Hubble Space Telescope, Faint Object Camera
NASA Technical Reports Server (NTRS)
1981-01-01
This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Hubble Space Telescope, Faint Object Spectrograph
NASA Technical Reports Server (NTRS)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1990-04-25
In this photograph, the Hubble Space Telescope (HST) was being deployed on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery (STS-31 mission). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four spacewalks, new instruments were installed into the HST that had optical corrections. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. Photo Credit: NASA/Smithsonian Institution/Lockheed Corporation.
History of Hubble Space Telescope (HST)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
STS-109 Onboard Photo of Extra-Vehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
2002-01-01
This is an onboard photo of the Hubble Space Telescope (HST) power control unit (PCU), the heart of the HST's power system. STS-109 payload commander John M. Grunsfeld, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its PCU while participating in the third of five spacewalks dedicated to servicing and upgrading the HST. Other upgrades performed were: replacement of the solar array panels; replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed the system upgrades. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
2002-03-01
This is an onboard photo of the Hubble Space Telescope (HST) power control unit (PCU), the heart of the HST's power system. STS-109 payload commander John M. Grunsfeld, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its PCU while participating in the third of five spacewalks dedicated to servicing and upgrading the HST. Other upgrades performed were: replacement of the solar array panels; replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed the system upgrades. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
History of Hubble Space Telescope (HST)
1993-12-01
Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1994-01-01
A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.
STS-109 Onboard Photo of Extra-Vehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
2002-01-01
This is an onboard photo of Astronaut John M. Grunsfield, STS-109 payload commander, participating in the third of five spacewalks to perform work on the Hubble Space Telescope (HST). On this particular walk, Grunsfield, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its power control unit (PCU), the heart of the HST's power system. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
2002-03-06
This is an onboard photo of Astronaut John M. Grunsfield, STS-109 payload commander, participating in the third of five spacewalks to perform work on the Hubble Space Telescope (HST). On this particular walk, Grunsfield, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its power control unit (PCU), the heart of the HST's power system. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
History of Hubble Space Telescope (HST)
1986-01-01
This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
2002-03-03
This is a photo of the Hubble Space Telescope (HST),in its origianl configuration, berthed in the cargo bay of the Space Shuttle Columbia during the STS-109 mission silhouetted against the airglow of the Earth's horizon. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
History of Hubble Space Telescope (HST)
1980-10-01
This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1983-01-01
This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1980-01-01
This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1980-01-01
This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, S. A.; Schindhelm, E.; Cunningham, N. J., E-mail: astern@swri.edu
We observed the 2600-3200 Å (hereafter, mid-UV) reflectance of two Kuiper Belt Objects (KBOs), two KBO satellites, and a Centaur, using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). Other than measurements of the Pluto system, these constitute the first UV measurements obtained of KBOs, and KBO satellites, and new HST UV measurements of the Centaur 2060 Chiron. We find significant differences among these objects, constrain the sizes and densities of Haumea's satellites, and report the detection of a possible spectral absorption band in Haumea's spectrum near 3050 Å. Comparisons of these objects to previously published UV reflectance measurementsmore » of Pluto and Charon are also made here.« less
Hubble Space Telescope Deployment-Artist's Concept
NASA Technical Reports Server (NTRS)
1980-01-01
This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Hubble Space Telescope Deployment-Artist's Concept
NASA Technical Reports Server (NTRS)
1980-01-01
This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1980-01-01
This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Hubble Space Telescope-The Support Systems Module
NASA Technical Reports Server (NTRS)
1980-01-01
This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1989-01-01
This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1985-04-01
This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
History of Hubble Space Telescope (HST)
1986-01-01
This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
2001-08-01
This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.
Hubble Space Telescope Deployment-Artist's Concept
NASA Technical Reports Server (NTRS)
1980-01-01
This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects
NASA Technical Reports Server (NTRS)
Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.
1994-01-01
We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.
Hubble Space Telescope-Concept
NASA Technical Reports Server (NTRS)
1986-01-01
This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
2002-03-01
Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs
NASA Technical Reports Server (NTRS)
Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.;
2010-01-01
The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.
History of Hubble Space Telescope (HST)
1980-01-01
This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
First Results from HST19 GO12600: CNO Abundances in Seven Milky Way Planetary Nebulae
NASA Astrophysics Data System (ADS)
Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Henry, Richard B. C.; Balick, Bruce; Corradi, Romano
2014-06-01
In HST Cycle 19 we observed 10 Milky Way planetary nebulae (PNe) from 1150-10270Å with STIS to obtain accurate abundances of carbon, nitrogen and oxygen. The ultimate goal of the project is to assess carbon production in the low-to-intermediate-mass (LIMS) progenitors of PNe with near-solar metallicity 0.5-1.2 x solar), but varying N/O 0.1-3), comparing observational data with theoretical models of carbon yields. Seven of our objects had data of sufficient quality to allow good empirical abundance determinations: IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, and NGC7662. Each PN was observed with seven grating setting combinations with identical slit positions and slit sizes across the entire UV-optical spectral region. We created one-dimensional spectra from the two-dimensional STIS spectral images, taking care to extract the identical spatial region from each spectrum for a given object. This was done to produce one-dimensional spectral lines integrated along the slit, resulting in the highest signal-to-noise measurements for analysis. We measured line fluxes with IRAF and calculated nebular diagnostics and abundances with ELSA. The crucial value in using STIS is the ability to observe the ultraviolet lines of important CNO ions with higher signal-to-noise than in previous studies. In all objects we detected lines of C+, C+2, and C+3. We also detected N+ and N+4 in all objects; in four of the seven we also detected N+2 and N+3. We will present these data and compare them with previous determinations and analyses (largely from the old IUE datasets and studies). We gratefully acknowledge support from HST and from Williams College.
Exceptional Solar-System Objects
NASA Astrophysics Data System (ADS)
Zellner, Benjamin
1990-12-01
This is a target-of-opportunity proposal for HST observations to be executed if a previously unknown, truly exceptional solar-system object or phenomenon is discovered either in the normal course of HST work or by anyone, anywhere. Trails due to unknown moving objects will often appear on HST images made for other purposes. A short trail seen near the opposition point or at high ecliptic latitude could represent a major addition to our knowledge of the solar system. Thus we further propose that all short trials seen on HST images taken in favorable regions of the sky be given a quick analysis in the Observation Support System for their possible significance. If an unusual object is found we propose to: (1) Seek from the owner of data rights permission to proceed as may be appropriate; (2) Contact the Minor Planet Center for an evaluation of the significance of the discovery; and (3) For an object that appears to be of great significance where effective groundbased followup appears unlikely, request the HST schedule be replanned for followup images and physical studies using HST.
NASA Astrophysics Data System (ADS)
Biller, Beth A.; Vos, Johanna; Buenzli, Esther; Allers, Katelyn; Bonnefoy, Mickaël; Charnay, Benjamin; Bézard, Bruno; Allard, France; Homeier, Derek; Bonavita, Mariangela; Brandner, Wolfgang; Crossfield, Ian; Dupuy, Trent; Henning, Thomas; Kopytova, Taisiya; Liu, Michael C.; Manjavacas, Elena; Schlieder, Joshua
2018-02-01
We present simultaneous Hubble Space Telescope (HST) WFC3+Spitzer IRAC variability monitoring for the highly variable young (∼20 Myr) planetary-mass object PSO J318.5‑22. Our simultaneous HST + Spitzer observations covered approximately two rotation periods with Spitzer and most of a rotation period with the HST. We derive a period of 8.6 ± 0.1 hr from the Spitzer light curve. Combining this period with the measured v\\sin i for this object, we find an inclination of 56.°2 ± 8.°1. We measure peak-to-trough variability amplitudes of 3.4% ± 0.1% for Spitzer Channel 2 and 4.4%–5.8% (typical 68% confidence errors of ∼0.3%) in the near-IR bands (1.07–1.67 μm) covered by the WFC3 G141 prism—the mid-IR variability amplitude for PSO J318.5‑22 is one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary-mass object. Additionally, we detect phase offsets ranging from 200° to 210° (typical error of ∼4°) between synthesized near-IR light curves and the Spitzer mid-IR light curve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.
NASA Astrophysics Data System (ADS)
Trenti, Michele
2010-09-01
Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in proper motions studies of some dozen clusters, but theoretical simulations are generally not performed as part of such programs. Our methods are complementary to other efforts to detect IMBHs in globulars, and will allow new constraints to be derived from HST data that are already being obtained.
A neural network gravitational arc finder based on the Mediatrix filamentation method
NASA Astrophysics Data System (ADS)
Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.
2017-01-01
Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.
Weaving the history of the solar wind with magnetic field lines
NASA Astrophysics Data System (ADS)
Alvarado Gomez, Julian
2017-08-01
Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.
Using modern imaging techniques to old HST data: a summary of the ALICE program.
NASA Astrophysics Data System (ADS)
Choquet, Elodie; Soummer, Remi; Perrin, Marshall; Pueyo, Laurent; Hagan, James Brendan; Zimmerman, Neil; Debes, John Henry; Schneider, Glenn; Ren, Bin; Milli, Julien; Wolff, Schuyler; Stark, Chris; Mawet, Dimitri; Golimowski, David A.; Hines, Dean C.; Roberge, Aki; Serabyn, Eugene
2018-01-01
Direct imaging of extrasolar systems is a powerful technique to study the physical properties of exoplanetary systems and understand their formation and evolution mechanisms. The detection and characterization of these objects are challenged by their high contrast with their host star. Several observing strategies and post-processing algorithms have been developed for ground-based high-contrast imaging instruments, enabling the discovery of directly-imaged and spectrally-characterized exoplanets. The Hubble Space Telescope (HST), pioneer in directly imaging extrasolar systems, has yet been often limited to the detection of bright debris disks systems, with sensitivity limited by the difficulty to implement an optimal PSF subtraction stategy, which is readily offered on ground-based telescopes in pupil tracking mode.The Archival Legacy Investigations of Circumstellar Environments (ALICE) program is a consistent re-analysis of the 10 year old coronagraphic archive of HST's NICMOS infrared imager. Using post-processing methods developed for ground-based observations, we used the whole archive to calibrate PSF temporal variations and improve NICMOS's detection limits. We have now delivered ALICE-reprocessed science products for the whole NICMOS archival data back to the community. These science products, as well as the ALICE pipeline, were used to prototype the JWST coronagraphic data and reduction pipeline. The ALICE program has enabled the detection of 10 faint debris disk systems never imaged before in the near-infrared and several substellar companion candidates, which we are all in the process of characterizing through follow-up observations with both ground-based facilities and HST-STIS coronagraphy. In this publication, we provide a summary of the results of the ALICE program, advertise its science products and discuss the prospects of the program.
NASA Astrophysics Data System (ADS)
Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.
2018-02-01
The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Hubble Space Telescope. Update: 18 months in orbit
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1990, Space Shuttle Discovery launched the Hubble Space Telescope (HST). An 18 month in-orbit update of the operations and performance of the HST is presented. Numerous color photographs are shown of objects already observed, and mission plans are presented for future observations by the HST.
History of Hubble Space Telescope (HST)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Building the Pipeline for Hubble Legacy Archive Grism data
NASA Astrophysics Data System (ADS)
Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.
2008-10-01
The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.
NASA Astrophysics Data System (ADS)
Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; van der Wel, Arjen; Bezanson, Rachel; Da Cunha, Elisabete; Fumagalli, Mattia; Förster Schreiber, Natascha; Kriek, Mariska; Leja, Joel; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Maseda, Michael V.; Nelson, Erica J.; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Rix, Hans-Walter; Tal, Tomer; Wake, David A.; Wuyts, Stijn
2014-10-01
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin2 in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands,more » and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)« less
HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar
NASA Technical Reports Server (NTRS)
Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.
1995-01-01
Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).
Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field
NASA Astrophysics Data System (ADS)
Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory
2013-10-01
We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2011-05-01
The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, M.
2012-06-01
(Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
2001-11-26
KENNEDY SPACE CENTER, Fla. -- A piece of equipment for Hubble Space Telescope Servicing mission is moved inside Hangar AE, Cape Canaveral. In the canister is the Advanced Camera for Surveys (ACS). The ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. The goal of the mission, STS-109, is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
2001-11-26
KENNEDY SPACE CENTER, Fla. - A piece of equipment for Hubble Space Telescope Servicing mission arrives at Hangar AE, Cape Canaveral. Inside the canister is the Advanced Camera for Surveys (ACS). The ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. The goal of the mission, STS-109, is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
A HST/WFC3 Search for Substellar Companions in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Strampelli, Giovanni Maria; Aguilar, Jonathan; Aparicio, Antonio; Piotto, Giampaolo; Pueyo, Laurent; Robberto, Massimo
2018-01-01
We present new results relative to the population of substellar binaries in the Orion Nebula Cluster. We reprocessed HST/WFC3 data using an analysis technique developed to detect close companions in the wings of the stellar PSFs, based on the PyKLIP implementation of the KLIP PSF subtraction algorithm. Starting from a sample of ~1200 stars selected over the range J=11-15 mag, we were able to uncover ~80 candidate companions in the magnitude range J=16-23 mag. We use the presence of the 1.4 micron H2O absorption feature in the companion photosphere to discriminate 32 bona-fide substellar candidates from a population of reddened background objects. We derive an estimate of the companion mass assuming a 2Myr isochrone and the reddening of their primary. With 8 stellar companions, 19 brown dwarfs and 5 planetary mass objects, our study provide us with an unbiased sample of companions at the low-mass end of the IMF, probing the transition from binary to planetary systems.
[The advance of detection technology of HIV self-testing].
Yan, L; Xiao, P P; Yan, H J; Huan, X P; Fu, G F; Li, J J; Yang, H T
2017-11-06
At present, China's AIDS testing increased rapidly, but there are still many people living with HIV do not recognize their status, thus postponing the antiviral treatment time. HIV self-testing (HST) is an effective method to expand the testing, not only simple operation, easy to get a result, effectively protect the detection privacy, expand the selection of testers, suit to the entire population, but also the premise and basis of other AIDS comprehensive prevention measures, all over the world are promoting it. Because the HST has controversies in the window period, price and before and after controversial, and our country is in the initial stage of HST, so it is not to develop related policies, but more and more countries are in accordance with their own situations are modified or developed to allow to use rapid detection of AIDS policy to regulate the field. This paper analyzed and summarized the advantage and influence factors of HST promotion, HST believes that in the long term, the advantages outweigh the disadvantages, we need to formulate relevant policies, and improve the sensitivity of the kit, shorten the window period of time, production and promotion of operation standard of video, specification and testing the operating practices, preventing and reporting the possible social harm, investigation and understanding of the needs of the people of the crowd, to maximize the advantages of HST, find more infection, so as to curb the epidemic of AIDS.
Measuring Extinction in Local Group Galaxies Using Background Galaxies
NASA Astrophysics Data System (ADS)
Wyder, T. K.; Hodge, P. W.
1999-05-01
Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.
The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5
NASA Astrophysics Data System (ADS)
Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.
2013-06-01
We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.
The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5
NASA Technical Reports Server (NTRS)
Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik;
2013-01-01
We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.
An HST Survey of Intermediate Luminosity X-ray Objects
NASA Astrophysics Data System (ADS)
Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.
2003-03-01
We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.
The Nature of the Remarkable Transient GRB 110328A
NASA Astrophysics Data System (ADS)
Fruchter, Andrew
2010-09-01
One orbit was approved for GO/DD 12447. The PI was given permission to use time under his related approved GRB program, 12370, for subsequent observations of this GRB. To allow the second visit to go forward quickly, it was kept on the schedule as GO/DD 12447, but the orbit was charged to GO 12370. As a result, THE SECOND VISIT OF 12447 HAS THE PROPRIETARY PERIOD ASSOCIATED WITH 12370. We apologize for the confusion caused by this change. However, it was done to allow rapid observations of an unusual astrophysical object.We propose HST observations of the extraordinary transient, GRB 110328A. This object triggered the Swift automatic burst detection twice over the course of about ninety minutes, and has continued to be a bright X-ray source for the two days since. While this behavior might typically suggest a Galactic source, the high Galactic latitude of the object, and its coincidence with a star-forming galaxy at z=0.35 instead suggests a new type of extragalactic transient. WFC3 imaging in the optical and NIR will allow us to search for a varying point source to far greater depth than could be done from the ground, given the presence of an apparent host, and the use of the F160W filter may allow us to pierce enshrouding dust, if extinction is the reason for the present lack of a detection in the optical. While we do not yet know the astrophysical source of this transient, it appears unique among the hundreds of transients so far detected by Swift. This alone should provide strong grounds for HST observations of this unusual and potentially important object.
NASA Astrophysics Data System (ADS)
Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Wang, X.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.; Vulcani, B.
2014-02-01
The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z >~ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z >~ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ~5 × 10-18 erg s-1 cm-2. Taking lensing magnification into account, our flux sensitivity reaches ~0.2-5 × 10-18 erg s-1cm-2. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.
The Orion Nebula Cluster as a Paradigm of Star Formation
NASA Astrophysics Data System (ADS)
Robberto, Massimo
2014-10-01
We propose a 52-orbit Treasury Program to investigate two fundamental questions of star formation: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. We target the Orion Nebula Cluster (ONC) using WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and Ic broad-band. Our main objectives are: 1) to discover and classify ~500 brown dwarfs and planetary-mass objects in the field, extending the IMF down to lowest masses formed by gravitational collapse. Using the latest generation of high contrast image processing we will also search for faint companions, reaching down to sub-arcsecond separations and 1E-4 flux ratios. 2) to derive high precision (~0.2km/s) relative proper motions of low-mass stars and substellar objects (about 1000 sources total), leveraging on first epoch data obtained by our previous HST Treasury Program about 10 years ago. These data will unveil the cluster dynamics: velocity dispersion vs. mass, substructures, and the fraction of escaping sources. Only HST can access the IR H2O absorption feature sensitive to the effective temperature of substellar objects, while providing the exceptionally stable PSF needed for the detection of faint companions, and the identical ACS platform for our second epoch proper-motion survey. This program will provide the definitive HST legacy dataset on the ONC. Our High-Level Science Products will be mined by the community, both statistically to constrain competing theories of star formation, and to study in depth the multitude of exotic sources harboured by the cluster.
Feasibility of Exoplanet Coronagraphy with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Woodruff, Robert A.; Brown, Robert; Noecker, M. Charley; Cheng, Edward
2010-01-01
Herein we report on a preliminary study to assess the use of the Hubble Space Telescope (HST) for the direct detection and spectroscopic characterization of exoplanets and debris disks - an application for which HST was not originally designed. Coronagraphic advances may enable the design of a science instrument that could achieve limiting contrasts approx.10deg beyond 275 milli-arcseconds (4 lambda/D at 800 nm) inner working angle, thereby enabling detection and characterization of several known jovian planets and imaging of debris disks. Advantages of using HST are that it already exists in orbit, it's primary mirror is thermally stable and it is the most characterized space telescope yet flown. However there is drift of the HST telescope, likely due to thermal effects crossing the terminator. The drift, however, is well characterized and consists of a larger deterministic components and a smaller stochastic component. It is the effect of this drift versus the sensing and control bandwidth of the instrument that would likely limit HST coronagraphic performance. Herein we discuss the science case, quantifY the limiting factors and assess the feasibility of using HST for exoplanet discovery using a hypothetical new instrument. Keywords: Hubble Space Telescope, coronagraphy, exoplanets, telescopes
Wide Field Camera 3 Accommodations for HST Robotics Servicing Mission
NASA Technical Reports Server (NTRS)
Ginyard, Amani
2005-01-01
This slide presentation discusses the objectives of the Hubble Space Telescope (HST) Robotics Servicing and Deorbit Mission (HRSDM), reviews the Wide Field Camera 3 (WFC3), and also reviews the contamination accomodations for the WFC3. The objectives of the HRSDM are (1) to provide a disposal capability at the end of HST's useful life, (2) to upgrade the hardware by installing two new scientific instruments: replace the Corrective Optics Space Telescope Axial Replacement (COSTAR) with the Cosmic Origins Spectrograph (COS), and to replace the Wide Field/Planetary Camera-2 (WFPC2) with Wide Field Camera-3, and (3) Extend the Scientific life of HST for a minimum of 5 years after servicing. Included are slides showing the Hubble Robotic Vehicle (HRV) and slides describing what the HRV contains. There are also slides describing the WFC3. One of the mechanisms of the WFC3 is to serve partially as replacement gyroscopes for HST. There are also slides that discuss the contamination requirements for the Rate Sensor Units (RSUs), that are part of the Rate Gyroscope Assembly on the WFC3.
Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01
NASA Technical Reports Server (NTRS)
1993-01-01
This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.
Hubble Space Telescope NiH2 six battery test
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Lanier, J. Roy
1991-01-01
The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.
A Near-infrared Counterpart of 2E1613.5-5053: The Central Source in Supernova Remnant RCW103
NASA Astrophysics Data System (ADS)
Tendulkar, S. P.; Kaspi, V. M.; Archibald, R. F.; Scholz, P.
2017-05-01
On 2016 June 22, 2E 1613.5-5053, the puzzling central compact object in supernova remnant RCW 103 emitted a magnetar-like burst. Using Director’s Discretionary Time, we observed 2E 1613.5-5053 with the Hubble Space Telescope (HST) (WFC3/IR) and we report here on the detection of a previously unseen infrared counterpart. In observations taken on 2016 July 4 and August 11, we detect a new source ({m}{{F}110{{W}}}=26.3 AB mag and {m}{{F}160{{W}}}=24.2 AB mag), at the Chandra position of 2E 1613.5-5053, that was not detected in HST/NICMOS images from 2002 August 15 and October 8, to a depth of 24.5 AB mag (F110W) and 25.5 AB mag (F160W). We show that these deep IR observations rule out the possibility of 2E 1613.5-5053 being an accreting binary with a high degree of confidence, but mimic IR emission properties of magnetars and isolated neutron stars. The presence or absence of a low-mass fallback disk cannot be confirmed from our observations.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
2002-03-05
STS-109 Astronauts Michael J. Massimino and James H. Newman were making their second extravehicular activity (EVA) of their mission when astronaut Massimino, mission specialist, peered into Columbia's crew cabin during a brief break from work on the Hubble Space Telescope (HST). The HST is latched down just a few feet behind him in Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
STS-109 Astronaut Michael J. Massimino Peers Into Window of Shuttle During EVA
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 Astronauts Michael J. Massimino and James H. Newman were making their second extravehicular activity (EVA) of their mission when astronaut Massimino, mission specialist, peered into Columbia's crew cabin during a brief break from work on the Hubble Space Telescope (HST). The HST is latched down just a few feet behind him in Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
Galaxy evolution in the densest environments: HST imaging
NASA Astrophysics Data System (ADS)
Jorgensen, Inger
2013-10-01
We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.
A Search for Short Timescale Microvariability in Active Galactic Nuclei in the Ultraviolet
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Clark, L. Lee
2003-01-01
We observed four AGNs (the type-1 Seyfert systems 3C249.1, NGC 6814 and Mrk 205, and the BL Lac object 3C371) using the High Speed Photometer on the Hubble Space Telescope to search for short timescale microvariability in the W. Continuous observations of 3 0 0 0 s duration were obtained for each system on several consecutive HST orbits using a 1 s sample time in a 1400 - 3000 2 bandpass. variability > 0.3 % (0 . 003 mag) was detected in any AGN on timescales shorter than 1500 s. The distribution of photon arrival times observed from each source was consistent with Poisson statistics. Because of HST optical problems, the limit on photometric variability at longer timescales is less precise. These results restrict models of supermassive black holes as the central engine of an AGN and the diskoseismology oscillations of any accretion disk around such a black hole.
Resolving the Inner Arcsecond of the RY Tau Jet with HST
NASA Astrophysics Data System (ADS)
Skinner, Stephen L.; Schneider, P. Christian; Audard, Marc; Güdel, Manuel
2018-03-01
Faint X-ray emission from hot plasma (T x > 106 K) has been detected extending outward a few arcseconds along the optically delineated jets of some classical T Tauri stars including RY Tau. The mechanism and location where the jets are heated to X-ray temperatures are unknown. We present high spatial resolution Hubble Space Telescope (HST) far-ultraviolet long-slit observations of RY Tau with the slit aligned along the jet. The primary objective was to search for C IV emission from warm plasma at T C IV ∼ 105 K within the inner jet (<1″) that cannot be fully resolved by X-ray telescopes. Spatially resolved C IV emission is detected in the blueshifted jet extending outward from the star to 1″ and in the redshifted jet out to 0.″5. C IV line centroid shifts give a radial velocity in the blueshifted jet of ‑136 ± 10 km s‑1 at an offset of 0.″29 (39 au) and deceleration outward is detected. The deprojected jet speed is subject to uncertainties in the jet inclination, but values ≳200 km s‑1 are likely. The mass-loss rate in the blueshifted jet is at least {\\dot{M}}jet,{blue}}=2.3× {10}-9 M ⊙ yr‑1, consistent with optical determinations. We use the HST data along with optically determined jet morphology to place meaningful constraints on candidate jet-heating models including a hot-launch model in which the jet is heated near the base to X-ray temperatures by an unspecified (but probably magnetic) process, and downstream heating from shocks or a putative jet magnetic field.
NASA Astrophysics Data System (ADS)
Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia
2018-01-01
The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.
Panchromatic Hubble Andromeda Treasury. IX. A photometric survey of planetary nebulae in M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veyette, Mark J.; Williams, Benjamin F.; Dalcanton, Julianne J.
We search the Hubble Space Telescope (HST) Advanced Camera for Surveys and Wide Field Camera 3 broadband imaging data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey to identify detections of cataloged planetary nebulae (PNs). Of the 711 PNs currently in the literature within the PHAT footprint, we find 467 detected in the broadband. For these 467, we are able to refine their astrometric accuracy from ∼0.''3 to 0.''05. Using the resolution of the HST, we are able to show that 152 objects currently in the catalogs are definitively not PNs, and we show that 32 objects thought to bemore » extended in ground-based images are actually point-like and therefore good PN candidates. We also find one PN candidate that is marginally resolved. If this is a PN, it is up to 0.7 pc in diameter. With our new photometric data, we develop a method of measuring the level of excitation in individual PNs by comparing broadband and narrowband imaging and describe the effects of excitation on a PN's photometric signature. Using the photometric properties of the known PNs in the PHAT catalogs, we search for more PNs, but do not find any new candidates, suggesting that ground-based emission-line surveys are complete in the PHAT footprint to F475W ≅ 24.« less
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368+6212 is a blue arc in the Hubble Deep Field (HDF). [Bottom Right] - HST 18078+4600 is a blue arc caused by the gravitational potential of a small group of 4 galaxies. Credit: Kavan Ratnatunga (Carnegie Mellon Univ.) and NASA
VLT FORS2 comparative transmission spectral survey of clear and cloudy exoplanet atmospheres
NASA Astrophysics Data System (ADS)
Nikolov, Nikolay; Sing, David; Gibson, Neale; Evans, Thomas; Barstow, Joanna Katy; Kataria, Tiffany; Wilson, Paul A.
2016-10-01
Transmission spectroscopy is a key to unlocking the secrets of close-in exoplanet atmospheres. Observations have started to unveil a vast diversity of irradiated giant planet atmospheres with clouds and hazes playing a definitive role across the entire mass and temperature regime. We have initiated a ground-based, multi-object transmission spectroscopy of a hand full of hot Jupiters, covering the wavelength range 360-850nm using the recently upgraded FOcal Reducer and Spectrograph (FORS2) mounted on the Very Large Telescope (VLT) at the European Southern Observatory (ESO). These targets were selected for comparative follow-up as their transmission spectra showed evidence for alkali metal absorption, based on the results of Hubble Space Telescope (HST) observations. This talk will discuss the first results from the programme, demonstrating excellent agreement between the transmission spectra measured from VLT and HST and further reinforce the findings of clear, cloudy and hazy atmospheres. More details will be discussed on the narrow alkali features obtained with FORS2 at higher resolution, revealing its high potential in securing optical transmission spectra. These FORS2 observations are the first ground-based detections of clear, cloudy and hazy hot-Jupiter atmosphere with a simultaneous detections of Na, K, and H2 Rayleigh scattering. Our program demonstrates the large potential of the instrument for optical transmission spectroscopy, capable of obtaining HST-quality light curves from the ground. Compared to HST, the larger aperture of VLT will allow for fainter targets to be observed and higher spectral resolution, which can greatly aid comparative exoplanet studies. This is important for further exploring the diversity of exoplanet atmospheres and is particularly complementary to the near- and mid-IR regime, to be covered by the upcoming James-Webb Space Telescope (JWST) and is readily applicable to less massive planets down to super-Earths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, K. B.; Treu, T.; Wang, X.
The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to covermore » the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.« less
HST Observations of the Luminous IRAS Source FSC10214+4724: A Gravitationally Lensed Infrared Quasar
NASA Technical Reports Server (NTRS)
Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.
1995-01-01
Hubble Space Telescope (HST) data taken of the IRAS source FSC 10214+4724 suggest that the object has been gravitationally lensed by a galaxy in the foreground and that this lensing may be magnifying the apparent brightness by roughly 100 times.
NASA Technical Reports Server (NTRS)
Sahai, R.; Contreras, C.
2003-01-01
In this paper, we briefly describe the results from imaging surveys of young PNe and PPNe with HST, and then present new results from detailed kinematic studies of several prominent objects which support our hypothesis for shaping PNe.
Optimal Dictionaries for Sparse Solutions of Multi-frame Blind Deconvolution
2014-09-01
object is the Hubble Space Telescope (HST). As stated above, the dictionary training used the first 100 of the total of the simulated PSFs. The second set...diffraction-limited Hubble image and HubbleRE is the reconstructed image from the 100 simulated atmospheric turbulence degraded images of the HST
The 1997 HST Calibration Workshop with a New Generation of Instruments
NASA Technical Reports Server (NTRS)
Casertano, S. (Editor); Jedrzejewski, R. (Editor); Keyes, T. (Editor); Stevens, M. (Editor)
1997-01-01
The Second Servicing mission in early 1997 has brought major changes to the Hubble Space Telescope (HST). Two of the original instruments, Faint Object Spectrograph (FOS) and Goddard High Resolution Spectrograph (GHRS), were taken out, and replaced by completely new instruments, the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera Multi-Object Spectrograph (NICMOS). Two new types of detectors were installed, and for the first time, HST gained infrared capabilities. A new Fine Guidance Sensor (FGS) was installed, with an alignment mechanism that could improve substantially both guiding and astrometric capabilities. With all these changes come new challenges. The characterization of the new instruments has required a major effort, both by their respective Investigation Definition Teams and at the Space Telescope Science Institute. All necessary final calibrations for the retired spectrographs needed to be carried out, and their properties definitively characterized. At the same time, work has continued to improve our understanding of the instruments that have remained on board. The results of these activities were discussed in the 1997 HST (Hubble Space Telescope) Calibration Workshop. The main focus of the Workshop was to provide users with the tools and the understanding they need to use HST's instruments and archival data to the best of their possibilities. This book contains the written record of the Workshop. As such, it should provide a valuable tool to all interested in using existing HST data or in proposing for new observations.
A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin
The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physicalmore » size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.« less
Hubble Space Telescope: cost reduction by re-engineering telemetry processing and archiving
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
1998-05-01
The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system are planned to be in place for the third servicing mission in December 1999. The primary objectives of the ground system reengineering effort, a project called 'vision December 1999. The primary objectives of the ground system re-engineering effort, a project called 'vision 2000 control center systems (CCS)', are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs will be reduced by providing a modern hardware and software architecture and utilizing commercial of f the shelf (COTS) products wherever possible. Operating costs will be reduced by eliminating redundant legacy systems and processes and by providing an integrated ground system geared toward autonomous operation. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will include a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform- independent from an office environment using commercial standards. Latest internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a high level overview of the CCS system and will illustrate some of the CCS telemetry capabilities. Samples of CCS user interface pages will be given. Vision 2000 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and beyond.
NASA Astrophysics Data System (ADS)
Lubow, S.; Budavári, T.
2013-10-01
We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.
THE CURIOUS MORPHOLOGY AND ORIENTATION OF ORION PROPLYD HST-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuping, R. Y.; Kassis, Marc; Bally, John
HST-10 is one of the largest proplyds in the Orion Nebula and is located approximately 1' SE of the Trapezium. Unlike other proplyds in Orion, however, the long-axis of HST-10 does not align with θ{sup 1} C, but is instead aligned with the rotational axis of the HST-10 disk. This cannot be easily explained using current photoevaporation models. In this Letter, we present high spatial resolution near-infrared images of the Orion proplyd HST-10 using Keck/NIRC2 with the Laser Guide Star Adaptive Optics system, along with multi-epoch analysis of HH objects near HST-10 using Hubble Space Telescope (HST) WFPC2 and Advanced Cameramore » for Surveys cameras. Our narrowband near-IR images resolve the proplyd ionization front (IF) and circumstellar disk down to 23 AU at the distance to Orion in Br γ, He I, H{sub 2}, and polycyclic aromatic hydrocarbon (PAH) emission. Br γ and He I emission primarily trace the IF (with the disk showing prominently in silhouette), while the H{sub 2} and PAH emission trace the surface of the disk itself. PAH emission also traces small dust grains within the proplyd envelope which is asymmetric and does not coincide with the IF. The curious morphology of the PAH emission may be due to UV heating by both θ{sup 1} COri and θ{sup 2} AOri. Multi-epoch HST images of the HST-10 field show proper motion of three knots associated with HH 517, clearly indicating that HST-10 has a jet. We postulate that the orientation of HST-10 is determined by the combined ram pressure of this jet and the FUV-powered photo-ablation flow from the disk surface.« less
The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416
NASA Astrophysics Data System (ADS)
Merlin, E.; Amorín, R.; Castellano, M.; Fontana, A.; Buitrago, F.; Dunlop, J. S.; Elbaz, D.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Ferguson, H. C.; Giallongo, E.; Grazian, A.; Lotz, J.; Michałowski, M. J.; Paris, D.; Pentericci, L.; Pilo, S.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.
2016-05-01
Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodeep project, an EU collaboration aimed at developing methods and tools for extragalactic photometry and creating valuable public photometric catalogues. Aims: We produce multiwavelength photometric catalogues (from B to 4.5 μm) for the first two of the Frontier Fields, Abell-2744 and MACS-J0416 (plus their parallel fields). Methods: To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members, and the intra-cluster light. We perform the detection on the processed HST H160 image to obtain a pure H-selected sample, which is the primary catalogue that we publish. We also add a sample of sources which are undetected in the H160 image but appear on a stacked infrared image. Photometry on the other HST bands is obtained using SExtractor, again on processed images after the procedure for foreground light removal. Photometry on the Hawk-I and IRAC bands is obtained using our PSF-matching deconfusion code t-phot. A similar procedure, but without the need for the foreground light removal, is adopted for the Parallel fields. Results: The procedure of foreground light subtraction allows for the detection and the photometric measurements of ~2500 sources per field. We deliver and release complete photometric H-detected catalogues, with the addition of the complementary sample of infrared-detected sources. All objects have multiwavelength coverage including B to H HST bands, plus K-band from Hawk-I, and 3.6-4.5 μm from Spitzer. full and detailed treatment of photometric errors is included. We perform basic sanity checks on the reliability of our results. Conclusions: The multiwavelength photometric catalogues are available publicly and are ready to be used for scientific purposes. Our procedures allows for the detection of outshone objects near the bright galaxies, which, coupled with the magnification effect of the clusters, can reveal extremely faint high redshift sources. Full analysis on photometric redshifts is presented in Paper II. The catalogues, together with the final processed images for all HST bands (as well as some diagnostic data and images), are publicly available and can be downloaded from the Astrodeep website at http://www.astrodeep.eu/frontier-fields/ and from a dedicated CDS webpage (http://astrodeep.u-strasbg.fr/ff/index.html). The catalogues are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A31
Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests
Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.
2014-01-01
Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539
See Change: Classifying single observation transients from HST using SNCosmo
NASA Astrophysics Data System (ADS)
Sofiatti Nunes, Caroline; Perlmutter, Saul; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, Myungkook J.; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Dana R.; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Jiasheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Hayden, Brian; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Dixon, Samantha; Yen, Mike
2016-01-01
The Supernova Cosmology Project (SCP) is executing "See Change", a large HST program to look for possible variation in dark energy using supernovae at z>1. As part of the survey, we often must make time-critical follow-up decisions based on multicolor detection at a single epoch. We demonstrate the use of the SNCosmo software package to obtain simulated fluxes in the HST filters for type Ia and core-collapse supernovae at various redshifts. These simulations allow us to compare photometric data from HST with the distribution of the simulated SNe through methods such as Random Forest, a learning method for classification, and Gaussian Kernel Estimation. The results help us make informed decisions about triggered follow up using HST and ground based observatories to provide time-critical information needed about transients. Examples of this technique applied in the context of See Change are shown.
2002-03-08
After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope in the shuttle's cargo bay. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
2002-03-09
After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope returning to its normal routine. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near- Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
HST Observations Reveal the Curious Geometry of Circumgalactic Gas
NASA Astrophysics Data System (ADS)
Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.
2016-06-01
We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by OVI absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.
HST Observations Reveal the Curious Geometry of Circumgalactic Gas
NASA Astrophysics Data System (ADS)
Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.
2017-03-01
We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by Ovi absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.
Searching for Unresolved Binary Brown Dwarfs
NASA Astrophysics Data System (ADS)
Albretsen, Jacob; Stephens, Denise
2007-10-01
There are currently L and T brown dwarfs (BDs) with errors in their classification of +/- 1 to 2 spectra types. Metallicity and gravitational differences have accounted for some of these discrepancies, and recent studies have shown unresolved binary BDs may offer some explanation as well. However limitations in technology and resources often make it difficult to clearly resolve an object that may be binary in nature. Stephens and Noll (2006) identified statistically strong binary source candidates from Hubble Space Telescope (HST) images of Trans-Neptunian Objects (TNOs) that were apparently unresolved using model point-spread functions for single and binary sources. The HST archive contains numerous observations of BDs using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that have never been rigorously analyzed for binary properties. Using methods developed by Stephens and Noll (2006), BD observations from the HST data archive are being analyzed for possible unresolved binaries. Preliminary results will be presented. This technique will identify potential candidates for future observations to determine orbital information.
The aurorae of Uranus past equinox
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Hansen, K. C.; Tao, C.; Cowley, S. W. H.; Stallard, T. S.; Melin, H.; Achilleos, N.; Guio, P.; Badman, S. V.; Kim, T.; Pogorelov, N.
2017-04-01
The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104 ± 26° (284 ± 26°) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.
