SD strains to determine the cause(s) of the lactation failure of the OFA strain. We measured hormonal (PRL, GH, gonadotropins, oxytocin, and progesterone) levels by RIA in cycling, pregnant, and lactating rats and in response to suckling. Dopaminergic metabolism was assessed by determination of mediobasal hypothalamic dopamine and dihydroxyphenylacetic acid (DOPAC) concentrations by HPLC and tyrosine hydroxylase expression by immunocytochemistry and western blot. OFA rats have normal fertility but 50% of the litters die of malnutrition on early lactation; only 6% of the mothers show normal lactation. The OFA rats showed lower circulating PRL during lactation, increased hypothalamic dopamine and DOPAC, and impaired milk ejection with decreased PRL and oxytocin response to suckling. Before parturition, PRL release and lactogenesis were normal, but dopaminergic metabolism was altered, suggesting activation of the dopaminergic system in OFA but not in SD rats. The number of arcuate and periventricular neurons expressing tyrosine hydroxylase was higher in SD rats, but hypothalamic expression of TH was higher in OFA rats at the end of pregnancy and early lactation. These results suggest that the OFA rats have impaired PRL release linked with an augmented dopaminergic tone which could be partially responsible for the lactational failure.

  7. New constraints on the dust surrounding HR 4796A

    NASA Astrophysics Data System (ADS)

    Milli, J.; Mawet, D.; Pinte, C.; Lagrange, A.-M.; Mouillet, D.; Girard, J. H.; Augereau, J.-C.; De Boer, J.; Pueyo, L.; Choquet, É.

    2015-05-01

    Context. HR 4796A is surrounded by a well-structured and very bright circumstellar disc shaped like an annulus with many interesting features: very sharp inner and outer edges, brightness asymmetries, centre offset, and suspected distortions in the ring. Aims: We aim to constrain the properties of the dust surrounding the star HR 4796A, in particular the grain size and composition. We also want to confirm and refine the morphological parameters derived from previous scattered light observations, and reveal the dust spatial extent in regions unexplored so far due to their proximity to the star. Methods: We have obtained new images in polarised light of the binary system HR 4796A and B in the Ks and L' band with the NaCo instrument at the Very Large Telescope (VLT). In addition, we revisit two archival data sets obtained in the L' band with that same instrument and at 2.2 μm with the NICMOS instrument on the Hubble Space Telescope. We analyse these observations with simulations using the radiative transfer code MCFOST to investigate the dust properties. We explore a grid of models with various dust compositions and sizes in a Bayesian approach. Results: We detect the disc in polarised light in the Ks band and reveal for the first time the innermost regions down to 0.3″ along the semi-minor axis. We measure a polarised fraction of 29% ± 8% in the two disc ansae, with a maximum occurring more than 13° westwards from the ansae. A very pronounced brightness asymmetry between the north-west and south-east side is detected. This contradicts the asymmetry previously reported in all images of the disc in unpolarised light at wavelengths smaller than or equal to 2.2 μm and is inconsistent with the predicted scattered light from spherical grains using the Mie theory. Our modelling suggests the north-west side is most likely inclined towards the Earth, contrary to previous conclusions. It shows that the dust is composed of porous aggregates larger than 1 μm.

  8. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method.

    PubMed

    Mao, Jingdong; Kong, Xueqian; Schmidt-Rohr, Klaus; Pignatello, Joseph J; Perdue, E Michael

