Sample records for hrtem x-ray diffraction

  1. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  2. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  3. Investigation of the nanoscale two-component ZnS-ZnO heterostructures by means of HR-TEM and X-ray based analysis

    NASA Astrophysics Data System (ADS)

    Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.

    2018-06-01

    This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.

  4. RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona

    2013-05-14

    Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  6. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  7. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    NASA Astrophysics Data System (ADS)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  8. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  9. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  10. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  11. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-01

    Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@voila.fr; Rodewald, Ute Ch.; Boulahya, Khalid

    Graphical abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. - Highlights: • We discovered the series of RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) compounds. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl single crystals were grown using NaCl/KCl flux. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl structures were solved using single crystal X-ray diffraction data. • The layered RE{sub 4}O{sub 4}[AsO{sub 4}]Cl compounds were further characterized using HRTEMmore » and SAED. • We observed an alternation of ordered-[RE{sub 4}O{sub 4}]{sup 4+} and disordered-[ClAsO{sub 4}]{sup 4–} layers. - Abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. The samples crystallise with a tetragonal cell, space group P4{sub 2}/mnm and Z = 2. Their crystal structure consists of an alternation of [RE{sub 4}O{sub 4}]{sup 4+} and [ClAsO{sub 4}]{sup 4–} layers. The [RE{sub 4}O{sub 4}]{sup 4+} layer contains ORE{sub 4/4} tetrahedra which share common edges. The anions AsO{sub 4}{sup 3–} and Cl{sup –} are located between these layers in disordered manner. SAED and HRTEM experiments confirmed this structural model and enabled us to propose an ordered model for the [ClAsO{sub 4}]{sup 4–} layers.« less

  13. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  14. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-07-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  15. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  16. The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, M.L.; Kinney, J.H.; Zywicz, E.

    The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiCmore » at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.« less

  17. Tin-Platinum catalysts interactions on titania and silica

    NASA Astrophysics Data System (ADS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-09-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Mössbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  18. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Lee, Yong Rok

    2017-01-01

    Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g-1 at a current density of 0.1 A g-1. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g-1.

  19. Structural and physical properties of InAlAs quantum dots grown on GaAs

    NASA Astrophysics Data System (ADS)

    Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.

    2018-04-01

    Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.

  20. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.

  1. Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei

    2016-01-01

    Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.

  2. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  4. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  5. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  6. Optical and structural properties in type-II InAlAs/AlGaAs quantum dots observed by photoluminescence, X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ben Daly, A.; Craciun, D.; Laura Ursu, E.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Vasile, B. S.; Craciun, V.

    2017-10-01

    We present the effects of AlGaAs alloy composition on InAlAs quantum dots (QDs) optical and structural properties. Photoluminescence (PL) analysis of samples having a variety of aluminium composition values covering type-II transitions clearly in QDs showed the presence of two transitions X-Sh and X-Ph. High-resolution X-ray diffraction (HRXRD) investigations showed that the layers grew epitaxially on the GaAs substrate, with no relaxation regardless the Al content of AlGaAs layer. From the reciprocal space map (RSM) investigation around (004) and (115) diffraction peaks, it was shown that the InAlAs layer is fully strained, the in-plane lattice parameters (a and b, a = b) being identical to those of GaAs substrate, while the c lattice parameter was dependent on the In and Al concentrations, being larger than that of the substrate. High-resolution transmission electronic microscopy (HRTEM) investigations confirmed that films grew epitaxially on the GaAs substrate with no visible dislocations or other major defects within the InAlAs/GaAlAs QDs structure.

  7. Highly crystalline zinc incorporated hydroxyapatite nanorods' synthesis, characterization, thermal, biocompatibility, and antibacterial study

    NASA Astrophysics Data System (ADS)

    Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi

    2017-10-01

    Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.

  8. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  9. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1

  10. Computer Simulations to Study Diffraction Effects of Stacking Faults in Beta-SiC: II. Experimental Verification. 2; Experimental Verification

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)

    2000-01-01

    Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.

  11. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  12. Crystal Structure Variations of Sn Nanoparticles upon Heating

    NASA Astrophysics Data System (ADS)

    Mittal, Jagjiwan; Lin, Kwang-Lung

    2018-04-01

    Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.

  13. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  14. New frontiers in water purification: highly stable amphopolycarboxyglycinate-stabilized Ag-AgCl nanocomposite and its newly discovered potential

    NASA Astrophysics Data System (ADS)

    Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.

    2016-09-01

    A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.

  15. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    PubMed Central

    2010-01-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, H., E-mail: hide-yamada@mg.ngkntk.co.jp; Matsuoka, T.; Kozuka, H.

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains ofmore » the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.« less

  17. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  18. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si)

    PubMed Central

    Nomoev, Andrey V.; Bardakhanov, Sergey P.; Schreiber, Makoto; Bazarova, Dashima Zh.; Baldanov, Boris B.; Romanov, Nikolai A.

    2014-01-01

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed. PMID:28346996

  19. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi₂/Si).

    PubMed

    Nomoev, Andrey V; Bardakhanov, Sergey P; Schreiber, Makoto; Bazarova, Dashima Zh; Baldanov, Boris B; Romanov, Nikolai A

    2014-12-25

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi₂/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi₂/Si nanoparticles is discussed.

  20. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  1. Exothermic low temperature sintering of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Jagjiwan; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw

    2015-11-15

    Sintering of the Cu nanoparticle at low temperatures resulted in exothermic behavior after its initiation. The calorimetry study of the heating of a 20 nm copper nanoparticles agglomerate revealed the evolution of 41.17 J/g of heat between 170 °C and 270 °C. High resolution transmission electron microscopy (HRTEM) images indicated that the heat generation was accompanied by sintering. The surface energy of the 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} based on the heat released during sintering. The in situ high resolution transmission electron microscope (HRTEM) investigation showed that vigorous sintering occurred betweenmore » 217 and 234 °C, which took place through the dislocation sintering mechanism. - Highlights: • Calorimetry showed exothermic behavior during heating of Cu nanoparticles between 170 and 270 °C. • Heat released due to the sintering of Cu nanoparticles was demonstrated by HRTEM. • Surface energy of 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} during sintering. • Growth in crystallite sizes during sintering is disclosed by X-ray diffraction. • In situ HRTEM heating study showed occurrence of sintering through dislocation mechanism.« less

  2. Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor.

    PubMed

    Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K

    2017-08-29

    In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.

  3. Superionic conductor PbSnF4 in the inner channel of SWNT

    NASA Astrophysics Data System (ADS)

    Zakalyukin, Ruslan Mikhalovich; Levkevich, Ekaterina Alexandrovna; Kumskov, Andrey Sergeevich; Orekhov, Andrey Sergeevich

    2018-04-01

    The nanocomposite PbSnF4@SWNT was obtained by capillary technique for the first time. This nanocomposite was investigated using X-ray diffraction phase analysis (XRD), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX). SWNT diameter is ˜2 nm. Lead tetrafluorostannate (PbSnF4) monoclinic modification (space group P2/n) was identified by XRD analysis. The periodicity of the crystal plane (201) along the tube axis is ˜3.2Å. The distortion of plane is 11° with respect to the nanotube axis. The model of PbSnF4 single crystal contains ˜168 atoms. The structure of 1D PbSnF4@SWNT nanocomposite and HREM image were modelled.

  4. NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar

    2018-04-01

    We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.

  5. Structural variations in indium tin tellurides and their thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Neudert, Lukas; Schwarzmüller, Stefan; Schmitzer, Silvia; Schnick, Wolfgang; Oeckler, Oliver

    2018-02-01

    Indium-doped tin tellurides are promising and thoroughly investigated thermoelectric materials. Due to the low solubility of In2Te3 in SnTe and vice versa, samples with the nominal composition (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.75 consist of a defect-rocksalt-type Sn-rich and a defect-sphalerite-type In-rich phase which are endotaxially intergrown and form nanoscale heterostructures. Such nanostructures are kinetically inert and become more pronounced with increasing overall In content. The vacancies often show short-range ordering. These phenomena are investigated by temperature-dependent X-ray diffraction and HRTEM as well as STEM with element mapping by X-ray spectroscopy. The combination of real-structure effects leads to very low lattice thermal conductivity from room temperature up to 500 °C. Thermoelectric figures of merit ZT of heterostructured materials with x = 0.136 reach ZT values up to 0.55 at 400 °C.

  6. Tribological improvements of carbon-carbon composites by infiltration of atomic layer deposited lubricious nanostructured ceramic oxides

    NASA Astrophysics Data System (ADS)

    Mohseni, Hamidreza

    A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C. It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ˜100 microm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ˜65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements. HRTEM confirmed the presence of a high density of ZnO shear-induced basal stacking faults inside the wear tracks responsible for intrafilm shear velocity accommodation that mitigated friction and wear.

  7. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  8. The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.

    2012-11-01

    Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.

  9. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  10. Effect of Pt and Fe catalysts in the transformation of carbon black into carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Myrseth, Velaug; Kosinski, Pawel

    2015-06-01

    In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals.

  11. Wet Chemical Synthesis of SnS/Graphene Nanocomposites for High Performance Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Ravuri, Syamsai; Pandey, Chandan Abhishek; Ramchandran, R.; Jeon, Soon Kwan; Grace, Andrews Nirmala

    A series of SnS/Graphene (SnS/G) nanocomposites at various concentrations of graphene were synthesized by a wet chemical route and the prepared composites were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HRTEM) for its structural and morphological investigation. Results show that the prepared SnS nanoparticles in the composite are ˜30nm sized and uniformly dispersed on graphene sheets. To test the supercapacitance behavior, electrochemical measurements were carried out in 6M KOH electrolyte. A maximum specific capacitance of 984F/g was observed for SnS/G-c at 5mVs-1 scan rate. Galvanostatic charge/discharge curves showed an excellent cyclic stability with higher charge/discharge duration, and hence could be used for high performance supercapacitor applications.

  12. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  13. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-10-01

    Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV-vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  14. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support.

    PubMed

    Shakir, Mohammad; Nasir, Zeba; Khan, Mohd Shoeb; Lutfullah; Alam, Md Fazle; Younus, Hina; Al-Resayes, Saud Ibrahim

    2015-01-01

    The covalent binding of yeast alcohol dehydrogenase (YADH) enzyme complex in a series of magnetic crystalline Ni-Co nanoferrites, synthesized via sol-gel auto combustion technique was investigated. The structural analysis, morphology and magnetic properties of Ni-Co nanoferrites were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The comparative analysis of the HRTEM micrographs of bare magnetic nanoferrite particles and particles immobilized with enzyme revealed an uniform distribution of the particles in both the cases without undergoing change in the size which was found to be in the range 20-30 nm. The binding of YADH to Ni-Co nanoferrites and the possible binding mechanism have been suggested by comparing the FTIR results. The binding properties of the immobilized YADH enzyme were also studied by kinetic parameters, optimum operational pH, temperature, thermal stability and reusability. The immobilized YADH exhibits enhanced thermal stability as compared to the free enzyme over a wide range of temperature and pH, and showed good durability after recovery by magnetic separation for repeated use. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    PubMed

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  16. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.

    2018-05-01

    Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.

  17. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction.

    PubMed

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-09

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  18. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    PubMed Central

    2013-01-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%. PMID:24206942

  19. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  20. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.

    PubMed

    Iyyappan, E; Wilson, P; Sheela, K; Ramya, R

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material.

    PubMed

    Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N

    1999-04-01

    An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.

  2. In situ spectroscopic characterization of Ni 1-xZn x/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less

  3. Synthesis, structure and magnetic properties of nanostructured La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) perovskites

    NASA Astrophysics Data System (ADS)

    Hossain, Aslam; Ghosh, Debamalya; Dutta, Uma; Walke, Pravin S.; Mordvinova, Natalia E.; Lebedev, Oleg I.; Sinha, Bhavesh; Pal, Kamalesh; Gayen, Arup; Kundu, Asish K.; Seikh, Md. Motin

    2017-12-01

    The effect of hole doping on magnetic properties of LaFe0.5Mn0.5O3 have been investigated. All the ceramics samples La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) were synthesized at 500 °C by sol-gel method and the particles size were found to be in nanodimension. The samples were characterized by X-ray and electron diffraction, HRTEM and both dc and ac-magnetization measurements. The X-ray and electron diffraction patterns were indexed by cubic Pm-3m space group. The particle size of the LaFe0.5Mn0.5O3 is ∼100 nm, whereas the Pb-doped sample is ∼50 nm and for Ca or Sr doped samples the size is ∼10-30 nm. Both dc and ac-susceptibility measurements suggest that the effect of hole doping and A-site cationic radius in LaFe0.5Mn0.5O3 have no significant role on magnetic properties. However, the particle size plays an important role on magnetic property due to the development of surface ferromagnetic cluster at nanoscale. The competing interactions lead to magnetic phase separation where local ferromagnetic clusters coexist within the antiferromagentic matrix in all the samples.