The aurorae of Uranus past equinox
NASA Astrophysics Data System (ADS)
Lamy, L.
2017-12-01
The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104+/-26deg (284+/-26deg) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.
New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.
2014-01-01
We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.
Metallicities of z ~2 Galaxies From the 3D-HST Survey
NASA Astrophysics Data System (ADS)
Hernandez, Betsy; Momcheva, Ivelina; 3D-HST team
2018-01-01
The metal content of the gas in galaxies as a function of cosmic time is a measure of the exchange of gas between the galaxy and its environment. Understanding its evolution is central to understanding the physical processes that govern the efficiency and timing of star formation in galaxies. Our sample consists of 127 galaxies from the 3D-HST survey with individually detected spectral lines at z~2. We perform a comparison of line ratios that serve as proxies for the ionization parameter and oxygen abundance (O32 and R23 respectively) between the 3D-HST sample and SDSS galaxies at z~0. We examine the mass-metallicity relation of the 3D-HST sample, deriving the metallicity using O32 and R23, based on the Kobulnicky & Kewley models. Results from the O32 versus R23 comparison in the 3D-HST sample yield a similar distribution to recent high redshift samples. The mass-metallicity (MZ) relation shows the majority of 3D-HST metallicity values fall within previous MZ relation results.
Faint Object Spectrograph (FOS) early performance
NASA Technical Reports Server (NTRS)
Harms, Richard; Fitch, John
1991-01-01
The on-orbit performance of the HST + FOS instrument is described and illustrated with examples of initial scientific results. The effects of the spherical aberration from the misfiguring of the HST primary mirror upon isolated point sources and in complex fields such as the nuclei of galaxies are analyzed. Possible means for eliminating the effects of spherical aberration are studied. Concepts include using image enhancement software to extract maximum spatial and spectral information from the existing data as well as several options to repair or compensate for the HST's optical performance. In particular, it may be possible to install corrective optics into the HST which will eliminate the spherical aberration for the FOS and some of the other instruments. The more promising ideas and calculations of the expected improvements in performance are briefly described.
NASA Astrophysics Data System (ADS)
Laporte, N.; Streblyanska, A.; Kim, S.; Pelló, R.; Bauer, F. E.; Bina, D.; Brammer, G.; De Leo, M. A.; Infante, L.; Pérez-Fournon, I.
2015-03-01
Context. The Hubble Space Telescope (HST) Frontier Fields (HFFs) project started at the end of 2013 with the aim of providing extremely deep images of six massive galaxy clusters. One of the main goals of this program is to push several telescopes to their limits to provide the best current view of the earliest stages of the Universe. The analysis of the initial data has already demonstrated the huge capabilities of the program. Aims: We present a detailed analysis of z ~ 8 objects behind the HFFs lensing cluster, MACSJ0416.1-2403, combining 0.3-1.6 μm imaging from HST, ground-based Ks imaging from VLT HAWK-I, and 3.6 μm and 4.5 μm Spitzer Space Telescope. The images probe to 5σ depths of ≈29 AB for HST, 25.6 AB for HAWK-I, and ≈0.310 and 0.391 μJy at 3.6 and 4.5 μm, respectively. With these datasets, we assess the photometric properties of z ~ 8 galaxies in this field, as well as their distribution in luminosity, to unprecedented sensitivity. Methods: We applied the classical Lyman break (LB) technique, which combines non detection criteria in bands blueward of the Lyman break at z ~ 8 and color-selection in bands redward of the break. To avoid contamination by mid-z interlopers, we required a strong break between optical and near-infrared data. We determined the photometric properties of z ~ 8 selected candidates using spectral energy distribution (SED)-fitting with standard library templates. The luminosity function at z ~ 8 is computed using a Monte-Carlo method taking advantage of the SED-fitting results. A piece of cautionary information is gleaned from new deep optical photometry of a previously identified z ~ 8 galaxy in this cluster, which is now firmly detected as a mid-z interloper with a strong ≈1.5 mag Balmer break (between F606W and F125W). Using the SED of this interloper, we estimated the contamination rate of our MACSJ0416.1-2403 sample, and that of previous samples in Abell 2744 that were based on HFF data, we highlight the dangers of pushing the LB technique too close to the photometry limits. Results: Our selection reliably recovers four objects with mF160W ranging from 26.0 to 27.9 AB that are located in modest-amplification regions (μ < 2.4). Two of the objects display a secondary break between the IRAC 3.6 μm and 4.5 μm bands, which could be associated to the Balmer break or emission lines at z ~ 8. The SED-fitting analysis suggests that all of these objects favor high-z solutions with no reliable secondary solutions. The candidates generally have star formation rates around ~10 M⊙/yr and sizes ranging from 0.2 to 0.5 kpc, which agrees well with previous observations and expectations for objects in the early Universe. The sample size and luminosity distribution are consistent with previous findings.
HST image restoration: A comparison of pre- and post-servicing mission results
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; Mo, J.
1992-01-01
A variety of image restoration techniques (e.g., Wiener filter, Lucy-Richardson, MEM) have been applied quite successfully to the aberrated HST images. The HST servicing mission (scheduled for late 1993 or early 1994) will install a corrective optics system (COSTAR) for the Faint Object Camera and spectrographs and replace the Wide Field/Planetary Camera with a second generation instrument (WF/PC-II) having its own corrective elements. The image quality is expected to be improved substantially with these new instruments. What then is the role of image restoration for the HST in the long term? Through a series of numerical experiments using model point-spread functions for both aberrated and unaberrated optics, we find that substantial improvements in image resolution can be obtained for post-servicing mission data using the same or similar algorithms as being employed now to correct aberrated images. Included in our investigations are studies of the photometric integrity of the restoration algorithms and explicit models for HST pointing errors (spacecraft jitter).
NASA Astrophysics Data System (ADS)
Tadhunter, C.; Zaurín, J. Rodríguez; Rose, M.; Spence, R. A. W.; Batcheldor, D.; Berg, M. A.; Ramos Almeida, C.; Spoon, H. W. W.; Sparks, W.; Chiaberge, M.
2018-05-01
The true importance of the warm, AGN-driven outflows for the evolution of galaxies remains uncertain. Measurements of the radial extents of the outflows are key for quantifying their masses and kinetic powers, and also establishing whether the AGN outflows are galaxy-wide. Therefore, as part of a larger project to investigate the significance of warm, AGN-driven outflows in the most rapidly evolving galaxies in the local universe, here we present deep Hubble Space Telescope (HST) narrow-band [OIII]λ5007 observations of a complete sample of 8 nearby ULIRGs with optical AGN nuclei. Combined with the complementary information provided by our ground-based spectroscopy, the HST images show that the warm gas outflows are relatively compact for most of the objects in the sample: in three objects the outflow regions are barely resolved at the resolution of HST (0.065 < R[OIII] < 0.12 kpc); in a further four cases the outflows are spatially resolved but with flux weighted mean radii in the range 0.65 < R[OIII] < 1.2 kpc; and in only one object (Mrk273) is there clear evidence for a more extended outflow, with a maximum extent of R[OIII] ˜ 5 kpc. Overall, our observations show little evidence for the galaxy-wide outflows predicted by some models of AGN feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.
Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less
VizieR Online Data Catalog: HST Frontier Fields Herschel sources (Rawle+, 2016)
NASA Astrophysics Data System (ADS)
Rawle, T. D.; Altieri, B.; Egami, E.; Perez-Gonzalez, P. G.; Boone, F.; Clement, B.; Ivison, R. J.; Richard, J.; Rujopakarn, W.; Valtchanov, I.; Walth, G.; Weiner, B. J.; Blain, A. W.; Dessauges-Zavadsky, M.; Kneib, J.-P.; Lutz, D.; Rodighiero, G.; Schaerer, D.; Smail, I.
2017-07-01
We present a complete census of the 263 Herschel-detected sources within the HST Frontier Fields, including 163 lensed sources located behind the clusters. Our primary aim is to provide a robust legacy catalogue of the Herschel fluxes, which we combine with archival data from Spitzer and WISE to produce IR SEDs. We optimally combine the IR photometry with data from HST, VLA and ground-based observatories in order to identify optical counterparts and gain source redshifts. Each cluster is observed in two distinct regions, referred to as the central and parallel footprints. (2 data files).
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.
Transformation reborn: A new generation expert system for planning HST operations
NASA Technical Reports Server (NTRS)
Gerb, Andrew
1991-01-01
The Transformation expert system (TRANS) converts proposals for astronomical observations with the Hubble Space Telescope (HST) into detailed observing plans. It encodes expert knowledge to solve problems faced in planning and commanding HST observations to enable their processing by the Science Operations Ground System (SOGS). Among these problems are determining an acceptable order of executing observations, grouping of observations to enhance efficiency and schedulability, inserting extra observations when necessary, and providing parameters for commanding HST instruments. TRANS is currently an operational system and plays a critical role in the HST ground system. It was originally designed using forward-chaining provided by the OPS5 expert system language, but has been reimplemented using a procedural knowledge base. This reimplementation was forced by the explosion in the amount of OPS5 code required to specify the increasingly complicated situations requiring expert-level intervention by the TRANS knowledge base. This problem was compounded by the difficulty of avoiding unintended interaction between rules. To support the TRANS knowledge base, XCL, a small but powerful extension to Commom Lisp was implemented. XCL allows a compact syntax for specifying assignments and references to object attributes. XCL also allows the capability to iterate over objects and perform keyed lookup. The reimplementation of TRANS has greatly diminished the effort needed to maintain and enhance it. As a result of this, its functions have been expanded to include warnings about observations that are difficult or impossible to schedule or command, providing data to aid SPIKE, an intelligent planning system used for HST long-term scheduling, and providing information to the Guide Star Selection System (GSSS) to aid in determination of the long range availability of guide stars.
2002-03-03
The Hubble Space Telescope (HST), with its normal routine temporarily interrupted, is about to be captured by the Space Shuttle Columbia prior to a week of servicing and upgrading by the STS-109 crew. The telescope was captured by the shuttle's Remote Manipulator System (RMS) robotic arm and secured on a work stand in Columbia's payload bay where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.
NASA Astrophysics Data System (ADS)
Guo, Yicheng
2017-08-01
Galaxies with stellar mass 100x-1000x times smaller than our Milky Way (hereafter dwarf galaxies or DGs) are important for understanding galaxy formation and evolution by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the different physical mechanisms that regulate star formation and shape galaxies. Currently, however, observations of distant DGs have been hampered by small samples and poor quality due to their faintness. We propose an archival study of the size, morphology, and structures of DGs out to z 3.0 by combining the archived data from five of the deepest regions that HST has ever observed: eXtreme Deep Field (XDF, updated from HUDF) and the Hubble Legacy Fields (HLFs). Our program would be the first to advance the morphology studies of DGs to the Cosmic Noon (z 2), and hence place unprecedented constraints on models of galaxy structure formation. Equally important is the data product of our program: multi-wavelength photometry and morphology catalogs for all detected galaxies in these fields. These catalogs would be a timely treasure for the public to prepare for the coming JWST era by providing detailed information of small, faint, but important objects in some deepest HST fields for JWST observations.
NASA Technical Reports Server (NTRS)
Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.;
1996-01-01
We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)
2002-01-01
The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.
Deep Imaging of Extremely Metal-Poor Galaxies
NASA Astrophysics Data System (ADS)
Corbin, Michael
2006-07-01
Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW
Image Science and Analysis Group Spacecraft Damage Detection/Characterization
NASA Technical Reports Server (NTRS)
Wheaton, Ira M., Jr.
2010-01-01
This project consisted of several tasks that could be served by an intern to assist the ISAG in detecting damage to spacecrafts during missions. First, this project focused on supporting the Micrometeoroid Orbital Debris (MMOD) damage detection and assessment for the Hubble Space Telescope (HST) using imagery from the last two HST Shuttle servicing missions. In this project, we used coordinates of two windows on the Shuttle Aft flight deck from where images were taken and the coordinates of three ID points in order to calculate the distance from each window to the three points. Then, using the specifications from the camera used, we calculated the image scale in pixels per inch for planes parallel to and planes in the z-direction to the image plane (shown in Table 1). This will help in the future for calculating measurements of objects in the images. Next, tabulation and statistical analysis were conducted for screening results (shown in Table 2) of imagery with Orion Thermal Protection System (TPS) damage. Using the Microsoft Excel CRITBINOM function and Goal Seek, the probabilities of detection of damage to different shuttle tiles were calculated as shown in Table 3. Using developed measuring tools, volume and area measurements will be created from 3D models of Orion TPS damage. Last, mathematical expertise was provided to the Photogrammetry Team. These mathematical tasks consisted of developing elegant image space error equations for observations along 3D lines, circles, planes, etc. and checking proofs for minimal sets of sufficient multi-linear constraints. Some of the processes and resulting equations are displayed in Figure 1.
RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763
NASA Astrophysics Data System (ADS)
Rodney, S.; Coe, D.; Bradley, L.; Strolger, L.; Brammer, G.; Avila, R.; Ryan, R.; Ogaz, S.; Riess, A.; Sharon, K.; Johnson, T.; Paterno-Mahler, R.; Molino, A.; Graham, M.; Kelly, P.; Filippenko, A.; Frye, B.; Foley, R.; Schmidt, K.; Umetsu, K.; Czakon, N.; Weiner, B.; Stark, D.; Mainali, R.; Zitrin, A.; Sendra, I.; Graur, O.; Grillo, C.; Hjorth, J.; Selsing, J.; Christensen, L.; Rosati, P.; Nonino, M.; Balestra, I.; Vulcani, B.; McCully, C.; Dawson, W.; Bouwens, R.; Lam, D.; Trenti, M.; Nunez, D. Carrasco; Matheson, T.; Merten, J.; Jha, S.; Jones, C.; Andrade-Santos, F.; Salmon, B.; Bradac, M.; Hoag, A.; Huang, K.; Wang, X.; Oesch, P.
2016-07-01
We report the discovery of a likely supernova (SN) in the background field of the galaxy cluster Abell 1763 (a.k.a. RXC J1335.3+4059, ZwCl 1333.7+4117). The SN candidate was detected in Hubble Space Telescope (HST) observations collected on June 17, 2016 as part of the Reionization Lensing Cluster Survey (RELICS, HST program ID: 14096, PI: D.Coe).
NASA Astrophysics Data System (ADS)
Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.
2018-02-01
NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.
A HST Search to Constrain the Binary Fraction of Stripped-Envelope Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori
2018-01-01
Stripped-envelope supernovae (e.g., SNe IIb, Ib, and Ic) refer to a subset of core-collapse explosions with progenitors that have lost some fraction of their outer envelopes in pre-SN mass loss. Mounting evidence over the past decade suggests that the mass loss in a large fraction of these systems occurs due to binary interaction. An unbiased, statistically significant sample of companion-star characteristics (including deep upper limits) can constrain the binary fraction, having direct implications on the theoretical physics of both single star and binary evolution. To date, however, only two detections have been made: SNe 1993J and 2011dh. Over the past year, we have improved this sample with an HST WFC3/NUV survey for binary companions of three additional nearby stripped-envelope SNe: 2002ap, 2001ig, and 2010br. I will present a review of previous companion searches and results from our current HST survey, which include one detection and two meaningful upper limits.
STS-109 Mission Highlights Resource Tape
NASA Astrophysics Data System (ADS)
2002-05-01
This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.
NASA Technical Reports Server (NTRS)
Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.
1995-01-01
Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral galaxies brighter than, on average, about L*, would have been detected. These upper limits, or possible detections, are consistent with, for example, the eight luminous quasars studied in this paper, occurring in host galaxies that have a Shechter luminosity function with a lower cutoff in the range 0.01-0.1 L*. Tests are performed to determine if our failure to detect, in some cases, luminous host galaxies could be an artifact caused by our analysis procedures. These tests include comparing the measured point-spread function (PSF) for our HST observations with the PSFs used in previous ground-based studies of host galaxies, measuring the fluctuations in the sky signals that were subtracted from the quasar images, evaluating empirically the effects of using different stellar PSFs in the analysis, carrying out the subtraction of the stellar (nuclear) source in different ways, creating and analyzing artificial active galactic nuclei (AGNs) with known surface brightnesses, and fitting the observed quasar light to an analytic model that includes a host galaxy.
NASA Technical Reports Server (NTRS)
Brown, Robert A.; Burrows, Christopher J.
1990-01-01
The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.
STS-109 Flight Day 3 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
This footage from the third day of the STS-109 mission to service the Hubble Space Telescope (HST) begins with the grappling of the HST by the robotic arm of the Columbia Orbiter, operated by Mission Specialist Nancy Currie. During the grappling, numerous angles deliver close-up images of the telescope which appears to be in good shape despite many years in orbit around the Earth. Following the positioning of the HST on its berthing platform in the Shuttle bay, the robotic arm is used to perform an external survey of the telescope. Some cursory details are given about different equipment which will be installed on the HST including a replacement cooling system for the Near Infrared Camera Multi-Object Spectrometer (NICMOS) and the Advanced Camera for Surveys. Following the survey, there is footage of the retraction of both of the telescope's two flexible solar arrays, which was successful. These arrays will be replaced by rigid solar arrays with decreased surface area and increased performance.
Optical and X-ray studies of Compact X-ray Binaries in NGC 5904
NASA Astrophysics Data System (ADS)
Bhalotia, Vanshree; Beck-Winchatz, Bernhard
2018-06-01
Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.
2002-03-05
Astronaut James H. Newman, mission specialist, floats about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame),mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). The RMS was used to capture the telescope and secure it into Columbia's cargo bay.Part of the giant telescope's base, latched down in the payload bay, can be seen behind Newman. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the HST. The Marshall Space Flight Center in Huntsville, Alabama had responsibility for the design, development, and contruction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
NASA Astrophysics Data System (ADS)
Roth, Lorenz
2018-05-01
Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.
Monitoring of Mira (omi Cet) in support of HST Observations
NASA Astrophysics Data System (ADS)
Karovska, Margarita; Templeton, Matthew R.
2007-09-01
Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and collaborators are performing a comprehensive study of the Mira AB interacting system, using the HST WFPC2 camera. Mira AB is composed of the prototype Mira variable omi Cet and its companion VZ Cet, separated by about 0.5 arcsecond. As part of this project they plan to obtain a large number of high-angular resolution images at wavelengths ranging from UV to optical. The main objectives of the HST/WFPC2 observations are 1) to determine the properties of the material ejected in December 2004 as it flows throughout the binary and interacts with the Mira A (omi Cet, Mira) circumstellar material and wind; 2) to determine the physical characteristics of mass transfer in this system and especially the role of the accretion stream between Mira A and its accreting companion Mira B (VZ Cet); 3) to determine the response of the system to the increased accretion rate onto Mira B following the outburst. The HST observations are scheduled for September 23, 1900-2300 UT. Both visual and instrumental observers are requested to observe this object, currently at minimum around visual magnitude 9-9.5. Observations should be made approximately two weeks on either side of the September 23 observation date. Visual observer should observe as usual, making not more than 3 observations spaced about 10 days apart. PEP and CCD observers should use the bluest-wavelength filters they have, and should make nightly observations, with intensive observations during the HST observations themselves. UBV and RIJH observations would be very valuable. Please make sure to use an aperture that covers both omi Cet and VZ Cet when evaluating CCD images. Observations should be submitted to the AAVSO International Database as OMI CET.
The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations
NASA Technical Reports Server (NTRS)
Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.
1995-01-01
We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.
History of Hubble Space Telescope (HST)
2003-06-09
The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.
NASA Astrophysics Data System (ADS)
Hekatelyne, C.; Riffel, Rogemar A.; Sales, Dinalva; Robinson, Andrew; Gallimore, Jack; Storchi-Bergmann, Thaisa; Kharb, Preeti; O'Dea, Christopher; Baum, Stefi
2018-03-01
We present Gemini Multi-Object Spectrograph (GMOS) Integral field Unit (IFU), Very Large Array (VLA), and Hubble Space Telescope (HST) observations of the OH megamaser (OHM) galaxy IRAS F23199+0123. Our observations show that this system is an interacting pair, with two OHM sources associated with the eastern (IRAS 23199E) member. The two members of the pair present somewhat extended radio emission at 3 and 20 cm, with flux peaks at each nucleus. The GMOS-IFU observations cover the inner ˜6 kpc of IRAS 23199E at a spatial resolution of 2.3 kpc. The GMOS-IFU flux distributions in Hα and [N II] λ6583 are similar to that of an HST [N II]+Hα narrow-band image, being more extended along the north-east-south-west direction, as also observed in the continuum HST F814W image. The GMOS-IFU Hα flux map of IRAS 23199E shows three extranuclear knots attributed to star-forming complexes. We have discovered a Seyfert 1 nucleus in this galaxy, as its nuclear spectrum shows an unresolved broad (full width at half-maximum ≈2170 km s-1) double-peaked Hα component, from which we derive a black hole mass of M_{BH} = 3.8^{+0.3}_{-0.2}× 106 M⊙. The gas kinematics shows low velocity dispersions (σ) and low [N II]/Hα ratios for the star-forming complexes and higher σ and [N II]/Hα surrounding the radio emission region, supporting interaction between the radio plasma and ambient gas. The two OH masers detected in IRAS F23199E are observed in the vicinity of these enhanced σ regions, supporting their association with the active nucleus and its interaction with the surrounding gas. The gas velocity field can be partially reproduced by rotation in a disc, with residuals along the north-south direction being tentatively attributed to emission from the front walls of a bipolar outflow.
History of Hubble Space Telescope (HST)
1993-07-09
This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.
Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0
NASA Technical Reports Server (NTRS)
Nota, A. (Editor); Jedrzejewski, R. (Editor); Greenfield, P. (Editor); Hack, W. (Editor)
1994-01-01
The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program.
NASA Astrophysics Data System (ADS)
Parker, Charles Walter
This work describes the design and implementation of a high-sensitivity telescope (HST) for in situ detection and energy analysis of energetic charged particles in the Earth's radiation belts from a near-equatorial orbit that will range over geocentric distances from ≈ 2--3.5 Earth radii as part of the US Air Force's Demonstrations and Science eXperiment (DSX) mission. The HST employs a two element silicon solid state detector telescope that has a geometrical factor of 0.1 cm2 sr with a 14° field-of-view centered on the on-orbit local magnetic field vector to detect ≈ 100 particles s-1 cm-2 sr-1 in the geomagnetic bounce loss cone. The pointing direction of the HST is guaranteed by the active attitude control subsystem of the spacecraft. A novel implementation of a knife-edged baffled collimator design restricts the field-of-view and provides a sharp cutoff (≈ 103) in the angular response to all particle species with energies from ≈ 40--800 keV. The HST detectors are shielded with 5g cm-2 of aluminum followed by 3.1 g cm-2 of tungsten in all non-look directions to reduce the background fluxes incident on the detectors through the orbit (>107 particles cm -2 s-1 for electrons and protons individually) to levels that will allow the detection of the target flux in the loss cone. The HST has been extensively characterized on the ground and is capable of analyzing the energies of particles over the range of 25--850 keV with an energy resolution of 3.7keV and a noise FWHM of 15keV. The calibration has been established using 241Am and 133Ba X-ray sources and verified using additional beta- and X-ray sources and the electron beams produced by the 2 MeV Van de Graaff accelerator at the NASA Goddard Spaceflight Center's Radiation Effects Facility. The instrument's calibration has been shown to vary by less than 2% over the operational temperature range of --20 to +35°C. Electromagnetic interference testing has proven that the HST is unaffected by strong VLF fields of peak amplitude 1.5 kV.
Multiple spiral patterns in the transitional disk of HD 100546
NASA Astrophysics Data System (ADS)
Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.
2013-12-01
Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ. Based on data retrieved from the Gemini archive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Yicheng; Barro, Guillermo; Faber, Sandra M.
We present a UV to mid-infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5{sigma} limiting depth (within an aperture of radius 0.''17) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, andmore » 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 {mu}m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zero-point offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10{sup 10} M{sub Sun} at a 50% completeness level to z {approx} 3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z {approx} 2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0 < z < 4.« less
1999-08-01
Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.
2002-03-07
Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, George H.; Marco, Orsola De; Davies, James
The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less
STS-109 Crew Interviews - Carey
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 pilot Duane G. Carey is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, as well as an extended description of his role in the Orbiter's return landing. As its primary objective, this mission has the maintenance of the Hubble Space Telescope (HST). Following the Columbia Orbiter's rendezvous with the telescope, extravehicular activities (EVA) will focus on repairs to and augmentation of the HST.
APT: what it has enabled us to do
NASA Astrophysics Data System (ADS)
Blacker, Brett S.; Golombek, Daniel
2004-09-01
With the development and operations deployment of the Astronomer's Proposal Tool (APT), Hubble Space Telescope (HST) proposers have been provided with an integrated toolset for Phase I and Phase II. This toolset consists of editors for filling out proposal information, an Orbit Planner for determining observation feasibility, a Visit Planner for determining schedulability, diagnostic and reporting tools and an integrated Visual Target Tuner (VTT) for viewing exposure specifications. The VTT can also overlay HST"s field of view on user-selected Flexible Image Transport System (FITS) images, perform bright object checks and query the HST archive. In addition to these direct benefits for the HST user, STScI"s internal Phase I process has been able to take advantage of the APT products. APT has enabled a substantial streamlining of the process and software processing tools, which enabled a compression by three months of the Phase I to Phase II schedule, allowing to schedule observations earlier and thus further benefiting HST observers. Some of the improvements to our process include: creating a compact disk (CD) of Phase I products; being able to print all proposals on the day of the deadline; link the proposal in Portable Document Format (PDF) with a database, and being able to run all Phase I software on a single platform. In this paper we will discuss the operational results of using APT for HST's Cycles 12 and 13 Phase I process and will show the improvements for the users and the overall process that is allowing STScI to obtain scientific results with HST three months earlier than in previous years. We will also show how APT can be and is being used for multiple missions.
Hubble Space Telescope: the new telemetry archiving system
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2000-07-01
The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system have been implemented for the third servicing mission in December 1999. The primary objectives of the ground system re- engineering effort, a project called 'Vision 2000 Control Center System (CCS),' are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs are reduced by providing a more modern hardware and software architecture and utilizing commercial off the shelf (COTS) products wherever possible. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The Data Warehouse (Red Brick), as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope, represents the first use of a commercial Data Warehouse to manage engineering data. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will provide a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform-independent from an office environment using commercial standards (Unix, Windows98/NT). The latest Internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a CCS system overview and will illustrate some of the CCS telemetry capabilities: in particular the use of the new Telemetry Archiving System. Vision 20001 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and beyond.
Pusateri, Christopher R.; Monaco, Edward A.; Edgerton, Mira
2009-01-01
Objectives Candida albicans cells form biofilms on polymeric surfaces of dentures and other prostheses introduced into the oral cavity. Many biofilm microorganisms exhibit resistance to antimicrobial agents; C. albicans cells may also develop resistance to naturally-occurring antifungal peptides in human saliva including histatins (Hsts) and defensins (hBDs). Therefore, we evaluated Hst 5 activity on C. albicans biofilm cells compared to planktonic cells and measured whether surface treatment of denture acrylic with Hst 5, hBD-3, or chlorhexidine gluconate could inhibit in vitro biofilm development. Methods Acrylic disks were preconditioned with 500 μl saliva for 30 min, and inoculated with C. albicans cells (106 cells/ml) for 1 h, at 37 °C. Non-adherent cells were removed by washing and disks and were incubated in YPD growth medium for 24, 48, and 72 h at 37 °C. Candidacidal assays were performed on 48-hour-biofilms and on planktonically-grown cells using Hst 5 (15.5 μM, 31.25 μM, 62 μM). Cell adhesion was compared on disks pre-coated with 0.12% chlorhexidine gluconate, 50 μM Hst 5, or 0.6 μM hBD-3 after 24 h, 48 h, and 72 h growth. Results No significant difference was observed in sensitivity to Hst 5 of biofilm cells compared to planktonic cells (p > 0.05). Pre-coating disks with hBD-3 did not inhibit biofilm development; however, Hst 5 significantly inhibited biofilm development at 72 h, while 0.12% chlorhexidine significantly inhibited biofilm development at all time intervals (p < 0.05). Conclusions C. albicans biofilm cells grown on denture acrylic are sensitive to killing by Hst 5. Surface coating acrylic with chlorhexidine or Hst 5 effectively inhibits biofilm growth and has potential therapeutic application. PMID:19249746
Giant impacts on giant planets
NASA Astrophysics Data System (ADS)
de Pater, Imke
2017-08-01
The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^19 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.
Modernizing Pickles - A Tool for Planning and Scheduling HST Astrometry
NASA Astrophysics Data System (ADS)
Juarez, Aaron; McArthur, B.; Benedict, G. F.
2007-12-01
Pickles is a Macintosh program written in C that was developed as a tool for determining pointings and rolls of the Hubble Space Telescope (HST) to place targets and astrometric reference stars in the Fine Guidance Sensor (FGS) field of regard ("pickles"). The program was developed in the late 1980s and runs under the "Classic” System. Ongoing HST astrometry projects require that this code be ported to the Intel-Mac OSX, because the Classic System is now unsupported. Pickles is a vital part of HST astrometry research. It graphically aids the investigator to determine where, when, and how the HST/FGS combination can observe an object and associated astrometric reference stars. Presently, Pickles can extract and display star positions from Guide Star Catalogs, such as the ACRS, SAO, and AGK3 catalogs via CD-ROMs. Future improvements will provide access to these catalogs and others through the internet. As an example of the past utility of Pickles, we highlight the recent determination of parallaxes for ten galactic Cepheids to determine an improved solar-metallicity Period-Luminosity relation. Support for this work was provided by NASA through grants GO-10989, -11210, and -11211 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Searching for Wolf-Rayet Stars Beyond the Local Group
NASA Astrophysics Data System (ADS)
Bibby, J. L.; Shara, M. M.; Crowther, P. A.; Moffat, A. F. J.
2012-12-01
We present preliminary results from our HST/WFC3 F469N narrow-band imaging of the nearby star-forming galaxy M101 in which we search for Wolf-Rayet (WR) stars, possible progenitors of Type Ibc core-collapse supernovae (ccSNe). From analysis of the central pointing of M101 we identify ˜1000 WR candidates from photometric analysis and estimate ˜ 450 using the “blinking” method. From analysis of a sample region we find that 35% of our WR candidates would not be detected in ground-based surveys and 40% of sources are not detected in the HST F435W images, highlighting the importance of high spatial resolution narrow-band imaging.
Measuring the Local ISM along the Sight Lines of the Two Voyager Spacecraft with HST/STIS
NASA Astrophysics Data System (ADS)
Zachary, Julia; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.
2018-05-01
In 2012 August, Voyager 1 crossed the heliopause, becoming the first human-made object to exit the solar system. This milestone signifies the beginning of an important new era for local interstellar medium (LISM) exploration. We present measurements of the structure and composition of the LISM in the immediate path of the Voyager spacecraft by using high-resolution Hubble Space Telescope (HST) spectra of nearby stars that lie along the same lines of sight. We provide a comprehensive inventory of LISM absorption in the near-ultraviolet (2600–2800 Å) and far-ultraviolet (1200–1500 Å). The LISM absorption profiles are used to make comparisons between each pair of closely spaced (<15°) sight lines. With fits to several absorption lines, we make measurements of the physical properties of the LISM. We estimate electron density along the Voyager 2 sight line, and our values are consistent with recent measurements by Voyager 1. Excess absorption in the H I Lyα line displays the presence of both the heliosphere and an astrosphere around GJ 780. This is only the 14th detection of an astrosphere, and the large mass-loss rate (\\dot{M}=10 {\\dot{M}}ȯ ) is consistent with other subgiant stars. The heliospheric absorption matches the predicted strength for a sight line 58° from the upwind direction. As both HST and Voyager reach the end of their lifetimes, we have the opportunity to synthesize their respective observations, combining in situ measurements with the shortest possible line-of-sight measurements to study the Galactic ISM surrounding the Sun.
The HST Key Project on the Extragalactic Distance Scale VI. The Cepheids in NGC925
NASA Technical Reports Server (NTRS)
Silbermann, N. A.; Harding, Paul; Madore, Barry F.; Kennicutt, Robert C., Jr.; Saha, Abhijit; Stetson, Peter; Freedman, Wendy L.; Mould, Jeremy R.; Graham, John A.; Hill, Robert J.;
1996-01-01
We report the detection of Cepheid Variable stars in the barred spiral galaxy NGC925, using the Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2). Twelve V (F555W), four I (F814W) and three B (F439W) epochs of cosmic ray split observations were obtained. Eighty Cepheids were discovered, with periods from 6 to +-80 days. Light curves of the Cepheids are presented, and their corresponding period-luminosity diagrams are discussed.
PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST
NASA Astrophysics Data System (ADS)
Batalha, Natasha E.; Mandell, Avi; Pontoppidan, Klaus; Stevenson, Kevin B.; Lewis, Nikole K.; Kalirai, Jason; Earl, Nick; Greene, Thomas; Albert, Loïc; Nielsen, Louise D.
2017-06-01
As we approach the James Webb Space Telescope (JWST) era, several studies have emerged that aim to (1) characterize how the instruments will perform and (2) determine what atmospheric spectral features could theoretically be detected using transmission and emission spectroscopy. To some degree, all these studies have relied on modeling of JWST’s theoretical instrument noise. With under two years left until launch, it is imperative that the exoplanet community begins to digest and integrate these studies into their observing plans, as well as think about how to leverage the Hubble Space Telescope (HST) to optimize JWST observations. To encourage this and to allow all members of the community access to JWST & HST noise simulations, we present here an open-source Python package and online interface for creating observation simulations of all observatory-supported timeseries spectroscopy modes. This noise simulator, called PandExo, relies on some aspects of Space Telescope Science Institute’s Exposure Time Calculator, Pandeia. We describe PandExo and the formalism for computing noise sources for JWST. Then we benchmark PandExo's performance against each instrument team’s independently written noise simulator for JWST, and previous observations for HST. We find that PandExo is within 10% agreement for HST/WFC3 and for all JWST instruments.
Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.
2017-10-01
X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.
Guaranteed time observations support for Faint Object Spectrograph (FOS) on HST
NASA Technical Reports Server (NTRS)
Harms, Richard
1994-01-01
The goals of the GTO effort are for investigations defined in previous years by the IDT to be carried out as HST observations and for the results to be communicated to the scientific community and to the public. The search for possible black holes in the nuclei of both normal and active nucleus galaxies has had to be delayed to the post-servicing era. FOS spectropolarimetric observations of the nuclear region of the peculiar Seyfert galaxy Mrk 231 reveal that the continuum polarization peaks at 18% in the near UV and then declines rapidly toward shorter wavelengths. The papers on the absorption line analysis for our galactic halo address the spatial distribution of high and intermediate level ions in the halo and illustrate the patchy and heterogeneous nature of the halo. The papers on the scattering characteristics of the HST/FOS have provided us with data that shows that the HST mirror surfaces are quite smooth, even at the UV wavelengths. WF-PC and FOC images of the halo PN K648 have been fully analyzed.
Exploring Substellar Evolution with the Coldest Brown Dwarfs
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.
2017-01-01
The coldest brown dwarfs are our best analogs to extrasolar gas-giant planets, representing the lowest mass products of star formation. Our view of such objects has been transformed over the last few years as new observations have revealed that the solar neighborhood is populated by much colder objects than previously recognized. At the center of efforts to discover and characterize these coldest substellar objects have been observations from NASA missions (WISE, Spitzer, HST) and the Keck Telescopes. I will review the tremendous progress made in this field over just the last few years thanks to major community efforts to overcome observational challenges in obtaining spectroscopy, photometry, and astrometry of these infrared-faint, optically invisible objects. Spectra from HST and Keck were key in establishing the much anticipated "Y" spectral type, extending the classic stellar classification scheme to atmospheres as cool as 300-400 K. Parallaxes and photometry from Spitzer and Keck have provided absolute fluxes, enabling robust temperature determinations and critical tests of model atmopheres. High-resolution imaging with Keck laser guide star adaptive optics (LGS AO) has been the most prolific resource for revealing tight companions among the coldest brown dwarfs. In fact, with continued orbit monitoring with Keck LGS AO and HST, these binary systems will ultimately provide dynamical masses that will allow the strongest tests of models and reveal if the coldest brown dwarfs are indeed "planetary mass" (less than about 13 Jupiter masses) as is currently thought.
NASA Astrophysics Data System (ADS)
Larson, Rebecca L.; Finkelstein, Steven; Pirzkal, Nor; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; O'Connell, Robert; Östlin, Göran; Pasquali, Anna; Rothberg, Barry; Windhorst, Rogier; FIGS Team
2018-01-01
We have built an automated detection method to find Lyα emission lines in HST grism data from 6 < z < 8 galaxies in order to spectroscopically confirm their redshifts and to probe the ionization state of the intergalactic medium (IGM) during the epoch of reionization. We use 160 orbits of G102 slitless spectroscopy obtained from HST/WFC3 for the Faint Infrared Grism Survey (FIGS; PI: Malhotra) that were optimized to sample previously-identified high-redshift galaxy candidates. This dataset has already been used to identify one of these candidates, at redshift z = 7.51, which has been observed to have Lyα emission detectable with the HST Grism (Finkelstein et al. 2013; Tilvi et al. 2016). The FIGS data use five separate roll-angles of HST in an effort to mitigate the overall contamination effects of nearby galaxies and we have created a method that accounts for and removes the contamination from surrounding galaxies, while also removing any dispersed continuum light from each individual spectrum (Pirzkal et al. 2017). Using our new automated process we searched for significant (> 3σ) emission lines via two different methods. First, we compared the results for each galaxy across all roll angles and identified significant lines detected in more than one roll angle. Second, we performed a fit to all five roll angles simultaneously, accounting for the total flux of the emission line across all of our spectra. We have examined the spectra for 64 z > 7 candidates in our sample and found one new candidate Lyα emission line at a (> 5σ) level at 1.03µm (FIGS ID: GS2 1406 also named CANDELS ID: z7 PAR2 2909). After comparing this emission line with the broadband photometric colors, we conclude that this line is Lyα at z = 7.542 ± 0.003. This galaxy has the highest Lyα rest-frame equivalent width (EWLyα) yet published at z > 7 (110 ± 14 A).