    2012-06-01

    Advanced (13)C solid-state techniques were employed to investigate the major structural characteristics of two surface-seawater dissolved organic matter (DOM) samples isolated using the novel coupled reverse osmosis/electrodialysis method. The NMR techniques included quantitative (13)C direct polarization/magic angle spinning (DP/MAS) and DP/MAS with recoupled dipolar dephasing, (13)C cross-polarization/total sideband suppression (CP/TOSS), (13)C chemical shift anisotropy filter, CH, CH(2), and CH(n) selection, two-dimensional (1)H-(13)C heteronuclear correlation NMR (2D HETCOR), 2D HETCOR combined with dipolar dephasing, and (15)N cross-polarization/magic angle spinning (CP/MAS). The two samples (Coastal and Marine DOM) were collected at the mouth of the Ogeechee River and in the Gulf Stream, respectively. The NMR results indicated that they were structurally distinct. Coastal DOM contained significantly more aromatic and carbonyl carbons whereas Marine DOM was markedly enriched in alkoxy carbon (e.g., carbohydrate-like moieties). Both samples contained significant amide N, but Coastal DOM had nitrogen bonded to aromatic carbons. Our dipolar-dephased spectra indicated that a large fraction of alkoxy carbons were not protonated. For Coastal DOM, our NMR results were consistent with the presence of the major structural units of (1) carbohydrate-like moieties, (2) lignin residues, (3) peptides or amino sugars, and (4) COO-bonded alkyls. For Marine DOM, they were (1) carbohydrate-like moieties, (2) peptides or amino sugars, and (3) COO-bonded alkyls. In addition, both samples contained significant amounts of nonpolar alkyl groups. The potential sources of the major structural units of DOM were discussed in detail. Nonprotonated O-alkyl carbon content was proposed as a possible index of humification. PMID:22553962

  9. Magic-angle-spinning NMR on solid biological systems. Analysis Of the origin of the spectral linewidths

    NASA Astrophysics Data System (ADS)

    Hemminga, M. A.; de Jager, P. A.; Krüse, J.; Lamerichs, R. M. J. N.

    Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1 γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.

  10. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  11. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  12. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  13. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  14. Ultraviolet and radio flares from UX Arietis and HR 1099

    SciTech Connect

    Lang, K.R.; Willson, R.F.

    1988-05-01

    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star. 18 references.

  15. Direct imaging of multiple planets orbiting the star HR 8799.

    PubMed

    Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René

    2008-11-28

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

  16. Direct imaging of multiple planets orbiting the star HR 8799

    SciTech Connect

    Marois, C; Macintosh, B; Barman, T; Zuckerman, B; Song, I; Patience, J; Lafreniere, D; Doyon, R

    2008-10-14

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.

  17. Global Precipitation Analyses at Monthly to 3-HR Time Scales

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropica1 Rainfall Measuring Mission) tropical data set. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1deg latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will soon be available for the entire TRMM period (January 1998- present). A real-time version of this merged product is being produced and is available at 0.25deg latitude-longitude resolution over the latitude range from 50degN-50degS. Images from this data set can be seen at the U.S. TRMM web site (trmm.gsfc.nasa.gov). Examples will be shown, including its use in monitoring flood conditions and relating weather-scale events to climate variations.

  18. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS

    SciTech Connect

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard E-mail: dsaumon@lanl.gov E-mail: andrew.ackerman@nasa.gov E-mail: freedman@darkstar.arc.nasa.gov

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  19. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition—some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  20. [Evaluation of +Gz tolerance following simulation of 8-hr flight].

    PubMed

    Khomenko, M N; Bukhtiiarov, I V; Malashchuk, L S

    2005-01-01

    Tolerance of +Gz (head-pelvis) centrifugation of pilots was evaluated following simulation of a long flight on single-seat fighter. The experiment involved 5 test-subjects who were exposed to +Gz before and after simulated 8-hr flight with a growth gradient of 0.1 u/s without anti-g suits and muscles relaxed; in addition, limiting tolerance of intricate profile +Gz loads of 2.0 to 9.0 units with a growth gradient of 1.0 u/s of test-subjects in anti-g suits (AGS) with a change-over pressure valve in the peak mode using muscle straining and breathing maneuvers. To counteract the negative effects of extended flight, various seat configurations: with a back inclination at 30 degrees to the +Gz vector and changeable geometry with a back inclination at 55 degrees to the vector. The other counter-measures applied were cool air shower, suit ventilation, physical exercises, lower body massage with AGS, electrostimulation of the back and lumber region, profiling of the supporting and soft parts of the seat, and 30-s exposure to +5 Gz. Hemodynamic and respiration parameters as well as body temperature were measured in the course of 8 hrs of flight and during and shortly after centrifugation. According to the results of the investigation, seat inclination at 55 degrees to the +Gz vector and tested system of countermeasures prevent degradation of tolerance of large (9 u.) loads following 8-hr flight simulation with the use of the modern anti-g gear, PMID:16353624