  4. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  5. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  6. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract

    NASA Astrophysics Data System (ADS)

    Guo, Mingxia; Li, Wei; Yang, Feng; Liu, Huihong

    2015-05-01

    The present work reports the green synthesis of gold nanoparticles (AuNPs) by water extract of Eucommia ulmoides (E. ulmoides) bark. The effects of various parameters such as the concentration of reactants, pH of the reaction mixture, temperature and the time of incubation were explored to the controlled formation of gold nanoparticles. The characterization through high resolution-transmission electron microscopic (HRTEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) infer that the as-synthesized AuNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from zeta potential and dynamic light scattering (DLS) suggest the good stability and narrow size distribution of the AuNPs. This method for synthesis of AuNPs is simple, economic, nontoxic and efficient. The as-synthesized AuNPs show excellent catalytic activity for the catalytic reducing decoloration of model compounds of azo-dye: reactive yellow 179 and Congo red.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Örnek, Ahmet, E-mail: ahmetornek@kafkas.edu.tr; Can, Mustafa; Yeşildağ, Ali

    Nanostructured LiCo{sub 1−x}Mn{sub x}PO{sub 4}/C (x = 0 and 0.05) materials were successfully produced as superior quality cathodes by combined sol-gel and carbothermal reduction methods. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), cyclic voltammetry (CV) and galvanostatic measurements were applied to determine the phase purity, morphology and electrochemical qualifications. HR-TEM analysis reveals that the thickness of the surface carbon layer of 5 to 10 nm range with the uniform distribution. LiCo{sub 0·95}Mn{sub 0·05}PO{sub 4}/C particles were betweenmore » 40 and 80 nm and the same material exhibits a higher and stable reversible capacity (140 mA h g{sup −1}) with the long voltage plateau (4.76 V). Substitution of Co{sup 2+} with Mn{sup 2+} in LiCoPO{sub 4}/C has an influence on the initial discharge capacity and excellent cycling behaviour. The obtained results have attributed that production dynamics in nano-synthesis, the coating process with proper carbon source and an effective doping represent three parameters to prepare favorable cathode materials. - Highlights: • Structural, morphological and electrochemical effects of Mn doped LiCo{sub 1−x}Mn{sub x}PO{sub 4}–C electrodes are investigated. • Cheap, effective and simple sol-gel assisted carbothermal reduction approach is used. • After 60th cycle, capacity retention is almost 92% for LiCo{sub 0·95}Mn{sub 0.05}PO{sub 4}–C electrode. • Mn-doped sample exhibits distinctive oxidation (4.76 V and 4.12 V) peaks.« less

  8. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Ni, Yonghong; Zhai, Muheng

    2018-01-01

    Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.

  9. Synthesis, surface chemistry and pseudocapacitance mechanisms of VN nanocrystals derived by a simple two-step halide approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Jampani, Prashanth H.; Jayakody, J. R. P.

    Chloroamide precursors generated via a simple two-step ammonolysis reaction of transition metal chloride in the liquid phase at room temperature were heat treated in ammonia at moderate temperature to yield nano-sized VN crystallites. Grain growth inhibited by lowering the synthesis temperature (≈400°C) yielded agglomerated powders of spherical crystallites of cubic phase of VN with particle sizes as small as 6nm in diameter. X-ray diffraction, FTIR, mass spectroscopy (MS), and nuclear magnetic resonance (NMR) spectroscopy assessed the ammonolysis and nitridation reaction of the VCl 4-NH 3 system. X-ray Rietveld refinement, the BET technique and high-resolution transmission microscopy (HRTEM), energy dispersive x-raymore » (EDX) and thermogravimetric analysis (TGA) helped assess the crystallographic and microstructural nature of the VN nanocrystals. The surface chemistry and redox reaction leading to the gravimetric pseudo-capacitance value of (≈855 F/g) measured for the VN nanocrystals was determined and validated using FTIR, XPS and cyclic voltammetry analyses.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Sushovan, E-mail: sushovanbasak@gmail.com; Das, Hrishikesh, E-mail: hrishichem@gmail.com; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com

    In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effectmore » of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is worth considering or not. • HRTEM-EDS, SAD pattern identifies the morphologies and size of intermetallics. • A compromise concerning formation of IMC is necessary.« less

  11. Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature

    NASA Astrophysics Data System (ADS)

    Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.

    2016-12-01

    Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, 2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.

  12. Modified Graphene with SnO2 Nanocomposites Using Thermal Decomposition Method and Sensing Behavior Towards NO2 Gas

    NASA Astrophysics Data System (ADS)

    Sharma, Vikram

    2017-11-01

    This is the first time the graphene sample has been functionalized with metal oxide nanoparticles by thermal decomposition process. In this paper, graphene has been synthesized from natural resources using flower petals as carbon feedstock by thermal exfoliation technique at temperatures 1300 °C and the synthesis of graphene-tin oxide (SnO2) nanocomposites has been done using chemical treatment followed by thermal decomposition method. The response versus time condition has been investigated for the fabricated sample. The electrical resistance w.r.t. temperature could be explained by the thermal generation of electron-hole pairs and carrier scattering by acoustic phonons. The structural, morphological and chemical composition studies of the nanocomposites were carried out by the Raman spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). The evidence of good-quality graphene is obtained from Raman spectroscopy studies. The SEM and HRTEM images have shown that SnO2 nanoparticles are well distributed in the multilayer electron transparent graphene films. The sensor response was found to lie between 8.25 and 9.36% at 500 ppm of nitrogen dioxide, and also resistance recovered quickly without any application of heat. We believe such chemical treatment of graphene could potentially be used to manufacture a new generation of low-power nano-NO2 sensors.

  13. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  14. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  15. Spectroscopic investigations on the orientation of 1,4-dibromonaphthalene on silver nanoparticles.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Erenler, R

    2013-12-01

    Silver nanoparticles (Ag NPs) have been prepared by solution combustion method with glycine as fuel. Silver nanoparticles were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and UV-visible spectroscopy. The prepared silver nanoparticles exhibit cubic crystalline structure with grain size of 59 nm. HRTEM image shows that the silver nanoparticles have strain and four-fold symmetry formed by twinning in the crystal structure. The optical adsorption spectrum shows that the surface plasmon resonance peak of silver is observed at 380 nm. The orientation of 1,4-dibromonaphthlaene (1,4-DBrN) on silver nanoparticles has been inferred from nRs and SERS spectral features. The absence of a C-H stretching vibrations, the observed high intense C-H out-of-plane bending modes and high intense C-Br stretching vibration suggest that the 1,4-DBrN molecule may be adsorbed in a 'stand-on' orientation to the surface. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Characterization of crystal structure features of a SIMOX substrate

    NASA Astrophysics Data System (ADS)

    Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.

    2015-12-01

    The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.

  17. Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications.

    PubMed

    S, Gowri; K, Gopinath; A, Arumugam

    2018-03-01

    The present study reports the biogenic synthesis of Cadmium Oxide Nanoparticles (CdO NPs) using plant pathogenic fungus Nigrospora oryzae culture filtrate. Further, the effect of the NPs on the cancer cell line (HeLa) is explored. The sample was characterized using Thermogravimetric/Differential Thermal (TG/DTA), Powder X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Field Emission Transmission Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED) analysis. Antibacterial activity was evaluated against both Gram positive and Gram negative bacterial strains and it showed maximum activity against Proteus vulgaris. The larvicidal activity was performed to evaluate the maximum ability of synthesized CdO NPs against Anopheles stephensi. Subsequently, MTT assay also depicted the dose-dependent anticancer activity of CdO NPs against cancer cell line (HeLa). Additionally, the inhibitory effect of CdO NPs was analyzed through extensive docking with cancerous protein agent. Results enlighten that Transketolase protein exhibited high docking score of -4.8 k/mol with H-bond interactions found with Lys75 and Asn185 amino acid residues. DFT study was performed on CdO to understand the charge transfer reaction for the inhibitory mechanism. Convincingly, this study explores the understanding of CdO NPs against HeLa cells. Copyright © 2018. Published by Elsevier B.V.

  18. Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.

    2018-04-01

    Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.

  19. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materialsmore » as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.« less

  20. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    PubMed

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  1. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  2. Copper and platinum doped titania for photocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Ambrožová, Nela; Reli, Martin; Šihor, Marcel; Kuśtrowski, Piotr; Wu, Jeffrey C. S.; Kočí, Kamila

    2018-02-01

    The parent TiO2, platinum and copper doped TiO2 photocatalysts with 0.5-2 wt. % of Pt, 0.5-2 wt. % Cu and 1 wt. % Pt combined with 1 wt. % Cu were prepared by the sol-gel method. All the prepared photocatalysts were tested for the CO2 photocatalytic reduction in a stirred batch reactor. The main reaction product was methane, however, hydrogen and carbon monoxide were also detected. The textural, (micro)structural, optical and electronic properties of photocatalysts were characterized in detail by low-temperature nitrogen physisorption, X-ray powder diffraction, EDX, HRTEM, X-ray fluorescence, X-ray photon spectroscopy, scanning electron microscope, transmission electron microscope and diffuse reflectance UV-vis spectroscopy. The photoelectrochemical characteristics of the photocatalysts were determined using photoelectric spectrometry. The highest yields of CH4, H2 and CO were achieved in the presence of 2 wt. % Cu/TiO2, 0.5 wt. % Cu/TiO2 and pure, amorphous TiO2. Based on the conducted experiments it was suggested that both the amount of chemisorbed oxygen or/and hydroxyl species on the TiO2 surface and specific surface area of photocatalyst highly influence its photocatalytic activity.

  3. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.

    PubMed

    Ramadan, Mohamed; Abdellah, Ahmed M; Mohamed, Saad G; Allam, Nageh K

    2018-05-22

    Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.

  4. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite-alumina nanocomposites.

    PubMed

    Radha, G; Balakumar, S; Venkatesan, Balaji; Vellaichamy, Elangovan

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)-alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.

    PubMed

    Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua

    2009-01-01

    In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.

  6. Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Reddy, Ch Venkata; Babu, B.; Shim, Jaesool

    2018-01-01

    Pure CdO, ZnO and CdO/ZnO hybrid nanocomposite photocatalyst were synthesized using simple co-precipitation technique and studied in detail. The synthesized photocatalysts were characterized using several measurements such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), surface analysis (BET), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, FT-IR, TG-DTA and photoluminescence (PL). The XRD results revealed that the hexagonal and cubic crystal structure of CdO and ZnO nanoparticles. The optical response for the composite showed the presence of separate absorption signature for CdO and ZnO in the visible region at about 510 nm and 360 nm respectively. The CdO/ZnO hybrid nanocomposite photocatalyst exhibited enhanced photocatalytic degradation activity compared to pristine CdO and ZnO. The enhanced photocatalytic activity may be due to the higher specific surface area and significantly reduced the electron-hole recombination rate.

  7. Optical and magnetic properties of zinc oxide quantum dots doped with cobalt and lanthanum.

    PubMed

    Yu, Shiyong; Zhao, Jing; Su, Hai-Quan

    2013-06-01

    Cobalt and Lanthanum-doped ZnO QDs are synthesized by a modified sol-gel method under atmospheric conditions. The as-prepared quantum dots are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) analysis and high resolution transmission electron microscopy (HRTEM). The optical properties of the products are studied by fluorescent spectroscopy. With a proper Co and La doping, these nanoparticles possess exceptionally small size and enhanced fluorescence. Hysteresis loops of un-doped ZnO QDs and Co and La-doped ZnO QDs indicate that both the samples show ferromagnetic behavior at room temperature. Finally, these nanoparticles can label the BGC 803 cells successfully in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mM. We expect that the as-prepared Co and La-doped ZnO QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields.

  8. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  9. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cai, Yujie; Li, Dongya; Sun, Jingyu; Chen, Mengdie; Li, Yirui; Zou, Zhongwei; Zhang, Hua; Xu, Haiming; Xia, Dongsheng

    2018-05-01

    The square-sharped BiOCl nanosheets with oxygen vacancies were successfully synthesized via a facile hydrothermal route using xylitol as surfactant. The as-prepared BiOCl samples were characterized by Powder X-ray Diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), UV-Vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR). The as-prepared samples were phase-pure with the width and the thickness were about 50-400 nm and 20-50 nm respectively. Besides, the photodegradation performances showed the BiOCl nanosheets with 0.1 g concentration of xylitol (BOC-1) had the best photocatalytic activity under visible light due to its special polycrystalline structure, grain boundary and an optimum concentration of oxygen vacancies. The h+ and radO2- were the two main active species during the photocatalytic process and the possible photocatalytic mechanism was proposed.

  10. Crystallization kinetics of the Cu{sub 50}Zr{sub 50} metallic glass under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Jian, Zengyun, E-mail: jianzengyun@xatu.edu.cn; Xu, Junfeng

    2016-12-15

    Amorphous structure of the melt-spun Cu{sub 50}Zr{sub 50} amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E{sub α} decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E{sub α} is basically constant at 0.1

  11. Infiltration of CdTe nano crystals into a ZnO wire vertical matrix by using the isothermal closed space technique

    NASA Astrophysics Data System (ADS)

    Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni

    2017-10-01

    A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.

  12. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  13. Crystalline structures, thermal properties and crystallizing mechanism of polyamide 6 nanotubes in confined space

    NASA Astrophysics Data System (ADS)

    Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang

    2016-09-01

    The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.

  14. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black

    NASA Astrophysics Data System (ADS)

    Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai

    2018-07-01

    The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.