STS-109 Crew Interviews - Altman
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 crew Commander Scott D. Altman is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, which are all related to maintenance of the Hubble Space Telescope (HST). After the Columbia Orbiter's rendezvous with the HST, extravehicular activities (EVA) will be focused on several important tasks which include: (1) installing the Advanced Camera for Surveys; (2) installing a cooling system on NICMOS (Near Infrared Camera Multi-Object Spectrometer); (3) repairing the reaction wheel assembly; (4) installing additional solar arrays; (5) augmenting the power control unit; (6) working on the HST's gyros. The reaction wheel assembly task, a late addition to the mission, may necessitate the abandonment of one or more of the other tasks, such as the gyro work.
Cataclysmic variables to be monitored for HST observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2012-09-01
Drs. Boris Gaensicke (Warwick University), Joseph Patterson (Columbia University, Center for Backyard Astrophysics), and Arne Henden (AAVSO), on behalf of a consortium of 16 astronomers, requested the help of AAVSO observers in monitoring the ~40 cataclysmic variables in support of Hubble Space Telescope observations in the coming months. The HST COS (Cosmic Origins Spectrograph) will be carrying out far-ultraviolet spectroscopy of ~40 CVs sequentially, with the aim to measure the temperatures, atmospheric compositions, rotation rates, and eventually masses of their white dwarfs. The primary purpose of the monitoring is to know whether each target is in quiescence immediately prior to the observation window; if it is in outburst it will be too bright for the HST instrumentation. Based on the information supplied by the AAVSO, the HST scheduling team will make the decision (usually) the evening before the scheduled observing time as to whether to go forward with the HST observations. For CCD observers, simultaneous photometry [shortly before, during, and after the HST observations] would be ideal. B filter would be best for a light curve, although for the magnitude estimates, V would be best. Finder charts may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. If the target is seen in outburst, please contact the AAVSO immediately and post a message to the Observations and Campaigns & Observations Reports forum (http://www.aavso.org/forum). This campaign will run the better part of a year or longer. See full Alert Notice for more details and list of objects.
NASA Astrophysics Data System (ADS)
Rosenwasser, Ben; Muzahid, Sowgat; Norris, Jackson; Charlton, Jane C.
2015-01-01
We present the results of photo- and collisional ionization modeling of the strong MgII absorption system at redshift z~0.93 towards the quasar PG1206+459. This system has been extensively studied over the last two decades (Churchill & Charlton 1999; Ding et al. 2003; Tripp et al. 2011) using a combination of spectra from Keck/HIRES, HST/FOS, HST/STIS, and HST/COS. Here we present newconstraints using the most complete spectral coverage including more recent observations of OVI and the Lyman series from HST/COS. Numerous absorption components are seen over a large velocity spread (~1500km/s), and multiple ionization phases are required to account for the detected transitions, which include MgI, MgII, FeII, SiII, SiIII, SiIV, CII, CIII, CIV, SIII, SIV, SV, SVI, NIII, NIV, NV, OIII, OIV, OV, OVI, and NeVIII. Considering the new constraints, we revisit the question of the physical nature of the structures that produce this absorber.
CHARACTERIZING THE ATMOSPHERES OF THE HR8799 PLANETS WITH HST/WFC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajan, Abhijith; Patience, Jennifer; Barman, Travis
We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets in the HR8799 system. The images were taken over 15 orbits in three near-infrared (near-IR) medium-band filters—F098M, F127M, and F139M—using the Wide Field Camera 3. One of the three filters is sensitive to a water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging (ADI), and the full data set was analyzed with the Karhunen–Loévemore » Image Projection routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at subarcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered ADI data with an algorithm designed to both improve the image resolution and accurately measure the photometry. The results include F127M (J) detections of the outer planets, HR8799b and c, and the first detection of HR8799b in the water-band (F139M) filter. The F127M photometry for HR8799c agrees well with fitted atmospheric models, resolving the longstanding difficulty in consistently modeling the near-IR flux of the planet.« less
HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'
NASA Technical Reports Server (NTRS)
1990-01-01
European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.
The STIS CCD Spectroscopic Line Spread Functions
NASA Technical Reports Server (NTRS)
Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.
2002-01-01
We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).
Wasp-17b versus other hot-Jupiters being surveyed with HST: A clear versus dusty/hazy atmospheres
NASA Astrophysics Data System (ADS)
Ballester, G. E.; Nikolov, N.; Wakeford, H.; Thompson, R.
2014-03-01
A large HST optical and near-IR spectral survey of eight hot-Jupiter exoplanets is being carried out (D. Sing, PI) in which we are studying planets spanning a large temperature regime (1000-3000 K). Together with previous HST observations, this program is showing hot Jupiters with lower atmospheres where the optical and near-IR transit signatures are dominated by, or have a significant contribution from, scattering by aerosols. This is the well-known case for the relatively cooler HD 189733b on which fine silicate grains may have been detected (Pont et al. 2008, 2013; Lecavelier et al. 2008; Sing et al. 2011; Evans et al. 2013), the more recent case of the hotter Hat-P-1b (Wakeford et al. 2013; Nikolov et al. 2013), and the surprising case of the very-hot-Jupiter Wasp-12b on which fine-grains of corundum may have been detected (Sing et al. 2013). Evidence for aerosols has also been found with Kepler for Kepler-7b (Demory et al. 2013). Under this large HST survey, we have recently observed transits of Wasp-17b in the optical with HST/STIS, and we are combining these data with archival HST/WFC3 near-IR (1.09-1.69 microns) transit data and with Spitzer/IRAC 4.5 and 8 um transit photometry (Ballester et al. 2014). Wasp-17b presents an interesting case of the most highly inflated hot Jupiter (0.49 MJup, 1.99 RJup) known to date that is also on a retrograde orbit (at 0.0515 AU around a hot F6V star) indicating a violent history for the system (Anderson et al. 2010). The average dayside temperature for the planet is 1580-1880 K (Anderson et al. 2011). In contrast to the above cases of dusty/hazy atmospheres, our preliminary results show a clear atmosphere on Wasp-17b. The planet presents the best case so far of a hot Jupiter that is consistent with a cloud-free atmosphere given that the optical radius is much smaller than the near-IR radius (i.e., scattering by dust or haze is not obscuring the expected transit signatures of a clear lower atmosphere). Water absorption is detected. We are also finding a stronger Na I line-core absorption that predicted by models (which may evidence sodium over-abundance at high altitudes), while at the same time we find no evidence for K I absorption. This alkali behavior is not unique to Wasp-17b, since similar results have been found with HST for HD 189733b (Huitson et al. 2012) and Hat-P-1b (Nikolov et al. 2013). The work is in progress, and more detailed results will be presented and compared with other observations of this planet.
STS-109 Crew Interviews - Currie
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 Mission Specialist 2 Nancy Jane Currie is seen during a prelaunch interview. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the Columbia Orbiter mission which has as its main tasks the maintenance and augmentation of the Hubble Space Telescope (HST). While she will do many things during the mission, the most important will be her role as the primary operator of the robotic arm, which is responsible for grappling the HST, bringing it to the Orbiter bay, and providing support for the astronauts during their EVAs (Extravehicular Activities). Additionally, the robotic arm will be responsible for transferring new and replacement equipment from the Orbiter to the HST. This equipment includes: two solar arrays, a Power Control Unit (PCU), the Advanced Camera for Surveys, and a replacement cooling system for NICMOS (Near Infrared Camera Multi-Object Spectrometer).
Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission
NASA Astrophysics Data System (ADS)
1999-11-01
Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for Hubble's success is the advantage of being in orbit, beyond the Earth's atmosphere. From there it enjoys a crystal-clear view of the universe - without clouds and atmospheric disturbances to blur its vision. European astronomer Guido De Marchi from ESO in Munich has been using Hubble since the early days of the project. He explains: "HST can see the faintest and smallest details and lets us study the stars with great accuracy, even where they are packed together - just as with those in the centre of our Galaxy". Dieter Reimers from Hamburg Observatory adds: "HST has capabilities to see ultraviolet light, which is not possible from the ground due to the blocking effect of the atmosphere. And this is really vital to our work, the main aim of which is to discover the chemical composition of the Universe." The Servicing Missions In the early plans for telescope operations, maintenance visits were to have been made every 2.5 years. And every five years HST should have been transported back to the ground for thorough overhaul. This plan has changed somewhat over time and a servicing scheme, which includes Space Shuttle Servicing Missions every three years, was decided upon. The two first Servicing Missions, in December 1993 (STS-61) and February 1997 (STS-82) respectively, were very successful. In the first three years of operations HST did not meet expectations because its primary mirror was 2 microns too flat at the edge. The first Servicing Mission in 1993 (on which the European astronaut Claude Nicollier flew) dealt with this problem by installing a new instrument with corrective optics (COSTAR - Corrective Optics Space Telescope Axial Replacement). With this pair of "glasses" HST's golden age began. The images were as sharp as originally hoped and astonishing new results started to emerge on a regular basis. The first Servicing Mission also replaced the solar panels and installed a new camera (Wide Field and Planetary Camera 2 - WFPC2). The High-Speed Photometer (HSP) was replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for NICMOS enabling it to resume operation, and install a new set of solar panels. Replacement of the thermal insulation will continue and the telescope will be reboosted to a higher orbit. The plans for the fourth Servicing Mission are preliminary at this time, but two new science instruments are being developed for that mission: Cosmic Origins Spectrograph (COS), which will replace COSTAR, and Wide Field Camera 3 (WFC3), which will replace WFPC2. It is planned to retrieve Hubble at the end of its life (around 2010) and bring it back to Earth. In the future ESA may have the opportunity to continue its collaboration with NASA on the Next Generation Space Telescope (NGST), which in many ways can be seen as Hubble's successor. The plan is to launch NGST in 2008, and ESA is currently considering a possible role in the project. Piero Benvenuti concludes: "The European Space Agency, in deciding to join NASA on the HST Project, made a very successful investment on behalf of European science. Today, NASA would not consider proceeding alone on the continued operation of HST or on the design of NGST. Not just because of the benefit of shared cost, but mainly because of the intellectual contribution by the European astronomers, who have made such effective scientific use of HST." Hubble Space Telescope - Fact sheet Description The Hubble Space Telescope (HST) is a co-operation between ESA and NASA. It is a long-term space-based observatory. Its observations are carried out in visible, infrared and ultraviolet light. HST has in many ways revolutionised modern astronomy, being a highly efficient tool for making new discoveries, but also by driving astronomical research in general. Objective HST was designed to take advantage of being above the Earth's disturbing atmosphere, and thereby providing astronomers with observations of very high resolution - opening new windows on planets, stars and galaxies. HST was designed as a flagship mission of the highest standard, and has served to pave the way for other space-based observatories. How the mission was named Hubble Space Telescope is named after Edwin Powell Hubble (1889-1953), who was one of the great pioneers of modern astronomy. Industrial Involvement The ESA contribution to HST included the Solar Panels and the Faint Object Camera (FOC). Prime contractors for the FOC were Dornier (now DaimlerChrysler Aerospace, Germany), and Matra (France); for the Solar Panels British Aerospace (UK). Launch date: April 25, 1990 Launcher: Space Shuttle Discovery (STS-31) Launch mass: 11 110 kg Dimensions Length: 15.9 m, diameter: 4.2 m. In addition two solar panels each 2.4 x 12.1 m. Payload (current) A 2.4 m f/24 Ritchey-Chretien telescope with four main instruments, currently WFPC2, STIS, NICMOS and FOC. In addition the three fine-guidance sensors are used for astrometric observations (positional astronomy). WFPC2 - Wide Field/Planetary Camera 2 is an electronic camera working at two magnifications. It has four CCD detectors with 800 x 800 pixels. One of these (called Planetary Camera) has a higher resolution (<0.1 arcsecond). STIS - Space Telescope Imaging Spectrograph uses so-called MAMAs and CCDs to provide images and spectra. It is sensitive to a wide range of light from UV to Infrared. NICMOS - Near-Infrared Camera and Multi-Object Spectrometer provides images and spectra in the infrared. NICMOS uses cooled HgCdTe detectors. Currently NICMOS is dormant and awaits a new cooler to be provided during Servicing Mission 3B. FOC - Faint Object Camera - a very high resolution camera built by ESA. FOC is no longer in use and will be replaced by the new Advanced Camera for Surveys (ACS) during Servicing Mission 3B. Orbit Circular, 593 km with a 28.5 degree inclination. Operations Science operations are co-ordinated and conducted by the Space Telescope Science Institute (STScI) in Baltimore. Overall management of daily on-orbit operations is carried out by NASA's Goddard Space Flight Center (GSFC) in Greenbelt. Ground stations The data from HST are transmitted to the Tracking and Data Relay Satellite System (TDRSS). From TDRSS they are sent to the TDRSS ground stations and on to Goddard Space Flight Center, from where the science data are sent to STScI. Foreseen operational lifetime : 20 years Costs ESA's financial contribution to the Hubble Space Telescope amounts to EUR 593m at 1999 economic conditions (including development of the Faint Object Camera and the Solar Arrays, participation in operations and in servicing missions).
The Cosmological Impact of AGN Outflows: Measuring Absolute Abundances and Kinetic Luminosities
NASA Astrophysics Data System (ADS)
Arav, Nahum
2009-07-01
AGN outflows are increasingly invoked as a major contributor to the formation and evolution of supermassive black holes, their host galaxies, the surrounding IGM, and cluster cooling flows. Our HST/COS proposal will determine reliable absolute chemical abundances in six AGN outflows, which influences several of the processes mentioned above. To date there is only one such determination, done by our team on Mrk 279 using 16 HST/STIS orbits and 100 ksec of FUSE time. The advent of COS and its high sensitivity allows us to choose among fainter objects at redshifts high enough to preclude the need for FUSE. This will allow us to determine the absolute abundances for six AGN {all fainter than Mrk 279} using only 40 HST COS orbits. This will put abundances studies in AGN on a firm footing, an elusive goal for the past four decades. In addition, prior FUSE observations of four of these targets indicate that it is probable that the COS observations will detect troughs from excited levels of C III. These will allow us to measure the distances of the outflows and thereby determine their kinetic luminosity, a major goal in AGN feedback research. We will use our state of the art column density extraction methods and velocity-dependent photoionization models to determine the abundances and kinetic luminosity. Previous AGN outflow projects suffered from the constraints of deciding what science we could do using ONE of the handful of bright targets that were observable. With COS we can choose the best sample for our experiment. As an added bonus, most of the spectral range of our targets has not been observed previously, greatly increasing the discovery phase space.
Witnessing the assembly of galaxies in an extended gas-rich structure at z 3.25
NASA Astrophysics Data System (ADS)
Mackenzie, Ruari
2017-08-01
The direct study of star formation in Damped Lyman Alpha systems (DLAs), the reservoirs of the majority of neutral gas at high redshift, has previously been hampered by the lack of deep integral field spectroscopy for sensitive searches of faint host galaxies. Building on our successful HST shot-in-the-dark survey that has probed the in-situ star formation rate of z 2-3 DLAs, we have initiated a MUSE follow-up of 6 DLA signlines to overcome this bottleneck. In the first sightline we have studied, we have uncovered a 40 kpc Lyman alpha emitting nebula, composed of two clumps within 50 kpc of the DLA, suggestive of a merger or an extended protodisk. Within this structure, which is the largest nebula known to be associated with a z 3 DLA, we also found a compact continuum source with spectrophotometry consistent with a Lyman Break Galaxy at the same redshift. Aside from the LBG, the rest of the Lyman alpha structure has no continuum counterpart in deep UV and visible imaging. The LBG alone seems unable to power the Lyman alpha nebula and the morphology supports our conclusion that, most likely, this structure is powered by in-situ star formation below detection limit. However, from the Lyman alpha alone the origin of this incredible structure remains ambiguous. With this proposal, we aim to acquire high resolution, deep infrared imaging with HST to probe the rest-frame optical emission to search for the underlying stellar emission of this object and to infer the stellar mass of the LBG. With the powerful combination of HST and MUSE data, we will unravel the nature of this unique system.
HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385
NASA Astrophysics Data System (ADS)
Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.
2017-06-01
We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.
Storage Time and Temperature Effects on Histamine Production in Tuna Salad Preparations.
McCarthy, Susan; Bjornsdottir-Butler, Kristin; Benner, Ronald
2015-07-01
Scombrotoxin fish poisoning (SFP), also known as histamine (Hst) poisoning, has been associated with consumption of scombroid-type fish, including tuna and tuna fish products. Preparation of commercial tuna salad contaminated with Hstproducing bacteria (HPB), combined with time-temperature abuse, can present a food safety hazard. A potential source of HPB is raw ingredients, such as celery and onions. The objectives of this study were to determine whether raw ingredients can be a source of HPB and to ascertain the effects of storage time (up to 4 days or 4 weeks) and temperature (4, 10, 18, 25, 30°C) on growth and Hst production by high-HPB (>1,000 ppm of Hst) in tuna salad preparations. Pantoea-Erwinia, Erwinia persicinus, Erwinia spp., and Enterobacter pyrinus isolated from celery in this study were used to inoculate tuna salad and tuna salad with celery or onion. HPB numbers were 0.7 to 4.3 log most probable number per g higher in the presence of celery or onion versus plain tuna salad (3:1 tuna:mayonnaise). E. pyrinus-inoculated plain tuna salad and tuna salad with celery and onion had >500 ppm of Hst after 2 days at 30°C and 4 days at 25°C. E. pyrinus-inoculated salad with celery and onion had >500 ppm of Hst after 4 days at 18°C and 2 weeks at 10°C. Raw celery can introduce HPB into tuna salad, which can cause SFP if the product is time-temperature abused. Tuna salad products must be refrigerated at ≤4°C to prevent growth and Hst production by the HPB used in this study, to protect consumers from potential SFP.
Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?
NASA Astrophysics Data System (ADS)
Corbin, Michael
2004-07-01
Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z < 0.009}, actively star-forming, and have extremely small angular and physical sizes {d < 6" and D < 1 kpc}. They also tend to reside in voids. Our WFPC2 images of the prototype object of this class, POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.
HST images of the eclipsing pulsar B1957+20
NASA Technical Reports Server (NTRS)
Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.
1995-01-01
We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.
Scieglinska, D; Widłak, W; Konopka, W; Poutanen, M; Rahman, N; Huhtaniemi, I; Krawczyk, Z
2001-01-01
The rat Hst70 gene and its mouse counterpart Hsp70.2 belong to the family of Hsp70 heat shock genes and are specifically expressed in male germ cells. Previous studies regarding the structure of the 5' region of the transcription unit of these genes as well as localization of the 'cis' elements conferring their testis-specific expression gave contradictory results [Widlak, Markkula, Krawczyk, Kananen and Huhtaniemi (1995) Biochim. Biophys. Acta 1264, 191-200; Dix, Rosario-Herrle, Gotoh, Mori, Goulding, Barret and Eddy (1996) Dev. Biol. 174, 310-321]. In the present paper we solve these controversies and show that the 5' untranslated region (UTR) of the Hst70 gene contains an intron which is localized similar to that of the mouse Hsp70.2 gene. Reverse transcriptase-mediated PCR, Northern blotting and RNase protection analysis revealed that the transcription initiation of both genes starts at two main distant sites, and one of them is localized within the intron. As a result two populations of Hst70 gene transcripts with similar sizes but different 5' UTR structures can be detected in total testicular RNA. Functional analysis of the Hst70 gene promoter in transgenic mice and transient transfection assays proved that the DNA fragment of approx. 360 bp localized upstream of the ATG transcription start codon is the minimal promoter required for testis-specific expression of the HST70/chloramphenicol acetyltransferase transgene. These experiments also suggest that the expression of the gene may depend on 'cis' regulatory elements localized within exon 1 and the intron sequences. PMID:11563976
2001-11-29
KENNEDY SPACE CENTER, Fla. -- Fully unwrapped, the Advanced Camera for Surveys, which is suspended by an overhead crane, is checked over by workers. Part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, the ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. Tasks for the mission include replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
1988-08-08
A recent Hubble Space Telescope (HST) view reveals Uranus surrounded by its 4 major rings and 10 of its 17 known satellites. This false color image was generated by Erich Karoschka using data taken with Hubble's Near Infrared Camera and Multi-Object Spectrometer. The HST recently found about 20 clouds. The colors in the image indicate altitude. The green and blue regions show where the atmosphere is clear and can be penetrated by sunlight. In yellow and grey regions, the sunlight reflects from a higher haze or cloud layer. The orange and red colors indicate very high clouds, such as cirrus clouds on Earth.
Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.
Near-infrared photometry of WISE J085510.74-071442.5
NASA Astrophysics Data System (ADS)
Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martín, E. L.; Ivanov, V. D.; Bayo, A.; Boffin, H. M. J.; Mužić, K.; Minniti, D.; Beamín, J. C.
2016-08-01
Aims: We aim at obtaining near-infrared photometry and deriving the mass, age, temperature, and surface gravity of WISE J085510.74-071442.5 (J0855-0714), which is the coolest object beyond the solar system currently known. Methods: We used publicly available data from the archives of the Hubble Space Telescope (HST) and the Very Large Telescope (VLT) to determine the emission of this source at 1.153 μm (F110W) and 1.575 μm (CH4-off). J0855-0714 was detected at both wavelengths with a signal-to-noise ratio of ≈10 (F110W) and ≈4 (CH4-off) at the peak of the corresponding point-spread-functions. Results: This is the first detection of J0855-0714 in the H-band wavelengths. We measured 26.31 ± 0.10 and 23.22 ± 0.35 mag in F110W and CH4-off (Vega system). J0855-0714 remains unresolved in the HST images that have a spatial resolution of 0.22''. Companions at separations of 0.5 AU (similar mass and brightness) and at ~1 AU (≈1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, including non-detections, we build the spectral energy distribution of J0855-0714 from 0.89 through 22.09 μm, and contrast it against current solar-metallicity models of planetary atmospheres. We determine that the best spectral fit yields a temperature of 225-250 K, a bolometric luminosity of log L/L⊙ = -8.57, and a high surface gravity of log g = 5.0 (cm s-2), which suggests an old age although a gravity this high is not fully compatible with evolutionary models. After comparing our data with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2-10 MJup for ages of 1-12 Gyr and high atmospheric gravities of log g ⪆ 3.5 (cm s-2). If it had the age of the Sun, J0855-0714 would be a ≈5-MJup free-floating planetary-mass object. Conclusions: J0855-0714 meets the mass values previously determined for free-floating planetary-mass objects discovered in star-forming regions and young stellar clusters. Based on extrapolations of the substellar mass functions of young clusters to the field, as many J0855-0714-like objects as M5-L2 stars may be expected to populate the solar neighborhood.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
History of Hubble Space Telescope (HST)
2003-11-28
This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.
Discovery of White Dwarfs in the Globular Clusters M13 and M22 Using HST ACS Photometric Data
NASA Astrophysics Data System (ADS)
Cho, Dong-Hwan; Yoon, Tae Seog; Lee, Sang-Gak; Sung, Hyun-Il
2015-12-01
A search for hot and bright white dwarfs (WDs) in the Milky Way globular clusters M13 (NGC 6205) and M22 (NGC 6656) is carried out using the deep and homogeneous VI photometric catalog of Anderson et al. and and Sarajedini et al., based on data taken with the ACS/WFC aboard the Hubble Space Telescope (HST). V versus V-I color-magnitude diagrams (CMDs) of M13 and M22 are constructed and numerous spurious detections are rejected according to their photometric quality parameters qfit(V) and qfit(I). In the case of M13, further radial restriction is applied to reject central stars with higher photometric errors due to central crowding. From each resultant V versus V-I CMD, sixteen and thirteen WD candidates are identified in M13 and M22, respectively. They are identified as stellar objects in the accompanying ACS/WFC images and are found to be randomly distributed across the central regions of M13 and M22. Their positions in the CMDs are in the bright part of the DA WD cooling sequences indicating that they are true WDs. In order to confirm their nature, follow-up spectroscopic observations are needed.
Discovery of a Circumstellar Disk in the Lagoon Nebula
NASA Astrophysics Data System (ADS)
1997-04-01
Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on photos as tear-drop shaped, bright-rimmed areas with the cusps of the ionised regions aligned towards the exciting star. Such a region is also a very compact source of radio emission. Clearly, the harsh environment in which these disks reside does not favour planet formation. These findings were facilitated by the fact that, at a distance of `only' 1500 lightyears (about 450 parsec), the Orion Nebula is the closest site of high-mass star formation. Furthermore, many circumstellar disks around stars in this nebula are seen in silhouette against a bright and uniform background and are therefore comparatively easy to detect. The Lagoon Nebula In principle, similar phenomena should occur in any giant molecular cloud that gives rise to the birth of massive stars. However, the detection of such disks in other clouds would be very difficult, first of all because of their much larger distance. The Lagoon Nebula (M8) is located four times further away than the Orion Nebula and it is also a site of recent high-mass star formation. Its brightest part constitutes a conspicuous region of ionised hydrogen gas (an `HII-region') dubbed `The Hourglass' because of the resemblance. The gas in this area is ionised by the action of the nearby, hot star Herschel 36 (Her 36) . High-resolution radio maps show that the emission from the ionised gas peaks at 2.7 arcsec southeast of Her 36. An early explanation was that this emission is due to an unseen, massive star that is deeply embedded in the gas and dust and which is causing an ultra-compact HII-region (UCHR), catalogued as G5.97-1.17 according to its galactic coordinates. High-resolution images from ESO During a detailed investigation of such ultra-compact HII regions, Bringfried Stecklum and his colleagues found that, unlike ordinary UCHRs, this particular object is visible on optical images obtained with the HST Wide-Field Planetary Camera (HST-WFPC). This means that, contrary to the others, it is not deeply embedded in the nebula - its light reaches us directly without suffering a high degree of absorption. They subsequently obtained a series of high-resolution, near-infrared images using the adaptive optics camera ADONIS at the ESO 3.6-m telescope and the speckle camera SHARP at the 3.5-m New Technology Telescope, both at the La Silla observatory. These observing techniques revealed a star which is slightly offset from the extended optical image of G5.97-1.17 seen on the HST-WFPC frames [3]. This star is found to radiate strongly in the near-infrared spectral region, quite similar to the reddest central stars of the Orion proplyds . This is a clear sign of the presence of circumstellar dust. In addition, the star is intrinsically not as bright as Her 36; it is therefore less massive and exercises less influence on its immediate surroundings. Thus, it cannot be responsible for the observed ionisation of G5.97-1.17. Caption to ESO PR Photo 09/97 [JPEG, 296k] ESO Press Photo 09/97 shows a true-colour, composite mosaic of several ADONIS near-infrared frames, covering a 35 x 26 arcsec area around the newly found star. The colour coding corresponds to the three wavelength regions of the frames used to make the mosaic, i.e. blue represents the J-filter (at 1.2 microns), green the H-filter (1.6 microns) and red the K-filter (2.2 microns). In this image, hot stars appear white and cool ones red. It is obvious that the brightest object in this area, Her 36, is surrounded by a dense cluster of (young) stars. The central star of G5.97-1.17 is indicated with an arrow. New HST images The recent release by the Space Telescope--European Coordinating Facility (ST-ECF) [4] of new HST images taken during a second series of observations of M8 with the new HST-WFPC2 camera allows an unambiguous identification of the physical nature of G5.97-1.17. On these images, G5.97-1.17 is spatially resolved and presents the typical bow shape with the apex of the bow pointing towards Her 36. The infrared star, seen on the ESO images and barely visible on the HST-WFPC2 images taken at far-red optical wavelengths, is indeed situated behind the bright bow which is most conspicuous in the light of the red H-alpha spectral line, emitted by hydrogen atoms. The appearance of this object is thus similar to that of the proplyd sources found in the Orion Nebula. Caption to ESO PR Photo 10/97 [GIF, 296k] This is quite obvious from ESO Press Photo 10/97 which shows a colour composite based on HST-WFPC2 images obtained through narrow-band optical filtres, isolating the light of doubly ionized oxygen atoms ([OIII]; blue) and atomic hydrogen (H-alpha; green) and in a far-red band (red). Two more faint stars are seen in this image while the bright star Her 36 is outside the border of the image (its location is at the lower left, at the intersection of the vertical, saturated CCD column and the 45 o line caused by the light diffracted in the telescope). In contrast to the Orion Nebula, the non-uniform distribution of light-absorbing dust in the foreground makes the detection of the ionised tail difficult. Note that the image is rotated clockwise by 146 o with respect to the astronomical coordinate system. A proplyd in the Lagoon Nebula The detailed description of these results is the subject of a forthcoming research paper [5]. The new understanding of G5.97-1.17, i.e. as harbouring an evaporating circumstellar disk heated by far-ultraviolet radiation from Her 36, is supported by the fact that a sufficient amount of high-energy ultraviolet light is received from that star to account for the radio emission observed from the ionised bow. This object therefore represents the first proplyd-type object detected outside Orion at a much larger distance . The full description of this phenomenon requires detailed knowledge on the physical conditions of the star Her 36 and the object itself. Unfortunately, sofar little is known about the properties of the stellar wind from Her 36, the mass-loss rate from G5.97-1.17 and the velocities of the interacting matter. The astronomer team therefore intends to carry out further adaptive-optics imaging and spectroscopy with the ESO instruments later this year. Great prospects for related research projects The detection of this new object shows that direct proofs for the existence of circumstellar disks in distant star-forming regions are possible with currently available telescopes. It also represents an important step forward for the preparation of scientific programmes devoted to the formation of stars and planets that will soon be carried out with the ESO Very Large Telescope (VLT). The new results demonstrate that the high-resolution images that will be obtained with the future giant telescopes and, especially, with the VLT Interferometer (VLTI) will most likely lead to important breakthroughs in our understanding on the complicated processes of star formation. This will in turn cast new light on how the Sun and the Earth came into existence, more than 4.5 billion years ago. Where to find additional information More details on the investigation of star formation in M8 and the newly discovered proplyd can be found on the World-Wide Web page of the Thüringer Landessternwarte (URL: http://www.tls-tautenburg.de/M8.html Notes: [1] The team consists of Bringfried Stecklum and Steffen Richter (Thüringer Landessternwarte, Tautenburg, Germany), Thomas Henning, Ralf Launhardt and Markus Feldt (Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena), Thomas L. Hayward (Center for Radiophysics & Space Research, Cornell University, New York, USA), Melvin G. Hoare (Physics & Astronomy Department, Leeds University, UK) and Peter Hofner (National Astronomy & Ionosphere Center, Arecibo, USA). [2] Some years ago, infrared observations with the IRAS spacecraft led to the discovery of a disk around the isolated, nearby southern star Beta Pictoris . [3] This result was published in a paper by Stecklum et al. in 1995 (ApJ 445, L153). [4] The ST-ECF is a joint ESA/ESO group of specialists that is located at the ESO Headquarters in Garching, Germany. [5] Submitted to the Astronomical Journal . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Probing dark matter physics with galaxy clusters
NASA Astrophysics Data System (ADS)
Dalal, Neal
2016-10-01
We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.
Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova
NASA Astrophysics Data System (ADS)
Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.
2004-01-01
We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4
New Supernova in the HST Frontier Field MACSJ0717.5+4745
NASA Astrophysics Data System (ADS)
Brammer, Gabriel; Kelly, Patrick; Rodney, Steve; Schmidt, Kasper Borello; Treu, Tommaso
2014-01-01
We report a supernova (SN) discovery in HST imaging of the Frontier Fields galaxy cluster MACSJ0717.5+3745 (z=0.5458) acquired as part of the Grism Lens Amplified Survey from Space (GLASS). The SN is designated HFF13cha (nicknamed "SN Chapel"), and was detected in WFC3-IR F105W (Y) and F140W (JH) images taken to calibrate and align the G102 and G141 grisms. A finder chart and the discovery images are available athttp://archive.stsci.edu/pub/ffsn/macs0717/HFF13cha/snChapelHostFinder.pdf.
Near-equinox spectro-imaging of Uranus aurorae sampling two planetary rotations
NASA Astrophysics Data System (ADS)
Lamy, Laurent
2012-10-01
A quarter of century after their discovery by Voyager 2 in 1986, HST sucessfully re-detected Uranus aurorae in 2011 {and also in 1998}, providing the first images of these emissions. Overall, they differ from other well-known planetary aurorae, and their characteristics vary at very different timescales, from minutes to decades. These results have provided the first insights on the poorly known Uranian magnetosphere in 26 years, and opened a rich field of investigation, together with a set of open questions. In addition, while solstice conditions prevailed in 1986, Uranus lay close to equinox in 2011, with the S and N magnetic poles alternately facing the Sun every half a rotation. This unique configuration of an asymmetric magnetosphere, extremely variable over a single rotation, had never been investigated before and deserved to be fully analyzed. New observations of the Uranian aurorae are therefore vital for our understanding of planetary magnetospheres, and HST is the only tool able to remotely investigate these emissions. We thus propose to re-observe Uranus with STIS spectro-imaging at next opposition {29 Sept. 2012} over two planetary rotations, in order to enlarge the set of positive detections and to sample the rotational dynamics of auroral processes and magnetosphere/solar wind interaction. To increase the probability of any possible auroral brightening triggered by magnetospheric compressions, observations will be scheduled in advance during active solar wind conditions at Uranus, near the maximum of solar cycle 24. Additional objectives will include the characterization of the extended neutral corona and the spectral response of atmospheric species.
The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data
NASA Astrophysics Data System (ADS)
Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.
1998-12-01
We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.
Uv-Optical Spectra and Imagery of the Bubble Nebula NGC 7635
NASA Astrophysics Data System (ADS)
Walter, Donald
1997-07-01
We propose to acquire UV-optical STIS spectra and WFPC2 imagery of the wind-blown Bubble Nebula NGC 7635. This object is significant to our understanding of galactic chemical evolution, star formation {possibly triggered by radiative implosion}, the mass-loss history of precursors to supernovae, the effect of wind-driven shocks on the ISM and the process of ionization and photoevaporation of high density knots {possibly HH objects} in the presence of an intense stellar wind and radiation field. The ener getic environment of NGC 7635 is more extreme and its features have evolved on a different time scale than in more quiescent objects studied with HST {e.g. Orion and M16}. HST is essential to our study in order to achieve high spatial resolution and ac cess to the UV region of the spectrum. The nebula's nearly spherical shell is the result of a recent { < 10^6 years} stellar mass-loss event and is the best young, clearly observed bubble available for study. We will exam in e the ionization front at the r im of the bubble, the extent to which it is shock-driven and the scale of the photoevaporative flow off the face of the molecular cloud. We will resolve high density knots down to a size of 2.1 x 10^15 cm {140 au}, searching for protostellar objects. STIS U V spectra will allow us to calculate the first accurate C/H abundance in the Perseus arm and test for the presence of a galactic abundance gradient. Finally, with our HST data we will compare our observational results with our radiative shock-model predi ctions.