  15. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    PubMed

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  16. As-pyrolyzed sugarcane bagasse possessing exotic field emission properties

    NASA Astrophysics Data System (ADS)

    Krishnia, Lucky; Yadav, Brajesh S.; Palnitkar, Umesh; Satyam, P. V.; Gupta, Bipin Kumar; Koratkar, Nikhil A.; Tyagi, Pawan K.

    2018-06-01

    The present study aims to demonstrate the application of sugarcane bagasse as an excellent field emitter. Field emission property of as-pyrolyzed sugarcane bagasse (p-SBg) before and after the plasma treatment has been investigated. It has been observed that electronic nature of p-SBg transformed from semiconducting to metallic after plasma treatment. Maximum current and turn-on field defined at 10 μA/cm2 was found to be 800 μA/cm2 and 2.2 V/μm for as-pyrolyzed sugarcane bagasse (p-SBg) and 25 μA/cm2 and 8.4 V/μm for H2-plasma treated p-SBg. These values are found to be better than the reported values for graphene and activated carbon. In this report, pyrolysis of bagasse has been carried in a thermal chemical vapor deposition (Th-CVD) system in inert argon atmosphere. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) have been used to study the structure of both pre and post plasma-treated p-SBg bagasse's sample. HRTEM study reveals that carbonaceous structures such as 3D-nanographene oxide (3D-NGO), graphite nanodots (GNDs), carbon nanotubes (CNTs), and carbon onions are present in both pre-treated and plasma-treated p-SBg. Hence, we envision that the performed study will be a forwarding step to facilitate the application of p-SBg in display devices.

  17. Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications.

    PubMed

    Otari, Sachin V; Kumar, Manoj; Anwar, Muhammad Zahid; Thorat, Nanasaheb D; Patel, Sanjay K S; Lee, Dongjin; Lee, Jai Hyo; Lee, Jung-Kul; Kang, Yun Chan; Zhang, Liaoyuan

    2017-09-08

    This article presents novel, rapid, and environmentally benign synthesis method for one-step reduction and decoration of graphene oxide with gold nanoparticles (NAuNPs) by using thermostable antimicrobial nisin peptides to form a gold-nanoparticles-reduced graphene oxide (NAu-rGO) nanocomposite. The formed composite material was characterized by UV/Vis spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). HR-TEM analysis revealed the formation of spherical AuNPs of 5-30 nm in size on reduced graphene oxide (rGO) nanosheets. A non-volatile-memory device was prepared based on a solution-processed ZnO thin-film transistor fabricated by inserting the NAu-rGO nanocomposite in the gate dielectric stack as a charge trapping medium. The transfer characteristic of the ZnO thin-film transistor memory device showed large clockwise hysteresis behaviour because of charge carrier trapping in the NAu-rGO nanocomposite. Under positive and negative bias conditions, clear positive and negative threshold voltage shifts occurred, which were attributed to charge carrier trapping and de-trapping in the ZnO/NAu-rGO/SiO 2 structure. Also, the photothermal effect of the NAu-rGO nanocomposites on MCF7 breast cancer cells caused inhibition of ~80% cells after irradiation with infrared light (0.5 W cm -2 ) for 5 min.

  18. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    PubMed

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrodeposition of Ni and CeO₂/Ni Nanotubes for Hydrogen Evolution Reaction Electrode.

    PubMed

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2018-07-01

    Ni NTs and CeO2-Ni nanotubes (NTs) have been prepared by galvanostatic electrodeposition in anodic aluminum oxide (AAO) Templates. Scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopic (EDS) and X-ray Diffraction (XRD) are used to characterize the prepared NTs. The results showed that the preparation process of CeO2-Ni NTs was accompanied by the formation of many new phases CeNix (x = 1, 2, 3.5 or 5) and preferential orientation crystal face of Ni in CeO2-Ni NTs is 〈111〉, which is different from that Ni 〈200〉 in Ni NTs. Then linear scan voltammetry (LSV) is applied to test the electrocatalytic activity for hydrogen revolution reaction (HER) of the two electrodes in 1 M NaCl aqueous solution and find that both of the two materials exhibited good performance. Finally, the kinetics analyses from the HER process showed that Tafel slope b was mainly dependent on phase composition and electric conductivity of the electrode, while j0 was mainly dependent on its real specific surface area.

  20. Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1–x Sn 2+x As 2

    DOE PAGES

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...

    2015-02-22

    A new ternary compound, Li 1-xSn 2+xAs 2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn 3As 3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As 6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li 1-xSn 2+xAs 2.« less

  1. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    NASA Astrophysics Data System (ADS)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  2. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    NASA Astrophysics Data System (ADS)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081

    Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less

  4. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  5. Effect of carbon coating on spontaneous C12A7 whisker formation

    NASA Astrophysics Data System (ADS)

    Zaikovskii, Vladimir I.; Volodin, Alexander M.; Stoyanovskii, Vladimir O.; Cherepanova, Svetlana V.; Vedyagin, Aleksey A.

    2018-06-01

    A carbon nanoreactor concept was applied to study the stabilization effect of carbon shell on phase composition and morphology of dodecacalcium hepta-aluminate Ca12Al14O33. The starting C12A7 powder was obtained using aluminum and calcium hydroxides as precursors. Carbon shell was formed by a chemical vapor deposition of divinyl at 550 °C. After the calcination at 1400 °C, the product was characterized by X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HRTEM). It was observed for a first time that spontaneous formation of calcium aluminate whiskers take place under the conditions described. Each whisker consists of a 'head' (globular particle of 0.5 microns in diameter) and a 'tail' (prolonged whisker of few microns in length and 0.1-0.2 microns in diameter). According to HRTEM, the 'head' is characterized with microcrystal lattice of Ca12Al14O33 compound. XRD data show the presence of CaAl2O4 phase traces. The 'head' and 'tail' of the whisker are covered with structured graphene layers of 10 nm and 3 nm, correspondingly.

  6. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.

    2018-06-01

    Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD method, and it can be recommended that the MWCNTs can be used to treat infected media contaminated with Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa.

  7. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction.

    PubMed

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok

    2016-11-15

    This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV-Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High temperature ferromagnetism in Ni doped ZnO nanoparticles: Milling time dependence

    NASA Astrophysics Data System (ADS)

    Pal, Bappaditya; Giri, P. K.; Sarkar, D.

    2014-04-01

    We report on the room temperature ferromagnetism (RT FM) in the Zn1-xNixO (x = 0, 0.03, and 0.05) nanoparticles (NPs) synthesized by a ball milling technique. X-ray diffraction analysis confirms the single crystalline ZnO wurtzite structure with presence of small intensity secondary phase related peak which disappear with increasing milling time for Ni doped samples. HRTEM lattice images show that the doped NPs are single crystalline with a dspacing of 2.44 Å. Energy-dispersive X-ray spectroscopy analysis confirms the presence of Ni ions in the ZnO matrix. Magnetic measurement (RT) exhibits the hysteresis loop with saturation magnetization (Ms) of 1.6-2.56 (emu/g) and coercive field (Hc) of 296-322 Oe. M-T measurement shows a Curie temperature of the order of 325°C for 3% Ni doped sample. Micro -Raman studies show doping/disorder induced additional modes at ˜510, 547, 572 cm-1 in addition to 437 cm-1 peak of pure ZnO. UV-Vis absorption spectra illustrate band gap shift due to doping. Alteration of Ms value with the variation of doping concentration and milling time has been studied and discussed.

  9. Direct observation of antisite defects in LiCoPO4 cathode materials by annular dark- and bright-field electron microscopy.

    PubMed

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru

    2013-10-23

    LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.

  10. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  11. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    NASA Astrophysics Data System (ADS)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.

    2012-07-01

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.

  12. Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine

    2014-06-01

    Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.

  13. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  14. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    PubMed

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Bappaditya, E-mail: b.pal@iitg.ernet.in; Sarkar, D.; Giri, P. K.

    We report on the room temperature ferromagnetism (RT FM) in the Zn{sub 1−x}Ni{sub x}O (x = 0, 0.03, and 0.05) nanoparticles (NPs) synthesized by a ball milling technique. X-ray diffraction analysis confirms the single crystalline ZnO wurtzite structure with presence of small intensity secondary phase related peak which disappear with increasing milling time for Ni doped samples. HRTEM lattice images show that the doped NPs are single crystalline with a dspacing of 2.44 Å. Energy-dispersive X-ray spectroscopy analysis confirms the presence of Ni ions in the ZnO matrix. Magnetic measurement (RT) exhibits the hysteresis loop with saturation magnetization (M{sub s})more » of 1.6–2.56 (emu/g) and coercive field (H{sub c}) of 296–322 Oe. M-T measurement shows a Curie temperature of the order of 325°C for 3% Ni doped sample. Micro -Raman studies show doping/disorder induced additional modes at ∼510, 547, 572 cm{sup −1} in addition to 437 cm{sup −1} peak of pure ZnO. UV-Vis absorption spectra illustrate band gap shift due to doping. Alteration of M{sub s} value with the variation of doping concentration and milling time has been studied and discussed.« less

  16. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu(3+) red phosphor with enhanced quantum yield.

    PubMed

    Jain, Akhil; Hirata, G A; Farías, M H; Castillón, F F

    2016-02-12

    We report the surface modification of nanocrystalline Gd2O3:Eu(3+) phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu(3+) nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.

  17. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu3+ red phosphor with enhanced quantum yield

    NASA Astrophysics Data System (ADS)

    Jain, Akhil; Hirata, G. A.; Farías, M. H.; Castillón, F. F.

    2016-02-01

    We report the surface modification of nanocrystalline Gd2O3:Eu3+ phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu3+ nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.

  18. Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects.

    PubMed

    Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng

    2017-10-24

    A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.

  19. HYDROTHERMAL SYNTHESIS OF α-MoO3 NANORODS FOR NO2 DETECTION

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Chen, Song; Tian, Yuan; Luo, Ruixian; Li, Dianqing; Chen, Aifan

    2012-12-01

    Thermodynamically stable molybdenum trioxide nanorods have been successfully synthesized by a simple hydrothermal process. The product exhibits high-quality, single-crystalline layered orthorhombic structure (α-MoO3), and aspect ratio over 20 by characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FT-IR). The growth mechanism of α-MoO3 nanorods can be understood by electroneutral and dehydration reaction, which is highly dependent on solution acidity and hydrothermal temperature. The sensing tests show that the sensor based on MoO3 nanorods exhibits high sensitivity to NO2 and is not interferred by CO and CH4, which makes this kind sensor a competitive candidate for NO2 detection. The intrinsic sensing performance of MoO3 maybe arise from its nonstoichiometry of MoO3 owing to the presence of Mo5+ and oxygen vacancy in MoO3 lattice, which has been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The sensing mechanism of MoO3 for NO2 is also discussed.

  20. Synthesis of germanium nanocrystals in high temperature supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lu, Xianmao; Korgel, Brian A.; Johnston, Keith P.

    2005-07-01

    Germanium nanocrystals were synthesized in supercritical (sc) CO2 by thermolysis of diphenylgermane (DPG) or tetraethylgermane (TEG) with octanol as a capping ligand at 500 °C and 27.6 MPa. The Ge nanocrystals were characterized with high resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). On the basis of TEM, the mean diameters of the nanocrystals made from DPG and TEG were 10.1 and 5.6 nm, respectively. The synthesis in sc-CO2 produced much less organic contamination compared with similar reactions in organic supercritical fluids. When the same reaction of DPG with octanol was performed in the gas phase without CO2 present, bulk Ge crystals were formed instead of nanocrystals. Thus, the solvation of the hydrocarbon ligands by CO2 was sufficient to provide steric stabilization. The presence of steric stabilization in CO2 at a reduced temperature of 2.5, with a reduced solvent density of only 0.4, may be attributed to a reduction in the differences between ligand-ligand interactions and ligand-CO2 interactions relative to thermal energy.

  1. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-12-01

    A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  2. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  3. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.

    PubMed

    Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2015-06-28

    A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.

  4. Performance and stability of Pd nanostructures in an alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Carrera-Cerritos, R.; Fuentes-Ramírez, R.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; Arriaga, L. G.

    2014-12-01

    Pd nanopolyhedral, nanobar and nanorod particles were synthesised using the polyol process and evaluated as anodes in a direct ethanol fuel cell. The materials were physico-chemically characterised by high-resolution transmission electronic microscopy (HR-TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effect of the operation parameters (i.e., temperature and fuel ethanol concentration) on the maximum power density (MPD) and open circuit voltage (OCV) was investigated. In addition, a stability test was performed by applying three current density steps for fifty cycles. The OCV values increased as the temperature increased for all of the catalysts at low ethanol concentration. Although the MPD increased with temperature for all of the catalyst independent of the ethanol concentration, the effect of the temperature on the MPD for each Pd structure results in different slopes due to the different crystal faces. Finally, a loss of electro-catalytic activity after fifty cycles was observed in all of the catalysts evaluated, which may be in response to morphological changes in the nanostructures.

  5. Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material

    DOE PAGES

    Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...

    2017-03-10

    Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti 4Ni 4Si 7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed tomore » form interconnection channels growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less

  6. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi

    2018-05-01

    A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.