Imaging of High Redshift Starburst galaxies in the light of Lyman alpha
NASA Astrophysics Data System (ADS)
Beckwith, Steven
1997-07-01
The PI is the designated director for STScI but has no experience with HST. The purpose of this proposal is to gain experience with the facility by carrying out a modest observational program that is unique and will not conflict with any community programs. The proposed science is divided into priority 1 and priority 2, for 6 + 4 orbits. This division will allow allocation in parts, if the pressure on DDT is large and the total of 10 orbits unusually difficult to schedule. The priority 1 science is rather predictable and, hence, conservative, consisting of the brightest of the objects under study. The priority 2 science is somewhat riskier, because it is more difficult to estimate object brightnesses in the filters to be used on HST. Both priority 1 and priority 2 observations allow for a large degree of serendipity, because the fields are likely to have more starburst galaxies at the observed redshifts that may show up in Lyman alpha. Exploration of the high redshift u niverse and discovery of the most distant objects is still in its infancy. Only recently have the tools been available to detect normal galaxies at redshifts larger than one when the first galaxies were created {Pescarelle et al. 1996; Hu & McMahon 1996; Cowie & Hu 1998; Steidel et al. 1996}. It seems likely that young galaxies will have a variety of different signatures {Franceschini et al. 1998; Guideroni et al. 1997}, so that it will be necessary to use several diverse techniques to uncover all of them: searches at optical, infrared, x-ray, and radio wavelengths, for example. It is already known that many of the optically selected galaxies using the "dropout" technique are reddened by dust {Pettini et al. 1997}. We carried out two surveys for infrared emission-line galaxies by imaging through narrow {Resolving power 100} and broad band filters between 1 and 2.5 microns and identifying objects that appeared brighter in the narrow filters. Our first survey was designed to uncover emission lines at th e redshifts of quasars within each survey field, in case there is substantial clustering marked by quasars {Thompson et al. 1996}. In an area of 276 square minutes of arc, only one emission-line galaxy was discovered {Beckwith et al. 1998}. The surface density of such objects implied by these results is similar to that inferred from other surveys {Cowie et al. 1994; Graham & Dey 1996; Malkan et al. 1996; Bechtold et al. 1997} and suggests that the infrared emission-line galaxies constitute at most a modest population of young galaxies at high redshift. Using the same instruments, we undertook a second infrared survey for emission-line galaxies targeted at the redshifts of damped Lyman alpha absorption lines or metal absorption line in the spectra of quasars. Damped Lyman alpha absorbers are thought to contain as much baryonic matter as seen in all spiral galaxies today {Wolfe et al. 1986} and may, therefore, mark sites of vigorous star formation. Metal lines are usually associated with damped Lyman alph a systems, and they give us access to lower redshifts than Lyman alpha alone. Several other groups {Lowenthal et al. 1991; Macchetto et al. 1993; Wolfe et al. 1992; Moller & Warren 1993; Djorgovski et al. 1996; Francis et al. 1998} carried out similar surveys at optical wavelengths looking for Lyman alpha emission-line galaxies in these regions. They discovered only five such emission-line galaxies, but Wolfe {1993} showed that the implied volume density was significantly higher than in the general field. Eighteen candidates for emission line galaxies were discovered in this second survey in an area of only 150 square minutes of arc {Mannucci et al. 1998}. The emission-lines correspond to H alpha at redshifts of 0.89 {6 objects} and 2.4 {10 objects}, and [OII] at a redshift of 2.3 {2 objects}. The presence of emission lines is inferred from the photometric magnitudes in narrow and broad band interference filters. A spectrum of one candidate confirms the emission line. Most of the objects are a few seco nds of arc in extent suggesting th a t they are galaxies at the redshifts of the damped Lyman alpha absorbers. Two of these objects, Q1623+268A & Q1623+268B, were serendipitously observed by HST in an independent program to study quasars with absorption lines {by Steidel; we retrieved these images from the HST archive}. The HST images resolve the objects showing they are spiral galaxies. It is only with the HST images that a morphological identification can be made. {nB: I can make these images available as TIFF or GIF files, but I do not know how to do this via the web page for DDT}. Because our first survey targeted at the redshifts of quasars themselves uncovered only one emission- line galaxy in a larger volume, the results imply substantial clustering of young galaxies or formation within filaments or sheets whose locations are indicated by the redshifts of strong Lyman alpha line absorption along the lines of sight to more distant quasars. Our eighteen emission-line objects are unique in highlighti ng these sheets from an infrared-s elected sample. The proposed HST observations have two goals. The first is to resolve the objects that have not been observed with HST to determine the types of underlying galaxies. Our ground-based observations in the infrared and R band {WIYN telescope} are sufficient to show that most of these objects are between 1 and 3 seconds of arc across, large enough to be galaxies at high redshifts but too small to study the distribution of light from the ground. The two extent HST images of Q1623+268 A & B show clearly how HST uncovers the nature of these galaxies. The second goal is to measure the amount of Lyman alpha emission to compare the morphology of the regions producing Lyman alpha to the continuum. Such a comparison is important to understand what fraction of a young galaxy's light is produced in the starburst population, what fraction in the old population, and what fraction might be associated with an active nucleus. We can get this information by imaging each ga laxy through two filters centered o n or near Lyman alpha with different widths. The technique is similar to the infrared technique used to discover these objects. Although the HST filters were not specifically designed for this task, there is sufficient choice to make it possible with various wide and medium width filters. In the event that Lyman alpha is weak or absent, we can average the data to create a higher signal to noise ratio image. The integration times have been chosen to give S/N ratios of between 10 and 50, depending on the {unknown} brightness of the galaxies in the selected bands. The infrared and R band magnitudes suggest AB magnitudes of order 24 to 25 for each object. Bechtold, J., Yee, H. K. C., Elston, R., & Ellingson, E. 1997, { it Ap. J. Letters}, { bf 477}, L29 Beckwith, S. V. W., Thompson, D. J., Mannucci, F., & Djorgovski, S. G. 1998, { it Ap. J.}, in press Cowie, L. L., & Hu, E. M., 1998, { it A. J.}, in press {astro- ph/9801003} Cowie, L. L., Songaila, A., Hu, E. M., Egam i, , Huang, J.-S., Pickles, A. J., Ridgway, S. E., & Wainscoat, R. J. 1994, { it Ap. J. Letters}, { bf 432}, L83 Djorgovski, S. G., Pahre, M. A., Bechtold J., & Elston, R., 1996, { it Nature}, { bf 382}, 234 Franceschini, A., Silva, L., Granato, G. L., Bressan, A., Danese, L., 1998, { it Ap. J. Lett}, in press Francis, P. J., Woodgate, B. E., and Danks, A. C. 1998, {astroph/9801300} Graham, J. R., & Dey, A. 1996, { it Ap. J.}, { bf 471}, 720 Guideroni, B., Bouchet, F. R., Puget, J.-L., Lagache, G., & Hivon, E., 1997, { it Nature}, { bf 390}, 257 Hu, E. M., McMahon, R. G., 1996, { it Nature}, { bf 382}, 231 Lowenthal, J. D., Hogan, C. J., Green, R. F., Caulet, A., Woodgate, B. E., Brown, L., and Foltz, C. B. 1991, { it Ap. J. Letters}, { bf 377}, L73 Macchetto, F., Lipari, S., Giavalisco, M., Turshek, D. A., & Sparks, W. B. 1993, { it Ap. J.} { bf 404}, 511 Malkan, M. A., Teplitz, H., & McLean, I. S. 1996, { it Ap. J. Letters}, { bf 468}, L9 Mannucci, F., Thompson, D. J., Beckwith, S.V.W., & Wil liger 1998, { it Ap. J. Letters}, i n press. Moller, P., & Warren, S. J., 1993, { it A. & A.}, { bf 270}, 43 Pascarelle, S. M., Windhorst, R. A., & Odewahn, S. C. 1996, { it Nature}, { bf 383}, 45 Pettini, M., Steidel, C. C., Adelberger, K. L, Kellogg, M., Dickinson, M., & Giavalisco, M. 1998, astro-ph/9708117 Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, { it Ap. J.}, { bf 462}, 17 Thompson, D. J, Mannucci, F., & Beckwith, S. V. W. 1996, { it A. J.}, { bf 112}, 1794 Wolfe, A. M. 1993, { it Ap. J.}, { bf 402}, 411 Wolfe, A. M., Turnshek, D. A., Lanzetta, K. M., & Oke, J. B. 1992, { it Ap. J.}, { bf 385}, 151 Wolfe, A. M., Turnshek, D. A., Smith, H. E., & Cohen, R. E. 1986, { it Ap. J. Supp.}, { bf 61}, 249
Restoration of HST images with missing data
NASA Technical Reports Server (NTRS)
Adorf, Hans-Martin
1992-01-01
Missing data are a fairly common problem when restoring Hubble Space Telescope observations of extended sources. On Wide Field and Planetary Camera images cosmic ray hits and CCD hot spots are the prevalent causes of data losses, whereas on Faint Object Camera images data are lossed due to reseaux marks, blemishes, areas of saturation and the omnipresent frame edges. This contribution discusses a technique for 'filling in' missing data by statistical inference using information from the surrounding pixels. The major gain consists in minimizing adverse spill-over effects to the restoration in areas neighboring those where data are missing. When the mask delineating the support of 'missing data' is made dynamic, cosmic ray hits, etc. can be detected on the fly during restoration.
A Mechanical Cryogenic Cooler for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.
NASA Astrophysics Data System (ADS)
Martin, J. C.; Davidson, Kris; Koppelman, M. D.
2006-12-01
During the past decade η Car has brightened markedly, possibly indicating a change of state. Here we summarize photometry gathered by the Hubble Space Telescope (HST) as part of the HST Treasury Project on this object. Our data include Space Telescope Imaging Spectrograph (STIS) CCD acquisition images, Advanced Camera for Surveys HRC images in four filters, and synthetic photometry in flux-calibrated STIS spectra. The HST's spatial resolution allows us to examine the central star separate from the bright circumstellar ejecta. Its apparent brightness continued to increase briskly during 2002-2006, especially after the mid-2003 spectroscopic event. If this trend continues, the central star will soon become brighter than its ejecta, quite different from the state that existed only a few years ago. One precedent may be the rapid change observed in 1938-1953. We conjecture that the star's mass-loss rate has been decreasing throughout the past century. This research was conducted as part of the η Car Hubble Space Telescope Treasury project via grant GO-9973 from the Space Telescope Science Institute. HST is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.
NASA Technical Reports Server (NTRS)
Sahai, Raghvendra; Morris, Mark; Sanchez Contreras, Carmen; Claussen, Mark
2007-01-01
Using the Hubble Space Telescope (HST ), we have carried out a survey of candidate preplanetary nebulae (PPNs). We report here our discoveries of objects having well-resolved geometric structures, and we use the large sample of PPNs now imaged with HST (including previously studied objects in this class) to devise a comprehensive morphological classification system for this category of objects. The wide variety of aspherical morphologies which we have found for PPNs are qualitatively similar to those found for young planetary nebulae (PNs) in previous surveys. We also find prominent halos surrounding the central aspherical shapes in many of our objects; these are direct signatures of the undisturbed circumstellar envelopes of the progenitor AGB stars. Although the majority of these have surface brightness distributions consistent with a constant mass-loss rate with a constant expansion velocity, there are also examples of objects with varying mass-loss rates. As in our surveys of young PNs, we find no round PPNs. The similarities in morphologies between our survey objects and young PNs supports the view that the former are the progenitors of aspherical PNs. This suggests that the primary shaping of a PN does not occur during the PN phase via the fast radiative wind of the hot central star, but significantly earlier in its evolution.
High Resolution HST Images of Pluto and Charon
NASA Astrophysics Data System (ADS)
1994-05-01
At the Edge of the Solar System Click here to jump to photo. The remote planet Pluto and its moon Charon orbit the Sun at a mean distance of almost 6,000 million kilometres, or nearly fourty times farther out than the Earth. During a recent investigation by an international group of astronomers [1], the best picture ever of Pluto and Charon [2] was secured with the European Space Agency's Faint Object Camera at the Hubble Space Telescope (HST). It shows the two objects as individual disks, and it is likely that further image enhancement will allow us to see surface features on Pluto. A Very Special Pair of Celestial Objects Almost all the known facts about these two bodies show that they are quite unusual: Pluto's orbit around the Sun is much more elongated and more inclined to the main plane of the Solar System than that of any other major planet; Charon's orbit around Pluto is nearly perpendicular to this plane; their mutual distance is amazingly small when compared to their size; Charon is half the size of Pluto and the ratio of their masses is much closer to unity than is the case for all other planets and their moons. Moreover, both are small and solid bodies, in contrast to the other, large and gaseous planets in the outer Solar System. We do not know why this is so. But there is another important aspect which makes Pluto and Charon even more interesting: at this very large distance from the Sun, any evolutionary changes happen very slowly. It is therefore likely that Pluto and Charon hold important clues to the conditions that prevailed in the early Solar System and thus to the origin and the evolution of the Solar System as a whole. Long and Difficult Analysis Ahead The present image shows that the overall quality of the new data obtained with the ESA Faint Object Camera on the refurbished Hubble Space Telescope is extremely good. However, such an image represents only the first step of a subsequent, detailed analysis with the ultimate goal of determining the physical properties of the two bodies, first of all their composition, surface structure and possible atmospheres. The analysis of data from a facility as complex as the Hubble Space Telescope is very demanding, and involves experts in many different fields: planetary astronomy, instrument technology, numerical image restoration, and spacecraft engineering. It is therefore not surprising that this investigation is expected to last a long time yet. However, while still in its preliminary stages, it already now appears to indicate the presence of areas of different reflectivity on the surface of Pluto. By a comparison of HST images obtained at two different wavelengths (i.e., in ultraviolet and visual light), the team members hope that it will become possible to construct rough maps of the planetary surface and perhaps also to answer the long-standing question of whether or not there is an atmosphere around Pluto. Notes: [1] This investigation is carried out at the Space Telescope European Coordinating Facility, which is located at the European Southern Observatory as part of a collaboration with the European Space Agency, and also involves other institutes in Europe and the U.S.A. The team of astronomers is headed by Rudolf Albrecht (ST-ECF), and includes Hans-Martin Adorf and Richard Hook (ST-ECF), Alessandra Gemmo and Olivier Hainaut (ESO), Cesare Barbieri and Gabriele Corrain (Osservatorio Astronomico di Padova, Italy), Chris Blades, Perry Greenfield and William Sparks (Space Telescope Science Institute, Baltimore, Maryland, U.S.A.) and David Tholen (Institute for Astronomy, University of Hawaii, U.S.A.). [2] The photo is available to the media from the ESO Information Service (address below) as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. Figure Caption Hubble Portrait of the "Double Planet" Pluto & Charon This is the clearest view yet of the distant planet Pluto and its moon, Charon, as revealed by the Hubble Space Telescope (HST). The image was taken by the European Space Agency's Faint Object Camera on February 21, 1994, when the planet was 4,400 million kilometres from the Earth; or nearly 30 times the separation between the Earth and the Sun. The HST corrected optics show the two objects as clearly separate and sharp disks. This now allows astronomers to measure directly (to within about 1 percent) Pluto's diameter of 2320 kilometres and Charon's diameter of 1270 kilometres. The HST observations show that Charon is bluer than Pluto. This means that the worlds have different surface composition and structure. A bright highlight on Pluto indicates that it may have a smoothly reflecting surface layer. A detailed analysis of the HST image also suggests that there is a bright area parallel to the equator of Pluto. However, subsequent observations are needed to confirm is this feature is real. Though Pluto was discovered in 1930, Charon was not detected until 1978. This is because this moon is so close to Pluto that the two world's are typically blurred together when viewed through ground-based telescopes. The new HST image was taken when Charon was near its maximum elongation from Pluto (0.9 arcseconds). The two worlds are 19,640 kilometres apart. This photo accompanies ESO PR 09/94. It is available from ESO as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
NASA Astrophysics Data System (ADS)
Popping, Gergö; Decarli, Roberto; Man, Allison W. S.; Nelson, Erica J.; Béthermin, Matthieu; De Breuck, Carlos; Mainieri, Vincenzo; van Dokkum, Pieter G.; Gullberg, Bitten; van Kampen, Eelco; Spaans, Marco; Trager, Scott C.
2017-06-01
We present ALMA detections of the [CI] 1-0, CO J = 3-2, and CO J = 4-3 emission lines, as well as the ALMA band 4 continuum for a compact star-forming galaxy (cSFG) at z = 2.225, 3D-HST GS30274. As is typical for cSFGs, this galaxy has a stellar mass of 1.89 ± 0.47 × 1011M⊙, with a star formation rate (SFR) of 214 ± 44 M⊙ yr-1 putting it on the star-forming "main-sequence", but with an H-band effective radius of 2.5 kpc, making it much smaller than the bulk of "main-sequence" star-forming galaxies. The intensity ratio of the line detections yield an ISM density ( 6 × 104 cm-3) and a UV-radiation field ( 2 × 104G0), similar to the values in local starburst and ultra-luminous infrared galaxy environments. A starburst phase is consistent with the short depletion times (tH2,dep ≤ 140 Myr) we find in 3D-HST GS30274 using three different proxies for the H2 mass ([CI], CO, dust mass). This depletion time is significantly shorter than in more extended SFGs with similar stellar masses and SFRs. Moreover, the gas fraction of 3D-HST GS30274 is smaller than typically found in extended galaxies. We measure the CO and [CI] kinematics and find a FWHM line width of 750 ± 41 km s-1. The CO and [CI] FWHM are consistent with a previously measured Hα FWHM for this source. The line widths are consistent with gravitational motions, suggesting we are seeing a compact molecular gas reservoir. A previous merger event, as suggested by the asymmetric light profile, may be responsible for the compact distribution of gas and has triggered a central starburst event. This event gives rise to the starburst-like ISM properties and short depletion times in 3D-HST GS30274. The centrally located and efficient star formation is quickly building up a dense core of stars, responsible for the compact distribution of stellar light in 3D-HST GS30274.
Kawauchi, Moriyuki; Nishiura, Mika
2013-01-01
The sirtuins are members of the NAD+-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi. PMID:23729383
Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN
NASA Technical Reports Server (NTRS)
Cecil, Gerald
1999-01-01
HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolov, Nikolay; Sing, David K.; Evans, Thomas M.
2016-12-01
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm on a V = 12.1 mag star. We detect the sodium absorption feature (3.2 σ ) and find evidence of potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope ( HST ) optical spectroscopy, supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph formore » optical transmission spectroscopy, with which we obtained HST -quality light curves from the ground.« less
Hachinohe, Mayumi; Hanaoka, Fumio; Masumoto, Hiroshi
2011-04-01
The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hst3Δ hst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2015-11-15
We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less
HST observations of Chiron: preliminary results
NASA Astrophysics Data System (ADS)
BENEDETTI Rossi, Gustavo; Sicardy, Bruno; Buie, Marc W.; Braga-Ribas, Felipe; Ortiz, Jose-Luis; Duffard, Rene; camargo, julio; Vieira-Martins, Roberto; Gratadour, Damien; Dumas, Christophe
2016-10-01
Chiron is a Centaur object, with a radius of approximately 110km. It is orbiting between Saturn and Uranus, and may be a Transneptunian Object (TNO) that has been recently (less than 10 My) scattered by gravitational perturbations from Uranus, just like its "twin brother" Chariklo. On June 3rd, 2013, a stellar occultation by Chariklo of a R=12.4 magnitude star was observed from seven sites in South America, which led to the detection of a total of twelve secondary events, revealing the presence of two narrow and dense rings (see more details at Braga-Ribas F. et al., Nature, 2014).Up to now, planetary rings have been detected exclusively around the four giant planets of our Solar System and Chariklo. In spite of hundreds of occultations by asteroids and several space missions, no other small bodies have shown the presence of rings. However, two recent papers (Ruprecht et al. 2015 and Ortiz et. al 2015) report secondary events from stellar occultations by Chiron that have been interpreted either as a dust shell or a ring system. Using the Hubble Space Telescope we obtained direct images of Chiron surroundings to search for rings, jets and/or small satellites. First results will be presented.
Hubble Space Telescope nickel-hydrogen battery testing: An update
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Brewer, Jeffrey C.
1995-01-01
The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.
Tracing Interactions of a Protoplanet with its Circumstellar Disk
NASA Astrophysics Data System (ADS)
Stapelfeldt, Karl
2017-08-01
A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.
NASA Technical Reports Server (NTRS)
Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck
1994-01-01
The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.
NASA Technical Reports Server (NTRS)
Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin
2001-01-01
The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.
HST Confirmation and Characterization of a Potentially Habitable World
NASA Astrophysics Data System (ADS)
Ehrenreich, David
2015-10-01
Atmospheric characterization of exoplanets in habitable zones is one of the greatest challenge of astrophysics. In fact, all known potential targets either do not transit, or they transit stars too faint or distant, making them impossible to probe with transit spectroscopy. A recently announced K2 planet candidate found in the habitable zone of a nearby M dwarf, could be a game changer as the first habitable-zone super-Earth (2.2 R_Earth) amenable to characterization. We propose to use HST to (1) validate the planet candidate by observing a high-precision near-infrared transit with WFC3 and (2) characterize its atmosphere by detecting an extended hydrogen exosphere in the far ultraviolet with STIS. Hydrogen escape is indeed a telltale sign of terrestrial planets enduring a runaway greenhouse effect. Further considerations on the habitable potential of the planet thus need to be vet against a detection of hydrogen escape. Our recent STIS Lyman-alpha observations of a moderately irradiated neptune show that extended upper atmospheres can reach much larger sizes around such planets than around very hot exoplanets. We could thus obtain a significant detection with a modest amount of HST orbits. In parallel, we started a ground-based campaign to constrain the yet unknown mass of this planet with Doppler measurements. Combining the Lyman-alpha transit depth with the measurement of the planet bulk density (from the accurate near-infrared transit and the Doppler mass), will reveal for the first time whether an exoplanet can be telluric and actually habitable, or if it is losing its water because of a runaway greenhouse effect.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.
NASA Astrophysics Data System (ADS)
Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.
2016-05-01
Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The catalogues, together with the final processed images for all HST bands (as well as some diagnostic data and images), are publicly available and can be downloaded from the Astrodeep website at http://www.astrodeep.eu/frontier-fields/ and from a dedicated CDS webpage (http://astrodeep.u-strasbg.fr/ff/index.html). The catalogues are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A31
Deep JVLA Imaging of GOODS-N at 20 cm
NASA Astrophysics Data System (ADS)
Owen, Frazer N.
2018-04-01
New wideband continuum observations in the 1–2 GHz band of the GOODS-N field using NSF’s Karl G. Jansky Very Large Array (VLA) are presented. The best image with an effective frequency of 1525 MHz reaches an rms noise in the field center of 2.2 μJy, with 1.″6 resolution. A catalog of 795 sources is presented covering a radius of 9 arcminutes centered near the nominal center for the GOODS-N field, very near the nominal VLA pointing center for the observations. Optical/NIR identifications and redshift estimates both from ground-based and HST observations are discussed. Using these optical/NIR data, it is most likely that fewer than 2% of the sources without confusion problems do not have a correct identification. A large subset of the detected sources have radio sizes >1″. It is shown that the radio orientations for such sources correlate well with the HST source orientations, especially for z < 1. This suggests that a least a large subset of the 10 kpc-scale disks of luminous infrared/ultraluminous infrared galaxies (LIRG/ULIRG) have strong star formation, not just in the nucleus. For the half of the objects with z > 1, the sample must be some mixture of very high star formation rates, typically 300 M ⊙ yr‑1, assuming pure star formation, and an active galactic nucleus (AGN) or a mixed AGN/star formation population.
UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche
NASA Astrophysics Data System (ADS)
Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.
2017-12-01
Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details unveiled by studies of these objects in the UV.
The Story of Supernova “Refsdal” Told by Muse
NASA Astrophysics Data System (ADS)
Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.
2016-05-01
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin2 target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to seven background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope (HST), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort. This work is based in large part on data collected at ESO VLT (prog.ID 294.A-5032) and NASA HST.
2002-03-07
STS-109 Astronaut Michael J. Massimino, mission specialist, perched on the Shuttle's robotic arm, is preparing to install the Electronic Support Module (ESM) in the aft shroud of the Hubble Space telescope (HST), with the assistance of astronaut James H. Newman (out of frame). The module will support a new experimental cooling system to be installed during the next day's fifth and final space walk of the mission. That cooling system is designed to bring the telescope's Near-Infrared Camera and Multi Spectrometer (NICMOS) back to life the which had been dormant since January 1999 when its original coolant ran out. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. In addition to the installation of the experimental cooling system for the Hubble's Near-Infrared Camera and NICMOS, STS-109 upgrades to the HST included replacement of the solar array panels, replacement of the power control unit (PCU), and replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS). Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
NASA Astrophysics Data System (ADS)
Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.
2018-05-01
We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.
Detection of an ultraviolet and visible counterpart of the NGC 6624 X-ray burster
NASA Technical Reports Server (NTRS)
King, I. R.; Stanford, S. A.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Disney, M. J.; Deharveng, J. M.; Jakobsen, P.
1993-01-01
We have detected, in images taken with the HST FOC, the UV and optical counterpart of the X-ray source 4U 1820-30 in the globular cluster NGC 6624. Astrometric measurements place this object 2 sigma from the X-ray position of 4U 1820-30. The source dominates a far-UV FOC image and has the same flux at 1400 A as was seen through the large IUE aperture by Rich et al. (1993). It has a B magnitude of 18.7 but is not detected in V. It is 0.66 arcsec from the center of NGC 6624, a fact that may change the interpretation of the P-average of the 11 minute binary orbit. The flux drops between 1400 and 4300 A at a rate that is nearly as steep as that of a Rayleigh-Jeans curve. The flux is far too large to come from the neutron star directly but could accord with radiation from a heated accretion disk and/or the heated side of the companion star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windhorst, Rogier A.; Cohen, Seth H.; Mechtley, Matt
2011-04-01
We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Y{sub s} ), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 arcmin{sup 2} at 0.2-1.7 {mu}m in wavelength at 0.''07-0.''15 FWHM resolutionmore » and 0.''090 Multidrizzled pixels to depths of AB {approx_equal} 26.0-27.0 mag (5{sigma}) for point sources, and AB {approx_equal} 25.5-26.5 mag for compact galaxies. In this paper, we describe (1) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics, (2) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used, and (3) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.''07-0.''15 FWHM resolution of HST/WFC3 and ACS makes star-galaxy separation straightforward over a factor of 10 in wavelength to AB {approx_equal} 25-26 mag from the UV to the near-IR, respectively. Our main results are: (1) proper motion of faint ERS stars is detected over 6 years at 3.06 {+-} 0.66 mas year{sup -1} (4.6{sigma}), consistent with Galactic structure models; (2) both the Galactic star counts and the galaxy counts show mild but significant trends of decreasing count slopes from the mid-UV to the near-IR over a factor of 10 in wavelength; (3) combining the 10-band ERS counts with the panchromatic Galaxy and Mass Assembly survey counts at the bright end (10 mag {approx}< AB {approx}< 20 mag) and the Hubble Ultra Deep Field counts in the BVizY{sub s}JH filters at the faint end (24 mag {approx}< AB {approx}< 30 mag) yields galaxy counts that are well measured over the entire flux range 10 mag {approx}< AB {approx}< 30 mag for 0.2-2 {mu}m in wavelength; (4) simple luminosity+density evolution models can fit the galaxy counts over this entire flux range. However, no single model can explain the counts over this entire flux range in all 10 filters simultaneously. More sophisticated models of galaxy assembly are needed to reproduce the overall constraints provided by the current panchromatic galaxy counts for 10 mag {approx}< AB {approx}< 30 mag over a factor of 10 in wavelength.« less
HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations
NASA Technical Reports Server (NTRS)
Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.;
2010-01-01
We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.
NASA Astrophysics Data System (ADS)
De Marchi, G.; Paresce, F.; Straniero, O.; Prada Moroni, P. G.
2004-03-01
Very deep images of the Galactic globular cluster M 4 (NGC 6121) through the F606W and F814W filters were taken in 2001 with the WFPC2 on board the HST. A first published analysis of this data set (Richer et al. \\cite{Richer2002}) produced the result that the age of M 4 is 12.7± 0.7 Gyr (Hansen et al. \\cite{Hansen2002}), thus setting a robust lower limit to the age of the universe. In view of the great astronomical importance of getting this number right, we have subjected the same data set to the simplest possible photometric analysis that completely avoids uncertain assumptions about the origin of the detected sources. This analysis clearly reveals both a thin main sequence, from which can be deduced the deepest statistically complete mass function yet determined for a globular cluster, and a white dwarf (WD) sequence extending all the way down to the 5 \\sigma detection limit at I ≃ 27. The WD sequence is abruptly terminated at exactly this limit as expected by detection statistics. Using our most recent theoretical WD models (Prada Moroni & Straniero \\cite{Prada2002}) to obtain the expected WD sequence for different ages in the observed bandpasses, we find that the data so far obtained do not reach the peak of the WD luminosity function, thus only allowing one to set a lower limit to the age of M 4 of ˜9 Gyr. Thus, the problem of determining the absolute age of a globular cluster and, therefore, the onset of GC formation with cosmologically significant accuracy remains completely open. Only observations several magnitudes deeper than the limit obtained so far would allow one to approach this objective. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.
Detection of the SO2 atmosphere on Io with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Ballester, G. E.; Mcgrath, M. A.; Stobel, D. F.; Zhu, Xun; Feldman, P. D.; Moos, H. W.
1994-01-01
Observations of the trailing hemisphere of Io made with the Faint Object Spectrograph of the Hubble Space Telescope (HST) in March 1992 have resulted in the first detection of atmospheric SO2 absorption bands in the ultraviolet. These observations represent only the third positive means of detection of what is widely believed to be Io's primary atmospheric constituent. Below approximately 2130 A the geometric albedo of the satellite is dominated by SO2 gas absorption band signatures, which have been analyzed using models that include the effects of optical thickness, temperature, and spatial distribution. The disk-intergrated HST data cannot resolve the spatial distribution, but it is possible to define basic properties and set constraints on the atmosphere at the time of the observations. Hemispheric atmospheres with average column density N = 6 - 10 x 10(exp 15)/sq sm and T(gas) = 110 - 500 K fit the data, with preference for temperatures of approximately 200 - 250 K. Better fits are found as the atmosphere is spatially confined, with a limit of approximately 8% hemispheric areal coverage and N approximately equal to 3 x 10(exp 17)/sq cm with colder 110 - 250 K temepratures. A dense (N greater than or equal to 10(exp 16)/sq cm), localized component of SO2 gas, such as that possibly associated with active volcanoes, can generate the observed spectral constrast only when the atmosphere is cold (110 K) and an extended component such as Pele is included. The combination of a dense, localized atmosphere with a tenuous component (N less than 10(exp 16)/sq cm, either patchy or extended) also fits the data. In all cases the best fit models imply a disk-averaged column density larger than exospheric but approximately 10 - 30 times less than the previous upper limit from near-UV observations.
2001-11-29
KENNEDY SPACE CENTER, Fla. -- In Hangar A&E, workers watch as an overhead crane lifts the Advanced Camera for Surveys out of its transportation container. Part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, the ACS will increase the discovery efficiency of the HST by a factor of ten. It consists of three electronic cameras and a complement of filters and dispersers that detect light from the ultraviolet to the near infrared (1200 - 10,000 angstroms). The ACS was built through a collaborative effort between Johns Hopkins University, Goddard Space Flight Center, Ball Aerospace Corporation and Space Telescope Science Institute. Tasks for the mission include replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the ACS, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall
2016-02-10
We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physicalmore » mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.« less
Using technology to support HIV self-testing among MSM.
LeGrand, Sara; Muessig, Kathryn E; Horvath, Keith J; Rosengren, Anna L; Hightow-Weidman, Lisa B
2017-09-01
Technology-based HIV self-testing (HST) interventions have the potential to improve access to HIV testing among gay, bisexual, and other MSM, as well as address concerns about HST use, including challenges with linkage to appropriate follow-up services. This review examines studies that use technology-based platforms to increase or improve the experience of HST among MSM. Seven published studies and eight funded studies were included in this review. Comprehensive prevention interventions with free HST kit distribution and interventions that provide free HST kits and support the HST process address a greater number of barriers (e.g., access, correct use of testing kits, and correct interpretation of results) than studies that only distribute free HST kits through technology-based platforms. By addressing HIV-testing barriers and specific HST concerns, these interventions address a critical need to improve first time and repeat testing rates among MSM. Additional research is needed to determine the efficacy of recent formative HST interventions. If proven efficacious, scale-up of these strategies have the potential to increase HIV testing among MSM via expanded HST uptake.
Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304
NASA Technical Reports Server (NTRS)
Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.
1995-01-01
Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.
1993-06-30
This photograph shows STS-61 crewmemmbers training for the Hubble Space Telescope (HST) servicing mission in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.
NASA Astrophysics Data System (ADS)
Choquet, Élodie; Pueyo, Laurent; Soummer, Rémi; Perrin, Marshall D.; Hagan, J. Brendan; Gofas-Salas, Elena; Rajan, Abhijith; Aguilar, Jonathan
2015-09-01
The ALICE program, for Archival Legacy Investigation of Circumstellar Environment, is currently conducting a virtual survey of about 400 stars, by re-analyzing the HST-NICMOS coronagraphic archive with advanced post-processing techniques. We present here the strategy that we adopted to identify detections and potential candidates for follow-up observations, and we give a preliminary overview of our detections. We present a statistical analysis conducted to evaluate the confidence level on these detection and the completeness of our candidate search.
History of Hubble Space Telescope (HST)
2001-09-06
Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst "turned on" more than 100 million years ago.
NASA Astrophysics Data System (ADS)
Neuhäuser, R.; Brandner, W.; Eckart, A.; Guenther, E.; Alves, J.; Ott, T.; Huélamo, N.; Fernández, M.
2000-02-01
We show that ground-based direct imaging detection of extra-solar planets is possible with current technology. As an example, we present evidence for a possible planetary companion to the young T Tauri star 1RXSJ104230.3-334014 (=TWA-7), discovered by ROSAT as a member of the nearby TW Hya association. In an HST NICMOS F160W image, an object is detected that is more than 9 mag fainter than TWA-7, located 2.445 +/- 0.035'' south-east at a position angle of 142.24 +/- 1.34deg. One year later using the ESO-NTT with the SHARP speckle camera, we obtained H- and K-band detections of this faint object at a separation of 2.536 +/- 0.077'' and a position angle of 139.3 +/- 2.1deg. Given the known proper motion of TWA-7, the pair may form a proper motion pair. If the faint object orbits TWA-7, then its apparent magnitudes of H=16.42 +/- 0.11 and K=16.34 +/- 0.15 mag yield absolute magnitudes consistent with a ~ 106.5 yr old ~ 3 M_jup mass object according to the non-gray theory by Burrows et al. (1997). At ~ 55 pc, the angular separation of ~ 2.5'' corresponds to ~ 138 AU, clearly within typical disk sizes. However, position angles and separations are slightly more consistent with a background object than with a companion. Based on observations obtained at the European Southern Observatory, La Silla (ESO Proposals 62.I-0418 and 63.N-0178), and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Heard, Brent N.; Hodson, Robert F.; Pettit, Duane H.; Pandolf, John E.; Azzolini, John D.; Dennehy, Cornelius J.; Farley, Rodger E.; Kirchman, Frank J.; Spidaliere, Peter D.
2005-01-01
The NESC conducted an abridged independent examination of available information and personnel interviews to evaluate the current and anticipated state of the spacecraft subsystems and the parameters that describe the HST's health. These examinations included the projected timeliness of a robotic SM and whether the GSFC baseline concept is likely to provide the capability to extend the useful scientific life of the HST by an additional 5 years. The NESC team collected a broad spectrum of pertinent HST Program analyses, reports, briefings, and the results of the IPAO and the Aerospace Corporation AOA assessments as they relate to the degradation of the HST s health. This review included the state of the HST subsystems having the potential to impact the viability of the HST, but will not be serviced under the baseline robotic SM.
2002-03-01
Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.
Identifying the donor star of the most extreme ULX pulsar
NASA Astrophysics Data System (ADS)
Heida, Marianne
2017-08-01
Ultraluminous X-ray sources (ULXs) were once among the most promising candidates for long sought after intermediate-mass black holes, owing to their high X-ray luminosities (>10^39 erg/s) and off-nuclear positions. NGC 5907 ULX-1 was a prime example, and since it regularly reaches 10^41 erg/s it was thought to harbour a black hole with a mass of at least 500 solar masses. But in an astonishing discovery, the source was found to exhibit pulsations in the X-rays on second-timescales, revealing it to be a pulsar powered by accretion onto a neutron star with only 1.4 solar masses. This discovery challenges every known theory of accretion onto a compact object, which in this object exceeds the Eddington limit by a factor of 500. It requires us to imagine extreme departures from known accretion theory and/or binary evolution scenarios. The fuel source should be a massive companion star in order to sustain the required mass accretion rate, however X-ray timing favors a low-mass star. With the ability to detect a massive star, a short HST/WFC3 NIR observation would solve this mystery. A detection of a supergiant donor would open the path to future dynamical mass measurements with JWST, while a non-detection would prove that this extreme ULX pulsar contains a low-mass donor star, forcing us to consider new evolutionary formation channels.
HST/COS Observations Of Lyman-α Emission From
NASA Astrophysics Data System (ADS)
Wofford, Aida; Leitherer, C.; Salzer, J.; COS Science Team
2012-01-01
Although HI Lyman-alpha (Lyα, 1216 Å) is expected to be the strongest recombination line in HII nebulae, it is resonantly scattered by neutral hydrogen and is easily destroyed by dust. And yet, some star-forming galaxies show Lyα in emission. As evidenced by high dispersion HST/GHRS+STIS FUV spectroscopy of a handful of local (z<0.03) galaxies, the velocity shift between the neutral gas and the ionized gas plays a key role in driving the observed Lyα escape. We present HST/COS/G130M 1150-1450 Å (observed-frame) spectroscopy of 20 new targets located at a mean redshift of
HST/WFPC2 Photometry in the 30 Doradus Nebula Beyond R136
NASA Astrophysics Data System (ADS)
Barbá, R. H.; Walborn, N. R.
30 Doradus is the nearest and hence best resolved extragalactic starburst. Knowledge of its stellar content is vital to the interpretation of more distant starbursts, as well as to fundamental astrophysical problems such as the IMF, stellar mass limits, stellar evolution, and the structure of giant H II regions. In spite of the relative proximity of 30 Dor, it is essential to apply the highest possible spatial resolution to disentangle compact multiple systems and groups, which are characteristic of massive young regions and a source of systematic errors in astrophysical inferences if they are not resolved. Recents studies of the stellar content of 30 Doradus with HST/WFPC2 have concentrated on the central cluster core, R136 (Hunter et al. 1995, 1996, 1997; Nota et al. 1998). Followup HST/FOS spectroscopy was performed in and around R136 to a radius of about 15 arcsec, and the most spectacular concentration of the most massive young stars known was discovered (Massey & Hunter 1998; Heap et al. 1998). However, R136 and its immediate surroundings account for only a third to a half of the ionization of 30 Dor. Other very massive stars and stellar systems are distributed throughout the several-arcminute extent of the Nebula. They include objects both older and younger than R136; there is evidence that the formation of the latter has been triggered by the energetic activity of R136. So far, these important surrounding populations have been investigated only with groundbased observations (Parker 1993; Walborn & Blades 1997). In the latter spectral classification study, five spatially and/or temporally distinct stellar components were isolated within the Nebula. But numerous multiple systems remain unresolved in these populations, particularly in the younger ones. In this paper, we report HST/WFPC2 photometry of the 30 Doradus stellar content surrounding R136, with emphasis on the numerous multiple systems and compact clusterings found there. Of particular interest are systems in the bright nebular filaments where current massive-star formation is taking place, as revealed by both groundbased and HST/NICMOS infrared images. Special attention is given to the objects included in the above groundbased spectral-classification studies. Magnitudes and colors are derived for the newly resolved components of the multiple systems, while their ages and evolutionary status will be inferred insofar as possible. However, it is well known that the effective temperatures and masses of hot stars are degenerate when derived from photometry alone. Hence, this project is viewed as preparation for followup spatially resolved spectroscopy with HST/STIS, in order to advance our knowledge of the entire stellar content of 30 Doradus to the current state of the art, as is warranted by its unique status.
HST in Columbia's payload bay after repairs
2002-03-09
STS109-315-016 (8 March 2002) --- With five days of service and upgrade work on the Hubble Space Telescope (HST) behind them, the STS-109 crew members on board the Space Shuttle Columbia took an overall snapshot of the giant telescope in the shuttle's cargo bay. The seven-member crew completed the last of its five ambitious space walks early on March 8, 2002, with the successful installation of an experimental cooling system for Hubble;s Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The NICMOS has been dormant since January 1999 when its original coolant ran out. The telescope received new solar array panels, markedly different in appearance from the replaced pair, on the mission's first two space walks earlier in the week.
Tracing the Evolution of Passive Galaxies in Clusters at 1.4
NASA Astrophysics Data System (ADS)
Beifiori, Alessandra
2017-08-01
In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4
(F)UV Spectroscopy of K648: Abundance Determination of Trace Elements
NASA Astrophysics Data System (ADS)
Mohamad-Yob, S. J.; Ziegler, M.; Rauch, T.; Werner, K.
2010-11-01
We present preliminary results of an ongoing spectral analysis of K 648, the central star of the planetary nebula Ps 1, based on high resolution FUV spectra. K 648, in M 15 is one of only four known PNe in globular clusters. The formation of this post-AGB object in a globular cluster is still unclear. Our aim is to determine Teff, log g, and the abundances of trace elements, in order to improve our understanding of post-AGB evolution of extremely metal-poor stars, especially PN formation in globular clusters. We analyzed FUSE, HST/STIS, and HST/FOS observations. A grid of stellar model atmospheres was calculated using the Tübingen NLTE Model Atmosphere Package (TMAP).