  7. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes.

    PubMed

    Ou, Hsin-Hung; Liao, Ching-Hui; Liou, Ya-Hsuan; Hong, Jian-Hao; Lo, Shang-Lien

    2008-06-15

    Characterizations of microwave-induced titanate nanotubes (NaxH(2-x)Ti3O7, TNTs) were conducted by the determinations of specific surface area (S(BET)), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), ionic coupled plasma-atomic emission spectrometry(ICP-AES), scanning electron microscopy/ energy dispersive X-ray (SEM/EDX), and high-resolution transmission electron microscopy (HR-TEM). The applied level of microwave irradiation during the fabrication process is responsible for both the intercalation intensity of Na atoms into TNTs and the type of crystallization phase within TNTs, which dominate the efficiency of photocatalytic NH3/NH4+. A pure TNT phase presents no powerful ability toward photocatalytic NH3/ NH4+, while the photocatalytic efficiency can be enhanced with the presence of a rutile phase within TNTs. In addition, the mixture of anatase and rutile phase within P25 TiO2 prefers forming NO3-, whereas TNTs yield higher NO2- amount Regarding the effect of acid-washing treatment on TNTs, the acid-treated TNTs with enhanced ion exchangeability considerably improve the NH3/NH4+ degradation and NO2-/NO3- yields. This result is likely ascribed to the easy intercalation of NH3/ NH4+ into the structure of acid-washing TNTs so that the photocatalytic oxidation of intercalated NH3/NH4+ is not limited to the shielding effect resulting from the overload of TNTs.

  8. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  9. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.

    PubMed

    Ding, Zecong; Fu, Fenglian; Cheng, Zihang; Lu, Jianwei; Tang, Bing

    2017-02-01

    In this study, novel mesoporous FeAl bimetal oxides were successfully synthesized, characterized, and employed for As(III) removal. Batch experiments were conducted to investigate the effects of Fe/Al molar ratio, dosage, and initial solution pH values on As(III) removal. The results showed that the FeAl bimetal oxide with Fe/Al molar ratio 4:1 (shorten as FeAl-4) can quickly remove As(III) from aqueous solution in a wide pH range. The FeAl-4 before and after reaction with As(III) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET) surface area measurement, and X-ray photoelectron spectroscopy (XPS). The BET results showed that the original FeAl-4 with a high surface area of 223.9 m 2 /g was a mesoporous material. XPS analysis indicated that the surface of FeAl-4 possessed a high concentration of M-OH (where M represents Fe and Al), which was beneficial to the immobility of As(III). The excellent performance of FeAl-4 makes it a potentially attractive material for As(III) removal from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications

    NASA Astrophysics Data System (ADS)

    Arul, Velusamy; Sethuraman, Mathur Gopalakrishnan

    2018-04-01

    Green synthesis of fluorescent nitrogen doped carbon dots (N-CDs) using Actinidia deliciosa (A. deliciosa) fruit extract as a carbon precursor and aqueous ammonia as a nitrogen dopant is reported here. The synthesized N-CDs were characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), UV-Visible spectroscopy (UV-Vis), fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The average size of the N-CDs was approximately 3.59 nm and the calculated inter layer distance was found to be 0.21 nm. Raman spectroscopy and SAED pattern revealed the graphitic nature of the synthesized N-CDs. The N-CDs were found to emit intense blue color at 405 nm under the excitation of 315 nm. The doping of nitrogen over the surface of the N-CDs was confirmed by EDS, FT-IR and XPS studies. The synthesized N-CDs were found to exhibit excellent catalytic activity in the reduction of Rhodamine-B using sodium borohydrate. The MTT assay was used to evaluate the cytotoxicity and biocompatibility of N-CDs towards L-929 and MCF-7 cells. From the results obtained, it was found that the N-CDs exhibit low cytotoxicity and superior biocompatibility on both L-929 and MCF-7 cells.

  11. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less

  12. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  13. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  14. Effect of silver doping on the elastic properties of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, P. C.; Das, R.

    2018-05-01

    CdS and Ag doped CdS (CdS/Ag) nanoparticles have been prepared via chemical method from a Cadmium acetate precursor and Thiourea. The synthesized CdS and CdS/Ag nanoparticles have been characterized by the X-ray Diffraction and High Resolution Transmission Electron Microscope. Here, these nanoparticles have been synthesized at room temperature and all the characterization have also been done at room temperature only. The XRD results reveal that the products are crystalline with cubic zinc blende structure. HRTEM images show that the prepared nanoparticles are nearly spherical in shape. Williamson-Hall method and Size-Strain Plot (SSP) have been used to study the individual contribution of crystalline sizes and lattice strain on the peak broadening of the CdS and CdS/Ag nanoparticles. The different modified model of Williamson-Hall method such as, uniform deformation model, uniform stress deformation model and uniform energy density deformation model and SSP method have been used to calculate the different physical parameter such as lattice strain, stress and energy density for all diffraction peaks of the XRD, corresponding to the CdS and silver doped CdS (CdS/Ag). The obtained results reveal that the average particle size of the prepared CdS and CdS/Ag nanoparticles estimated from the HRTEM images, Williamson-Hall analysis and SSP method are highly correlated with each other. Further, all these result confirms that doping of Ag significantly affects the elastic properties of CdS.

  15. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

    PubMed

    Umamaheswari, C; Lakshmanan, A; Nagarajan, N S

    2018-01-01

    The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of depositionmore » time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.« less

  17. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  18. Thin film assembly of nanosized cobalt(II) bis(5-phenyl-azo-8-hydroxyquinolate) using static step-by-step soft surface reaction technique: Structural characterization and optical properties.

    PubMed

    Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E

    2017-09-05

    Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques.

    PubMed

    Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis

    2008-01-01

    Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.

  20. Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol

    PubMed Central

    Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.

    2012-01-01

    This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905

  1. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    PubMed

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  2. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.

    PubMed

    Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna

    2014-10-22

    Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.

  3. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong

    2010-08-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.

  4. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita

    2013-09-01

    The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.

  5. Synthesis of TiO{sub 2} nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.

    2012-07-23

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less

  6. Synthesis and characterization of monodispersed silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  7. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  9. Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ying-Zi, Peng; Yang, Song; Xiao-Qiang, Xie; Yuan, Li; Zheng-Hong, Qian; Ru, Bai

    2016-05-01

    Atomic-layer MoS2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy (AFM), x-ray diffraction (XRD), high-resolution transition electron microscopy (HRTEM), photoluminescence (PL), and x-ray photoelectron spectroscopy (XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation (002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasi-honeycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS2. The stoichiometric mole ratio of S/Mo is about 2.0-2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS2 under our experimental conditions. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY16F040003 and LY16A040007) and the National Natural Science Foundation of China (Grant Nos. 51401069 and 11574067).

  10. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less

  11. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue.

    PubMed

    Khan, Arif Ullah; Yuan, Qipeng; Khan, Zia Ul Haq; Ahmad, Aftab; Khan, Faheem Ullah; Tahir, Kamran; Shakeel, Muhammad; Ullah, Sadeeq

    2018-05-07

    Plants mediated synthesis of noble metal nanoparticles is encountered as a clean, environment friendly, lucrative and benign loom. The current study consists of clean and green synthesis of Silver nanoparticles (AgNPs). Phytoconstituents from Longan (Euphorbia longana Lam.) fruit peel were used to reduce Ag + into AgNPs. Different analytical techniques i.e. UV-vis Spectroscopy, X-ray diffraction spectroscopy (XRD), electron dispersive X-ray (EDX), High-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the synthesized AgNPs. AgNPs have localized surface plasmon resonance (LSPR) peak at 445 nm which is confirmed by UV-vis spectroscopy. HRTEM showed that the prepared AgNPs are spheroid in shape and well dispersed while XRD results showed that the AgNPs are face centered cubic crystalline. EDX confirmed the elemental composition of AgNPs. The antiproliferative response of AgNPs was assayed by an exhaustive MTT assay. AgNPs showed potent anticancer activity (88%) against breast cancer cells MCF-7. Moreover, the green produced AgNPs effectively scavenged 91% of the stable and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical which confirms its' efficient antioxidant nature. AgNPs have profound photocatalytic degradation (99%) of methylene blue in a short period of time (7 min). The noteworthy biological and photocatalytic responses of the green and cleanly produced AgNPs are encountered to their well dispersion, petite volume and round shaped structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  13. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.

    PubMed

    Kanel, Sushil Raj; Greneche, Jean-Mark; Choi, Heechul

    2006-03-15

    The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. Mössbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.

  14. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method

    NASA Astrophysics Data System (ADS)

    Kheiralla, Zeinab Mohamed Hassan; Rushdy, Abeer Ahmed; Betiha, Mohamed Ahmed; Yakob, Naglaa Abdullah Nasif

    2014-08-01

    Syntheses of silver nanocomposites (AgNPs@MMT) were fabricated with different silver nanoparticles to montmorillonite clay (MMT) ratios using microwave-assisted synthesis method, and silver nitrate was used as the precursor of silver nanoparticles. The antibacterial activities of the nanocomposite were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria by the disk diffusion and macrodilution broth techniques. The prepared nanocomposites were characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), field emission scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray fluorescence spectroscopy and Fourier transform infrared spectroscopy. The wide-angle XRD patterns and HRTEM images demonstrate that silver nanoparticles were fabricated on surface and within MMT channels. The diameters of the AgNPs were below 15 nm, as indicated by UV-Vis absorption, which effectively controlled by the pores of the MMT host. Data revealed that 5 % AgNP@MMT nanocomposite is much more effective than silver nitrate and shows strong antibacterial activities. The efficiency of antibiotics increased when combined with 5 % AgNP@MMT nanocomposite against both the tested strains. The increase in fold area was higher in case of P. aeruginosa than S. aureus. The highest percentage of fold increases was found for Sulfamethaxole/Trimethoprim and Oxacillin followed by Levofloxaci and Nalidixic acid against P.aeruginosa. On the other hand, Imipenem increases activity in presence of AgNP@MMT nanocomposite against S. aureus. Overall, the synergistic effect of antibiotics and nanoparticles clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. The suspensions of the synthesized nanocomposites were found to be stable over a long time without any sign of detachment of AgNPs.

  15. Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles.

    PubMed

    Wang, Bin; de Godoi, Fernanda Condi; Sun, Zhiming; Zeng, Qingcong; Zheng, Shuilin; Frost, Ray L

    2015-01-15

    Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol-gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 °C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti-O-Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The preferable removal efficiency was observed in composites by 750 °C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing

    2017-01-01

    Here we present a facile aqueous approach to synthesize heterostructured CdSe/CdS QDs with all-inorganic chalcogenide S2- ligands under mild conditions. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and steady-state emission spectroscopy demonstrate that the heterostructured CdSe/CdS QDs with sulfur-rich surface composition are formed by heterogeneous nucleation of Cd2+ and S2- precursors on the CdSe QDs. After adsorption of small Ni(OH)(2) clusters over the surface in situ, the CdSe/CdS-Ni(OH)(2) photocatalyst enables H-2 production efficiently with an internal quantum yield of 52% under visible light irradiation at 455 nm, up to an 8-fold increase ofmore » activity to that of spherical CdSe QDs-Ni(OH)(2) under the same conditions. Femtosecond transient absorption spectroscopy, X-ray transient absorption (XTA) spectroscopy, steady-state and time-resolved emission spectroscopy show that the quasi-type-II band alignment in the CdSe/CdS heterostructure is responsible for the efficiency enhancement of light harvesting and surface/interfacial charge separation in solar energy conversion. The unprecedented results exemplify an easily accessible pattern of aqueous synthesis of all-inorganic heterostructured QDs for advanced photosynthetic H-2 evolution.« less

  17. The Critical Role of Thioacetamide Concentration in the Formation of ZnO/ZnS Heterostructures by Sol-Gel Process

    PubMed Central

    Kiatkoski Kaminski, Renata Cristina; Caetano, Bruno Leonardo; Magnani, Marina; Meneau, Florian; Rochet, Amélie; Santilli, Celso Valentim; Briois, Valérie; Bourgaux, Claudie

    2018-01-01

    ZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures. ZnO colloidal suspensions, prepared by hydrolysis and condensation of a Zn acetate precursor solution, were allowed to react with an ethanolic thioacetamide solution (TAA) as sulfur source. The reactions were monitored in situ by Small Angle X-ray Scattering (SAXS) and UV-vis spectroscopy, and the final colloidal suspensions were characterized by High Resolution Transmission Electron Microscopy (HRTEM). The powders extracted at the end of the reactions were analyzed by X-ray Absorption spectroscopy (XAS) and X-ray diffraction (XRD). Depending on TAA concentration, different nanostructures were revealed. ZnO and ZnS phases were mainly obtained at low and high TAA concentrations, respectively. At intermediate TAA concentrations, we evidenced the formation of ZnO/ZnS heterostructures. ZnS formation could take place via direct crystal growth involving Zn ions remaining in solution and S ions provided by TAA and/or chemical conversion of ZnO to ZnS. The combination of all the characterization techniques was crucial to elucidate the reaction steps and the nature of the final products. PMID:29360735

  18. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  19. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  20. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  1. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  2. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  3. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  4. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  5. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  7. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGES

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  8. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    PubMed

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples weremore » analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.« less

  10. High-efficiency and conveniently recyclable photo-catalysts for dye degradation based on urchin-like CuO microparticle/polymer hybrid composites

    NASA Astrophysics Data System (ADS)

    Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng

    2018-05-01

    In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.

  11. The influence of an MgO nanolayer on the planar Hall effect in NiFe films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghua, E-mail: mhli@ustb.edu.cn; Department of Electrical Engineering, University of California, Los Angeles, California 90095; Zhao, Zhiduo

    2015-03-28

    The Planar Hall Effect (PHE) in NiFe films was studied using MgO as the buffer and capping layer to reduce the shunt effect. The thermal annealing was found to be effective in increasing the sensitivity. The sensitivity of the magnetic field reached as high as 865 V/AT in a MgO (3 nm)/NiFe (5 nm)/MgO(3 nm)/Ta(3 nm) structure after annealing at 500 °C for 2 h, which is close to the sensitivity of semiconductor Hall Effect (HE) sensors. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used to study the sample. The results show that the top crystallization of MgO and NiFemore » (111) texture were improved by proper annealing. The smooth and clear bottom MgO/NiFe and top NiFe/MgO interface is evident from our data. In addition, the shunt current of Ta was decreased. These combined factors facilitate the improvement of the sensitivity of the magnetic field.« less

  12. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight

    NASA Astrophysics Data System (ADS)

    Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.

    2018-03-01

    Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.

  13. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  14. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Tan, Xiulan; Niu, Gao; Xu, Xibin; Li, Xibo; Ye, Xin; Luo, Jiangshan; Luo, Binchi; Wu, Weidong; Tang, Yongjian; Yi, Yougen

    2012-05-01

    Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na2PdCl4 solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.

  15. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  16. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light

    PubMed Central

    Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke

    2016-01-01

    Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301

  17. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  18. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4: Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.

    2018-04-01

    This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.

  19. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  20. Graphene wrapped Copper Phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moumita; Ghorai, Uttam Kumar; Samanta, Madhupriya; Santra, Angshuman; Das, Gour P.; Chattopadhyay, Kalyan K.

    2017-10-01

    To improve the photocatalytic performance of metal phthalocyanine based catalyst, Copper Phthalocyanine (CuPc) functionalized reduced graphene oxide (RGO) nanocomposite has been synthesized through a simple chemical approach. The obtained product was characterized by X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and High resolution transmission electron microscopy (HRTEM). The photocatalytic activity of the RGO/CuPc nanocomposite was performed by the degradation of Rhodamine B (RhB) under visible light irradiation. The photocatalytic studies revealed that the RGO/CuPc nanocomposite exhibits much stronger catalytic behavior than the pristine CuPc nanotube. A plausible mechanism for the photodegradation of Rhodamine B (RhB) was suggested. The RGO wrapped CuPc nanotube composite materials offer great potential as active photocatalysts for degradation of organic pollutions in industrial waste water.

  1. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  2. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Sukanya, D.; Sagayaraj, P.

    2015-06-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).

  3. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.

    PubMed

    Ghows, Narjes; Entezari, Mohamad H

    2010-06-01

    A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. (c) 2010 Elsevier B.V. All rights reserved.

  4. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  5. Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra

    2008-12-01

    A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.

  6. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  7. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  8. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  9. Effects of Ti doping on the dielectric properties of HfO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhriyal, S.; Biswas, S., E-mail: drsomnathbiswas@gmail.com

    2016-05-06

    We report the effects of Ti doping on the dielectric properties of HfO{sub 2} [Hf{sub 1-x}Ti{sub x}O{sub 2} (x = 0.2-0.8)] nanoparticles at room temperature. The Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles were synthesized by a wet chemical process. The structural and morphological properties of the derived samples were analyzed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM). Impedance analysis was performed in pelletized samples in the frequency range of 1 MHz to 1 GHz. The obtained results were analyzed in correlation with microstructure and doping concentration in the derived samples. The averagemore » size of the Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles is typically in the range of 4-8 nm depending on the processing temperature. The Hf{sub 1−x}Ti{sub x}O{sub 2} nanoparticles show reduction in crystallinity with the increase in Ti doping. The dielectric constants of the derived samples decrease with the increase in frequency. The ac-conductivity in the samples increases with the increase in frequency irrespective of Ti concentration and shows significant drop with the increase in Ti concentration at all frequencies.« less

  10. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus.

    PubMed

    Arul, Velusamy; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2017-03-01

    In this work, a simple hydrothermal route for the synthesis of fluorescent nitrogen doped carbon dots (N-CDs) is reported. The Hylocereus undatus (H. undatus) extract and aqueous ammonia are used as carbon and nitrogen source, respectively. The optical properties of synthesized N-CDs are analyzed using UV-Visible (UV-Vis) and fluorescence spectroscopy. The surface morphology, elemental composition, crystallinity and functional groups present in the N-CDs are examined using high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The synthesized N-CDs emit strong blue fluorescence at 400nm under the excitation of 320nm. Further, the excitation dependent emission properties are also observed from the fluorescence of synthesized N-CDs. The HR-TEM results reveal that synthesized N-CDs are in spherical shape with average diameter of 2.5nm. The XRD pattern exhibits, the graphitic nature of synthesized N-CDs. The doping of nitrogen is confirmed from the EDS and FT-IR studies. The cytotoxicity and biocompatibility of N-CDs are evaluated through MTT assay on L-929 (Lymphoblastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells. The results indicate that the fluorescent N-CDs show less cytotoxicity and good biocompatibility on both L-929 and MCF-7 cells. Moreover, the N-CDs show excellent catalytic activity towards the reduction of methylene blue by sodium borohydride. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0-1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mathubala, G.; Manikandan, A.; Arul Antony, S.; Ramar, P.

    2016-06-01

    Nickel doped spinel manganese ferrite (NixMn1-xFe2O4: x = 0.0-1.0) nanoparticles were prepared successfully by a superficial microwave irradiation technique using urea as the fuel. Powder X-ray diffraction (XRD) analysis was recognized the configuration of single phase spinel structure of NixMn1-xFe2O4. Debye Sherrer's formula was used to calculate the average crystallite size of the samples, which were found in the range of 15-20 nm. High resolution scanning electron microscopy (HR-SEM) was used to analyze the surface morphology of the samples, which showed the particle like-morphology with smaller agglomeration, and it was also confirmed by high resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which also evidence for the formation of single pure phase. Microwave heating method produced well crystalline nature of the products, which was confirmed by selected area electron diffraction (SAED) analysis. UV-Visible diffuse reflectance spectra (DRS) were used to calculate the energy band gap and the observed values are increased slightly from 2.05 eV to 2.44 eV with increasing the Ni-dapant. Magnetic characterization of the samples were analyzed by room temperature vibrating sample magnetometer (VSM) technique and the observed magnetization (Ms) values are decreased with increasing Ni content, due to the different magnetic moments of Mn2+ and Ni2+ cations. Photocatalytic degradation (PCD) of methylene blue dye was carried out by self designed photo-catalytic reactor. It was observed that PCD efficiency is increased with increase in concentration of Ni and the sample Ni0.6Mn0.4Fe2O4 shows better photocatalytic activity (96.73%) than other samples.

  12. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  13. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  14. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  15. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  16. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  17. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  18. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  19. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  20. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis

    2017-12-01

    A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

  1. Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; Deepa, B.

    2018-03-01

    Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

  2. Isolation and characterisation of nanoparticles from tef and maize starch modified with stearic acid.

    PubMed

    Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M

    2017-07-15

    Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides

    NASA Astrophysics Data System (ADS)

    Pradon, A.; Caldes, M. T.; Petit, P.-E.; La Fontaine, C.; Elkaim, E.; Tessier, C.; Ouvrard, G.; Dumont, E.

    2018-03-01

    A Li-rich lamellar oxide was cycled at high potential and the relevance of using a constant voltage step (CVS) at the end of the charge, needed for industrial application, was investigated by electrochemical performance, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical studies at 4.7 and 4.5 V with and without CVS showed that capacity and voltage fading occurred mostly when cells operated at high potential. After cycling, 3D-type defects involving transition metals trapped in lithium layer were observed by HRTEM into the electrode bulk. These defects are responsible for the voltage fading. XRD microstrain parameter was used to evaluate defects rate in aged materials subjected to a CVS, showing more 3D-type defects when cycled at 4.7 V than at 4.5 V. The time spent at high potential at the end of the charge as well as the value of the upper potential limit, are both relevant parameters to voltage decay. The use of a CVS at the end of the charge needs at the same time, a reduced upper potential window in order to minimize 3D-type defects occurrence. Unfortunately, this approach is still not sufficient to prevent voltage fading.

  4. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  5. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  6. Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licurse, Mark; Borisevich, Albina Y; Davies, Peter

    2012-01-01

    Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the <1 1 0> orientation of the nanostripes is different from the <1 0 0> stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complexmore » modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.« less

  7. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  8. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  9. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  10. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  11. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  12. Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.

    PubMed

    Yahya, Noorhana; Al Habashi, Ramadan Masoud; Koziol, Krzysztof; Borkowski, Rafal Dunin; Akhtar, Majid Niaz; Kashif, Muhammad; Hashim, Mansor

    2011-03-01

    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.

  13. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  14. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  15. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  16. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  17. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  18. Growth, characterization and device development in monocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Davis, R. F.; Glass, J. T.; Nemanich, R. J.; Bozeman, S. P.; Sowers, A. T.

    1995-06-01

    Experimental and theoretical studies concerned with interface interactions of diamond with Si, Ni, and Ni3Si substrates have been conducted. Oriented diamond films deposited on (100) Si were characterized by polar Raman, polar x-ray diffraction (XRD), and cross-sectional high resolution transmission electron microscopy (HRTEM). These sutides showed that the diamond(100)/Si(100) interface adopted the 3:2-match arrangement rather than a 45 deg rotation. Extended Hueckel tight-binding (EHTB) electronic structure calculations for a model system revealed that the interface interaction favors the 3:2-match arrangement. Growth on polycrystalline Ni3Si resulted in oriented diamond particles; under the same growth conditions, graphite was formed on the nickel substrate. Our EHTB electronic structure calculations showed that the (111) and (100) surfaces of Ni3Si have a strong preference for diamond nucleation over graphite nucleation, but this was not the case for the (111) and (100) surfaces of Ni.

  19. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye

    NASA Astrophysics Data System (ADS)

    Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel

    2016-12-01

    In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.

  20. CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor

    NASA Astrophysics Data System (ADS)

    Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.

    2018-02-01

    Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.

  1. A facile hydrothermal approach to synthesize rGO/BiVO4 photocatalysts for visible light induced degradation of RhB dye

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-05-01

    RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.

  2. Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun

    2018-03-01

    The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.

  3. Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.

    PubMed

    Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John

    2014-03-01

    A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.

  4. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  5. Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gavrila-Florescu, Lavinia; Dumitrache, Florian; Balas, Mihaela; Fleaca, Claudiu Teodor; Scarisoreanu, Monica; Morjan, Iuliana P.; Dutu, Elena; Ilie, Alina; Banici, Ana-Maria; Locovei, Claudiu; Prodan, Gabriel

    2017-12-01

    Nano-sized Fe-based (metallic, carbidic and/or oxidic) core@ZnO shell particles have been successfully synthesized in one step by the laser-induced pyrolysis method in an oxygen-deficient environment. The specific precursors were separately introduced through a three concentric nozzles injector: Fe(CO)5 vapors carried by C2H4 sensitizer (central flow), Zn(C2H5)2 vapors carried and diluted with Ar (middle annular coflow) and Ar containing low amount of O2 (external flow). Keeping constant the ethylene-carried Fe(CO)5 and O2 flows, while diminishing the Zn(C2H5)2 flow, we observed an increase of the Fe/Zn ratio in the resulted nanopowders. Also, using the same metal precursor flows, a nonlinear correlation between O2 external flow and nanocomposite atomic oxygen content is evidenced, indicating a possible interference of supplementary oxidation after air exposure. However, the lowest oxygen content along with metallic zinc was found in the sample synthesized in the most oxygen-deficient environment. Transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and magnetic analyses were performed for a comprehensive characterization. The aqueous Fe-based@ZnO nanoparticles (NPs) suspensions were prepared using L-Dopa ( l-3,4-dihydroxy-phenylalanine) as stabilizing agent in physiologic media. Also, a biocompatibility in vitro study was performed for PBS (phosphate buffered saline)-dispersed L-Dopa-stabilized Fe-based@ZnO nanoparticles with the best core-shell structural features on both human normal lung fibroblasts and tumoral colorectal cells. Our results proved the ability of these newly synthesized nanostructures to target cancer cells in order to induce cytotoxicity and to exhibit biocompatibility on normal cells for maintaining the proper function of healthy tissue.

  6. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  7. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  8. Philip A. Parilla | NREL

    Science.gov Websites

    atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence

  9. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  10. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  11. Coherent X-ray diffraction imaging of nanoengineered polymeric capsules

    NASA Astrophysics Data System (ADS)

    Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.

    2017-10-01

    For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  13. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  14. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  15. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  18. Synthesis and characterization of RuS2 nanostructures.