A rule-based shell to hierarchically organize HST observations
NASA Technical Reports Server (NTRS)
Bose, Ashim; Gerb, Andrew
1995-01-01
An observing program on the Hubble Space Telescope (HST) is described in terms of exposures that are obtained by one or more of the instruments onboard the HST. These exposures are organized into a hierarchy of structures for purposes of efficient scheduling of observations. The process by which exposures get organized into the higher-level structures is called merging. This process relies on rules to determine which observations can be 'merged' into the same higher level structure, and which cannot. The TRANSformation expert system converts proposals for astronomical observations with HST into detailed observing plans. The conversion process includes the task of merging. Within TRANS, we have implemented a declarative shell to facilitate merging. This shell offers the following features: (1) an easy way of specifying rules on when to merge and when not to merge, (2) a straightforward priority mechanism for resolving conflicts among rules, (3) an explanation facility for recording the merging history, (4) a report generating mechanism to help users understand the reasons for merging, and (5) a self-documenting mechanism that documents all the merging rules that have been defined in the shell, ordered by priority. The merging shell is implemented using an object-oriented paradigm in CLOS. It has been a part of operational TRANS (after extensive testing) since July 1993. It has fulfilled all performance expectations, and has considerably simplified the process of implementing new or changed requirements for merging. The users are pleased with its report-generating and self-documenting features.
Bridging the gap: New ALMA observations of lensed dusty galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Kearney, Zoe; Pope, Alexandra; Aretxaga, Itziar; Hughes, David; Marchesini, Danilo; Montana, Alfredo; Murphy, Eric Joseph; Wilson, Grant; Yun, Min
2018-01-01
During much of cosmic time, most star formation activity in galaxies is obscured by dust. In order to complete the census of star formation, we must bridge the gap between optical and infrared galaxy populations. With AzTEC on the Large Millimeter Telescope (LMT), we surveyed two of the HST Frontier Fields in order to exploit the gravitational lensing from foreground clusters to study dust-obscured in galaxies below the nominal confusion limit. We detect millimeter galaxies with magnifications ranging from 1.1-8, allowing us to detect dust-obscured star formation rates in galaxies as low as ~10 Msun/year. We present new observations with ALMA in order to localize the millimeter emission of the AzTEC/LMT sources and make unambiguous associations with the optical galaxies in the deep HST images. We investigate the issue of multiplicity within our sample. We discuss the multi-wavelength counterparts of our faint millimeter sources and how they relate to brighter dusty galaxies from previous surveys.
The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey
NASA Astrophysics Data System (ADS)
Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.
1999-05-01
A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the Hubble Space Telescope (HST) Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e., they are faint systems with subarcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates that appear to have multiple images of the source. Three are cases in which the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported by Ratnatunga et al. We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area that was searched for these candidate lens objects.
HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b
NASA Astrophysics Data System (ADS)
Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred
2016-08-01
We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.
Hubble's new view of the cosmos
Villard, R
1996-05-01
Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?
Astronaut Training in the Neutral Buoyancy Simulator
NASA Technical Reports Server (NTRS)
1993-01-01
This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.
Acceptability of HIV self-testing: a systematic literature review.
Krause, Janne; Subklew-Sehume, Friederike; Kenyon, Chris; Colebunders, Robert
2013-08-08
The uptake of HIV testing and counselling services remains low in risk groups around the world. Fear of stigmatisation, discrimination and breach of confidentiality results in low service usage among risk groups. HIV self-testing (HST) is a confidential HIV testing option that enables people to find out their status in the privacy of their homes. We evaluated the acceptability of HST and the benefits and challenges linked to the introduction of HST. A literature review was conducted on the acceptability of HST in projects in which HST was offered to study participants. Besides acceptability rates of HST, accuracy rates of self-testing, referral rates of HIV-positive individuals into medical care, disclosure rates and rates of first-time testers were assessed. In addition, the utilisation rate of a telephone hotline for counselling issues and clients` attitudes towards HST were extracted. Eleven studies met the inclusion criteria (HST had been offered effectively to study participants and had been administered by participants themselves) and demonstrated universally high acceptability of HST among study populations. Studies included populations from resource poor settings (Kenya and Malawi) and from high-income countries (USA, Spain and Singapore). The majority of study participants were able to perform HST accurately with no or little support from trained staff. Participants appreciated the confidentiality and privacy but felt that the provision of adequate counselling services was inadequate. The review demonstrates that HST is an acceptable testing alternative for risk groups and can be performed accurately by the majority of self-testers. Clients especially value the privacy and confidentiality of HST. Linkage to counselling as well as to treatment and care services remain major challenges.
NASA Astrophysics Data System (ADS)
Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Kataria, Tiffany; Knutson, Heather; Lewis, Nikole; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter; Sheppard, Kyle; Sing, David; Stevenson, Kevin; Todorov, Kamen; Wakeford, Hannah; Wilkins, Ashlee; Burrows, Adam
2016-08-01
We propose a program of Spitzer transit and secondary eclipse observations for 23 of the 'best of the best' hot giant planets (R > 0.8 Jupiters). We focus on planets that are already observed by HST, proposed to be observed by HST, or candiates for JWST Early Release Science observations. Our eclipse observations will measure day side temperatures that are needed for HST spectroscopy, and temperatures of the hottest and most favorable planets for JWST spectroscopy and possible phase curve observations. Several of our planets are extremely inflated, with atmospheric scale heights exceeding a thousand kilometers, yielding large atmospheric signatures during transit. Our transit photometry has the potential to detect molecular absorption by comparing transit radii and eclipse depths in the two Spitzer bands. Moreover, our precise transit depths will help to evaluate the magnitude of continuous opacity in the exoplanetary atmospheres, breaking the degeneracy between composition and cloud opacity, as recently demonstrated by Sing et al. We will thereby find the hottest and clearest giant exoplanetary atmospheres, with the largest molecular signatures, for HST and JWST spectroscopy. This will complete the Spitzer hot Jupiter legacy by providing a uniform set of transit and eclipse observations for the most favorable members of the intriguing population of close-in highly-irradiated giant planets. This unique Spitzer data set will guide efforts toward detailed atmospheric characterization of individual hot Jupiters for years to come.
Simultaneous Processing of Visible and Long-Wave Infrared Satellite Imagery
2015-10-19
Telescope, formerly the Gamma-ray Large Area Telescope (GLAST), and the Hubble Space Telescope (HST). The visible data was processed with a multi-frame...prevalent in the Hubble pass where the panels were already close to the background values. These results are promising; the dimmer features of the object
Asiimwe, Stephen; Oloya, James; Song, Xiao; Whalen, Christopher C
2014-12-01
Unsupervised HIV self-testing (HST) has potential to increase knowledge of HIV status; however, its accuracy is unknown. To estimate the accuracy of unsupervised HST in field settings in Uganda, we performed a non-blinded, randomized controlled, non-inferiority trial of unsupervised compared with supervised HST among selected high HIV risk fisherfolk (22.1 % HIV Prevalence) in three fishing villages in Uganda between July and September 2013. The study enrolled 246 participants and randomized them in a 1:1 ratio to unsupervised HST or provider-supervised HST. In an intent-to-treat analysis, the HST sensitivity was 90 % in the unsupervised arm and 100 % among the provider-supervised, yielding a difference 0f -10 % (90 % CI -21, 1 %); non-inferiority was not shown. In a per protocol analysis, the difference in sensitivity was -5.6 % (90 % CI -14.4, 3.3 %) and did show non-inferiority. We conclude that unsupervised HST is feasible in rural Africa and may be non-inferior to provider-supervised HST.
Astrometric Calibrations of HST Images in the Era of Gaia.
NASA Astrophysics Data System (ADS)
Kozhurina-Platais, Vera; Grogin, Norman A.; Sabbi, Elena
2018-06-01
It is well-known that HST images, taken with ACS/WFC and WFC3/UVIS, have substantial geometric distortion. Over the years our knowledge about this distortion has been vastly improved. Nevertheless, in certain applications it may not be good enough. Preliminary results of comparison state-of-the-art HST astrometric standards and the Gaia DR1 indicate significant scale difference, global rotation, and edge effects in the HST data. However, in terms of positional precision the HST standards are not surpassed yet. The next release of Gaia data DR2 were used to finalize and improve the HST astrometric calibrations down to 0.5 mas or better.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Variability-selected active galactic nuclei from supernova search in the Chandra deep field south
NASA Astrophysics Data System (ADS)
Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.
2008-09-01
Context: Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also because the low luminosity population consists of a mixture of different object types. LLAGNs can be detected by the nuclear optical variability of extended objects. Aims: Several variability surveys have been, or are being, conducted for the detection of supernovae (SNe). We propose to re-analyse these SNe data using a variability criterion optimised for AGN detection, to select a new AGN sample and study its properties. Methods: We analysed images acquired with the wide field imager at the 2.2 m ESO/MPI telescope, in the framework of the STRESS supernova survey. We selected the AXAF field centred on the Chandra Deep Field South where, besides the deep X-ray survey, various optical data exist, originating in the EIS and COMBO-17 photometric surveys and the spectroscopic database of GOODS. Results: We obtained a catalogue of 132 variable AGN candidates. Several of the candidates are X-ray sources. We compare our results with an HST variability study of X-ray and IR detected AGNs, finding consistent results. The relatively high fraction of confirmed AGNs in our sample (60%) allowed us to extract a list of reliable AGN candidates for spectroscopic follow-up observations. Table [see full text] is only available in electronic form at http://www.aanda.org
High-Resolution Imaging of Colliding and Merging Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1991-07-01
We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?
Report Of The HST Strategy Panel: A Strategy For Recovery
1991-01-01
orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected
Tati, Swetha; Li, Rui; Puri, Sumant; Kumar, Rohitashw; Davidow, Peter
2014-01-01
Oropharyngeal candidiasis (OPC) is caused by the opportunistic fungi Candida albicans and is prevalent in immunocompromised patients, individuals with dry mouth, or patients with prolonged antibiotic therapies that reduce oral commensal bacteria. Human salivary histatins, including histatin 5 (Hst 5), are small cationic proteins that are the major source of fungicidal activity of saliva. However, Hsts are rapidly degraded in vivo, limiting their usefulness as therapeutic agents despite their lack of toxicity. We constructed a conjugate peptide using spermidine (Spd) linked to the active fragment of Hst 5 (Hst 54–15), based upon our findings that C. albicans spermidine transporters are required for Hst 5 uptake and fungicidal activity. We found that Hst 54–15-Spd was significantly more effective in killing C. albicans and Candida glabrata than Hst 5 alone in both planktonic and biofilm growth and that Hst 54–15-Spd retained high activity in both serum and saliva. Hst 54–15-Spd was not bactericidal against streptococcal oral commensal bacteria and had no hemolytic activity. We tested the effectiveness of Hst 54–15-Spd in vivo by topical application to tongue surfaces of immunocompromised mice with OPC. Mice treated with Hst 54–15-Spd had significant clearance of candidal tongue lesions macroscopically, which was confirmed by a 3- to 5-log fold reduction of C. albicans colonies recovered from tongue tissues. Hst 54–15-Spd conjugates are a new class of peptide-based drugs with high selectivity for fungi and potential as topical therapeutic agents for oral candidiasis. PMID:24247141
Tati, Swetha; Li, Rui; Puri, Sumant; Kumar, Rohitashw; Davidow, Peter; Edgerton, Mira
2014-01-01
Oropharyngeal candidiasis (OPC) is caused by the opportunistic fungi Candida albicans and is prevalent in immunocompromised patients, individuals with dry mouth, or patients with prolonged antibiotic therapies that reduce oral commensal bacteria. Human salivary histatins, including histatin 5 (Hst 5), are small cationic proteins that are the major source of fungicidal activity of saliva. However, Hsts are rapidly degraded in vivo, limiting their usefulness as therapeutic agents despite their lack of toxicity. We constructed a conjugate peptide using spermidine (Spd) linked to the active fragment of Hst 5 (Hst 54-15), based upon our findings that C. albicans spermidine transporters are required for Hst 5 uptake and fungicidal activity. We found that Hst 54-15-Spd was significantly more effective in killing C. albicans and Candida glabrata than Hst 5 alone in both planktonic and biofilm growth and that Hst 54-15-Spd retained high activity in both serum and saliva. Hst 54-15-Spd was not bactericidal against streptococcal oral commensal bacteria and had no hemolytic activity. We tested the effectiveness of Hst 54-15-Spd in vivo by topical application to tongue surfaces of immunocompromised mice with OPC. Mice treated with Hst 54-15-Spd had significant clearance of candidal tongue lesions macroscopically, which was confirmed by a 3- to 5-log fold reduction of C. albicans colonies recovered from tongue tissues. Hst 54-15-Spd conjugates are a new class of peptide-based drugs with high selectivity for fungi and potential as topical therapeutic agents for oral candidiasis.
H-alpha LEGUS: Insights into the Field OB Star Population in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Lee, Janice; Thilker, David; Kayitesi, Bridget; Chandar, Rupali; Halpha LEGUS Team
2018-01-01
The question of whether O-stars can form in isolation, without attendant clusters or associations of lower mass stars, is a topic of interest because the answer to the question can distinguish between models of star formation. To begin to investigate whether such isolated O-stars can be identified in nearby galaxies beyond the Local Group, we identify candidate field OB-stars in NGC 1313, NGC 4395 and NGC 7793, the three nearest spiral galaxies in the HST Legacy ExtraGalactic Ultraviolet Survey (LEGUS). Candidates are selected using a technique based on: (1) a reddening-free Q parameter, adapted for photometry in HST filters covering the NUV, U, & B bands; (2) isolation based on projected distance from the nearest young cluster and candidate OB star, and (3) the presence of an HII region, identified based on HST H-alpha narrowband imaging. Our catalogs enable a range of follow-up studies on massive stars, and in particular provide targets for future spectroscopic observation and analysis. We describe the candidate OB star sample, the spatial distribution of the stars, and their HII region properties, with special focus on the most isolated objects in the sample.
Menezes, Paula dos Passos; Frank, Luiza Abrahão; Lima, Bruno dos Santos; de Carvalho, Yasmim Maria Barbosa Gomes; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Araújo, Adriano Antunes de Souza
2017-01-01
Chronic venous insufficiency is characterized by chronic reflux disorder of blood from the peripheral to the central vein, with subsequent venous hypertension and resulting changes in the skin. Traditionally, nonsurgical treatments relied on the use of compression therapy, and more recently a variety of flavonoids have been shown to have positive effects. There have also been developments of more effective drug delivery systems using various textiles and nanotechnology to provide new therapeutic options. Our objective was to use nanotechnology to develop a new formulation containing hesperetin (Hst), a substance not previously used in the treatment of chronic venous insufficiency, impregnated into textile fibers as a possible alternative treatment of venous diseases. We prepared the nanocapsules using the interfacial deposition of preformed polymer method with an Hst concentration of 0.5 mg/mL and then characterized the size and distribution of particles. To quantify the Hst in the samples, we developed an analytical method using high-performance liquid chromatography. Studies of encapsulation efficiency (98.81%±0.28%), microscopy, drug release (free-Hst: 104.96%±12.83%; lipid-core nanocapsule-Hst: 69.90%±1.33%), penetration/permeation, drug content (0.46±0.01 mg/mL) and the effect of washing the textile after drug impregnation were performed as part of the study. The results showed that nanoparticles of a suitable size and distribution with controlled release of the drug and penetration/permeation into the skin layers were achieved. Furthermore, it was established that polyamide was able to hold more of the drug, with a 2.54 times higher content than the cotton fiber; after one wash and after five washes, this relation was 2.80 times higher. In conclusion, this is a promising therapeutic alternative to be further studied in clinical trials. PMID:28352176
Second generation spectrograph for the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.
1986-01-01
The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.
Probing the z > 6 Universe with the First Hubble Frontier Fields Cluster A2744
NASA Astrophysics Data System (ADS)
Atek, Hakim; Richard, Johan; Kneib, Jean-Paul; Clement, Benjamin; Egami, Eiichi; Ebeling, Harald; Jauzac, Mathilde; Jullo, Eric; Laporte, Nicolas; Limousin, Marceau; Natarajan, Priyamvada
2014-05-01
The Hubble Frontier Fields program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster A-2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z >~ 6) galaxies. We report the detection of 15 I 814 dropout candidates at z ~ 6-7 and one Y 105 dropout at z ~ 8 in a total survey area of 1.43 arcmin2 in the source plane. The predictions of our lens model also allow us to identify five multiply imaged systems lying at redshifts between z ~ 6 and z ~ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ~ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final data set including the full Advanced Camera for Survey observations, the LF presented here goes down to M UV ~-18.5, corresponding to 0.2L sstarf at z ~ 7 with one identified object at M UV ~-15 thanks to the highly magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13495 and 11689. Based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work utilizes gravitational lensing models produced by PIs Ebeling, Merten, and Zitrin, and Sharon funded as part of the HST Frontier Fields program conducted by STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The lens models were obtained from the Mikulski Archive for Space Telescopes (MAST).
1999-08-01
STS103-S-001 (August 1999) --- Designed by the crew members, the STS-103 emblem depicts the space shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission is to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that has been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability is one of the primary objectives of the mission. After the flight, the telescope will resume its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the sun, providing a striking contrast with the blackness of space and the night side of Earth. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)
NASA Astrophysics Data System (ADS)
Alonso, M. Victoria; Minniti, Dante
1997-04-01
We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing carbon stars. From color-magnitude diagrams we do not find evidence of very young clusters in this region. Such clusters might be fainter than our detection limit in JHK'. We measure metallicities for 42 globular clusters, confirming the presence of a metallicity gradient with Δ[Fe/H]/ΔR = -0.06 dex kpc-1. Based on observations collected at La Silla Observatory and on archival data of the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; McCarthy, P.; Cohen, S.; Ryan, R.; Driver, S.; Hathi, N.; Koekemoer, A.; Mechtley, M.; O'Connell, R.; Rutkowski, M.; Yan, H.; SOC, WFC3
2010-01-01
We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the GOODS-South field. The new WFC3 ERS data provide calibrated, drizzled mosaics with FHWM=0.07--0.15" in the near-UV (filters F225W, F275W, and F336W) and near-IR (F098W, F125W, and F160W) in typically 2 orbits per filter. Together with the existing HST/ACS GOODS-S mosaics in the BVi'z' filters, the 10-band ERS data cover 40-50 sq. arcmin to AB=26-27.0 mag (10-sigma for point sources). In this poster, we describe the: (1) scientific rationale, data taking and reduction procedures of the WFC3 ERS mosaics; (2) object cataloging and star-galaxy separation techniques used in these 10 different filters; (3) reliability and completeness of the 10-band object catalogs from the ERS mosaics; (4) object counts in 10 different filters from 0.2-1.7 microns to AB=26.0-27.0 mag; and (5) the full-color 10-band ERS images. We discuss the panchromatic structure for a variety of interesting ERS objects at intermediate redshifts (z=0.5-3), including examples of galaxies with nuclear star-forming rings, bars, or weak AGN activity, UV-dropout galaxies at redshifts z=2-3, and objects of other interesting appearance. The 10-band panchromatic ERS data base is very rich in morphological structure at all restframe wavelengths where young or older stars shine during the peak epoch in the cosmic star-formation rate (at z=1-2). This work is based on ERS observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Space Telescope Science Institute Director for awarding Director's Discretionary time for this program. Support for HST program 11359 was provided by NASA through grants GO-11359.0*.A from STScI, which is operated by AURA under NASA contract NAS 5-26555. We dedicate this paper to the memory of the STS-107 Columbia Shuttle astronauts, and of Dr. Rodger Doxsey.
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
HST Archival Imaging of the Light Echoes of SN 1987A
NASA Astrophysics Data System (ADS)
Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.
2002-12-01
We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).
3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna
2012-06-01
We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177 and 12328.
Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions
NASA Technical Reports Server (NTRS)
Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)
2002-01-01
The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.
Distributed Sensing for Quickest Change Detection of Point Radiation Sources
2017-02-01
point occurs simultaneously at all sensor nodes, thus neglecting signal propagation delays. For nuclear radiation , the observation period, which is on... nuclear radiation using a sensor network,” in Homeland Security (HST), 2012 IEEE Conference on Technologies for. IEEE, 2012, pp. 648–653. [8] G. Lorden...Distributed Sensing for Quickest Change Detection of Point Radiation Sources Gene T. Whipps⋆† Emre Ertin† Randolph L. Moses† †The Ohio State
NASA Astrophysics Data System (ADS)
Hemenway, Paul
1991-07-01
Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.
VizieR Online Data Catalog: 3D-HST+CANDELS catalog (Skelton+, 2014)
NASA Astrophysics Data System (ADS)
Skelton, R. E.; Whitaker, K. E.; Momcheva, I. G.; Brammer, G. B.; van Dokkum, P. G.; Labbe, I.; Franx, M.; van der Wel, A.; Bezanson, R.; Da Cunha, E.; Fumagalli, M.; Forster Schreiber, N.; Kriek, M.; Leja, J.; Lundgren, B. F.; Magee, D.; Marchesini, D.; Maseda, M. V.; Nelson, E. J.; Oesch, P.; Pacifici, C.; Patel, S. G.; Price, S.; Rix, H.-W.; Tal, T.; Wake, D. A.; Wuyts, S.
2015-09-01
The majority of HST/WFC3 imaging comes from the 3D-HST and CANDELS surveys which, jointly, have covered ~940arcmin2 in three infrared filters: F125W, F140W, and F160W (HST cycle 11, 17, 18 and 19). See section 2 for further explanations. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, S. A.; Spencer, J. R.; Shinn, A.
We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectralmore » absorption on Charon is also reported.« less
VizieR Online Data Catalog: CANDELS z~2 galaxy properties (Trump+, 2014)
NASA Astrophysics Data System (ADS)
Trump, J. R.; Barro, G.; Juneau, S.; Weiner, B. J.; Luo, B.; Brammer, G. B.; Bell, E. F.; Brandt, W. N.; Dekel, A.; Guo, Y.; Hopkins, P. F.; Koo, D. C.; Kocevski, D. D.; McIntosh, D. H.; Momcheva, I.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kartaltepe, J.; Koekemoer, A. M.; Lotz, J.; Maseda, M.; Mozena, M.; Nandra, K.; Rosario, D. J.; Zeimann, G. R.
2017-04-01
We select a sample of 44 clumpy galaxies from the Great Observatories Origins Deep Survey South (GOODS-S; Giavalisco et al. 2004ApJ...600L..93G) region of CANDELS. For comparison, we also construct mass-matched samples of 41 smooth (non-clumpy) and 35 intermediate galaxies. All galaxies have H<24 (to ensure reliable classification of clumpiness) and have [O III] detected at the 3σ level (for reliable AGN line ratio diagnostics) in the redshift range 1.3
The Intriguing Case of the (Almost) Dark Galaxy AGC 229385
NASA Astrophysics Data System (ADS)
Salzer, John
2015-10-01
The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.
Validating early stellar encounters as the cause of dynamically hot planetary systems
NASA Astrophysics Data System (ADS)
Kalas, Paul
2017-08-01
One of the key questions concerning exoplanetary systems is why some are dynamically cold, such as TRAPPIST-1, whereas others are dynamically hot, with highly eccentric planets and/or perturbed debris disks. Dynamical theory describes a variety of plausible mechanisms, but few can be empirically tested since the critical dynamical evolution that sets the final planetary architecture is short-lived. One rare system available for testing dynamical upheaval scenarios is the 400 Myr-old Fomalhaut system. In Cycle 22 we coronagraphically studied Fomalhaut C, which is a wide M-dwarf companion to Fomalhaut A, in order to test our prediction that the unresolved, Herschel-detected debris disk around Fomalhaut C may be highly perturbed because of a recent close interaction with Fomalhaut A. Using HST/STIS we discovered a highly asymmetric feature extending northward of Fomalhaut C by 3 that resembles our model of a dynamically hot disk. However, it may be a background galaxy and the definitive test of its physical relationship to Fomalhaut C is to demonstrate common proper motion. Using Keck adaptive optics follow-up observations in J band, we did not detect the feature, and hence follow-up HST observations are the only way to test for common proper motion. Here we request a very small program to revisit Fomalhaut C with STIS in order to validate the initial discovery as a debris disk (1 proper motion between HST epochs). The astrophysical significance is demonstrating that the Fomalhaut system is a valuable case for studying dynamical upheavals via stellar encounters that are inferred to occur in the evolution of many other planetary systems.
NASA Astrophysics Data System (ADS)
Wong, Michael
2015-10-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.
NASA Astrophysics Data System (ADS)
Treu, T.; Brammer, G.; Diego, J. M.; Grillo, C.; Kelly, P. L.; Oguri, M.; Rodney, S. A.; Rosati, P.; Sharon, K.; Zitrin, A.; Balestra, I.; Bradač, M.; Broadhurst, T.; Caminha, G. B.; Halkola, A.; Hoag, A.; Ishigaki, M.; Johnson, T. L.; Karman, W.; Kawamata, R.; Mercurio, A.; Schmidt, K. B.; Strolger, L.-G.; Suyu, S. H.; Filippenko, A. V.; Foley, R. J.; Jha, S. W.; Patel, B.
2016-01-01
Supernova “Refsdal,” multiply imaged by cluster MACS1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a timescale that is short compared to a human lifetime. In order to take advantage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. We compare the model predictions and show that they agree reasonably well with the measured time delays and magnification ratios between the known images, even though these quantities were not used as input. This agreement is encouraging, considering that the models only provide statistical uncertainties, and do not include additional sources of uncertainties such as structure along the line of sight, cosmology, and the mass sheet degeneracy. We then present the model predictions for the other appearances of supernova “Refsdal.” A future image will reach its peak in the first half of 2016, while another image appeared between 1994 and 2004. The past image would have been too faint to be detected in existing archival images. The future image should be approximately one-third as bright as the brightest known image (I.e., {H}{{AB}}≈ 25.7 mag at peak and {H}{{AB}}≈ 26.7 mag six months before peak), and thus detectable in single-orbit HST images. We will find out soon whether our predictions are correct.
Is the atmosphere of the extremely irradiated exoplanet WASP-43b in a blow-off state?
NASA Astrophysics Data System (ADS)
Pino, Lorenzo
2016-10-01
In the past months we have obtained evidence that an unusual phenomenon is happening in the atmosphere of one of the Hot Jupiters with shortest period. High-resolution spectroscopy from the ground reveals a transit spectrum where the sodium absorption signal from the planet peaks at 2-3%, which is larger than the planet transit depth in white light and 100 times larger than the well HST-established detection of sodium in HD 209458b (Charbonneau et al. 2002). Only in the UV have such large signatures been observed, for lighter hydrogen, carbon and oxygen atoms being blown-off by hydrodynamical atmospheric escape. So far, sodium atoms have never been observed higher than the thermosphere, where they should get promptly ionized.Analysis of ground-based data is challenging because the spectroscopic signatures can be mimicked by the Earth atmosphere, and a sophisticated removal of telluric contamination is necessary. Our observations show that an efficient telluric correction for this target, particularly faint in the sodium region, is impossible, making a space-based confirmation necessary. In a single transit, HST/STIS could obtain a 5-sigma confirmation of the signal. This detection would unambiguously show that the planetary atmosphere is in a state of extreme blow-off, with large exospheric densities allowing for a high recombination rate able to maintain sodium in a neutral state even high up in the atmosphere. This would represent the first constraint on atmospheric evaporation obtained in the optical, and would thus open a new, UV-independent path to the characterization of evaporating atmospheres, crucial in the post-HST era.
HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.
We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μ m, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μ m. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrummore » is well matched by a clear H{sub 2}-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.« less
First Earth-based Detection of a Superbolide on Jupiter
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B. E.; de Pater, I.; Orton, G. S.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.; Yanamandra-Fisher, P. A.
2010-10-01
On June 3, 2010 a bolide in Jupiter's atmosphere was observed from the Earth for the first time. The flash was detected by amateur astronomers A. Wesley and C. Go observing in two wavelength ranges. We present an analysis of the light curve of those observations that allow estimating the size of the object to be significantly smaller than the SL9 and the July 2009 Jupiter impact. Observations obtained a few days later by large telescopes including HST, VLT, Keck and Gemini showed no signature of the impact in Jupiter atmosphere confirming the small size of the impact body. A nearly continuous observation campaign based on several small telescopes by amateurs astronomers might allow an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. Acknowledgements: RH, ASL and SPH are supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. LNF is supported by a Glasstone Science Fellowship at the University of Oxford.
HUBBLE SEES CHANGES IN GAS SHELL AROUND NOVA CYGNI 1992
NASA Technical Reports Server (NTRS)
2002-01-01
The European Space Agency's ESA Faint Object Camera utilizing the corrective optics provided by NASA's COSTAR (Corrective Optics Space Telescope Axial Replacement), has given astronomers their best look yet at a rapidly ballooning bubble of gas blasted off a star. The shell surrounds Nova Cygni 1992, which erupted on February 19, 1992. A nova is a thermonuclear explosion that occurs on the surface of a white dwarf star in a double star system. The new HST image [right] reveals an elliptical and slightly lumpy ring-like structure. The ring is the edge of a bubble of hot gas blasted into space by the nova. The shell is so thin that the FOC does not resolve its true thickness, even with HST's restored vision. An HST image taken on May 31 1993, [left] 467 days after the explosion, provided the first glimpse of the ring and a mysterious bar-like structure. But the image interpretation was severely hampered by HST's optical aberration, that scattered light from the central star which contaminated the ring's image. A comparison of the pre and post COSTAR/FOC images reveals that the ring has evolved in the seven months that have elapsed between the two observations. The ring has expanded from a diameter of approximately 74 to 96 billion miles. The bar-like structure seen in the earlier HST image has disappear. These changes might confirm theories that the bar was produced by a dense layer of gas thrown off in the orbital plane of the double star system. The gas has subsequently grown more tenuous and so the bar has faded. The ring has also grown noticeably more oblong since the earlier image. This suggests the hot gas is escaping more rapidly above and below the system's orbital plane. As the gas continues escaping the ring should grow increasingly egg-shaped in the coming years. HST's newly improved sensitivity and high resolution provides a unique opportunity to understand the novae by resolving the effects of the explosion long before they can be resolved in ground based telescopes. Nova Cygni is 10,430 light years away (as measured directly from the ring's diameter), and located in the summer constellation Cygnus the Swan. Credit: F. Paresce, R. Jedrzejewski (STScI) NASA/ESA PHOTO RELEASE NO.: STScI-PR94-06
NASA Astrophysics Data System (ADS)
Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn
2016-08-01
We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18
Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31
1990-04-25
Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi
1988-07-01
The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less
Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Goodman, John L.; Walker, Stephen R.
2009-01-01
Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.
The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star
NASA Technical Reports Server (NTRS)
Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.;
2014-01-01
Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r'-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars. Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 solar mass.
Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.
2015-01-01
The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509
NASA Astrophysics Data System (ADS)
Jewitt, David
2017-08-01
Planet-crossing asteroid (3200) Phaethon, source of the Geminid meteoroid stream, will pass close to Earth in December 2017. Observations with HST are proposed to image debris ejected from this object at 1 AU heliocentric distance, to estimate the ejection velocities as the Earth passes through the orbit plane, and to estimate the dust production rate for comparison with the rates needed to sustain the Geminid stream in steady-state. These measurements will help determine the mechanism behind the ejection of the Geminids, a long-standing puzzle. While the release of micron-sized particles (probably by thermal fracture) has been recorded at Phaethon's perihelion (0.14 AU), mass loss has never been detected otherwise, raising the puzzle of the ejection mechanism and duration. The close approach (0.07 AU) on December 17 gives a once-in-a-lifetime opportunity to observe Phaethon at high sensitivity with a resolution of a few kilometers.
Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions
NASA Technical Reports Server (NTRS)
Salana, Farid; Tan, X.; Cami, J.; Remy, J.
2006-01-01
One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).
The SLUGGS Survey: HST/ACS Mosaic Imaging of the NGC 3115 Globular Cluster System
NASA Astrophysics Data System (ADS)
Jennings, Zachary G.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Lin, Dacheng; Irwin, Jimmy A.; Sivakoff, Gregory R.; Wong, Ka-Wah
2014-08-01
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R h measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a "blue tilt" in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger R h than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R h measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and bluemore » subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.« less
HST archive primer, version 4.1
NASA Technical Reports Server (NTRS)
Fruchter, A. (Editor); Baum, S. (Editor)
1994-01-01
This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.
The Ionization Source in the Nucleus of M84
NASA Technical Reports Server (NTRS)
Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.
2000-01-01
We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.
Searching for Young M Dwarfs with GALEX
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Liu, Michael C.; Reid, I. Neill; Dupuy, Trent; Weinberger, Alycia J.
2011-01-01
The census of young moving groups in the solar neighborhood is significantly incomplete in the low-mass regime. We have developed a new selection process to find these missing members based on the Galaxy Evolution Explorer (GALEX) All-Sky Imaging Survey (AIS). For stars with spectral types gsimK5 (R - J >~ 1.5) and younger than ≈300 Myr, we show that near-UV (NUV) and far-UV (FUV) emission is greatly enhanced above the quiescent photosphere, analogous to the enhanced X-ray emission of young low-mass stars seen by ROSAT but detectable to much larger distances with GALEX. By combining GALEX data with optical (HST Guide Star Catalog) and near-IR (2MASS) photometry, we identified an initial sample of 34 young M dwarf candidates in a 1000 deg2 region around the ≈10 Myr TW Hydra Association (TWA). Low-resolution spectroscopy of 30 of these found 16 which had Hα in emission, which were then followed up at high resolution to search for spectroscopic evidence of youth and to measure their radial velocities. Four objects have low surface gravities, photometric distances and space motions consistent with TWA, but the non-detection of Li indicates that they may be too old to belong to this moving group. One object (M3.5, 93 ± 19 pc) appears to be the first known accreting low-mass member of the ≈15 Myr Lower Centaurus Crux OB association. Two objects exhibit all the characteristics of the known TWA members, and thus we designate them as TWA 31 (M4.2, 110 ± 11 pc) and TWA 32 (M6.3, 53 ± 5 pc). TWA 31 shows extremely broad (447 km s-1) Hα emission, making it the sixth member of TWA found to have ongoing accretion. TWA 32 is resolved into a 0farcs6 binary in Keck laser guide star adaptive optics imaging. Our search should be sensitive down to spectral types of at least M4-M5 in TWA and thus the small numbers of new member is puzzling. This might indicate TWA has an atypical mass function or that the presence of lithium absorption may be too restrictive a criteria for selecting young low-mass stars. This paper is based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, the Keck II telescope, and the GALEX, 2MASS, and HST/GSC v2.3 photometric catalogs. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81
NASA Astrophysics Data System (ADS)
Reipurth, Bo
2017-08-01
Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.
Space telescope searches for black holes in galactic nuclei
NASA Technical Reports Server (NTRS)
Harms, Richard J.
1989-01-01
The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.
Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn
NASA Astrophysics Data System (ADS)
Gies, Douglas
2016-10-01
Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.
Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection*
NASA Astrophysics Data System (ADS)
Hallakoun, Na'ama; Maoz, Dan; Agol, Eric; Brown, Warren R.; Dufour, Patrick; Farihi, Jay; Gänsicke, Boris T.; Kilic, Mukremin; Kosakowski, Alekzander; Loeb, Abraham; Mazeh, Tsevi; Mullally, Fergal
2018-05-01
Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (˜10-4 - 10-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus, the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.
Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens
Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira
2017-01-01
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570
Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.
Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira
2017-01-01
ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.
Overview of HST observvations of Jupiter's ultraviolet aurora during Juno orbits 03 to 07
NASA Astrophysics Data System (ADS)
Grodent, D. C.; Bonfond, B.; Tao, Z.; Gladstone, R.; Gerard, J. C. M. C.; Radioti, K.; Clarke, J. T.; Nichols, J. D.; Bunce, E. J.; Roth, L.; Saur, J.; Kimura, T.; Orton, G.; Badman, S. V.; Mauk, B.; Connerney, J. E. P.; McComas, D. J.; Kurth, W. S.; Adriani, A.; Hansen, C. J.; Valek, P. W.; Palmaerts, B.; Dumont, M.; Bolton, S. J.; Levin, S.; Bagenal, F.
2017-12-01
Jupiter's permanent ultraviolet auroral emissions have been systematically monitored from Earth orbit with the Hubble Space Telescope (HST) during an 8-month period. The first part of this HST large program (GO-14634) was meant to coordinate with the NASA Juno mission during orbits 03 through 07. The HST program will resume in Feb 2018, in time for Juno's PJ11 perijove, right after HST's solar and lunar avoidance periods. HST observations are designed to provide a Jovian auroral activity background for all instruments on board Juno and for the numerous ground based and space based observatories participating to the Juno mission. In particular, several HST visits were programmed in order to obtain as many simultaneous observations with Juno-UVS as possible, sometimes in the same hemisphere, sometimes in the opposite one. In addition, the timing of some HST visits was set to take advantage of Juno's multiple crossings of the current sheet and of the magnetic field lines threading the auroral emissions. These observations are obtained with the Space Telescope Imaging Spectrograph (STIS) in time-tag mode. They consist in spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. Here, we present an overview of the present -numerous- HST results. They demonstrate that while Jupiter is always showing the same basic auroral components, it is also displaying an ever-changing auroral landscape. The complexity of the auroral morphology is such that no two observations are alike. Still, in this apparent chaos some patterns emerge. This information is giving clues on magnetospheric processes at play at the local and global scales, the latter being only accessible to remote sensing instruments such as HST.
NASA Technical Reports Server (NTRS)
Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.
1994-01-01
Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.
The HST Lightcurve of (486958) 2014 MU69
NASA Astrophysics Data System (ADS)
Benecchi, Susan D.; Buie, Marc W.; Porter, Simon Bernard; Spencer, John R.; Verbiscer, Anne J.; Stern, S. Alan; Zangari, Amanda Marie; Parker, Alex; Noll, Keith S.
2017-10-01
To optimally plan the fly-by sequencing of (486958) 2014 MU69 for the New Horizons spacecraft it is critical to determine, to the best of our ability, if the object is binary (as is the case for ~20% of cold classical KBOs in this size range), the rotation period, size and shape of the body. Existing HST astrometric datasets placed constraints on its diameter (21-41 km for an albedo of 0.15-0.04) and orbit, and early photometry suggested that a lightcurve with an amplitude of up to ~0.6 mags could be hidden within the measurement uncertainties. However, the sampling interval of this dataset made it impossible to further refine those estimates. We therefore designed an HST lightcurve program to be executed near its opposition in July 2017 (GO 14627, PI Benecchi) when 486958 would be brightest and provide the highest S/N data. We collected data using the WFC3 camera in the F350LP filter using an exposure time of 367 seconds and tracking on the object. 5 images were collected during each HST orbit and orbits were scheduled in groups of six. The 1st two sets of 6 orbits were separated by 0.6 days, the 2nd and 3rd by 1.4 days and the 3rd and 4th by 5.5 days. This allowed us to search for a range of periods from a few to a few tens of hours; combined with the astrometric photometry even longer periods can be investigated.The data were analyzed using two different PSF fitting techniques (an MCMC model and a TinyTim matching algorithm) which gave similar results. The lightcurve amplitude was found to be <0.15 magnitudes for any period that we could fit to the data. This places significant constraints on the axis ratio of 486958 to <1.14 assuming an equatorial view. This means that the timing of the fly-by does not need to be adjusted to look at the "larger" axis of the object, simplifying the engineering of the fly-by significantly. The small amplitude makes it difficult to uniquely identify the rotation period at this time. Stacking all of the images from this campaign allows us to search for binary companions to a depth of >29th magnitude. At first analysis we do not identify any companions. This work was made possible through a STScI grant under NASA contract NAS5-26555.