    PubMed

    Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith

    2005-12-08

    Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.

  19. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    NASA Astrophysics Data System (ADS)

    Lee, Seungjin; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Choi, Hyeongsu; Park, Hyunwoo; Jeon, Hyeongtag

    2017-04-01

    Tin disulfide (SnS2) has attracted much attention as a two-dimensional (2D) material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2) layers deposited via atomic layer deposition (ALD) using tetrakis(dimethylamino)tin (TDMASn) as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C). The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD) and the clearly out-of-plane (A1g) mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM). In addition, high-resolution transmission electron microscopy (HR-TEM) images indicated a clear layered structure.

  20. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    NASA Astrophysics Data System (ADS)

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  1. Flux Growth of Highly Crystalline Photocatalytic BaTiO3 Particle Layers on Porous Titanium Sponge Substrate and Insights into the Formation Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Li, B.

    2017-09-01

    A unique architecture of idiomorphic and highly crystalline BaTiO3 particle layers directly grown on a porous titanium sponge substrate was successfully achieved for the first time using a facile molten salt method at a relatively low temperature of 700 °C. Specifically, the low-melting KCl-NaCl eutectic salts and barium hydroxide octahydrate were employed as the reaction medium and barium source, respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectrophotometry were used to characterize the structure, morphology and optical property of the obtained samples. The results revealed that the flux-grown tetragonal BaTiO3 products had well-defined and uniform morphology with an average size of 300 nm and a band gap of ∼3.16 eV. Based on XRD, EDS, SEM, and TEM, the possible formation mechanism responsible for the well-developed architecture of BaTiO3 particle layers was proposed and discussed. Furthermore, the photocatalytic activity of the flux-grown BaTiO3 products for organic pollutant degradation under simulated sunlight irradiation was also investigated.

  2. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study.

    PubMed

    Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón A; Navarro, Rosa Elena; Rodríguez-Beas, César; Larios-Rodríguez, Eduardo; Alvarez-Cirerol, Francisco J; Íñiguez-Palomares, Claudia; Ramírez-Saldaña, Maricela; Hernández Martínez, Javier; Martínez-Higuera, Aarón; Galván-Moroyoqui, José Manuel; Martínez-Soto, Juan Manuel

    2017-08-21

    We synthesized silver nanoparticles using Rumex hymenosepalus root extract (Rh). Nanoparticles were subjected to a purification process and final product is a composite of Rh and silver nanoparticles (AgNPsC). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to perform a microstructure study. Additionally, two fractions (RhA and RhB) were obtained from the original extract by filtration with tetrahydrofuran (THF); both fractions were analyzed using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH); total polyphenol content was also determined. Separate inhibition tests for AgNPsC and RhA and RhB were applied to Gram-positive bacteria, Gram-negative bacteria, and yeast (Candida albicans) using the well diffusion method. Extract fractions were found to have inhibitory effects only over Gram-positive bacteria, and silver nanoparticles showed inhibitory effects over all the evaluated microorganisms. Cytotoxicity was evaluated using the tetrazolium dye (MTT) assay in mononuclear peripheral blood cells. In addition, we assessment AgNPsC in THP-1 monocyte cell line, using the cell viability estimation by trypan blue dye exclusion test (TB) and Live/Dead (LD) cell viability assays by confocal microscopy.

  3. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  4. Hydrothermal synthesis of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with ionic liquids as stabilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan

    2015-02-15

    Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less

  5. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    NASA Astrophysics Data System (ADS)

    Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui

    2017-01-01

    Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  6. Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt

    NASA Astrophysics Data System (ADS)

    Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai

    2018-06-01

    CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10-7 A, the dark current is 1.96 × 10-10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW-1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.

  7. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  8. Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt.

    PubMed

    Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai

    2018-06-07

    CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10 -7  A, the dark current is 1.96 × 10 -10  A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW -1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.

  9. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase.

    PubMed

    Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie

    2009-05-30

    Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.

  10. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu

    2017-03-01

    Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  11. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  12. CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor

    PubMed Central

    Xia, Lei; Xu, Lin; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Song, Hongwei

    2015-01-01

    The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (I–t). Structure and morphology of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-resolution TEM (HRTEM), Energy-dispersive X-ray analysis (EDX) and X-ray diffraction pattern (XRD). The result indicated that the structure of IOPCs and loading of CdS QDs could greatly improve the electrochemical properties. Three SILAR cycles of CdS QDs sensitization was the optimum condition for preparing electrodes, it exhibited a sensitivity of 4345 μA mM-1 cm-2 to glucose with a 0.15 μM detection limit (S/N= 3) and a linear range from 0.15 μM to 0.5 mM under a working potential of +0.7 V. It also showed strong stability, good reproducibility, excellent selectivity and fast amperometric response. This work provides a promising approach for realizing excellent photoelectrochemical nonenzymatic glucose biosensor of similar composite structure. PMID:26042520

  13. Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media

    PubMed Central

    La, Duong Duc; Nguyen, Tuan Anh; Jones, Lathe A.; Bhosale, Sheshanath V.

    2017-01-01

    A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing. PMID:28587257

  14. Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

    PubMed Central

    Wei, Liang; Chen, Yongjuan; Zhao, Jialin

    2013-01-01

    Summary In this study, NiS/ZnIn2S4 nanocomposites were successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible light irradiation was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn2S4 can be significantly increased by loading NiS as a co-catalyst. The formation of a good junction between ZnIn2S4 and NiS via the two step hydrothermal processes is beneficial for the directional migration of the photo-excited electrons from ZnIn2S4 to NiS. The highest photocatalytic hydrogen evolution rate (104.7 μmol/h), which is even higher than that over Pt/ZnIn2S4 nanocomposite (77.8 μmol/h), was observed over an optimum NiS loading amount of 0.5 wt %. This work demonstrates a high potential of the developing of environmental friendly, cheap noble-metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution. PMID:24455453

  15. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  16. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  17. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  18. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  19. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  20. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  1. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  2. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  3. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  4. Quantitative strain and compositional studies of InxGa1-xAs Epilayer in a GaAs-based pHEMT device structure by TEM techniques.

    PubMed

    Sridhara Rao, Duggi V; Sankarasubramanian, Ramachandran; Muraleedharan, Kuttanellore; Mehrtens, Thorsten; Rosenauer, Andreas; Banerjee, Dipankar

    2014-08-01

    In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.

  5. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  6. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  7. Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.

    PubMed

    Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali

    2017-11-01

    The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.

    2013-01-01

    Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.

  9. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  10. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and

  11. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  12. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  13. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    DOE PAGES

    Logan, Jonathan; Harder, Ross; Li, Luxi; ...

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less

  14. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping

    2013-01-01

    The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g

  15. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  16. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  17. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  18. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  19. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  20. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  1. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    PubMed

    Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  2. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  3. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  4. Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2017-12-01

    We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.

  5. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  6. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  7. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    PubMed

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  8. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  9. Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Yaseen, Sarah Abduljabbar; Yiseen, Ghadah Abdaljabar; Li, Zongjin

    2018-06-01

    This paper reports a new approach of producing CaCO3 particles in alkali solution. CaCO3 particles with pure calcite structure were obtained from the reaction of water-dispersed graphene oxide (GO) or reduced graphene oxide (rGO) with either Ca(OH)2 or CaO. In Fourier Transform Infrared (FTIR) spectra, the pure calcite structure was demonstrated by fundamental bands at 1425 (ν3), 873 (ν2), and 712 cm-1 (ν4). The Raman spectra showed the characteristic peak of calcite structure at 1085 cm-1 (ν1). X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that only the pure calcite phase of CaCO3 was formed in both synthesis approaches. Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDX), and High-resolution transmission electron microscopy (HRTEM) also confirmed that distorted cubic and rhombic calcite particles were obtained with GO, while the pine flower-like and flower-like particles were obtained with rGO, and the average crystallite sizes varied from 26 to 44 nm. The mechanism of the reaction was investigated and it was found that the decomposition of oxygen functional groups on the surface of GO or rGO in certain alkaline media to release CO, CO2, and water was a key process as the released CO2 further reacted with OH- and Ca2+ to form CaCO3. This demonstrated that both GO and rGO could be used as main reactants for the synthesis of calcite.

  10. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.

    PubMed

    Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong

    2016-07-01

    In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  12. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  13. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  14. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558

  15. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.

  16. The effect of local atomic structure on the optical properties of GeSi self-assembled islands buried in silicon matrix

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Lawniczak-Jablonska, K.; Kret, S.; Novikov, A. V.; Laval, J.-Y.; Zak, M.; Szczepanska, A.; Yablonskiy, A. N.; Krasilnik, Z. F.

    2007-03-01

    The local atomic structure of GeSi self-assembled islands buried in a silicon matrix strongly influences the optical properties of such systems. In the present paper this structure was determined by x-ray absorption fine-structure (XAFS) spectroscopy and high resolution transmission electron microscopy (HRTEM) and used to build a schematic description of the band structure model. Quantitative analysis of the extended XAFS (EXAFS) spectrum was performed for three coordination shells around the Ge absorbing atom with multiple scattering taken into account. It was proved that the coordination number of elements in an alloy resulting from EXAFS analysis for all three coordination spheres (i.e. 'mixing degree' parameters) cannot be taken as the concentration of alloy but can be used together with a proper model of the alloy unit cell to calculate a realistic concentration. The fraction of Ge calculated in this way is consistent with HRTEM results. The found model of the unit cell was used to generate a x-ray absorption near edge structure spectrum by ab initio calculations. This approach yielded a spectrum in good agreement with the experimental one. The information gained from XAFS and HRTEM was then used for calculation of the band structure diagram. Results of the calculation are discussed and compared with the experimental photoluminescence spectrum.

  17. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOEpatents

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  18. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOEpatents

    Green, Lanny A.; Heck, Jr., Joaquim L.

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  19. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  20. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  1. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  2. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  3. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  4. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  5. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  6. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  7. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  8. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  9. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  10. Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Liang, Mengning; Harder, Ross; Robinson, Ian

    2007-03-01

    A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.

  11. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  12. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    NASA Astrophysics Data System (ADS)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  13. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  14. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  15. Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)

    DTIC Science & Technology

    2012-05-14

    on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m

  16. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  17. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections

    NASA Astrophysics Data System (ADS)

    Bhande, Rashmi M.; Khobragade, C. N.; Mane, R. S.; Bhande, S.

    2013-01-01

    In this study, enhanced synergistic bioactivity of zinc oxide nanoparticles (ZnO NPs) with β-lactam antibiotics were evaluated against a panel of clinically isolated extended spectrum β-lactamase producers implicated in urinary tract infections. Chemically synthesized zinc oxide nanoparticles (15 nm) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmittance electron microscopy (HR-TEM), selective area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-Visible spectrophotometry techniques. The antimicrobial potency (10 ± 0.66, 12, 11.33 ± 1.10, and 0.7 ± 0.66 mm inhibiting zone) and minimum inhibitory concentrations (80, 60, 30, 50 μg/ml) of ZnO NPs were tested separately whereas time-kill and membrane leakage assays were evaluated in combination with ZnO NPs+ cefotaxime, ampicillin, ceftriaxone, cefepime against the β-lactamase producer strains of E. coli, K. pneumoniae, S. paucimobilis, and P. aeruginosa, respectively. Time-kill curve dynamics of ZnO NPs with β-lactam antibiotics revealed enhanced bactericidal activity (50, 85, 58, 50 % fold inhibition) by delaying the exponential and stationary phases of all isolates when tested separately. Posttime-kill effect was studied on cell membrane by assaying leakage of reducing sugars (130.2, 124.7, 137, and 115.8 μg/bacterial dry weight of 1 mg (μg/mg) and proteins (15, 10, 16, 18 μg/mg). These assays revealed that membrane leakage was due to synergism of ZnO NPs+ β-lactam antibiotics which successfully damage cell membrane thereby leading to death of all ESBL producers. The results demonstrate the utilization of ZnO NPs as a potentiator of β-lactam antibiotics and suggest the possibility to use nanoparticles in a combination therapy to treat UTI.

  18. Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G.

    PubMed

    Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang

    2017-10-01

    Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Structural, optical and dielectric investigation of CdFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sagadevan, Suresh; Pal, Kaushik; Zaman Chowdhury, Zaira; Enamul Hoque, Md

    2017-07-01

    A simple thermal decomposition technique has been executed for the synthesis of cadmium ferrite (CdFe2O4) nanoparticles. With the help of x-ray diffraction; scanning electron microscopy, energy-dispersive x-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy the prepared nanoparticles were identified. The crystal size of the average particles aggregated and was found approximately to be 10-14 nm by means of XRD studies. However, the results of high-resolution transmission electron microscopy (HR-TEM) investigation ensured distinguished nanoparticles, and also the polycrystalline nature of those nanoparticles was confirmed by selected area diffraction (SAED) patterns. The scanning electron microscopy (SEM) images explored a random distribution of grains within the sample. Thin film surface topology of roughness and surface current measurement were studied by atomic force microscopy (TP-AFM, C-AFM). Hence, from the ultraviolet-visible (UV) spectroscopic absorption illustrated significant optical properties. Moreover, the optical energy band gap (E g) of CdFe2O4 nanoparticle was determined to be 1.74 eV. By studying the variation of dielectric constant and dielectric loss with respect to frequency, the CdFe2O4 nanoparticles electrical properties were analyzed. Analysis in the real and imaginary part of impedance explained their frequency and temperature dependence of the CdFe2O4 nanoparticles. The traditional solution-phase organometallic approach provides an effective way to synthesize high quality hydrophobic semiconductor-CdFe2O4 nanoparticles. Our simple, cost-effective approach is quite general, which is applicable to other nanomaterials, and it utilizes the currently mature in Nano-chemistry. The nanocomposite assemblies’ exhibit strong anisotropic optical and electrical properties are open up new possibilities in remarkable applications for optoelectronics in the near future.