High Speed Trimaran (HST) Seatrain Experiments, Model 5714
2013-12-01
Marine Highway 1 Historical Seatrains 1 Objectives 2 Hull &: Model Description 4 Data Acquisition and Instrumentation 7 Carriage II - Deep ...Operational Demonstration Measurement System 10 Experimental Procedures 10 Carriage II - Deep Water Basin Test 10 Calm Water Resistance 11... Deep Water Basin Analysis 17 Calm Water Resistance 17 Longitudinal Flow Through The Propeller Plane 18 Body Forces & Moments 18
History of Hubble Space Telescope (HST)
2006-06-09
In the 19th century, astronomer V. M. Slipher first discovered a hat-like object that appeared to be rushing away from us at 700 miles per second. This enormous velocity offered some of the earliest clues that it was really another galaxy, and that the universe was expanding in all directions. The trained razor sharp eye of the Hubble Space Telescope (HST) easily resolves this Sombrero galaxy, Messier 104 (M104). The galaxy is 50,000 light-years across and is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. At a relatively bright magnitude of +8, M104 is just beyond the limit of naked-eye visibility and is easily seen through small telescopes. This rich system of globular clusters are estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. The ages of the clusters are similar to the clusters in the Milky Way, ranging from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. X-ray emission suggests that there is material falling into the compact core, where a 1-billion-solar-mass black hole resides. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.
Establishing a Network of faint DA white dwarfs as Spectrophotometric Standards
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Narayan, Gautham; Holberg, Jay; Matheson, Thomas; Olszewski, Edward; Stubbs, Christopher; Bohlin, Ralph; Sabbi, Elena; Deustua, Susana; Rest, Armin; Axelrod, Tim; MacKenty, John W.; Camarota, Larry; Gilliland, Ron
2015-08-01
Systematic uncertainties in photometric calibration are the dominant source of error in current type Ia supernova dark energy studies, as well as other forefront cosmology efforts, e.g. photo-redshift determinations for weak lensing mass tomography. Current and next-generation ground-based all-sky surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously take into account filter differences), and 2) that are on a common photometric zeropoint scale across the sky to sub-percent accuracy. We are using a combination of HST panchromatic photometry and ground based spectroscopy to establish such an essential network of faint primary photometric standards, exploiting the well-understood spectral energy distributions of DA white dwarf stars that are free from the complications of observing through the Earth's time-variable atmosphere. The Balmer features in the spectra are used to deduce the two parameters (temperature and log(g)) from which we model the spectral energy distribution (SED) from these stars which have pure hydrogen atmospheres. By comparing against panchromatic broadband HST photometry, and allowing for an achromatic zero-point adjustment and mild scaling of the interstellar reddening, we find that model prediction and observation agree to a few milli-mag. By combining the zero-point and reddening adjustments with the modeled SED, for each star we obtain the incident SED above the terrestrial atmosphere, thus establishing these objects as spectrophotometric standards. We are pursuing 23 objects between 16 and 19 mag spread over the sky uniformly around the equator and northern mid-latitudes, with plans to extend this to southern latitudes. This precision photometric heritage from HST will benefit essentially all existing and upcoming survey projects, and in prticular, directly addresses one of the current barriers to understanding the nature of dark energy.
Path to a UV/Optical/IR Flagship: Review of ATLAST and Its Predecessors
NASA Technical Reports Server (NTRS)
Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Oegerle, William; Rioux, Norman; Stahl, H. Philip; Stapelfeldt, Karl
2016-01-01
Our recently completed study for the Advanced Technology Large-Aperture Space Telescope (ATLAST) was the culmination of three years of initially internally funded work that built upon earlier engineering designs, science objectives, and technology priorities. Beginning in the mid-1980s, multiple teams of astronomers, technologists, and engineers developed concepts for a large-aperture UV/optical/IR space observatory intended to follow the Hubble Space Telescope (HST). Here, we summarize since the first significant conferences on major post-HST ultraviolet, optical, and infrared (UVOIR) observatories the history of designs, scientific goals, key technology recommendations, and community workshops. Although the sophistication of science goals and the engineering designs both advanced over the past three decades, we note the remarkable constancy of major characteristics of large post-HST UVOIR concepts. As it has been a priority goal for NASA and science communities for a half-century, and has driven much of the technology priorities for major space observatories, we include the long history of concepts for searching for Earth-like worlds. We conclude with a capsule summary of our ATLAST reference designs developed by four partnering institutions over the past three years, which was initiated in 2013 to prepare for the 2020 National Academies' Decadal Survey.
High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry
NASA Astrophysics Data System (ADS)
Schneider, G.; Hines, D. C.
2007-06-01
HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.
Systems Engineering and Integration for Advanced Life Support System and HST
NASA Technical Reports Server (NTRS)
Kamarani, Ali K.
2005-01-01
Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
Confirmation and characterization of young planetary companions hidden in the HST NICMOS archive
NASA Astrophysics Data System (ADS)
Pueyo, Laurent
2013-10-01
We propose to conduct WFC3 high contrast observations of six faint planetary candidates orbiting young {1 to 100 Myrs} stars identified in archival HST NICMOS coronagraphic data as part of our team's program AR-12652. Such rare objects are of the utmost importance to comparative exo-planetology as their physical properties reflect the initial conditions of still poorly constrained planetary formation mechanisms. Moreover directly imaged systems are precious artifacts in the expanding exo-planetary treasure trove as they are readily available for spectroscopic characterization. Our statistical analysis, which combines population synthesis models and empirical inspections of the entire NICMOS field of view for all sources observed in coronaraphic mode, almost guarantees that one of these six faint candidates is associated with its putative host star. We will conduct our observation in four near infrared filter, F125W, F160W to establish the baseline luminosity of our candidates and in F127M and F139M in order to probe the depth their water absorption features, characteristic of substellar /exo-planetary like atmospheres. Because of the youth of our targets, this program, which only requires a modest 12 HST orbits, will almost certainly identify and image a young or adolescent exo-planet.
STS-109 Crew Interviews - Linnehan
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 Mission Specialist 3 (MS3) Richard M. Linnehan is seen during a prelaunch interview. He answers questions about his lifelong desire to become an astronaut and his career path, which included becoming a zoo veterinarian. He gives details on the Columbia Orbiter mission, which has as its main purpose the maintenance and augmentation of the Hubble Space Telescope (HST). As MS3, his primary role in the mission pertains to EVAs (Extravehicular Activities) 1, 3, and 5. During EVA 1, Linnehan and another crewmember will replace one of two flexible solar arrays on the HST with a smaller, more efficient rigid solar array. The second solar array will be replaced on EVA 2 by other crewmembers. EVA 3 will involve the replacement of the Power Control Unit (PCU), and will require the first complete powering down of HST since its deployment. The possibility of a serious problem occurring is greatest during this portion of the mission because the original PCU was not built to be replaced. In EVA 5, Linnehan and another crewmember will install a replacement cooling system on NICMOS (Near Infrared Camera Multi-Object Spectrometer), which has not been operational. Linnehan discusses his role during the mission as well as that of his crewmates, and provides an abbreviated timeline, including possible contingencies.
Astronaut Anna Fisher Suiting Up For NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher Suited Up For NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher Suited Up For NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall SPace Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher Suits Up for NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher Suiting Up For NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher in NBS Training For Hubble Space Telescope
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.
Astronaut Anna Fisher Suits Up For NBS Training
NASA Technical Reports Server (NTRS)
1980-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.
Neutral Buoyancy Test - Hubble Space Telescope Scientific Instruments (SI)
NASA Technical Reports Server (NTRS)
1979-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the first and flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator that served as the test center for shuttle astronauts training for Hubble related missions. Shown is an astronaut training on a mock-up of a modular section of the HST in the removal and replacement of scientific instruments.
Version 1 of the Hubble Source Catalog
NASA Astrophysics Data System (ADS)
Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.
2016-06-01
The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.
NASA Astrophysics Data System (ADS)
Pharo, John; Malhotra, Sangeeta; Rhoads, James; Ryan, Russell; Tilvi, Vithal; Pirzkal, Norbert; Finkelstein, Steven; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Zheng, Zhenya; Hathi, Nimish; Kim, Keunho; Joshi, Bhavin; Yang, Huan; Christensen, Lise; Cimatti, Andrea; Gardner, Jonathan P.; Zakamska, Nadia; Ferreras, Ignacio; Hibon, Pascale; Pasquali, Anna
2018-04-01
We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope (HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.
A Closer Look at the Alpha Persei Coronal Conundrum
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
2017-03-01
A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si IV unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope (HST) Wide-Field Camera 3 searched for any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si IV emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.
Roth, Lorenz; Retherford, Kurt D; Saur, Joachim; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis
2014-12-02
We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×10(15) cm(-2). Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.
NASA Astrophysics Data System (ADS)
Roth, Lorenz; Retherford, Kurt D.; Saur, Joachim; Strobel, Darrell F.; Feldman, Paul D.; McGrath, Melissa A.; Nimmo, Francis
2014-12-01
We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×1015 cm-2. Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.
STS-109 Mission Highlights Resource Tape
NASA Astrophysics Data System (ADS)
2002-05-01
This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.
History of Hubble Space Telescope (HST)
1986-01-01
This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Using AI/expert system technology to automate planning and replanning for the HST servicing missions
NASA Technical Reports Server (NTRS)
Bogovich, L.; Johnson, J; Tuchman, A.; Mclean, D.; Page, B.; Kispert, A.; Burkhardt, C.; Littlefield, R.; Potter, W.
1993-01-01
This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission.
Results of a hubble space telescope search for natural satellites of dwarf planet 1 ceres
NASA Astrophysics Data System (ADS)
DeMario, Benjamin E.; Schmidt, Britney E.; Mutchler, Max J.; Li, Jian-Yang; McFadden, Lucy A.; McLean, Brian J.; Russell, Christopher T.
2016-12-01
In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April-28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 m, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 m.
Star Formation in High Redshift Galaxies with Cluster Lenses as Cosmic Telescopes
NASA Astrophysics Data System (ADS)
Bradac, Marusa
2014-07-01
In the recent years HST enabled us to detect galaxies as far as z~11. They are likely beacons of the epoch of reionization, which marked the end of the so-called ``Dark Ages'' and signified the transformation of the universe from opaque to transparent. However very little is known about those galaxies, and a confirmation of their redshift is still out of our hands. TMT will be a major powerhorse in this endeavor in the future. In addition, clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding highest-z galaxies. With a massive cluster one can gain several magnitudes of magnification over a typical observing field, enabling imaging and spectroscopic studies of intrinsically lower-luminosity galaxies than would otherwise be observable, even with the largest telescopes. We are involved and leading several large surveys (SURFS UP for Spitzer imaging, GLASS for HST spectrscopy, and Frontier Field initiative for ultra deep HST imaging) with the main goal of identifying and studying star formation of galaxies at z=1-11. I will present first results from these surveys, show successful measurements of SFR at z~7 and beyond, and discuss the role TMT will be playing in exploring epoch of reionization.
Physical properties of gas disks around shell stars with and without dust
NASA Technical Reports Server (NTRS)
Grady, Carol A.
1992-01-01
Analysis of archival IRAS and IUE data has resulted in: (1) identification of 8 new A star proto-planetary candidates; (2) detection of a mass outflow event around Beta Pic (subsequently confirmed by the 1991 July HST observation); and (3) confirmation of the suggestion by Waters et al. (1988) that 51 Oph is a protoplanetary system similar to beta Pic with the detection of high density, high velocity, collisionally ionized accreting gas in the line of sight toward this star.
History of Hubble Space Telescope (HST)
1998-01-01
This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.
Hubble Space Telescope electrical power system
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Bush, John R., Jr.
1990-01-01
The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.
Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era
NASA Astrophysics Data System (ADS)
Stark, Daniel
2017-08-01
The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.
NASA Astrophysics Data System (ADS)
Davies, Frederick
2017-08-01
The epoch of helium reionization was a major milestone in the history of the Universe, a direct consequence of supermassive black hole growth and the cumulative output of hard ionizing photons by quasars. Our observations of the He II Ly-alpha forest with HST/COS in 26 quasar sightlines show strong fluctuations at z 3, consistent with our state-of-the-art simulations of the He II reionization epoch. However, our detection of transmission at z > 3.5 is inconsistent with all He II reionization models. Resolving this puzzle requires an extensive parameter study of He II reionization, which we propose to carry out using our fast, efficient simulations. The He II Ly-alpha forest is also sensitive to the effect of quasar radiation illuminating the intergalactic medium, known as the proximity effect. We have performed an ambitious ground-based imaging and spectroscopic survey for z 3 quasars in the foreground of HeII sightlines observed with HST/COS, and statistically detected the transverse proximity effect for the first time. The strength of this effect depends on both the quasar lifetime and the opening angle of quasar emission (or the fraction of obscured quasars), and we propose to use our He II reionization simulations to interpret this new measurement. Finally, the line-of-sight proximity effect due to the background quasar provides an independent constraint on the quasar lifetime. Our preliminary comparison of He II spectra to our radiative transfer simulations suggests a quasar lifetime > 10 Myr. We propose to use our He II reionization simulations to model this diverse set of observations and fully capitalize on the far-UV legacy of HST.
IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.
We present results of a Hubble Space Telescope (HST) far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion that is hot and luminous enough to be directlymore » detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000 and 12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color–magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%.« less
NASA Astrophysics Data System (ADS)
Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan
2018-05-01
The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.
Collecting the Puzzle Pieces: Completing HST's UV+NIR Survey of the TRAPPIST-1 System ahead of JWST
NASA Astrophysics Data System (ADS)
de Wit, Julien
2017-08-01
Using the Spitzer Space Telescope, our team has discovered 7 Earth-sized planets around the nearby Ultra-cool dwarf star TRAPPIST-1. These planets are the first to be simultaneously Earth-sized, temperate, and amenable for in-depth atmospheric studies with space-based observatories (notably, JWST). TRAPPIST-1's system thus provides us with the first opportunity to probe the atmospheres of Earth-sized exoplanets and search for signs of habitability beyond our solar system, which will require spectral information from the UV to the IR to complete their atmospheric puzzles.We request 114 HST orbits to complete the UV+NIR survey of the 7 planets in preparation for their in-depth followup with JWST. The suggested low-density of the planets combined with their complex orbital resonance chain indicate that they migrated inward to their current positions and may harbor large water rich reservoir or leftover primordial H2 atmospheres. We have already ruled out the presence of clear H2 atmospheres for the 5 innermost planets using WFC3 and are requesting 16 WFC3 orbits to complete the TRAPPIST-1 NIR reconnaissance survey. Our primary request consists in 98 STIS orbits to complete the survey for extended H-exospheres around each of the planets. H-exospheres are the most accessible observables for volatile reservoirs, which have not been ruled out by our WFC3 observations. Exosphere detection is only amenable using HST unique capabilities in the UV and are pivotal to guide JWST's in-depth followup. The combined information from HST's UV and NIR observations will allow us put the first critical pieces of the atmospheric puzzle in place for these temperate earth-sized worlds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchi, Luciana; Efremova, Boryana; Hodge, Paul
We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first sixmore » galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.« less
Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves
NASA Astrophysics Data System (ADS)
Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.
2016-03-01
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.
Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves
NASA Technical Reports Server (NTRS)
Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.
2016-01-01
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.
Che, Jun; Smith, Stephanie; Kim, Yoo Jung; Shim, Eun Yong; Myung, Kyungjae; Lee, Sang Eun
2015-01-01
Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. PMID:25705897
NASA Astrophysics Data System (ADS)
Swade, D. A.; Gardner, L.; Hopkins, E.; Kimball, T.; Lezon, K.; Rose, J.; Shiao, B.
STScI has undertaken a project to place all HST keyword information in one source, the keyword database, and to provide a mechanism for making this keyword information accessible to all HST users, the keyword dictionary, which is a WWW interface to the keyword database.
A simple prescription for simulating and characterizing gravitational arcs
NASA Astrophysics Data System (ADS)
Furlanetto, C.; Santiago, B. X.; Makler, M.; de Bom, C.; Brandt, C. H.; Neto, A. F.; Ferreira, P. C.; da Costa, L. N.; Maia, M. A. G.
2013-01-01
Simple models of gravitational arcs are crucial for simulating large samples of these objects with full control of the input parameters. These models also provide approximate and automated estimates of the shape and structure of the arcs, which are necessary for detecting and characterizing these objects on massive wide-area imaging surveys. We here present and explore the ArcEllipse, a simple prescription for creating objects with a shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a Sérsic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+Sérsic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor that prevents ArcEllipse models from accurately describing real lensed systems.
Lyman-alpha fractions in the Hubble Ultra Deep Field at 4 < z < 6
NASA Astrophysics Data System (ADS)
Harish, Santosh; Malhotra, Sangeeta; Rhoads, James; Christensen, Lise; Tilvi, Vithal; Finkelstein, Steven; Pharo, John
2018-01-01
Lyman-alpha (Lya) emitting galaxies at high-redshifts serve as a good probe of neutral hydrogen in the intergalactic medium (IGM). Here we present measurements of the Lya fraction using a sample of Lyman-break galaxies (LBGs) between 4 < z < 6 with deep HST grism observations from the GRAPES/PEARS projects as well as spectroscopic observations from the MUSE integral-field spectrograph. The sample of LBGs at z~5 & 6 are spectroscopically confirmed with deep HST grism data from the GRAPES and PEARS projects. We also measure Lya fractions using a sample of photometrically-selected LBGs for the same redshift range. In addition, we study the EW distribution in relation to continuum and line luminosities, as well as the relation between photometric and spectroscopic redshift. We find that objects with higher EWs tend to have larger differences between photometric and spectroscopic redshifts.
Flight Test Results for the HST Orbital Systems Test (HOST) Capillary Pump Loop Cooling System
NASA Technical Reports Server (NTRS)
Buchko, M.; Kaylor, M.; Kroliczek, E.; Ottenstein, L.
1999-01-01
The Near Infrared Camera and Multi Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope (MST) in February 1997. Shortly thereafter, the instrument experienced a thermal short in its solid nitrogen dewar system which will significantly shorten the instrument's useful life. A reverse Brayton cycle mechanical refrigerator will be installed during the Third Servicing Mission (SM3) to provide cooling for the instrument, and thereby extend its operations. A Capillary Pump Loop (CPL) and radiator system was designed, built and tested to remove up to 500 watts of heat from the mechanical cryocooler and its associated electronics. The HST Orbital Systems Test (HOST) platform was flown on the Space Shuttle Discovery (STS-95) as a flight demonstration of the cryocooler system, CPL control electronics, and the CPL/Radiator. This paper will present the flight test results and thermal performance of the CPL system in detail.
VizieR Online Data Catalog: Antennae galaxies (NGC 4038/4039) revisited (Whitmore+, 2010)
NASA Astrophysics Data System (ADS)
Whitmore, B. C.; Chandar, R.; Schweizer, F.; Rothberg, B.; Leitherer, C.; Rieke, M.; Rieke, G.; Blair, W. P.; Mengel, S.; Alonso-Herrero, A.
2012-06-01
Observations of the main bodies of NGC 4038/39 were made with the Hubble Space Telescope (HST), using the ACS, as part of Program GO-10188. Multi-band photometry was obtained in the following optical broadband filters: F435W (~B), F550M (~V), and F814W (~I). Archival F336W photometry of the Antennae (Program GO-5962) was used to supplement our optical ACS/WFC observations. Infrared observations were made using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) camera on HST as part of Program GO-10188. Observations were made using the NIC2 camera with the F160W, F187N, and F237M filters, and the NIC3 camera with the F110W, F160W, F164W, F187N, and F222M filters. (10 data files).
The 3D morphology of the ejecta surrounding VY Canis Majoris
NASA Astrophysics Data System (ADS)
Jones, Terry Jay; Humphreys, Roberta M.; Helton, L. Andrew
2007-03-01
We use second epoch images taken with WFPC2 on the HST and imaging polarimetry taken with the HST/ACS/HRC to explore the three dimensional structure of the circumstellar dust distribution around the red supergiant VY Canis Majoris. Transverse motions, combined with radial velocities, provide a picture of the kinematics of the ejecta, including the total space motions. The fractional polarization and photometric colors provide an independent method of locating the physical position of the dust along the line-of-sight. Most of the individual arc-like features and clumps seen in the intensity image are also features in the fractional polarization map, and must be distinct geometric objects. The location of these features in the ejecta of VY CMa using kinematics and polarimetry agree well with each other, and strongly suggest they are the result of relatively massive ejections, probably associated with magnetic fields.
The Path to a UV/optical/IR Flagship: ATLAST and Its Predecessors
NASA Technical Reports Server (NTRS)
Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Oegerle, William; Postman, Marc; Rioux, Norman; Stahl, H. Philip; Stapelfeldt, Karl
2016-01-01
The recently completed study for the Advanced Technology Large-Aperture Telescope (ATLAST) was the culmination of three years of work that built upon earlier engineering designs, science objectives, and sustained recommendations for technology investments. Since the mid-1980s, multiple teams of astronomers, technologists, and engineers have developed concepts for a large-aperture UV/optical/IR space observatory to follow the Hubble Space Telescope (HST). Especially over the past decade, technology advances and exciting scientific results has led to growing support for development in the 2020s of a large UVOIR space observatory. Here we summarize the history of major mission designs, scientific goals, key technology recommendations, community workshops and conferences, and recommendations to NASA for a major UV/optical/IR observatory to follow HST. We conclude with a capsule summary of the ATLAST reference design developed over the past three years.
STS-109 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
Footage of the eighth day of STS-109 is shown during which Mission Specialists John Grunsfeld and Rick Linnehan service the Hubble Space Telescope (HST). A broad overview of the Columbia Orbiter mission is presented. On the fifth extravehicular activity (EVA) of the mission, Grunsfeld and Linnehan installed a new cryogenic cooling system and radiator on HST for NICMOS (Near Infrared Camera and Multi-Object Spectrometer) which had not been previously operational due to the failure of an earlier cooling system. Linnehan and Grunsfeld are both shown on the end of the Orbiter's robot arm, the Remote Manipulator System, which was controlled by Commander Scott Altman. Following the completion of their spacewalks, the two Mission Specialists make statements which include thanking the numerous support personnel. Linnehan answers questions on the differences between training simulation at facilities such as the Neutral Buoyancy Lab (NBL) and his actual experiences in space.
Ultraviolet and optical spectral morphology of Melnick 42 and Radcliffe 136a in 30 Doradus
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Ebbets, Dennis C.; Parker, Joel WM.; Nichols-Bohlin, Joy; White, Richard L.
1992-01-01
HST/GHRS ultraviolet spectrograms of the individual O3 If*/WN6-A object Mk 42 in 30 Dor and the adjacent, central multiple system R136a are compared with each other and with an appropriate sequence of O3 If* and WN6-A standards from the IUE archive. The analogous spectral montages covering the blue-violet regino, based on new, homogeneous, digital observations of the same stars with the CTIO 4 m telescope, are also presented. These comparisons show clearly the intermediate O3/WN nature of the Mk 42 spectrum, in terms of both emission-line strength (increasing with envelope density) and stellar-wind velocity (decreasing with envelope density). It is also shown that R136a possesses stronger WN spectral characteristics than Mk 42, in agreement with HST narrow-band imaging by the WF/PC Team.
Sakai, Hiroyasu; Tabata, Shoko; Kimura, Minami; Yabe, Saori; Isa, Yosuke; Kai, Yuki; Sato, Fumiaki; Yumoto, Tetsuro; Miyano, Kanako; Narita, Minoru; Uezono, Yasuhito
2017-01-01
5-Fluorouracil (5-FU) is widely used as an anti cancer drug and is known to cause severe diarrhea. Recently we suggested that levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and neutrophil recruitment in the colonic mucosa were drastically increased by the 5-FU administration in mice. Hange-shashin-to (HST) is prescribed in Japan for treat gastritis, stomatitis, and inflammatory diarrhea. We therefore examined the effects of HST and its active ingredients on 5-FU-induced CXCL1 upregulation in cultured colon tissue, and also examined the effects of HST on 5-FU-induced diarrhea development in the mouse. The distal colon isolated from the mouse was incubated with 5-FU and HST. Mice were given 5-FU (50 mg/kg, intraperitoneally (i.p.)) daily for four days. HST (300 mg/kg, per os (p.o.)) was administered 30 min before mice received 5-FU. mRNA levels of CXCL1 in the colon were examined using quantitative RT-PCR. 5-FU enhanced CXCL1 mRNA in the colon but the effect by 5-FU was markedly suppressed by application of HST and its active ingredients, baicalein and 6-gingerol. Nuclear factor kappa B (NF-κB) was activated by 5-FU treatment in cultured colon tissue, which was also suppressed by HST and the combination of baicalein and 6-gingerol. Furthermore, HST reduced 5-FU-induced diarrhea development. Under such experimental condition, CXCL1 gene, protein levels of neutrophil elastase and myeloperoxidase upregulation induced by 5-FU in the colon was attenuated by HST. These findings suggest that HST, especially baicalein and 6-gingerol, prevent the development of neutrophil recruitment and diarrhea by the inhibition of NF-κB activity.
Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia
NASA Astrophysics Data System (ADS)
Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.
2018-02-01
The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.
Near-ultraviolet imaging of Jupiter's satellite Io with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Paresce, F.; Sartoretti, P.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.
1992-01-01
The surface of Jupiter's Galilean satellite Io has been resolved for the first time in the near ultraviolet at 2850 A by the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The restored images reveal significant surface structure down to the resolution limit of the optical system corresponding to approximately 250 km at the sub-earth point.
Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC
NASA Technical Reports Server (NTRS)
1989-01-01
A technician listens to instructions as he operates the controls for the overhead crane that is lifting one of the Hubble Space Telescope (HST) high gain antennas (HGAs) into place on the HST Support System Module (SSM) forward shell. Others in a cherry picker basket wait to install the HGA on the SSM mockup. The HST mockup will be used for astronaut training and is being assembled in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.
3D-HST Grism Spectroscopy of a Gravitationally Lensed, Low-metallicity Starburst Galaxy at z = 1.847
NASA Astrophysics Data System (ADS)
Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; da Cunha, Elisabete; Erb, Dawn K.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica; Patel, Shannon; Quadri, Ryan; Rix, Hans-Walter; Skelton, Rosalind E.; Schmidt, Kasper B.; van der Wel, Arjen; van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.
2012-10-01
We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ~108 M ⊙, sSFR ~ 100 Gyr-1, and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size re ~300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey. Based on observations made with the NASA/ESA Hubble Space Telescope, program 12328, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
NASA Technical Reports Server (NTRS)
Ramsey, Susan; Rajulu, Sudhakar
2000-01-01
The Hubble Space Telescope (HST) was deployed from the Space Shuttle Discovery on April 25, 1990. It is capable of performing observations in the visible, near-ultraviolet, and near-infrared (1150 A to 1 mm). The HST weighs 12 tons, and collects light with an 8-ft-diameter mirror. The attitude control and maneuvering is performed by four of six gyroscopes, or reaction wheels. The HST contains fine guidance sensors that lock onto guide stars to reduce the spacecraft drift and increase the pointing accuracy. The HST was designed to last 15 years, with crewed service missions approximately every three years. The first service mission, STS-61, took place in 1993. The second service mission took place in 1997. In 1999, the STS-103 crew performed the third service mission to the HST. This mission's purpose was to replace the right sensor units and make improvements on the fine guidance sensors. To perform these tasks on the HST, the STS-103 crewmembers used a portable foot restraint to anchor themselves to the HST in the zero-gravity environment. The solar arrays currently used on the telescope are second-generation, and therefore susceptible to loads placed on the telescope. The crew and Mission Operations Directorate worried about the damage that the crew could possibly cause during ingress and egress of the PFR and by transferring loads to the solar arrays. The purpose of this study is to inform the crewmembers of the loads they are imparting on the HST, and train them to decrease these loads to a safer level. Minimizing these loads will significantly decrease the chance of crewmembers causing damage to the solar arrays while repairing the HST.
The Lightcurve of New Horizons Encounter TNO 2014 MU69
NASA Astrophysics Data System (ADS)
Benecchi, Susan
2016-10-01
The New Horizons spacecraft was recently redirected to encounter the Transneptunian Object (TNO) 2014 MU69 on 1 January 2019. In order to optimally plan the fly-by sequencing, we must learn as much about this object in advance of the encounter as possible. In particular, it is critical that we determine, to the best of our ability, if the object is binary (as is the case for 20% of cold classical TNOs in this size range), the rotation period and shape of the body. All of these parameters influence the encounter design and timing. Existing and proposed HST astrometric datasets constrain its diameter (21-41 km for an albedo of 0.15-0.04) and orbit, and suggest a rotational lightcurve amplitude of >0.3 mags, but cannot determine the rotation period or lightcurve shape. To that end we propose to use 24 HST orbits over 4 days to measure the lightcurve amplitude of 2014 MU69, and constrain its rotation period to better than 5%. 2014 MU69's orbit identifies it as very typical member of the cold classical TNO population. This makes it an ideal target for our spacecraft mission because close-up observations obtained of 2014 MU69 can be extrapolated to understand the cold classical population as a whole, which is the most primitive and least disturbed part of the Kuiper Belt.
Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune
NASA Technical Reports Server (NTRS)
Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.
2012-01-01
As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.
A Decade of Hubble Space Telescope Science
NASA Astrophysics Data System (ADS)
Livio, Mario; Noll, Keith; Stiavelli, Massimo
2003-06-01
1. HST studies of Mars J. F. Bell; 2. HST images of Jupiter's UV aurora J. T. Clarke; 3. Star formation J. Bally; 4. SN1987A: the birth of a supernova remnant R. McCray; 5. Globular clusters: the view from HST W. E. Harris; 6. Ultraviolet absorption line studies of the Galactic interstellar medium with the Goddard High Resolution Spectrograph B. D. Savage; 7. HST's view of the center of the Milky Way galaxy M. J. Rieke; 8. Stellar populations in dwarf galaxies: a review of the contribution of HST to our understanding of the nearby universe E. Tolstoy; 9. The formation of star clusters B. C. Whitmore; 10. Starburst galaxies observed with the Hubble Space Telescope C. Leitherer; 11. Supermassive black holes F. D. Macchetto; 12. The HST Key Project to measure the Hubble Constant W. L. Freedman, R. C. Kennicutt, J. R. Mould and B. F. Madore; 13. Ho from Type Ia Supernovae G. A. Tammann, A. Sandage and A. Saha; 14. Strong gravitational lensing: cosmology from angels and redshifts A. Tyson.
Deep space target location with Hubble Space Telescope (HST) and Hipparcos data
NASA Technical Reports Server (NTRS)
Null, George W.
1988-01-01
Interplanetary spacecraft navigation requires accurate a priori knowledge of target positions. A concept is presented for attaining improved target ephemeris accuracy using two future Earth-orbiting optical observatories, the European Space Agency (ESA) Hipparcos observatory and the Nasa Hubble Space Telescope (HST). Assuming nominal observatory performance, the Hipparcos data reduction will provide an accurate global star catalog, and HST will provide a capability for accurate angular measurements of stars and solar system bodies. The target location concept employs HST to observe solar system bodies relative to Hipparcos catalog stars and to determine the orientation (frame tie) of these stars to compact extragalactic radio sources. The target location process is described, the major error sources discussed, the potential target ephemeris error predicted, and mission applications identified. Preliminary results indicate that ephemeris accuracy comparable to the errors in individual Hipparcos catalog stars may be possible with a more extensive HST observing program. Possible future ground and spacebased replacements for Hipparcos and HST astrometric capabilities are also discussed.
Observing supernova 1987A with the refurbished Hubble Space Telescope.
France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig
2010-09-24
Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.
Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations
NASA Astrophysics Data System (ADS)
Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.
2018-06-01
Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.
Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2013-10-01
Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.
Young massive star clusters in the era of HST and integral field spectroscopy
NASA Astrophysics Data System (ADS)
Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna
2018-01-01
With an age of 1 – 2 Myr at a distance of 4 kpc and a total stellar mass of 3.7×104 M⊙, Westerlund 2 (Wd2) is one of the most massive young star clusters in the Milky Way. We present a detailed analysis of its prominent pre-main-sequence population using the data of a high-resolution multi-band survey in the optical and near-infrared with the Hubble Space Telescope (HST), in combination with our spectroscopic survey, observed with the VLT/MUSE integral field unit. With our derived high-resolution extinction map of the region, which is absolutely essential giving the dominating presences of the gas and dust, we derived the spatial dependence of the mass function and quantify the degree of mass segregation down to 0.65 M⊙ with a completeness level better than 50%. Studying the radial dependence of the mass function of Wd2 and quantifying the degree of mass segregation in this young massive star cluster showed that it consists of two sub-clumps, namely the main cluster and the northern clump. From the MUSE data, we can extract individual stellar spectra and spectral energy distributions of the stars, based on the astrometry, provided by our high-resolution HST photometric catalog. This data will provide us with an almost complete spectral classification of a young massive star cluster down to 1.0 M⊙. The combination of the MUSE data, together with 3 more years of approved HST data will allow us to obtain, for the first time, the 3D motions of the stars with an accuracy of 1-2 km s-2 to determine the stellar velocity dispersion in order to study the fate of Wd2. This information is of great importance to adjust the initial conditions in cluster evolution models in order to connect these young massive star clusters and the old globular cluster population. Additionally, the combination of the photometric and spectroscopic datasets allows us to study the stars and their feedback onto the surrounding HII region simultaneously, as well as peculiar objects such as the massive, eclipsing Wolf-Rayet binary, WR20a or a possible Herbig-Haro object in the northern clump.
Detection of the Compressed Primary Stellar Wind in eta Carinae
NASA Technical Reports Server (NTRS)
Teodoro, Mairan Macedo; Madura, Thomas I.; Gull, Theodore R.; Corcoran, Michael F.; Hamaguchi, K.
2014-01-01
A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
Imaging the Crab nebula when it is flaring in gamma-rays
NASA Astrophysics Data System (ADS)
De Luca, Andrea
2013-10-01
One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, detected roughly once per year, can be very spectacular. Indeed, in April 2011, for a few days the Crab was by far the brightest source in the gamma-ray sky. Such a dramatic variability challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site{s} of the flares, an ad hoc HST strategy must be put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions. This is a crucial part of a multiwavelength program that we are organizing, based on lessons learnt from our follow-up observations of previous flares, including a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.
Imaging the Crab nebula when it is flaring in gamma-rays
NASA Astrophysics Data System (ADS)
De Luca, Andrea
2012-10-01
One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula in September 2010. In April 2011 a similar flare, lasting several days, made the nebula the brightest source in the gamma-ray sky. A critical reassessment of long term behavior of the Crab flux clearly showed that both Agile and Fermi had already detected similar events in October 2007 and February 2009, pointing to a recurrence time of once per year. A HST observing strategy must be set up to react promptly to any possible new brightening of the Crab in gamma rays. In September 2010 we requested a DD observation which was promptly accepted and carried out. However, the lack of a suitable reference image hampered our efforts to pinpoint the sites of possible variability inside the nebula. Thus, while now we ask for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions, we are also organizing a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.
Local Thermonuclear Runaways in Dwarf Novae?
NASA Astrophysics Data System (ADS)
Shara, Michael
2012-10-01
We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.
Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly
1988-03-31
A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.
The European HST Science Data Archive. [and Data Management Facility (DMF)
NASA Technical Reports Server (NTRS)
Pasian, F.; Pirenne, B.; Albrecht, R.; Russo, G.
1993-01-01
The paper describes the European HST Science Data Archive. Particular attention is given to the flow from the HST spacecraft to the Science Data Archive at the Space Telescope European Coordinating Facility (ST-ECF); the archiving system at the ST-ECF, including the hardware and software system structure; the operations at the ST-ECF and differences with the Data Management Facility; and the current developments. A diagram of the logical structure and data flow of the system managing the European HST Science Data Archive is included.
Incorporating LWIR Data into Multi-Frame Blind Deconvolution of Visible Imagery
2015-10-18
18.7% 10% 12% Fermi Gamma-ray Space Telescope (GLAST) 19.7% 50% 19% Hubble Space Telescope (HST) (Night 1) 39.9% 20% 15% Iridium 82 14.4% 40% 9...LEO Satellite name Δ Δ ΔMM Delta 1 Rocket Body 12.8% 10% 7% Fermi Gamma-ray Space Telescope (GLAST) 4.3% 10% 6% Hubble Space Telescope (HST) (Night...2) 21.4% 20% -4% Hubble Space Telescope (HST) (Night 3) 41.4% 30% 1% (a) (b) (c) Fig. 3. (a) LWIR image of HST, (b) LWIR image converted
Retherford, Kurt D.; Saur, Joachim; Strobel, Darrell F.; Feldman, Paul D.; McGrath, Melissa A.; Nimmo, Francis
2014-01-01
We report far-ultraviolet observations of Jupiter’s moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa’s distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0–5)×1015 cm−2. Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa’s limb is a firm result and not invalidated by our 2014 STIS observations. PMID:25404343
Exploring new classification criteria for the earliest type stars: the 3400 Aregion
NASA Astrophysics Data System (ADS)
Morrell, Nidia I.; Walborn, Nolan R.; Arias, Julia I.
2002-02-01
We propose spectroscopic observations of a sample of standard O2-O4 stars in the wavelength region containing the N IV 3479-83-85 Aand O IV 3381-85-3412 Alines, in order to analyze the behavior of these spectral features as a function of the spectral type. We aim to define new classification criteria for the hottest stars, evaluating these N IV and O IV lines near 3400 Aas possible temperature and luminosity discriminators. The former spectral class O3 has just been split into three different classes: O2, O3 and O3.5 (Walborn et al. 2001). The paucity of classification criteria at these types in the traditional wavelength domain (4000 - 4700 Å), makes clear the need to explore other spectral ranges in order to define additional constraints on the determination of spectral types and luminosity classes. The wavelength range around 3400 Ahas been observed in many faint, crowded early O-type stars by HST/FOS, the corresponding data being available from the HST archive. This enhances our interest in observing this spectral range in the classification standards for the early O-type stars in order to make these existing HST observations even more useful, allowing the determination of accurate spectral types for unknown objects from them, once the behavior of the new criteria in the standards has been charted.
Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images
NASA Astrophysics Data System (ADS)
Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.
2016-07-01
The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.
The Reel Deal In 3D: The Spatio-Temporal Evolution of YSO Jets
NASA Astrophysics Data System (ADS)
Frank, Adam
2014-10-01
Jets are a ubiquitous phenomena in astrophysics, though in most cases their central engines are unresolvable. Thus the structure of the jets often acts as a proxy for understanding the objects creating them. Jets are also of interest in their own right, serving as critical examples of rapidly evolving astrophysical magnetized plasma systems. And while millions of CPU hours {at least} have been spent simulating the kinds of astrophysical plasma dynamics that occur routinely in jets, we rarely have had the chance to study their real-time evolution. In this proposal we seek to use a unique multi-epoch HST dataset of protostellar jets to carry forward an innovative theoretical, numerical and laboratory-based study of magnetized outflows and the plasma processes which determine their evolution. Our work will make direct and detailed contact with these HST data sets and will articulate newly-observed features of jet dynamics that have not been possible to explore before. Using numerical simulations and laboratory plasma studies we seek to articulate the full 3-D nature of new behaviors seen in the HST data. Our collaboration includes the use of scaled laboratory plasma experiments with hypersonic magnetized radiative jets. The MHD experiments have explored how jets break up into clumps via kink-mode instabilities. Therefore such experiments are directly relevant to the initial conditions in our models.
Serrano-Silva, N; Calderón-Ezquerro, M C
2018-04-01
The identification of airborne bacteria has traditionally been performed by retrieval in culture media, but the bacterial diversity in the air is underestimated using this method because many bacteria are not readily cultured. Advances in DNA sequencing technology have produced a broad knowledge of genomics and metagenomics, which can greatly improve our ability to identify and study the diversity of airborne bacteria. However, researchers are facing several challenges, particularly the efficient retrieval of low-density microorganisms from the air and the lack of standardized protocols for sample collection and processing. In this study, we tested three methods for sampling bioaerosols - a Durham-type spore trap (Durham), a seven-day recording volumetric spore trap (HST), and a high-throughput 'Jet' spore and particle sampler (Jet) - and recovered metagenomic DNA for 16S rDNA sequencing. Samples were simultaneously collected with the three devices during one week, and the sequencing libraries were analyzed. A simple and efficient method for collecting bioaerosols and extracting good quality DNA for high-throughput sequencing was standardized. The Durham sampler collected preferentially Cyanobacteria, the HST Actinobacteria, Proteobacteria and Firmicutes, and the Jet mainly Proteobacteria and Firmicutes. The HST sampler collected the largest amount of airborne bacterial diversity. More experiments are necessary to select the right sampler, depending on study objectives, which may require monitoring and collecting specific airborne bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Accelerates SpaceCube Technology into Orbit
NASA Technical Reports Server (NTRS)
Petrick, David
2010-01-01
On May 11, 2009, STS-125 Space Shuttle Atlantis blasted off from Kennedy Space Center on a historic mission to service the Hubble Space Telescope (HST). In addition to sending up the hardware and tools required to repair the observatory, the servicing team at NASA's Goddard Space Flight Center also sent along a complex experimental payload called Relative Navigation Sensors (RNS). The main objective of the RNS payload was to provide real-time image tracking of HST during rendezvous and docking operations. RNS was a complete success, and was brought to life by four Xilinx FPGAs (Field Programmable Gate Arrays) tightly packed into one integrated computer called SpaceCube. SpaceCube is a compact, reconfigurable, multiprocessor computing platform for space applications demanding extreme processing capabilities based on Xilinx Virtex 4 FX60 FPGAs. In a matter of months, the concept quickly went from the white board to a fully funded flight project. The 4-inch by 4-inch SpaceCube processor card was prototyped by a group of Goddard engineers using internal research funding. Once engineers were able to demonstrate the processing power of SpaceCube to NASA, HST management stood behind the product and invested in a flight qualified version, inserting it into the heart of the RNS system. With the determination of putting Xilinx into space, the team strengthened to a small army and delivered a fully functional, space qualified system to the mission.
A Snapshot Survey of AGNS/QSOS for Intergalactic Medium Studies
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Sembach, George
2005-01-01
This spectroscopic program with the Far Ultraviolet Spectroscopic Explorer (FUSE) program was designed to identify ultraviolet-bright active galactic nuclei (AGNs) and quasi-stellar objects (QSOs) for follow-up spectroscopy with FUSE and the Hubble Space Telescope (HST). All of the FUSE spectra obtained for this snapshot program (FUSE identifier D808) have been examined for data quality and flux levels. As expected, only a small number of objects observed (4/19) have flux levels suitable for follow-up spectroscopy. A portion of our effort in this program was devoted to comparing the spectra obtained in these snapshot exposures to others to determine if the spectra could be used for detailed scientific analyses. The resulting effort demonstrated that some of the brighter sources are relatively stable (non- variable), as determined through comparisons of the spectra at multiple epochs. For these brighter sources, the exposure times are simply too short to perform meaningful detailed analyses. Comparisons of the absorption lines in these spectra with those of higher signal-to-noise spectra, like those of PG1116+215 and H1821+643, showed that many of the lines of interest could not be characterized adequately at the S/N levels reached in the short snapshot exposures. As a result, the FUSE D808 observations are suitable only for their original purpose - flux determination. Several bright objects identified as part of this program include: HE0153-4520, flux >2x10E-14 erg cm^-2s^-1 at 1000 Angstroms IRASF04250-5718, flux >4x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms RXJ2154.1-4414, flux > 1.6x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms S50716+714, flux >2.5x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms. All of these objects have been incorporated into the primary target lists for the HST Cosmic Origins Spectrograph. Identifying such objects for follow-up observations with HST/COS was the primary goal of this program, so the program wa successful. In addition, some of the objects were included in proposed target lists for future FUSE observations. Given that the state of the FUSE observatory is uncertain at this time, it is unknown whether anyjof htese objects will be re-observed with FUSE. The results of this program have been communicated to the astronomical community via email and by word of mouth since the resuts in and of themselves do not warrant publication in an astronomical journal. However, these lists will be maintained for future observers. The data are archived in the Multi-Mission Archive at the Space Telescioe Science INstitute.
Hubble Space Telescope: Servicing Mission 3A. Media Reference Guide
NASA Technical Reports Server (NTRS)
1999-01-01
Since its launch in April 1990, the Hubble Space Telescope (HST) has provided scientific data and images of unprecedented resolution from which many new and exciting discoveries have been made. The Telescope's purpose is to spend 20 years probing the farthest and faintest reaches of the cosmos. Crucial to fulfilling this objective is a series of on-orbit manned servicing missions. The First Servicing Mission (SM1) took place in December 1993 and the Second Servicing Mission (SM2) was flown in February 1997. During these missions, astronauts perform planned repairs and maintenance activities to restore and upgrade the observatory s capabilities. To facilitate this process, the Telescope s designers configured science instruments and several vital engineering subsystems as Orbital Replacement Units (ORU) -- modular packages with standardized fittings accessible to astronauts in pressurized suits. Hubble's Third Servicing Mission has been separated into two parts: Servicing Mission 3A (SM3A) will fly in Fall of 1999 and Servicing Mission 3B (SM3B) is planned for 2001. The principal objective of SM3A is to replace all six gyroscopes that compose the three Rate Sensor Units (RSU). In addition, space-walking astronauts will install a new Advanced Computer that will dramatically increase the computing power, speed, and storage capability of HST. They will change out one of the Fine Guidance Sensors (FGS) and replace a tape recorder with a new Solid State Recorder (SSR). The Extravehicular Activity (EVA) crew also will install a new S-band Single-Access Transmitter (SSAT), and Voltage/Temperature Improvement Kits (VIK) for the Telescope s nickel-hydrogen batteries. Finally, they will begin repair of the multilayer insulation on Hubble s outer surface. During SM3B astronauts will install a new science instrument, the Advanced Camera for Surveys (ACS), and an Aft Shroud Cooling System (ASCS) for the other axial science instruments. They will attach a new cryogenic cooler to the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). They also will replace the HST flexible Solar Arrays with new high-performance rigid arrays.
Tecle, Eillen; Diaz-Balzac, Carlos A.; Bülow, Hannes E.
2013-01-01
Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo. By examining patterning of the Caenorhabditis elegans nervous system in loss of function mutants of the two 3-O-sulfotransferases, hst-3.1 and hst-3.2, we found HS 3-O-sulfation to be largely dispensable for overall neural development. However, generation of stereotypical neurite branches in hermaphroditic-specific neurons required hst-3.1, hst-3.2, as well as an extracellular cell adhesion molecule encoded by kal-1, the homolog of Kallmann Syndrome associated gene 1/anosmin-1. In contrast, kal-1−dependent neurite branching in AIY neurons required catalytic activity of hst-3.2 but not hst-3.1. The context-dependent requirement for hst-3.2 and hst-3.1 indicates that both enzymes generate distinct types of HS modification patterns in different cell types, which regulate kal-1 to promote neurite branching. We conclude that HS 3-O-sulfation does not play a general role in establishing the HS code in C. elegans but rather plays a specialized role in a context-dependent manner to establish defined aspects of neuronal circuits. PMID:23451335
The Frontier Fields: Survey Design and Initial Results
NASA Astrophysics Data System (ADS)
Lotz, J. M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E. A.; Borncamp, D.; Brammer, G.; Durbin, M.; Gunning, H.; Hilbert, B.; Jenkner, H.; Khandrika, H.; Levay, Z.; Lucas, R. A.; MacKenty, J.; Ogaz, S.; Porterfield, B.; Reid, N.; Robberto, M.; Royle, P.; Smith, L. J.; Storrie-Lombardi, L. J.; Sunnquist, B.; Surace, J.; Taylor, D. C.; Williams, R.; Bullock, J.; Dickinson, M.; Finkelstein, S.; Natarajan, P.; Richard, J.; Robertson, B.; Tumlinson, J.; Zitrin, A.; Flanagan, K.; Sembach, K.; Soifer, B. T.; Mountain, M.
2017-03-01
What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ˜29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ˜30-33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ˜26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.
Smith, Daniel L; McClure, Julie M; Matecic, Mirela; Smith, Jeffrey S
2007-10-01
Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.
Baev, Didi; Rivetta, Alberto; Vylkova, Slavena; Sun, Jianing N; Zeng, Ge-Fei; Slayman, Clifford L; Edgerton, Mira
2004-12-31
The principal feature of killing of Candida albicans and other pathogenic fungi by the catonic protein Histatin 5 (Hst 5) is loss of cytoplasmic small molecules and ions, including ATP and K(+), which can be blocked by the anion channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. We constructed C. albicans strains expressing one, two, or three copies of the TRK1 gene in order to investigate possible roles of Trk1p (the organism's principal K(+) transporter) in the actions of Hst 5. All measured parameters (Hst 5 killing, Hst 5-stimulated ATP efflux, normal Trk1p-mediated K(+) ((86)Rb(+)) influx, and Trk1p-mediated chloride conductance) were similarly reduced (5-7-fold) by removal of a single copy of the TRK1 gene from this diploid organism and were fully restored by complementation of the missing allele. A TRK1 overexpression strain of C. albicans, constructed by integrating an additional TRK1 gene into wild-type cells, demonstrated cytoplasmic sequestration of Trk1 protein, along with somewhat diminished toxicity of Hst 5. These results could be produced either by depletion of intracellular free Hst 5 due to sequestered binding, or to cooperativity in Hst 5-protein interactions at the plasma membrane. Furthermore, Trk1p-mediated chloride conductance was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in all of the tested strains, strongly suggesting that the TRK1 protein provides the essential pathway for ATP loss and is the critical effector for Hst 5 toxicity in C. albicans.
History of Hubble Space Telescope (HST)
1985-01-01
In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Hubble Space Telescope 2004 Battery Update
NASA Technical Reports Server (NTRS)
Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.
2006-01-01
Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.
Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis
NASA Astrophysics Data System (ADS)
Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.
2006-11-01
We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (z<0.01) star-forming galaxies having angular diameters less than 6" and physical diameters <1 kpc. They are also among the most metal-poor galaxies known, including objects having 12+log(O/H)<7.65, and are found to reside within voids. Both the HST images and the objects' SDSS optical spectra reveal that they are composites of young (~1-10 Myr) populations that dominate their light and older (~10 Gyr) populations that dominate their stellar masses, which we estimate to be ~107-108 Msolar. An intermediate-age (~107-109 yr) population is also indicated in most objects. The objects do not appear to be as dynamically disturbed as the prototype UCBD, POX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.
Finally, the Progenitor of the Type Ib iPTF13bvn
NASA Astrophysics Data System (ADS)
Van Dyk, Schulyer
2017-08-01
Supernovae (SNe) are among the most powerful events in the Universe and have a profound influence on galaxy evolution. Whereas we have been able to identify the luminous red supergiant progenitor stars of the most common core-collapse explosions, the hydrogen-rich Type II, the progenitors of hydrogen-poor Type Ib and Type Ic have been far more elusive. To strip away a SN Ib/c progenitor's outer layers, theoretical models with either (a) a highly-massive star with prodigious winds during the Wolf-Rayet phase or (b) a somewhat lower-mass star in a close, mass-exchange binary system have been proposed. One example exists so far of a progenitor identification, for the SN Ib iPTF13bvn in NGC 5806. Both models have been invoked to explain this event, although most evidence to date points toward the binary model. Our combined team observed this SN with WFC3 in Cycle 22, about 2 years after explosion, to investigate whether the progenitor had disappeared. As a result, we were able to report that indeed it had. We also attempted to better characterize the nature of the progenitor by subtracting our images from the pre-explosion HST data. Unfortunately, the old SN was apparently still conspicuously present. We therefore propose to reimage the SN site, when the SN should then be well below detectability, to produce high-quality templates of the host galaxy for subtraction. We can then finally fully reveal the progenitor and understand its true nature. iPTF13bvn is one of the most important historical SNe and will most probably be the best available case of a SN Ib progenitor for HST's remaining lifetime. It is imperative to understand the nature of this SN and its progenitor object.
A Closer Look at the Alpha Persei Coronal Conundrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu
2017-03-01
A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si iv unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope ( HST ) Wide-Field Camera 3 searched formore » any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si iv emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.« less
NASA Astrophysics Data System (ADS)
Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil
2018-05-01
Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.
History of Hubble Space Telescope (HST)
1990-04-01
This photograph shows the Hubble Space Telescope (HST) installed in the cargo bay of the Space Shuttle Orbiter Discovery for the STS-31 Mission at The Kennedy Space Center prior to launch on April 24, 1990. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
NASA Technical Reports Server (NTRS)
Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.
2014-01-01
We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.
Results of a Hubble Space Telescope Search for Natural Satellites of Dwarf Planet 1 Ceres
NASA Astrophysics Data System (ADS)
DeMario, Benjamin; Schmidt, Britney E.; Mutchler, Maximilian J.; Li, Jian-Yang; McFadden, Lucy Ann; McLean, Brian; Russell, Christopher T.
2016-10-01
In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April - 28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 meters, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 meters. The absence of a satellite around Ceres could, in the future, support more refined theories about satellite formation or capture mechanisms in the solar system.
DISTANT CLUSTER OF GALAXIES [left
NASA Technical Reports Server (NTRS)
2002-01-01
One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the constellation Serpens. Based on the colors and the statistical distribution of the galaxies in 3C 324's vicinity, astronomers conclude a remote cluster is at the same distance as a radio galaxy. [center right] This pair of elliptical galaxies, seen together with a few fainter companions, is remarkably similar in shape, light distribution, and color to their present day descendants. This Hubble image provides evidence that ellipticals formed remarkably early in the universe. [top right] Some of the objects in this compact tangled group resemble today's spiral galaxies. However, they have irregular shapes and appear disrupted and asymmetric. This might be due to a high frequency of galaxy collisions and close encounters in the early universe. Credit: Mark Dickinson (STScI) and NASA
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.
NASA Technical Reports Server (NTRS)
Clapp, Brian R.
2005-01-01
For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three rate gyros for n Controlling with alternate sensors to replace failing gyros can extend the HST science mission. A two-gyro control law has been designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms prior to science imaging. The Magnetometer and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth. occultation of star trackers and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and controls attitude in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law dampens T2G rates and controls HST attitude during science imaging. This paper describes the F2G control law. Details of F2G algorithms are presented, including computation of the FGS-measured star vector using non-linear equations, optimal estimation of HST body rate, design of the F2G control laws and gyro bias observer, SISO and MIMO linear stability analyses, and design of the F2G intramode transition and guide star acquisition logic. Results from an FGS flight spare ground test are presented that define acceptable HST jitter levels for successful guide star acquisition under two-gyro control. HST-specific disturbance and noise models are described that are based upon flight telemetry; these models are used in HSTSIM, a high-fidelity non-linear time domain simulation, to predict HST on-orbit disturbance responses and FGS interferometer Loss of Lock (LOL) characteristics under F2G control. Additional HSTSIM results are presented predicting HST quiescent boresight jitter performance, science maneuver performance, and observer configuration performance during F2G operation. Simulation results are compared to on-orbit data b m F2G flight tests performed in February 2005. Science images and point spread functions from the Advanced Camera for Surveys (ACS) High Resolution Camera (HRC) are presented that compare HST science performance under F2G versus three-gyro control. Images and flight telemetry show that HST boresight jitter with the new F2G control law is usually less than jitter using the three-gyro law, and HST boresight jitter during F2G operation is dependent upon guide star magnitude.
Life Extension Activities for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Walyus, Keith D.; Pepe, Joyce A. K.; Prior, Michael
2004-01-01
With the cancellation of the Hubble Space Telescope (HST) Servicing Mission 4 (SM4), the HST Project will face numerous challenges to keep the Telescope operating during the remainder of the decade. As part of the SM4, the HST Project had planned to install various upgrades to the Telescope including the installation of new batteries and new rate integrating gyros. Without these upgrades, reliability analysis indicates that the spacecraft will lose the capability to conduct science operations later this decade. The HST team will be severely challenged to maximize the Telescope's remaining operational lifetime, while still trying to maximize - its science output and quality. Two of the biggest areas of concern are the age and condition of the batteries and gyros. Together they offer the largest potential extension in Telescope lifetime and present the biggest challenges to the HST team. The six Ni-H batteries on HST are the original batteries from launch. With fourteen years of operational life, these batteries have collectively lasted longer than any other comparable mission. Yet as with all batteries, their capacity has been declining. Engineers are examining various methods to prolong the life of these mission critical batteries, and retard the rate of degradation. This paper will focus on these and other efforts to prolong the life of the HST, thus enabling it to remain a world-class observatory for as long as possible.
HST observations of Jupiter's UV aurora during Juno's orbits PJ03, PJ04 and PJ05
NASA Astrophysics Data System (ADS)
Grodent, Denis; Gladstone, G. randall; Clarke, John T.; Bonfond, Bertrand; Gérard, Jean-Claude; Radioti, Aikaterini; Nichols, Jonathan D.; Bunce, Emma J.; Roth, Lorenz; Saur, Joachim; Kimura, Tomoki; Orton, Glenn S.; Badman, Sarah V.; Mauk, Barry; Connerney, John E. P.; McComas, David J.; Kurth, William S.; Adriani, Alberto; Hansen, Candice; Yao, Zhonghua
2017-04-01
The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present study addresses the three first Juno orbits (PJ03, 04 and 05) during which HST obtained parallel observations. These three campaigns basically consist of a 2-week period bracketing the time of Juno's closest approach of Jupiter (CA). At least one HST visit is scheduled every day during the week before and the week following CA. During the 12-hour period centered on CA and depending on observing constraints, several HST visits are programmed in order to obtain as many simultaneous observations with Juno-UVS as possible. In addition, at least one HST visit is obtained near Juno's apojove, when UVS is continuously monitoring Jupiter's global auroral power, without spatial resolution, for about 12 hours. We are using the Space Telescope Imaging Spectrograph (STIS) in time-tag mode in order to provide spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. We discuss the preliminary exploitation of the HST data and present these results in such a way as to provide a global magnetospheric context for the different Juno instruments studying Jupiter's magnetosphere, as well as for the numerous ground based and space based observatories participating to the Juno mission.
The Planning and Scheduling of HST: Improvements and Enhancements since Launch
NASA Astrophysics Data System (ADS)
Taylor, D. K.; Chance, D. R.; Jordan, I. J. E.; Patterson, A. P.; Stanley, M.; Taylor, D. C.
2001-12-01
The planning and scheduling (P&S) systems used in operating the Hubble Space Telescope (HST) have undergone such substantial and pervasive re-engineering that today they dimly resemble those used when HST was launched. Processes (i.e., software, procedures, networking, etc.) which allow program implementation, the generation of a Long Range Plan (LRP), and the scheduling of science and mission activities have improved drastically in nearly 12 years, resulting in a consistently high observing efficiency, a stable LRP that principal investigators can use, exceptionally clean command loads uplinked to the spacecraft, and the capability of a very fast response time due to onboard anomalies or targets of opportunity. In this presentation we describe many of the systems which comprise the P&S ("front-end") system for HST, how and why they were improved, and what benefits have been realized by either the HST user community or the STScI staff. The systems include the Guide Star System, the Remote Proposal Submission System - 2 (RPS2), Artificial Intelligence (AI) planning tools such as Spike, and the science and mission scheduling software. We also describe how using modern software languages such as Python and better development practices allow STScI staff to do more with HST (e.g., to handle much more science data when ACS is installed) without increasing the cost to HST operations.
Detection of the Compressed Primary Stellar Wind in eta Carinae*
NASA Technical Reports Server (NTRS)
Teodoro, M.; Madura, T. I.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.
2013-01-01
A series of three Hubble Space Telescope Space Telescope Imaging Spectrograph (HST/STIS) spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from ? Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
Luminous Infrared Galaxies and the ``Starburst-AGN Connection"
NASA Astrophysics Data System (ADS)
Sanders, D. B.; Kartaltepe, J. S.; Kewley, L. J.; U, Vivian; Yuan, T.; Evans, A. S.; Armus, L.; Mazzarella, J. M.
2009-10-01
Luminous Infrared Galaxies (LIRGs) represent perhaps the most powerful examples of a connection between the fueling of starbursts and active galactic nuclei (AGNs). Major mergers of gas-rich spirals, which are now understood to trigger the majority of LIRGs, drive the bulk of the disk gas into the central kpc of the merger pair, where it provides fuel for both powerful nuclear starbursts and accretion onto a central massive black hole. The combined feedback from starburst and accretion luminosity eventually expels the gas, shutting down nuclear activity and leaving a gas-poor elliptical. Although there is now general agreement on the origin and evolutionary scenario for LIRGs, the detailed time evolution of starburst activity and black hole growth is still not well understood. We review the basic properties of LIRGs as determined from extensive multi-wavelength studies of a complete sample of local objects, and introduce new results from initial observations of fainter more distant LIRGs detected in the Spitzer survey of the HST-COSMOS 2-deg^2 Field.
The Herschel Lensing Survey (HLS): HST Frontier Field Coverage
NASA Astrophysics Data System (ADS)
Egami, Eiichi
2015-08-01
The Herschel Lensing Survey (HLS; PI: Egami) is a large Far-IR/Submm imaging survey of massive galaxy clusters using the Herschel Space Observatory. Its main goal is to detect and study IR/Submm galaxies that are below the nominal confusion limit of Herschel by taking advantage of the strong gravitational lensing power of massive galaxy clusters. HLS has obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 cluster fields (HLS-deep) as well as shallower but nearly confusion-limited SPIRE-only images for 527 cluster fields (HLS-snapshot) with a total observing time of ~420 hours. Extensive multi-wavelength follow-up studies are currently on-going with a variety of observing facilities including ALMA.Here, I will focus on the analysis of the deep Herschel PACS/SPIRE images obtained for the 6 HST Frontier Fields (5 observed by HLS-deep; 1 observed by the Herschel GT programs). The Herschel/SPIRE maps are wide enough to cover the Frontier-Field parallel pointings, and we have detected a total of ~180 sources, some of which are strongly lensed. I will present the sample and discuss the properties of these Herschel-detected dusty star-forming galaxies (DSFGs) identified in the Frontier Fields. Although the majority of these Herschel sources are at moderate redshift (z<3), a small number of extremely high-redshift (z>6) candidates can be identified as "Herschel dropouts" when combined with longer-wavelength data. We have also identified ~40 sources as likely cluster members, which will allow us to study the properties of DSFGs in the dense cluster environment.A great legacy of our HLS project will be the extensive multi-wavelength database that incorporates most of the currently available data/information for the fields of the Frontier-Field, CLASH, and other HLS clusters (e.g., HST/Spitzer/Herschel images, spectroscopic/photometric redshifts, lensing models, best-fit SED models etc.). Provided with a user-friendly GUI and a flexible search engine, this database should serve as a powerful tool for a variety of projects including those with ALMA and JWST in the future. I will conclude by introducing this HLS database system.
THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, C.; Karman, W.; Caputi, K. I.
2016-05-10
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin{sup 2} target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to sevenmore » background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope ( HST ), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST /WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort.« less
The Frontier Fields: Survey Design and Initial Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotz, J. M.; Koekemoer, A.; Grogin, N.
What are the faintest distant galaxies we can see with the Hubble Space Telescope ( HST ) now, before the launch of the James Webb Space Telescope ? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abellmore » S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5 σ point-source depths of ∼29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10–100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ∼30–33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μ m bands to 5 σ point-source depths of ∼26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.« less
Solar system objects in the ISOPHOT 170 mu m serendipity survey
NASA Astrophysics Data System (ADS)
Müller, T. G.; Hotzel, S.; Stickel, M.
2002-07-01
The ISOPHOT Serendipity Survey (ISOSS) covered approximately 15% of the sky at a wavelength of 170 mu m while the ISO satellite was slewing from one target to the next. By chance, ISOSS slews went over many solar system objects (SSOs). We identified the comets, asteroids and planets in the slews through a fast and effective search procedure based on N-body ephemeris and flux estimates. The detections were analysed from a calibration and scientific point of view. Through the measurements of the well-known asteroids Ceres, Pallas, Juno and Vesta and the planets Uranus and Neptune it was possible to improve the photometric calibration of ISOSS and to extend it to higher flux regimes. We were also able to establish calibration schemes for the important slew end data. For the other asteroids we derived radiometric diameters and albedos through a recent thermophysical model. The scientific results are discussed in the context of our current knowledge of size, shape and albedos, derived from IRAS observations, occultation measurements and lightcurve inversion techniques. In all cases where IRAS observations were available we confirm the derived diameters and albedos. For the five asteroids without IRAS detections only one was clearly detected and the radiometric results agreed with sizes given by occultation and HST observations. Four different comets have clearly been detected at 170 mu m and two have marginal detections. The observational results are presented to be used by thermal comet models in the future. The nine ISOSS slews over Hale-Bopp revealed extended and asymmetric structures related to the dust tail. We attribute the enhanced emission in post-perihelion observations to large particles around the nucleus. The signal patterns are indicative of a concentration of the particles in the trail direction. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the UK) and with the participation of ISAS and NASA.
Cost Minimization Using an Artificial Neural Network Sleep Apnea Prediction Tool for Sleep Studies
Teferra, Rahel A.; Grant, Brydon J. B.; Mindel, Jesse W.; Siddiqi, Tauseef A.; Iftikhar, Imran H.; Ajaz, Fatima; Aliling, Jose P.; Khan, Meena S.; Hoffmann, Stephen P.
2014-01-01
Rationale: More than a million polysomnograms (PSGs) are performed annually in the United States to diagnose obstructive sleep apnea (OSA). Third-party payers now advocate a home sleep test (HST), rather than an in-laboratory PSG, as the diagnostic study for OSA regardless of clinical probability, but the economic benefit of this approach is not known. Objectives: We determined the diagnostic performance of OSA prediction tools including the newly developed OSUNet, based on an artificial neural network, and performed a cost-minimization analysis when the prediction tools are used to identify patients who should undergo HST. Methods: The OSUNet was trained to predict the presence of OSA in a derivation group of patients who underwent an in-laboratory PSG (n = 383). Validation group 1 consisted of in-laboratory PSG patients (n = 149). The network was trained further in 33 patients who underwent HST and then was validated in a separate group of 100 HST patients (validation group 2). Likelihood ratios (LRs) were compared with two previously published prediction tools. The total costs from the use of the three prediction tools and the third-party approach within a clinical algorithm were compared. Measurements and Main Results: The OSUNet had a higher +LR in all groups compared with the STOP-BANG and the modified neck circumference (MNC) prediction tools. The +LRs for STOP-BANG, MNC, and OSUNet in validation group 1 were 1.1 (1.0–1.2), 1.3 (1.1–1.5), and 2.1 (1.4–3.1); and in validation group 2 they were 1.4 (1.1–1.7), 1.7 (1.3–2.2), and 3.4 (1.8–6.1), respectively. With an OSA prevalence less than 52%, the use of all three clinical prediction tools resulted in cost savings compared with the third-party approach. Conclusions: The routine requirement of an HST to diagnose OSA regardless of clinical probability is more costly compared with the use of OSA clinical prediction tools that identify patients who should undergo this procedure when OSA is expected to be present in less than half of the population. With OSA prevalence less than 40%, the OSUNet offers the greatest savings, which are substantial when the number of sleep studies done annually is considered. PMID:25068704
NASA Astrophysics Data System (ADS)
Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan
2018-07-01
We present a study of seven star-forming galaxies from the Cosmic Evolution Survey observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜ 0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations, we also analyse observations taken with the Visible Multi-object Spectrograph (VIMOS) on the Very Large Telescope (VLT). In our galaxy sample, we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5 per cent and 13 per cent. Given the low flux levels in the individual COS exposures, we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum, we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4} per cent and f_res(LyC) = 1.7^{+15.2}_{-1.7}per cent, respectively. Finally, we find that most of these galaxies have moderate ultraviolet and optical star formation rates (SFRs) (SFRs ≲10 M⊙ yr-1).
Lunar Observatories: Why, Where, and When?
NASA Technical Reports Server (NTRS)
Lowman, D. Paul, Jr.; Durst, Steve; Chen, Peter C.
1999-01-01
The value of Moon-based astronomical instruments has been repeatedly supported by several major studies and conferences, such as the "Astrophysics from the Moon" meeting held in Annapolis, Maryland, in 1990 (Mumma and Smith, 1990). A comprehensive review of the advantages of lunar observatories was published in the same year by Burns et al. (1990). However, the decade since then has seen a number of major developments bearing on the topic of lunar observatories, including the following. Two space astronomy programs have been outstandingly successful since 1990: the Cosmic Background Explorer ((COBE) and the Hubble Space Telescope (HST). These instruments have shown for the first time the structure of the universe in the first stages of its creation, i.e., the "Big Bang." One result of these discoveries has been to focus new space astronomy programs on fundamental problems such as shape of the universe, evolution of galaxies, and the nature of "dark" matter. Since these questions involve the very earliest stages of the history of the universe, to study them requires observation of extremely distant objects. Because of the expansion of the universe, all radiation from such objects is greatly redshifted, into the infrared region of the spectrum. For this reason, the Next Generation Space Telescope, the successor to HST, will be an infrared telescope.
High-resolution optical imaging of the core of the globular cluster M15 with FastCam
NASA Astrophysics Data System (ADS)
Díaz-Sánchez, Anastasio; Pérez-Garrido, Antonio; Villó, Isidro; Rebolo, Rafael; Pérez-Prieto, Jorge A.; Oscoz, Alejandro; Hildebrandt, Sergi R.; López, Roberto; Rodríguez, Luis F.
2012-07-01
We present high-resolution I -band imaging of the core of the globular cluster M15 obtained at the 2.5-m Nordic Optical Telescope with FastCam, a low readout noise L3CCD-based instrument. Short exposure times (30 ms) were used to record 200 000 images (512 × 512 pixels each) over a period of 2 h and 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with full width at half-maximum ˜0.1 arcsec and 13 × 13 arcsec 2 field of view. We obtained a catalogue of objects in this region with a limiting magnitude of I = 19.5. I -band photometry and astrometry are reported for 1181 stars. This is the deepest I -band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects have been reported using Hubble Space Telescope (HST )/Wide Field Planetary Camera observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new blue straggler star candidates and previously known stars of this class.
NASA Astrophysics Data System (ADS)
Simcoe, Robert
2017-08-01
Our team is conducting a dedicated survey for emission-line galaxies at 5 < z < 7 in six fields containing the best and brightest z > 6 quasars, using JWST/NIRCAM's slitless grism in a 110 hour GTO allocation. We have acquired deep near-IR spectra of the QSOs, revealing multiple heavy-element absorption systems and probing the HI optical depth within each object's survey volume. These data will provide the first systematic view of the circumgalactic medium at z > 4, allowing us to study early metal enrichment, correlations of the intergalactic HI optical depth with galaxy density, and the environment of the quasar hosts. These fields generally do not have deep multicolor photometry that would facilitate selection of broadband dropout galaxies for future observation with JWST/NIRSPEC. However during long spectroscopic integrations with NIRCAM's long channel we will obtain deep JWST photometry in F115W and F200W, together with F356W for wavelength calibration. Here we request 30 orbits with HST/ACS to acquire deep optical photometry that (together with the JWST IR bands) will constrain SED models and enable dropout selection of fainter objects. For lower redshift objects the rest-UV ACS data will improve estimates of star formation rate and stellar mass. Within a Small-GO program scope we will obtain sensitivity similar to CANDELS-Deep in all six fields, and approximately double the size of our galaxy sample appropriate for JWST/NIRSPEC followup at redshifts approaching the reionization epoch.
STS-109 Mission Highlights Resource Tape. Part 4 of 4; Flight Days 8 - 12
NASA Technical Reports Server (NTRS)
2002-01-01
This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.
The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy
NASA Technical Reports Server (NTRS)
Heckman, Timothy M.
1999-01-01
We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.
NASA Astrophysics Data System (ADS)
Chiaberge, M.; Ely, J. C.; Meyer, E. T.; Georganopoulos, M.; Marinucci, A.; Bianchi, S.; Tremblay, G. R.; Hilbert, B.; Kotyla, J. P.; Capetti, A.; Baum, S. A.; Macchetto, F. D.; Miley, G.; O'Dea, C. P.; Perlman, E. S.; Sparks, W. B.; Norman, C.
2017-04-01
Context. Radio-loud active galactic nuclei with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers. Aims: We study the intriguing properties of the powerful (Lbol 1047 erg s-1) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra. Methods: We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation. Results: HST imaging shows that the active nucleus is offset by 1.3 ± 0.1 arcsec (I.e. 11 kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140 ± 390 km s-1 with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger. Conclusions: A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.
Effects of Hangeshashinto on Growth of Oral Microorganisms
Fukamachi, Haruka; Matsumoto, Chinami; Omiya, Yuji; Arimoto, Takafumi; Kataoka, Hideo; Kadena, Miki; Funatsu, Takahiro; Fukutake, Masato; Kase, Yoshio; Kuwata, Hirotaka
2015-01-01
Oral mucositis (OM) in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST), a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment. PMID:26170876
History of Hubble Space Telescope (HST)
1985-01-01
This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.
Francis, Anna; Wallen, Margaret; Bundy, Anita
2017-05-01
Handwriting speed is an important component of students' ability to adequately express their ideas, knowledge and creativity in a timely and effective manner. Psychometric properties of the Handwriting Speed Test (HST) and Detailed Assessment of Speed of Handwriting (DASH) and accuracy of the norms for identifying current Australian students with handwriting speed difficulties were examined. An exploratory, cross-sectional study was conducted involving students, with and without handwriting difficulties, in Years 3-12 (mean age: 12.0 yrs, SD = 3.0 yrs; range = 7 to 18 yrs) in New South Wales (NSW; Australia). Participants were recruited through occupational therapists and schools. Students completed the HST and all DASH subtests. Thirty-two students with, and 139 students without, handwriting difficulties participated. Intra-rater and inter-rater reliability were found to be excellent; sensitivity was low and specificity high for the HST and DASH. No significant differences were found between test scores and normative data for students without handwriting difficulties (year/age groups with n > 10). The HST and DASH are reliable assessments of handwriting speed. Further research is required into discriminant validity of the HST and DASH and need for updated norms.
NASA Astrophysics Data System (ADS)
Purwani, Kristanti Indah; Nurhatika, Sri; Ermavitalini, Dini; Saputro, Triono Bagus; Budiarti, Dwi Setia
2017-06-01
Bioinsecticide formulation conducted by adjuvant addition to improve its effecetiveness in the application. Its addition was only help to work whereas active compound and ingredient as a main core originated from plant simplicia. This research was utilized bintaro (Cerbera odollam) as simplicia. It already began to use it as bioinsecticide against armyworm (Spodoptera litura F) even formulation approachment was not conducted in mustard (Brassica rapa) in previous research. Mustard commodity commonly measured based on leaves performences, when its performance broke by pest such as armyworm might decline the commercial value. So this research aimed to determine the effectiveness of liquid biopesticide formulation of the active ingredient from bintaro (Cerbera odollam) leaf extract in pressing the attack larvae of S. litura F. Larvae deployed in mustard leaves (16 HST). Liquid bioinsecticide concentration formulated in 30%, 40%, 50%, 60%, and 70%. Spraying method used to against S. litura F. consisted on preventive (15 HST) and curative (17 HST). Leaves damage observation conducted at day - 35th (HST). The result showed the formulation suppressed larvae from 40% concentration in preventive way 15 HST and 60% concentration as curative way at 17 HST.
Far ultraviolet wide field imaging and photometry - Spartan-202 Mark II Far Ultraviolet Camera
NASA Technical Reports Server (NTRS)
Carruthers, George R.; Heckathorn, Harry M.; Opal, Chet B.; Witt, Adolf N.; Henize, Karl G.
1988-01-01
The U.S. Naval Research Laboratory' Mark II Far Ultraviolet Camera, which is expected to be a primary scientific instrument aboard the Spartan-202 Space Shuttle mission, is described. This camera is intended to obtain FUV wide-field imagery of stars and extended celestial objects, including diffuse nebulae and nearby galaxies. The observations will support the HST by providing FUV photometry of calibration objects. The Mark II camera is an electrographic Schmidt camera with an aperture of 15 cm, a focal length of 30.5 cm, and sensitivity in the 1230-1600 A wavelength range.