  20. Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Das, D.; Konwar, R.; Kalita, P. K.

    2015-08-01

    Starch capped PbS, CdS and PbS-CdS nanocomposites are conjugated with Calf-Thymus DNA. All the materials are characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The x-ray diffraction patterns of PbS and CdS show that the materials possess polycrystalline having both cubic and hexagonal phases. High resolution transmission electron microscopic results (HRTEM) shows PbS nanoparticles of size 3 nm and that of CdS nanoparticles having average size 4 nm which exhibit tendency of agglomeration. In case of PbS/CdS, it exhibits different types of nanosheets. The UV absorption spectra of all the samples exhibit clear blue-shift with the respective bulk absorption edges. This is attributed to the strong quantum confinement in the materials. The absorption spectra also exhibit increase of the band gaps from 2.25 to 4.35 eV for PbS; 2.25-4.2 eV for CdS with decrease of molarities from 0.1 to 0.001 M as well as conjugated with DNA. The photoluminescence spectra of all PbS, CdS and PbS/CdS composites synthesized at 0.1 M molar concentration show a further blue shift and an enhancement of intensity after conjugation with DNA, but the effect is reversed i.e. occurrence of red shift and reduction of intensity for those having 0.01 M. This is due to the two competing processes of surface passivation as well as stabilization of nanocomposites governed by bio-molecules and that of Dexter energy transfer with the effective charge separation. The result shows the applicability of the materials in development of biological labels and biosensors.

  1. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  2. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less

  3. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  4. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  5. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  6. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  7. X-ray fractography on fatigue fractured surface of austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo

    1995-12-31

    X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less

  8. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  9. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  10. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  11. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2017-12-09

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  12. XRayView: a teaching aid for X-ray crystallography.

    PubMed

    Phillips, G N

    1995-10-01

    A software package, XRayView, has been developed that uses interactive computer graphics to introduce basic concepts of x-ray diffraction by crystals, including the reciprocal lattice, the Ewald sphere construction, Laue cones, the wavelength dependence of the reciprocal lattice, primitive and centered lattices and systematic extinctions, rotation photography. Laue photography, space group determination and Laue group symmetry, and the alignment of crystals by examination of reciprocal space. XRayView is designed with "user-friendliness" in mind, using pull-down menus to control the program. Many of the experiences of using real x-ray diffraction equipment to examine crystalline diffraction can be simulated. Exercises are available on-line to guide the users through many typical x-ray diffraction experiments.

  13. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; ...

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeO x catalysts with very similar structural characteristics in CO oxidation.« less

  14. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  15. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  16. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  17. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  18. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  19. Diagenetic Microcrystalline Opal Varieties from the Monterey Formation, CA: HRTEM Study of Structures and Phase Transformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)

    1994-01-01

    Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as lamellar domains within relict opal-CT fibers. These findings indicate that the type of transformation mechanism depends upon the primary structural characteristics of the authigenic opaline. varieties that are in turn influenced by the sediment lithology.

  20. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    PubMed

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  1. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin, E-mail: miao2@illinois.edu; Mo, Kun; Cui, Bai

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between themore » oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.« less

  2. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  3. On the approach to Mott's transition in glass-ceramic nanocomposite due to heat treatment

    NASA Astrophysics Data System (ADS)

    Mahdy, Iman A.; Heikal, Sh.; Abd-Rabo, A. S.; Abdel Ghany, A.; Bahgat, A. A.

    2015-07-01

    In the present work, the glass-ceramic nanocomposite (GCNC) of the composition 30[0.75 BaTiO3+0.25 PbTiO3]+70 V2O5 (mol. %) was prepared from the parent glass by isothermal heat treatment (HT) at 723 K for different time intervals 0.25, 0.5, 1.5, 2, and 2.5 h, respectively. The bulk density and some related parameters were calculated. X-ray diffraction and Hi-Resolution Transmission Electron Microscope (HRTEM) were used to identify different phases as well as particle size of the precipitated nanocrystals during the heat treatment process. The DC electrical conductivity was enhanced three orders of magnitudes (3×103) by increasing HT time. The resistivity measurements on the other hand as a function of time show an approach to nonmetallic-metallic transition for the prepared NCGC samples. Mott's VRH conduction mechanism was predicted as a result of the increase of the heat treatment time.

  4. Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Liming; Ma, Xujun; Sun, Na; Chen, Feng

    2018-05-01

    Via a vacuum thermal treatment, oxygen vacancy (Ov) was introduced into TiO2 bulk lattice during the phase transformation from amorphous TiO2 to anatase. High-resolution transmission electron microscopy (HRTEM), Raman spectra and X-ray diffraction (XRD) confirm the involvement of Ov causes more violent changes in both bulk and surface structure. Electron paramagnetic resonance (EPR) demonstrated as-obtained V350 gets about a 40-times enhanced Ov signal compared with pure TiO2 (A350) and a 10-times larger signal than that of common Ov modified TiO2 (A450-V350), which clearly illustrates the high concentration of Ov in its bulk lattice. The much enriched Ovs in both bulk and surface lattices of TiO2 help V350 get an enhanced capacity in either visible light harvest or photocarriers generation. And a much higher visible photocatalytic activity for Aicd Orange 7 degradation was finally achieved by V350.

  5. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    PubMed

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  7. Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.

    PubMed

    Nogales, E; Méndez, B; Piqueras, J

    2008-01-23

    Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.

  8. Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts

    NASA Astrophysics Data System (ADS)

    Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi

    2014-03-01

    We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).

  9. Synthesis of Ammonia-Assisted Porous Nickel Ferrite (NiFe₂O₄) Nanostructures as an Electrode Material for Supercapacitors.

    PubMed

    Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam

    2017-02-01

    In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.

  10. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com; Kargupta, Kajari

    2016-04-13

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodepositedmore » film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.« less

  11. Synthesis of MoS2/rGO nanosheets hybrid materials for enhanced visible light assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-04-01

    A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.

  12. Wet etching mechanism and crystallization of indium-tin oxide layer for application in light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  13. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less

  14. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  15. Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces

    NASA Astrophysics Data System (ADS)

    Madrid, Juan Antonio; Lanzón, Marcos

    2017-12-01

    Adequate synthetic methods to obtain pure Ca(OH)2 nanoparticles are scarcely documented in the literature. This paper presents a complete methodology to obtain highly-pure Ca(OH)2 nanoparticles that are appropriate for strengthening heritage materials. The precipitation synthesis was operated in controlled atmosphere to avoid carbonation by atmospheric CO2. A complete purification method was developed to eliminate the sodium chloride generated in the reaction. Several analytical techniques, such as electrical conductivity, pH, ion chromatography, X-ray diffraction (XRD) and thermogravimetric analysis coupled to mass spectrometry (TGA-MS) were used to analyse both the aqueous medium and solid phase. The amount of material obtained in the synthesis (yield) was quantified throughout the purification procedure. The influence of temperature on the nanoparticles' size and stability was studied by transmission electron microscopy (HRTEM) and sedimentation tests (light scattering). It was found that the synthesis yielded high-purity nanoparticles, whose morphological features were greatly affected by the reaction temperature.

  16. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  17. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  18. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    NASA Astrophysics Data System (ADS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-08-01

    We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.

  19. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  20. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Elizabeth, Indu; Singh, Bhanu Pratap; Trikha, Sunil; Gopukumar, Sukumaran

    2016-10-01

    Nitrogen doped hierarchically porous carbon derived from prawn shells have been efficiently synthesized through a simple, economically viable and environmentally benign approach. The prawn shell derived carbon (PSC) has high inherent nitrogen content (5.3%) and possesses a unique porous structure with the co-existence of macro, meso and micropores which can afford facile storage and transport channels for both Li and Na ions. PSC is well characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron Microscopy (TEM), High resolution TEM (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Electron Paramagnetic Resonance (EPR) and Solid state-Nuclear Magnetic Resonance (NMR) studies have been conducted on pristine PSC and Li/Na interacted PSC. PSC as anode for Lithium ion batteries (LIBs) delivers superior electrochemical reversible specific capacity (740 mAh g-1 at 0.1 Ag-1 current density for 150 cycles) and high rate capability. When used as anode material for Sodium ion batteries (SIBs), PSC exhibits excellent reversible specific capacity of 325 mAh g-1 at 0.1 Ag-1 for 200 cycles and rate capability of 107 mAh g-1 at 2 Ag-1. Furthermore, this study demonstrates the employment of natural waste material as a potential anode for both LIB and SIB, which will definitively make a strike in the energy storage field.

  1. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology.

    PubMed

    Jana, T K; Maji, S K; Pal, A; Maiti, R P; Dolai, T K; Chatterjee, K

    2016-10-15

    Nanocomposites with multifunctional application prospects have already dragged accelerating interests of materials scientists. Here we present CdS/ZnO nanocomposites with different morphology engineering the precursor molar ratio in a facile wet chemical synthesis route. The materials were structurally and morphologically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the composite structure with varying molar ratio is delineated with oriented attachment self assemble techniques. Photocatalytic activity of CdS/ZnO nanocomposites with varying morphology were explored for the degradation of rhodamine B (RhB) dye in presence of visible light irradiation and the results reveal that the best catalytic performance arises in CdS/ZnO composite with 1: 1 ratio. The antibacterial efficiency of all nanocomposites were investigated on Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia without light irradiation. Antibacterial activity of CdS/ZnO nanocomposites were studied using the bacteriological test-well diffusion agar method and results showed significant antibacterial activity in CdS/ZnO composite with 1:3 ratio. Overall, CdS/ZnO nanocomposites excel in different potential applications, such as visible light photocatalysis and antimicrobial activity with their tuneable structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    PubMed

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  3. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  4. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination

    NASA Astrophysics Data System (ADS)

    Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan

    2018-06-01

    Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.

  5. Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    García-Tecedor, M.; Karazhanov, S. Zh; Vásquez, G. C.; Haug, H.; Maestre, D.; Cremades, A.; Taeño, M.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J.; You, C. C.; Marstein, E. S.

    2018-01-01

    In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO2 and SnO2). The hybrid compound was deposited at room temperature by spin coating—a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.

  6. Facile synthesis of reduced graphene oxide-gold nanohybrid for potential use in industrial waste-water treatment

    NASA Astrophysics Data System (ADS)

    Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar

    2016-01-01

    Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.

  7. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    PubMed

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  8. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  9. Investigation of temperature, catalyst thickness and substrate effects in In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2017-12-01

    This study successfully synthesized In2O3 nanotowers (NTs), nanowires (NWs), nanochains (NChs) and nanocrystals (NCs) on n-type Si(100) and quartz substrates at temperature of 900-1000 °C by using Au catalysts via the Chemical Vapor Deposition (CVD) technique. The analyses of experimental results revealed that In2O3 nanostructures (NSs) grew in different morphologies due to variable parameters, such as temperature, thickness of catalyst and substrate type. This was because these In2O3 NSs were formed by both the Vapor-Liquid-Solid (VLS) and the Vapor-Solid (VS) growth mechanisms. For instance, In2O3 NTs and NChs were formed by the VLS growth mechanism; In2O3 NCs were formed by the VS growth mechanism and In2O3 NWs were formed by both the VLS and VS growth mechanisms. Morphology and crystal structures were identified through X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Moreover, photoluminescence (PL) peaks of In2O3 NSs were measured to be 367 nm, 470 nm, and 630 nm at room temperature (RT). These measurement results indicated that structural, morphological, compositional and optical properties of synthesized In2O3 NSs correlated with growth parameters.

  10. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence.

    PubMed

    Sánchez-Peña, Nazly E; Narváez-Semanate, José L; Pabón-Patiño, Daniela; Fernández-Mera, Javier E; Oliveira, Marcos L S; da Boit, Kátia; Tutikian, Bernardo F; Crissien, Tito J; Pinto, Diana C; Serrano, Iván D; Ayala, Claudia I; Duarte, Ana L; Ruiz, José D; Silva, Luis F O

    2018-01-01

    The present study is focused on the chemical and nano-mineralogical characterization of sludge from gold mine activities, in order to put forward diverse solution alternatives, where lack of knowledge has been found. The sample was collected from "La Estrella" mine of Suarez, located in Department of Cauca, south-west Colombia. The sludge micro-structure and chemical composition were analyzed using a high resolution transmission electron microscopy (HR-TEM) equipped with a dispersive X-ray detector (EDS). X-ray diffraction technique was employed to identify the mineralogical phases present in the sludge. Additional mineralogical characterization was done by using RAMAN spectroscopy. Main findings points to its potential to be used as a fertilizer, this is why, mine sludge contains macronutrients such as P, Ca and S, together with micronutrients like Cu. However, the presence of goethite could decrease the mobilization of nutrients to soils, thus additional alternatives, for instance, a mixture with humus or another material containing Humic Acids should be done, in order to minimizing its retention effect. Additionally, another possible uses to explore could be as construction and ceramic material or in the wastewater treatment for nutrient retention and organic material removal. Rutile (TiO 2 nanoparticles) particles have been also detected, what could cause health concern due to its nanoparticle toxic character, mainly during gold extraction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximatelymore » of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.« less

  12. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Kaviyarasu, K.; Mongwaketsi, N.; Khamlich, S.; Kotsedi, L.; Mayedwa, N.; Maaza, M.

    2018-07-01

    The main motivation of the research study involves development of reliable, accurate, inexpensive and environmental friendly method for the synthesis of zinc ferrite (ZnFe2O4) nanocomposites. It was thought of interest to synthesized zinc ferrite via green synthetic method using Moringa Oleifera extract. For the first time, we used green synthetic route via Moringa Oleifera extract acted as both chelating and reducing agents to synthesis spinel ZnFe2O4 nanocomposites. The physical and electrochemical properties were characterized using different techniques such as High Resolve Transmission Electron Microscope (HRTEM) Energy Dispersive X-ray Spectroscopy (EDS) X-ray diffraction (XRD) Fourier transform-infrared (FT-IR) Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The XRD pattern thus clearly illustrated that the ZnFe2O4 nanocmposites synthesized by the green method were good crystalline in nature. The time constant and exchange current of ZnFe2O4 nanocomposites from EIS analysis were calculated and found to be 5.2001 × 10-4 s/rad and 6.59432 × 10-4 A, respectively. Based on the electrochemical results, GCE/ZnFe2O4 electrode exhibited a good voltametric response, high electro-activity, and excellent electrochemical performance making it a highly suitable/promising electrode for electrochemical applications.

  13. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  14. Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.

    PubMed

    García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S

    2018-01-19

    In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.

  15. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less

  16. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  17. Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.

    DTIC Science & Technology

    1980-11-01

    Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One

  18. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl(6) and other alloys are twinned cubic crystals.

    PubMed

    Pauling, L

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).

  19. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl6 and other alloys are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1987-01-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841

  20. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  1. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  2. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  3. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  4. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  5. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  6. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  7. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  8. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    NASA Astrophysics Data System (ADS)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  9. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  10. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.

  11. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  12. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  13. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  14. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  15. Fabrication of highly active Melem/Zn0.25Cd0.75S composites for the degradation of bisphenol A and methyl orange under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Yan, Tao; Liu, Xiaohuan; Ji, Pengge; Sun, Meng; Wei, Dong; Yan, Liangguo; Du, Bin

    2016-11-01

    Metal-free polymeric catalyst hold great promise owing to their abundant sources, low-cost fabrication and easy processibility. Melem, an important intermediate during condensation of melamine rings to graphitic carbon nitride (g-C3N4), was synthesized by simple solid phase polymerization process. A novel Melem/Zn0.25Cd0.75S composite was fabricated through a facile one-step hydrothermal method. The as-products were characterized by X-ray diffraction (XRD), UV-vis DRS spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM). The TEM and HRTEM results reveal that Zn0.25Cd0.75S nanoparticles and Melem closely contact with each other to form an intimate interface. The as-prepared composites exhibit significantly enhanced visible light photocatalytic performance for the degradation of Methyl orange (MO) and Bisphenol A (BPA), which could be attributed to the effective photo-induced charges transfer and separation in Melem/Zn0.25Cd0.75S composites. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in MO degradation over Melem/Zn0.25Cd0.75S heterojunctions. A possible mechanism for charge separation and transfer in the Melem/Zn0.25Cd0.75S composites was proposed to explain the enhanced photocatalytic performance.

  16. Room Temperature Ferromagnetic Mn:Ge(001).

    PubMed

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2013-12-27

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn₅Ge₃ and Mn 11 Ge₈ agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe ~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  17. Room Temperature Ferromagnetic Mn:Ge(001)

    PubMed Central

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2014-01-01

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed. PMID:28788444

  18. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  19. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  20. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  1. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  2. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  3. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  4. New Porous Crystals of Extended Metal-Catecholates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hmadeh, Mohamad; Lu, Zheng; Liu, Zheng

    To date, the links of robust and highly porous metal organic frameworks (MOFs) have been largely limited to carboxylate,(1) imidazolate,(2) other azolates,(3) or sulfonate.(4) Although catecholate organic units are well-known and are employed heavily for metal chelation in biology,(5) only the simple 1,2,4,5-tetrahydroxybenzene (H6C6O4)(6) or 1,4-dihydroxy-benzoquinone and their homologues (H2C6X2O4, e.g., X = Cl, Br, NO2 and CH3) have been explored and incorporated into extended frameworks (Scheme S1 in the Supporting Information).(7) Herein, we describe linking the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (H12C18O6, HHTP), with Co(II) and Ni(II) ions into two-dimensional porous extended frameworks. These new crystalline materials, termed metal-catecholates (M-CATs),more » were characterized by X-ray diffraction techniques (single crystal for Co-CAT-1, and powder for Ni-CAT-1) and high-resolution transmission electron microscopy (HR-TEM) studies (for Ni-CAT-1). We demonstrate their high chemical stability (in aqueous and non-aqueous media), thermal stability, and porosity. Cu-CAT-1 microcrystalline material showed high electrical conductivity and charge storage capacity.« less

  5. X-ray Diffraction, Big and Small

    NASA Image and Video Library

    2012-10-30

    A conventional X-ray diffraction instrument left is the size of a large refrigerator, in contrast to the compact size of the Chemistry and Mineralogy CheMin instrument on NASA Curiosity rover top right.

  6. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  7. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  8. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  9. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    DOE PAGES

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  10. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  11. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  12. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  13. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  14. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  15. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  16. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  17. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  18. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  19. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  20. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  1. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  2. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  3. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  4. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  5. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  6. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  7. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  8. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  9. Deposition of silver nanoparticles on multiwalled carbon nanotubes by chemical reduction process and their antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Thamir, Amin D.; Ahmed, Duha S.; Mohammad, M. R.

    2016-07-01

    In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO3:H2SO4 (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° and 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24h in shaker incubator with percentage of inhibition approaching 100%.

  10. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  11. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  12. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  13. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  14. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  15. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  16. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  17. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  18. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  19. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  20. Illicit drug detection using energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  1. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  2. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  3. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  4. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  5. Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    PubMed

    Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  6. Structure and properties of electrodeposited nanocrystalline Ni and Ni-Fe alloy continuous foils

    NASA Astrophysics Data System (ADS)

    Giallonardo, Jason Derek

    This research work presents the first comprehensive study on nanocrystalline materials produced in bulk quantities using a novel continuous electrodeposition process. A series of nanocrystalline Ni and Ni-Fe alloy continuous foils were produced and an intensive investigation into their structure and various properties was carried out. High-resolution transmission electron microscopy (HR-TEM) revealed the presence of local strain at high and low angle, and twin boundaries. The cause for these local strains was explained based on the interpretation of non-equilibrium grain boundary structures that result when conditions of compatibility are not satisfied. HR-TEM also revealed the presence of twin faults of the growth type, or "growth faults", which increased in density with the addition of Fe. This observation was found to be consistent with a corresponding increase in the growth fault probabilities determined quantitatively using X-ray diffraction (XRD) pattern analysis. Hardness and Young's modulus were measured by nanoindentation. Hardness followed the regular Hall-Petch behaviour down to a grain size of 20 nm after which an inverse trend was observed. Young's modulus was slightly reduced at grain sizes less than 20 nm and found to be affected by texture. Microstrain based on XRD line broadening was measured for these materials and found to increase primarily with a decrease in grain size or an increase in intercrystal defect density (i.e., grain boundaries and triple junctions). This microstrain is associated with the local strains observed at grain boundaries in the HR-TEM image analysis. A contribution to microstrain from the presence of growth faults in the nanocrystalline Ni-Fe alloys was also noted. The macrostresses for these materials were determined from strain measurements using a two-dimensional XRD technique. At grain sizes less than 20 nm, there was a sharp increase in compressive macrostresses which was also owed to the corresponding increase in intercrystal defects or interfaces in the solid.

  7. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  8. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.

  9. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  10. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  11. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  12. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  13. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  14. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  15. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination

    NASA Astrophysics Data System (ADS)

    Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M.

    2013-04-01

    Ptychography is a form of scanning diffractive imaging that can successfully retrieve the modulus and phase of both the sample transmission function and the illuminating probe. An experimental difficulty commonly encountered in diffractive imaging is the large dynamic range of the diffraction data. Here we report a novel ptychographic experiment using a randomly phased X-ray probe to considerably reduce the dynamic range of the recorded diffraction patterns. Images can be reconstructed reliably and robustly from this setup, even when scatter from the specimen is weak. A series of ptychographic reconstructions at X-ray energies around the L absorption edge of iron demonstrates the advantages of this method for soft X-ray spectromicroscopy, which can readily provide chemical sensitivity without the need for optical refocusing. In particular, the phase signal is in perfect registration with the modulus signal and provides complementary information that can be more sensitive to changes in the local chemical environment.

  16. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  17. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  18. Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin

    2012-03-15

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less

  19. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  20. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bohang; Li, Wangda; Yan, Pengfei

    A facile synthesis method was developed to prepare xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30 as molar ratio) cathode materials, combining the advantages of high specific capacity from Ni-rich layered phase and surface chemical stability from Li-rich layered phase. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM) and electrochemical charge/discharge performance confirm the formation of a Li-rich layered phase with C2/m symmetry. Most importantly, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that Li-rich nano-domain islands are integrated into a conventional Ni-rich layered matrix (Rmore » $$\\bar{3}$$m). This is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of layered compounds (Li 1+δNi xMn yM 1-x-y-δO 2, M refers to transition metal elements) is Ni-rich (x > 0.5) rather than Mn-rich (y > 0.5). Remarkably, xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 cathode with optimized x value shows superior electrochemical performance at C/3, i.e., 170 mA h g -1 with 90.3 % of capacity retention after 400 cycles at 25 °C and 164 mA h g -1 with 81.3 % capacity retention after 200 cycles at 55 °C.« less

  2. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  3. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  4. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  5. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  6. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  7. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  9. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  10. A multi-dataset data-collection strategy produces better diffraction data

    PubMed Central

    Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng

    2011-01-01

    A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470

  11. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  12. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  13. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  14. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.

    2018-02-01

    Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.

  16. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

    DOE PAGES

    Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  17. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  18. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  19. Publications - GMC 42 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 42 Publication Details Title: X-ray diffraction clay mineralogy analysis of the J.W. Dalton #1 for more information. Bibliographic Reference Unknown, 1984, X-ray diffraction clay mineralogy

  20. Publications - GMC 297 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 297 Publication Details Title: X-ray diffraction analysis of cuttings from the: Texaco Inc information. Bibliographic Reference Unknown, 2001, X-ray diffraction analysis of cuttings from the: Texaco

  1. Publications - GMC 196 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 196 Publication Details Title: X-ray diffraction patterns of clay from the following wells for more information. Bibliographic Reference Unknown, 1992, X-ray diffraction patterns of clay from

  2. Publications - GMC 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 43 Publication Details Title: X-ray diffraction clay mineralogy analysis of 23 North Slope more information. Bibliographic Reference Unknown, 1983, X-ray diffraction clay mineralogy analysis of

  3. The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction

    PubMed Central

    Schowalter, Marco; Schmidt, Martin U.; Czank, Michael; Depmeier, Wulf; Rosenauer, Andreas

    2017-01-01

    Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nano­lamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100). PMID:28512570

  4. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  5. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  6. Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.

    2017-12-01

    Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.

  7. X-ray phase Identification of Chocolate is Possible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie,S.; Mazzanti, G.; Idziak, S.

    2005-01-01

    When examining chocolate samples by means of X-ray diffraction, it has become common practice for any sugar to be removed through repeated rinsing in cold water. While necessary in some cases, we show that it is possible to determine the phase of certain dark chocolate samples without sugar removal, through examination of distinctive X-ray diffraction peaks corresponding to lattice spacings of 3.98 and 3.70 Angstroms.

  8. The effect of laser radiation on the diffraction of X-rays in crystals

    NASA Astrophysics Data System (ADS)

    Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.

    1988-10-01

    The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.

  9. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  10. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  11. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.

    PubMed

    Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  12. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  13. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  14. Publications - GMC 95 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 95 Publication Details Title: X-ray diffraction analysis of seven core samples from the information. Bibliographic Reference Bergman, S.C., and Stuart, C.J., 1988, X-ray diffraction analysis of

  15. X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique

    NASA Technical Reports Server (NTRS)

    Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz

    1997-01-01

    Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.

  16. Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus

    PubMed Central

    Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi

    2006-01-01

    The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559

  17. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  18. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  19. Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.

    PubMed

    Lazzari, Olivier; Jacques, Simon; Sochi, Taha; Barnes, Paul

    2009-09-01

    Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.

  20. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

Top