NASA Technical Reports Server (NTRS)
Erickson, Edwin; Colgan, S. W. J.; Schultz, A. S. B.; Simpson, J. P.; Burton, M. G.; Kaufman, M. J.; Young, E. T.; Stolovy, S.
2005-01-01
The Becklin-Neugebauer object, discovered in observations made by Eric Becklin as a graduate student, is the brightest mid-infrared source outside the solar system, and a beacon in the nearest region of massive star formation. Using NICMOS on HST, we have obtained near infrared photometric, spectroscopic, and polarimetric images of the region immediately around BN. These images, with resolutions < -0.2", reveal remarkable morphologies, shock details, new young stellar objects, faint stars with variable intensities, and outflow features. We will summarize these results and inferences regarding the shock properties, illuminating sources of the nebulosity, and IRc sources near BN.
NASA Astrophysics Data System (ADS)
Ono, Yoshiaki; Ouchi, Masami; Shimasaku, Kazuhiro; Dunlop, James; Farrah, Duncan; McLure, Ross; Okamura, Sadanori
2010-12-01
We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ~ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M UV, with a spectral slope β ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10) × 107 M sun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ~ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ion esc ~ 0.6 at z = 5.7 and ~0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Bianchi, Luciana
2018-01-01
Rest-frame UV, uniquely sensitive to luminous, short-lived hot massive stars, trace and age-date star formation across galaxies, and is very sensitive to dust, whose properties and presence are closely connected to star formation.With wide f-o-v and deep sensitivity in two broad filters,FUV and NUV,GALEX delivered the first comprehensive UV view of large nearby galaxies, and of the universe to z~2 (e.g.,Bianchi 2014 ApSS 354,103), detected star formation at the lowest rates, in environments where it was not seen before and not expected (e.g. Bianchi 2011 ApSS 335,51; Thilker+2009 Nature 457,990;2007 ApJS 173,538), triggering a new era of investigations with HST and large ground-based telescopes. New instrument technology and modeling capabilities make it now possible and compelling to solve standing issues. The scant UV filters available (esp. FUV) and the wide gap in resolution and f-o-v between GALEX and HST leaves old and new questions open. A chief limitation is degeneracies between physical parameters of stellar populations (age/SFR) and hot stars, and dust (e.g. Bianchi+ 2014 JASR 53,928).We show sample model simulations for filter optimization to provide critical measurements for the science objectives. We also demonstrate how adequate FUV+NUV filters, and resolution, allow us to move from speculative interpretation of UV data to unbiased physical characterization of young stellar populations and dust, using new data from UVIT, which, though smaller than CETUS, has better resolution and filter coverage than GALEX.Also, our understanding of galaxy chemical enrichment is limited by critical gaps in stellar evolution; GALEX surveys enabled the first unbiased census of the Milky Way hot-WD population (Bianchi+2011 MNRAS, 411,2770), which we complement with SDSS, Pan-STARRS, and Gaia data to fill such gaps (Bianchi et al.2018, ApSS). Such objects in CETUS fields (deeper exposures, more filters, and the first UV MOS) will be much better characterized, enabling "Galactic archeology" investigations not possible otherwise.
NASA Astrophysics Data System (ADS)
Karovska, M.
2013-06-01
(Abstract only) CH Cyg is one of the most interesting interacting binaries in which a compact object, a white dwarf or a neutron star, accretes from the wind of an evolved giant or supergiant. CH Cyg is a member of the symbiotic systems group, and at about 250pc it is one of the closest systems. Symbiotic systems are accreting binaries, which are likely progenitors of a fraction of Pre-Planetary and Planetary Nebulae, and of a fraction of SN type Ia (the cosmic distance scale indicators). We carried out Chandra and HST observations of CH Cyg in March 2012 as part of a follow-up investigation of the central region of CH Cyg and its precessing jet, including the multi-structures that were discovered in 2008. I will describe here the campaign of multi-wavelength observations, including photometry and spectroscopy, that were carried out by AAVSO members in support of the space-based observations.
HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gould, Carolina; Williams, Hayley; Duchene, Gaspard
2017-10-01
In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.
Hubble illuminates the universe
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1992-01-01
Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.
Asteroidal companions in the visible: HST data
NASA Astrophysics Data System (ADS)
Storrs, Alex; Vilas, Faith; Landis, Rob; Gaffey, Michael J.; Makhoul, Khaldoun; Davis, MIke; Richmond, Mike
2016-01-01
We present a reanalysis of HST images of five asteroids with known companions (45 Eugenia, 87 Sylvia, 93 Minerva, 107 Camilla, 121 Hermione). It is remarkable that all of these companion bodies are much redder in the visible region than their primary bodies. Storrs et al. (2009, BAAS vol. 41, no. 4, p 189) attributed this to space weathering, however, all of these bodies belong to dark C- or X-type groups. Current modeling of space weathering effects are limited to bright asteroids (e.g. Cloutis et al., Icarus 252, pp. 39-82, 2015) and show little change on the scale reported here. We suggest that the interaction of dark, possibly organic-rich surfaces with the solar wind produces reddening on a much greater scale than is observed in bright, silica-rich surfaces, and that this effect is easily reset by collisions. Thus, while both the parent and companion object accumulate the effects, the parent is much more likely to be "reset" by small collisions than the companion, due to the differences in their cross-sections.
Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.
1993-01-01
This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).
ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Luis A.; Galván-Madrid, Roberto; Carrasco-González, Carlos
2015-09-20
We present high angular resolution (∼0.″94) {sup 12}CO(1-0) Atacama Large Millimeter/submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast–northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolarmore » outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 × 10{sup −7} M{sub ⊙}) and energetics (E{sub kin} = 3 × 10{sup 37} erg) for the collimated outflow are comparable to those found in molecular outflows associated with young brown dwarfs.« less
APT, The Phase I tool for HST Cycle 12
NASA Astrophysics Data System (ADS)
Blacker, Brett S.; Bertch, Maria; Curtis, Gary; Douglas, Robert E., Jr.; Krueger, Anthony P.
2002-12-01
In the continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT The Astronomer’s Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. APT, was formerly called the Scientist’s Expert Assistant (SEA), which started as a prototype effort to try and bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their programs as well as HST. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper, we will present our concept and implementation plans for our Phase I development and submission tool, APT. More importantly, we will go behind the scenes and discuss why it’s important for the Science Policies Division (SPD) and other groups at the STScI to have a new submission tool and submission output products. This paper is an update of the status of the HST Phase I Proposal Processing System that was described in the published paper “A New Era for HST Phase I Development and Submission.”
Atmospheric Escape from the Closest Super-Earth
NASA Astrophysics Data System (ADS)
Ehrenreich, David
2015-10-01
In July 2015, we announced the discovery of the super-Earth HD 219134b, orbiting a V = 5.57 star 6.5-pc away from us (Motalebi et al. 2015). This is the brightest and closest transiting system known so far. With Spitzer and HARPS-N, we measured the density of HD 219134b, which is compatible with a rocky planet, possibly containing a large amount of volatile species. The planet receives high stellar irradiation, which could significantly erode its atmosphere. Preliminary estimates indicate that this 4.5 Earth-mass object should nonetheless retain a substantial atmosphere. HD 219134b lies sufficiently far from its star to allow the formation of a hydrogen cloud with a detectable coma. HST is the only telescope able to detect, for the first time, atmospheric escape from a super-Earth, by observing a Lyman-alpha transit. The detection of escaping hydrogen will represent a smoking gun for the presence of water vapor in the lower atmosphere. Constraining the mass-loss rate will allow us to probe the evolution of super-Earths and assess whether hotter super-Earths can be evaporation remnants. Resolving the Lyman-alpha absorption signal will also bring new insights on the dynamics in the exospheric clouds, revealing interaction between the host star and its super-Earth through radiation pressure and stellar wind. A non-detection could hint at a CO/CO2-rich 'super-Venus' and will prepare for adapted follow-up observations. Both outcomes will thus motivate new proposals in Cycle 24.
NASA Astrophysics Data System (ADS)
Bostroem, K. A.; Proffitt, C.
2011-05-01
This handbook describes data from the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST), and how to manipulate, calibrate, and analyze those data. The current version of the STIS Data Handbook is presented as an independent and self-contained document, extensively built on the contents of version 6 of the HST Data Handbook. Users are referred to a companion volume, Introduction to the HST Data Handbooks, for more general information about the details of acquiring data from the HST archive, HST file formats, and general purpose software for displaying and processing HST data. For detailed information on the capabilities of the instrument, and how to plan observations, users should refer to the STIS Instrument Handbook. For further information and timely updates, users should consult the STIS Web page (http://www.stsci.edu/hst/stis), especially the Document Archive link. In particular, the STScI Analysis Newsletters (STANs) highlight changes in code and calibration procedures and provide other instrument-related news. The Instrument Science Reports (ISRs) present in-depth characterizations of the instrument and detailed explanations of calibration code and procedures. The current edition of the STIS Data Handbook was completed in early-2011. The last major revision was published in January 2002, following the failure of the Side-1 electronics and the successful resumption of operations using Side-2 electronics in the summer of 2001. STIS continued to perform well until the Side-2 electronics failed on 3 August 2004. STIS was successfully repaired during the fourth HST servicing mission (SM4) in May 2009 and has resumed science operations with all channels. A static archive of all STIS data taken prior to the Side-2 failure was prepared in 2006 using the latest calibration code and reference files, and has now replaced On-the-Fly Reprocessing (OTFR) of STIS data. At that time, substantial improvements were made to calibration and pipeline codes and reference files (see Section 1.5). New STIS data taken after the 2009 repair will be processed through OTFR when requested from the HST archive. This will allow the data to be calibrated with the most up-to-date versions of the software and reference files.
An Astrometric Analysis of eta Carinae’s Eruptive History Using HST WF/PC2 and ACS Observations
2007-07-11
Std Z39-18 to address the question of binarity. Based on an astrometric analysis of the data, binary reflex motion is detected in the primary and, by...Measurement Results 96 5.1 Primary Luminosity and Mass . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Secondary Mass and Luminosity...Binary Models . . . . . . . . . . . 100 5.5 Primary –Secondary Distance . . . . . . . . . . . . . . . . . . . . . . . 102 5.6 Periastron passage
NASA Astrophysics Data System (ADS)
Guo, Aobo; Ashmead, Claire C.; de Groh, Kim K.; Sechkar, Edward A.
When exposed to low Earth orbit (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and interaction with atomic oxygen (AO). Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical properties deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cm3/atom) of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon® fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 × 10-24 cm3/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 × 10-24 cm3/atom. The Ey of the pristine samples was 1.6 to 1.7 × 10-24 cm3/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.
NASA Technical Reports Server (NTRS)
Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.
2012-01-01
When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.
NASA Astrophysics Data System (ADS)
Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.
2016-06-01
The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.
NASA Astrophysics Data System (ADS)
Liou, J.-C.; Anz-Meador, P.; Opiela, J.; Christiansen, E.; Cowardin, H.; Davidson, W.; Ed-Wards, D.; Hedman, T.; Herrin, J.; Hyde, J.; Juarez, Q.; Lear, D.; McNamara, K.; Moser, D.; Ross, D.; Stansbery, E.
The STS-125 Atlantis astronauts retrieved the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) during a very successful servicing mission to the HST in May 2009. The radiator attached to WFPC2 has dimensions of 2.2 m by 0.8 m. Its outermost layer is a 4-mm thick aluminum plate covered with a white thermal control coating. This radiator had been exposed to space since the deployment of WFPC2 in 1993. Due to its large surface area and long exposure time, the radiator serves as a unique witness plate for the micrometeoroid and orbital debris (MMOD) environment between 560 and 620 km altitude. The NASA Orbital Debris Program Office is leading an effort, with full support from the HST Program at GSFC, NASA Curation Office at JSC, NASA Hypervelocity Impact Technology Facility at JSC, and NASA Meteoroid Environment Office at MSFC, to inspect the exposed radiator surface. The objective is to measure and analyze the MMOD impact damage on the radiator, and then apply the data to validate or improve the near-Earth MMOD environment definition. The initial inspection was completed in September 2009. A total of 685 MMOD impact features (larger than about 0.3 mm) were identified and documented. This paper will provide an overview of the inspection, the analysis of the data, and the initial effort to use the data to model the MMOD environment.
ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanad, M. R., E-mail: mrsanad1@yahoo.com
Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.
Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
NASA Astrophysics Data System (ADS)
Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.
2002-12-01
We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.
Measuring Low Mass Galaxies In The WFC3 Infrared Spectroscopic Parallels Survey
NASA Astrophysics Data System (ADS)
Colbert, James; Teplitz, Harry; Scarlata, Claudia; Siana, Brian; Malkan, Matt; McCarthy, Patrick; Henry, Alaina; Atek, Hakim; Fosbury, Robert; Ross, Nathanial; Hathi, Nimish; Bridge, Carrie; Bunker, Andrew; Dressler, Alan; Shim, Hyunjin; Bedregal, Alejandro; Dominguez, Alberto; Rafelski, Marc; Masters, Dan; Martin, Crystal; Dai, Sophia
2015-10-01
The WFC3 Infrared Spectroscopic Parallel (WISP) Survey uses over 1800 HST orbits to study galaxy evolution over a majority of cosmic history. Its slitless grism spectroscopy over a wide, continuous spectral range (0.8-1.7 micron) provides an unbiased selection of thousands of emission line galaxies over 0.5 < z < 2.5. Hundreds of these galaxies are detected in multiple emission lines, allowing for important diagnostics of metallicity and dust extinction. We propose deep 3.6 micron imaging (5 sigma, 0.9 micro-Jy) of 60 of the deepest WISP fields observed with the combination of G102+G141 grisms, in order to detect emission-line galaxies down to 0.1 L* and masses below 10^8 Mo. Combined with our HST optical and near-IR photometry, these IRAC data will be critical to determining accurate stellar masses for both passive and active galaxies in our survey. We will determine the evolution of the faint end slope of the stellar mass function and the mass-metallicity relation down to low-mass galaxies. The addition of the IRAC photometry will also provide much stronger constraints on dust extinction and star formation history, especially when combined with information available from the emission lines themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard
We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ∼50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seenmore » for the HD 15115 debris disk. The planet candidate is oriented ∼21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waszczak, Adam; Kulkarni, Shrinivas R.; Ofek, Eran O., E-mail: waszczak@caltech.edu
We present ultraviolet (UV) photometry (near-UV (NUV) band, 180–280 nm) of 405 asteroids observed serendipitously by GALEX from 2003 to 2012. All asteroids in this sample were detected by GALEX at least twice. Unambiguous visible-color-based taxonomic labels (C type versus S type) exist for 315 of these asteroids; of these, thermal-infrared-based diameters are available for 245. We derive NUV − V color using two independent models to predict the visual magnitude V at each NUV-detection epoch. Both V models produce NUV − V distributions in which the S types are redder than C types with more than 8σ confidence. Thismore » confirms that the S types’ redder spectral slopes in the visible remain redder than the C types’ into the NUV, this redness being consistent with absorption by silica-containing rocks. The GALEX asteroid data confirm earlier results from the International Ultraviolet Explorer, which two decades ago produced the only other sizeable set of UV asteroid photometry. The GALEX-derived NUV − V data also agree with previously published Hubble Space Telescope (HST) UV observations of asteroids 21 Lutetia and 1 Ceres. Both the HST and GALEX data indicate that NUV band is less useful than u band for distinguishing subgroups within the greater population of visible-color-defined C types (notably, M types and G types)« less
Massive stars dying alone: the extremely remote environment of SN 2009ip
NASA Astrophysics Data System (ADS)
Smith, Nathan; Andrews, Jennifer E.; Mauerhan, Jon C.
2016-12-01
We present late-time Hubble Space Telescope (HST) images of the site of supernova (SN) 2009ip taken almost 3 yr after its bright 2012 luminosity peak. SN 2009ip is now slightly fainter in broad filters than the progenitor candidate detected by HST in 1999. The current source continues to be dominated by ongoing late-time circumstellar material interaction that produces strong Hα emission and a weak pseudo-continuum, as found previously for 1-2 yr after explosion. The intent of these observations was to search for evidence of recent star formation in the local (˜1 kpc; 10 arcsec) environment around SN 2009ip, in the remote outskirts of its host spiral galaxy NGC 7259. We can rule out the presence of any massive star-forming complexes like 30 Dor or the Carina nebula at the SN site or within a few kpc. If the progenitor of SN 2009ip was really a 50-80 M⊙ star as archival HST images suggested, then it is strange that there is no sign of this type of massive star formation anywhere in the vicinity. A possible explanation is that the progenitor was the product of a merger or binary mass transfer, rejuvenated after a lifetime that was much longer than 4-5 Myr, allowing its natal H II region to have faded. A smaller region like the Orion nebula would be an unresolved but easily detected point source. This is ruled out within ˜1.5 kpc around SN 2009ip, but a small H II region could be hiding in the glare of SN 2009ip itself. Later images after a few more years have passed are needed to confirm that the progenitor candidate is truly gone and to test for the possibility of a small H II region or cluster at the SN position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantopoulos, I. S.; Charlton, J. C.; Gronwall, C.
The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but nomore » detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the {approx}300 YMCs and {approx}150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z {approx} 1-2.« less
Optical And Near-infrared Variability Among Distant Galactic Nuclei Of The CANDELS EGS Field
NASA Astrophysics Data System (ADS)
Grogin, Norman A.; Dahlen, T.; Donley, J.; Koekemoer, A. M.; Salvato, M.; CANDELS Collaboration
2014-01-01
The CANDELS HST Multi-cycle Treasury Program completed its observations of the EGS field in May 2013. The coverage comprises WFC3/IR exposures in J-band and H-band across a contiguous 200 square arcminutes, and coordinated parallel ACS/WFC exposures in V-band and I-band across a contiguous 270 square arcminutes that largely overlaps the WFC3/IR coverage. These observations were split between two epochs with 52-day spacing for the primary purpose of high-redshift supernovae (SNe) detection and follow-up. However, this combination of sensitivity, high resolution, and time spacing is also well-suited to detect optical and near-infrared variability ("ONIV") among moderate- to high-redshift galaxy nuclei (H<25AB mag; I<26AB mag). These data are sensitive to rest-frame variability time-scales of up to several weeks, and in combination with the original EGS ACS imaging from 2004, to time-scales of up to several years in the V- and I-bands. The overwhelming majority of these variable galaxy nuclei will be AGN; the small fraction arising from SNe have already been meticulously culled by the CANDELS high-redshift SNe search effort. These ONIV galaxy nuclei potentially represent a significant addition to the census of distant lower-luminosity AGN subject to multi-wavelength scrutiny with CANDELS. We present the preliminary results of our EGS variability analysis, including a comparison of the HST ONIVs with the known AGN candidates in the field from deep Spitzer and Chandra imaging, and from extensive ground-based optical spectroscopy as well as HST IR-grism spectroscopy. We also assess the redshift distribution of the ONIVs from both spectroscopy and from robust SED-fitting incorporating ancillary deep ground-based imaging along with the CANDELS VIJH photometry. We compare these results with our prior variability analysis of the similarly-observed CANDELS UDS field from 2011 and CANDELS COSMOS field from 2012.
HST/STIS Transmission Spectral Survey: Probing the Atmospheres of HAT-P-1b and WASP-6b
NASA Astrophysics Data System (ADS)
Nikolov, N.; Sing, D. K.; Pont, F.; Burrows, A. S.; Fortney, J. J.; Ballester, G. E.; Evans, T. M.; Huitson, C. M.; Wakeford, H. R.; Wilson, P. A.; A. D., S.; Gibson, N. P.; Henry, G. W.; Knutson, H.; Etangs, A. L. d.; Showman, A. P.; Vidal-Madjar, A.; Zahnle, K.
2014-03-01
We present optical to near-infrared transmission spectra of HAT-P-1b and WASP-6b, part of a Large HST/STIS hot Jupiter transmission spectral survey (P.I. David Sing). The spectra for each target cover the regimes 2900-5700Å and 5240-10270Å, with resolving power of R = 500. The HAT-P-1b data is coupled with a recent HST/WFC3 transit, spanning the wavelength range 1.087-1.687microns (R=130), acquired in spatial scan mode. The WASP-6b data is complemented with Spritzer/IRAC 3.6 and 4.5 micron transit observations, part of a comparative exoplanetology program (P.I. Jean-Michel Desert). The transmission spectrum of HAT-P-1b shows a strong absorption signature shortward of 5500Å, with a strong blueward slope into the near-UV. We detect atmospheric sodium absorption at a 3.3s significance level, but see no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~8500Å. The combined STIS and WFC3 optical to NIR spectra differ significantly in absolute radius level (4.3+/-1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to nearinfrared difference cannot be explained by stellar activity, as simultaneous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. The red transmission spectrum of WASP-6b is flat with tentative detection of sodium and potassium. We compare both spectra with theoretical atmospheric models, which include haze, sodium and an extra optical absorber in the case of HAT-P-1b. We find that both an optical absorber and a super-solar sodium to water abundance ratio might be a scenario explaining the HAT-P-1b observations.
GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levan, Andrew; Nugent, Peter; Fruchter, Andrew
2004-03-19
We present the discovery and monitoring of the optical transient (OT) associated with GRB 020410. The fading OT was found by Hubble Space Telescope (HST) observations taken 28 and 65 days after burst at a position consistent with the X-ray afterglow. Subsequent re-examination of early ground based observations revealed that a faint OT was present 6 hours after burst, confirming the source association with GRB 020410. A deep non-detection after one week requires that the OT re-brightened between day 7 and day 28, and further late time HST data taken approximately 100 days after burst imply that it is verymore » red (F{sub nu} proportional to nu-2.7). We compare both the flux and color of the excess with supernova models and show that the data are best explained by the presence of a Type I b/c supernova at a redshift z approx. equal 0.5, which occurred roughly coincident with the day of GRB.« less
Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.
Duncan, Christopher A J; Heymans, Catherine; Heavens, Alan F; Joachimi, Benjamin
2016-03-21
We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.
Pulsating stars and the distance scale
NASA Astrophysics Data System (ADS)
Macri, Lucas
2017-09-01
I present an overview of the latest results from the SH0ES project, which obtained homogeneous Hubble Space Telescope (HST) photometry in the optical and near-infrared for ˜ 3500 and ˜ 2300 Cepheids, respectively, across 19 supernova hosts and 4 calibrators to determine the value of H0 with a total uncertainty of 2.4%. I discuss the current 3.4σ "tension" between this local measurement and predictions of H0 based on observations of the CMB and the assumption of "standard" ΛCDM. I review ongoing efforts to reach σ(H0) = 1%, including recent advances on the absolute calibration of Milky Way Cepheid period-luminosity relations (PLRs) using a novel astrometric technique with HST. Lastly, I highlight recent results from another collaboration on the development of new statistical techniques to detect, classify and phase extragalactic Miras using noisy and sparsely-sampled observations. I present preliminary Mira PLRs at various wavelengths based on the application of these techniques to a survey of M33.
Identification on HST Images of Microlensed Stars from the MACHO Project
NASA Astrophysics Data System (ADS)
King, L. J.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
1998-12-01
The MACHO collaboration has been searching for microlensing events toward the Galactic Bulge and the Magellanic Clouds. We have used the WFPC2/HST to obtain high resolution images of a number of fields centred on stars that have undergone microlensing events. Ground based optical images typically have a resolution in excess of one arcsecond, so that the microlensed star may be blended with other stars. On HST images the star is unblended. We show that microlensed stars can be identified by comparing the HST images with image subtracted ground based images. The unblended intrinsic magnitudes, lensed magnitudes and magnifications of the stars can be determined, providing invaluable constraints on lens models.
Ground-based detections of sodium in HD 209458b's atmosphere in two data sets
NASA Astrophysics Data System (ADS)
Albrecht, S.; Snellen, I.; de Mooij, E.; Le Poole, R.
2009-02-01
We present two separate ground-based detections of sodium in the transmission spectrum of HD 209458b. First we reanalyzed an archival data set from the HDS spectrograph on Subaru, which shows sodium at a >5σ level. Secondly, our preliminary results of a UVES/VLT data set indicate sodium absorption at a similar level, although the data cover the eclipse only partially. Both results are fully consistent with the HST results of Charbonneau et al. (2002). The Na D absorption feature seems to be resolved in the narrowest passband.
Scaling Stellar Mass Estimates of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese
2017-01-01
Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.
The 3D-HST Survey: An Introduction
NASA Astrophysics Data System (ADS)
Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team
2013-01-01
3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 1
Kawashima, Keiko; Fujimura, Yu; Makino, Toshiaki; Kano, Yoshihiro
2006-09-01
The protective effect of Hangeshashinto (HST) and its major constituents, baicalin (BA), berberine (BE), saponin fraction of ginseng (GS) and glycyrrhizin (GL) on rat gastric lesion induced by ethanol was examined to clarify its active ingredients and action mechanism. Oral treatment with HST at the doses of 125 and 250 mg/kg suppressed ethanol-induced gastric lesions. The mixture of BA, BE, GL and GS (4M), each of BE, GL and GS at the dosage corresponded to HST (125 mg/kg) also suppressed the ethanol-induced gastric lesion in rats, but BA did not. Treatment of ethanol augmented the activity of myeloperoxidase (MPO) in the stomach, which was significantly suppressed by the administration of HST, BE, GL and GS. These results suggest that the protective effect of HST on ethanol-induced gastric lesion was depended on BE, GL and GS, by, in part, the reduction of MPO activity in stomach.
A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi
2004-01-01
The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.
NASA Astrophysics Data System (ADS)
Lauer, Tod
1995-07-01
We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to <3,000 km s^-1. The high spatial resolution of HST allows precise measurement of the SBF signal at large distances, and allows easy recognition of globular clusters, background galaxies, and dust clouds in the BCG images that must be removed prior to SBF detection. The proposing team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.
SEARCHING FOR THE HR 8799 DEBRIS DISK WITH HST /STIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, B.; Marois, C.; Tannock, M.
We present a new algorithm for space telescope high contrast imaging of close-to-face-on planetary disks called Optimized Spatially Filtered (OSFi) normalization. This algorithm is used on HR 8799 Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) coronagraphic archival data, showing an over-luminosity after reference star point-spread function (PSF) subtraction that may be from the inner disk and/or planetesimal belt components of this system. The PSF-subtracted radial profiles in two separate epochs from 2011 and 2012 are consistent with one another, and self-subtraction shows no residual in both epochs. We explore a number of possible false-positive scenarios that could explainmore » this residual flux, including telescope breathing, spectral differences between HR 8799 and the reference star, imaging of the known warm inner disk component, OSFi algorithm throughput and consistency with the standard spider normalization HST PSF subtraction technique, and coronagraph misalignment from pointing accuracy. In comparison to another similar STIS data set, we find that the over-luminosity is likely a result of telescope breathing and spectral difference between HR 8799 and the reference star. Thus, assuming a non-detection, we derive upper limits on the HR 8799 dust belt mass in small grains. In this scenario, we find that the flux of these micron-sized dust grains leaving the system due to radiation pressure is small enough to be consistent with measurements of other debris disk halos.« less
Artist concept of Hubble Space Telescope (HST) orbiting Earth after deploy
1990-04-05
This artist concept shows the Hubble Space Telescope (HST) in operational configuration orbiting the Earth after its deploy from Discovery, Orbiter Vehicle (OV) 103 during STS-31. The high gain antennas (HGAs) and solar arrays (SAs) have been extended. HST's aperature door is open as it views the universe from a vantage point above the Earth's atmosphere. View provided by the Marshall Space Flight Center (MSFC).
Artist concept of the Hubble Space Telescope (HST) after STS-31 deployment
1988-09-21
Artist concept shows the Hubble Space Telescope (HST) placed in orbit above the Earth's distorting layer of atmosphere by Discovery, Orbiter Vehicle (OV) 103, during mission STS-31. Tracking and data relay satellite (TDRS) is visible in the background and ground station is visible below on the Earth's surface. HST is the first of the great observatories to go into service and one of NASA's highest priority scientific spacecraft. Capable of observing in both visible and ultraviolet wavelengths, HST has been termed the most important scientific instrument ever designed for use on orbit. It will literally be able to look back in time, observing the universe as it existed early in its lifetime and providing information on how matter has evolved over the eons. The largest scientific payload ever built, the 12 1/2-ton, 43-foot HST was developed by Lockheed Missiles & Space Company, spacecraft prime contractor, and Perkin-Elmer Corporation, prime contractor for the optical assembly. The European Space Agency (ESA) furnished the power generating solar array and one of the system's five major instruments. Marshall Space Flight Center (MSFC) manages the HST project; Goddard Space Flight Center (GSFC) will be responsible, when the spacecraft is in orbit, for controlling the telescope and processing the images and instrument data returns.
Genetic analysis of the heparan modification network in Caenorhabditis elegans.
Townley, Robert A; Bülow, Hannes E
2011-05-13
Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans.
Histatin 1 Enhances Cell Adhesion to Titanium in an Implant Integration Model.
van Dijk, I A; Beker, A F; Jellema, W; Nazmi, K; Wu, G; Wismeijer, D; Krawczyk, P M; Bolscher, J G M; Veerman, E C I; Stap, J
2017-04-01
Cellular adhesion is essential for successful integration of dental implants. Rapid soft tissue integration is important to create a seal around the implant and prevent infections, which commonly cause implant failure and can result in bone loss. In addition, soft tissue management is important to obtain good dental aesthetics. We previously demonstrated that the salivary peptide histatin 1 (Hst1) causes a more than 2-fold increase in the ability of human adherent cells to attach and spread on a glass surface. Cells treated with Hst1 attached more rapidly and firmly to the substrate and to each other. In the current study, we examine the potential application of Hst1 for promotion of dental implant integration. Our results show that Hst1 enhances the attachment and spreading of soft tissue cell types (oral epithelial cells and fibroblasts) to titanium (Ti) and hydroxyapatite (HAP), biomaterials that have found wide applications as implant material in dentistry and orthopedics. For improved visualization of cell adhesion to Ti, we developed a novel technique that uses sputtering to deposit a thin, transparent layer of Ti onto glass slides. This approach allows detailed, high-resolution analysis of cell adherence to Ti in real time. Furthermore, our results suggest that Hst1 has no negative effects on cell survival. Given its natural occurrence in the oral cavity, Hst1 could be an attractive agent for clinical application. Importantly, even though Hst1 is specific for saliva of humans and higher primates, it stimulated the attachment and spreading of canine cells, paving the way for preclinical studies in canine models.
HST Peer Review, Where We've Been, Where We Are Now and Possibly Where the Future Lies
NASA Astrophysics Data System (ADS)
Blacker, Brett S.; Macchetto, Duccio; Meylan, Georges; Stanghellini, Letizia; van der Marel, Roeland P.
2002-12-01
In some eyes, the Phase I proposal selection process is the most important activity handled by the Space Telescope Science Institute (STScI). Proposing for HST and other missions consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. Each cycle the Hubble Space Telescope (HST) Telescope Allocation Committee (TAC) reviews proposals and awards observing time that is valued at $0.5B, when the total expenditures for HST over its lifetime are figured on an annual basis. This is in fact a very important endeavor that we continue to fine-tune and tweak. This process is open to the science community and we constantly receive comments and praise for this process. Several cycles ago we instituted several significant changes to the process to address concerns such as: Fewer, broader panels, with redundancy to avoid conflicts of interest; Redefinition of the TAC role, to focus on Larger programs; and incentives for the panels to award time to medium sized proposals. In the last cycle, we offered new initiatives to try to enhance the scientific output of the telescope. Some of these initiatives were: Hubble Treasury Program; AR Legacy Program; and the AR Theory Program. This paper will outline the current HST Peer review process. We will discuss why we made changes and how we made changes from our original system. We will also discuss some ideas as to where we may go in the future to generate a stronger science program for HST and to reduce the burden on the science community. This paper is an update of the status of the HST Peer Review Process that was described in the published paper "Evolution of the HST Proposal Selection Process".
Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report
NASA Technical Reports Server (NTRS)
1993-01-01
The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.
The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039
NASA Astrophysics Data System (ADS)
Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.
2016-01-01
Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II]λ3727 emission line and a BAL system in the CaH λ3968, CaK λ3934 lines (blueshifted by 4900 km s-1) and in the He I λ3889 line (blueshifted by 5600 km s-1). Based on observations obtained with XMM-Newton, the Hubble Space Telescope (HST), Southern African Large Telescope (SALT), and Hobby-Eberly Telescope (HET).
VizieR Online Data Catalog: HST photometry in R136 (Hunter+ 1995)
NASA Astrophysics Data System (ADS)
Hunter, D. A.; Shaya, E. J.; Holtzman, J. A.; Light, R. M.; Oneil, Earl J., Jr.
1996-01-01
We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M_555.0 of 0.9 or a mass of 2.8M⊙. Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8M⊙, and stars with M_555.0>=0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3-4Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8-15M⊙ in three annuli from 0.5-4.7pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5pc. Furthermore, the combined IMF slope, -1.22+/-0.06, is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: <=2.8M⊙ beyond 0.5pc and <=7M⊙ within 0.1pc. This is contrary to some predictions that the lower mass limit could be as high as 10M⊙ in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136. From the surface brightness profile, an upper limit for core radius of 0.02pc is set. Within a radius of 0.4pc we estimate that there have been roughly 20 crossing times and relaxation should be well along. Within 0.5pc crowding prevents us from detecting the intermediate mass population, but there is a hint of an excess of stars brighter than M_555.0=-5 and of a deficit in the highest mass stars between 0.6pc and 1.2pc. This would be consistent with dynamical segregation. (1 data file).
Discovery of a Satellite of the Large Trans-Neptunian Object (225088) 2007 OR{sub 10}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, Csaba; Marton, Gábor; Farkas-Takács, Anikó
2007 OR{sub 10} is currently the third largest known dwarf planet in the trans-Neptunian region, with an effective radiometric diameter of ∼1535 km. It has a slow rotation period of ∼45 hr that was suspected to be caused by tidal interactions with a satellite undetected at that time. Here, we report on the discovery of a likely moon of 2007 OR{sub 10}, identified on archival Hubble Space Telescope WFC3/UVIS system images. Although the satellite is detected at two epochs, this does not allow an unambiguous determination of the orbit and the orbital period. A feasible 1.5–5.8 · 10{sup 21} kgmore » estimate for the system mass leads to a likely 35–100 day orbital period. The moon is about 4.ͫ2 fainter than 2007 OR{sub 10} in HST images that corresponds to a diameter of 237 km assuming equal albedos with the primary. Due to the relatively small size of the moon, the previous size and albedo estimates for the primary remains unchanged. With this discovery all trans-Neptunian objects larger than 1000 km are now known to harbor satellites, an important constraint for moon formation theories in the young solar system.« less
Hubble Space Telescope (HST) above OV-103's PLB during STS-31 deployment
1990-04-25
The Hubble Space Telescope (HST) is raised above the payload bay (PLB) in low hover position during STS-31 checkout and pre-deployment procedures aboard Discovery, Orbiter Vehicle (OV) 103. Stowed along the HST Support System Module (SSM) are the high gain antenna (HGA) (center) and the two solar arrays (one either side). In the background are the orbital maneuvering system (OMS) pods and the Earth's surface.
The eta Carinae Treasury Project and the HST/STIS
NASA Technical Reports Server (NTRS)
Martin, John C.; Davidson, Kris
2006-01-01
The HST Eta Carinae Treasury Project made extensive use of the HST/STIS from 1998 to the time of its failure in 2004. As one of the most prolific users of that instrument, the Treasury Project used the cross-dispersed spatial resolution of the STIS as few projects did. We present several enhancements to the existing STIS data reduction methods that are applicable to non-Treasury Project data in the STIS archive.
STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103
1990-04-25
The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.
Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC
NASA Technical Reports Server (NTRS)
1989-01-01
Technicians complete assembly of the Hubble Space Telescope (HST) mockup at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. In the foreground, a technician holds the controls for an overhead crane attached to one of the HST's high gain antennas (HGAs). Technicians on the ground prepare the HGA to be hoisted into position on the mockup's Support System Module (SSM) forward shell as others work on SSM from a cherry picker.
Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle
NASA Technical Reports Server (NTRS)
VanEepoel, John; Thienel, Julie; Sanner, Robert M.
2006-01-01
In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.
Final Report for the Advanced Camera for Surveys (ACS)
NASA Technical Reports Server (NTRS)
2004-01-01
ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. At the time of liftoff, the Hubble Space Telescope (HST) was reflecting the early morning sun as it moved across the sky. After successfully docking with HST, several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC, hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly, and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST.
VizieR Online Data Catalog: NGC 4038/4039 broad and /narrow band photometry (Mengel+, 2005)
NASA Astrophysics Data System (ADS)
Mengel, S.; Lehnert, M. D.; Thatte, N.; Genzel, R.
2005-06-01
The Ks-band image which was used for the 3{sigma}-detection was obtained with ISAAC on VLT-ANTU as part of programme 65.N-0577, and has a FWHM of ~0.38". 1072 point-like objects were detected. For the multi-band photometry, we also used the HST archival images obtained by Whitmore et al. (see Whitmore et al., 1999AJ....118.1551W), which we rebinned to the same pixel size as the ISAAC image (0.1484"/pix). The CO narrow band image was also obtained with ISAAC, while the Br{gamma} image was obtained with SOFI at the NTT (programme number 63.N-0528). The Br{gamma} image had a lower image quality than the other two images (FWHM=0.7"). The photometry data were used to simultaneously fit age and extinction for each individual cluster in comparison to an evolutionary synthesis model. Where possible, the visual extinction was determined from an average of the extinction from the broadband fit and from the Hydrogen recombination line ratios (in comparison to the expected Case B line ratio). The age estimate from the fit was, where possible, averaged with the aged determined from equivalent widths and CO index. (1 data file).
Near-infrared imaging polarimetry of dusty young stars
NASA Astrophysics Data System (ADS)
Hales, A. S.; Gledhill, T. M.; Barlow, M. J.; Lowe, K. T. E.
2006-02-01
We have carried out JHK polarimetric observations of 11 dusty young stars, by using the polarimeter module IRPOL2 with the near-infrared camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with Hubble Space Telescope (HST) coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of the disc of TW Hya. We find the polarizing efficiency of the disc is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3arcsec from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.
Probing Reionization at z≥7 with HST's Near-Infrared Grisms
NASA Astrophysics Data System (ADS)
Borello Schmidt, Kasper
2015-08-01
The epoch of reionization, i.e. the transition of the IGM from neutral to fully ionized, is essential for our understanding of the evolution of the Universe and the formation of the first stars and galaxies. The first results at z≤ 7 suggest that the reionization happened in a patchy, rather than smooth, fashion. It is still unclear whether galaxies at z≥7 prefer a patchy reionization scenario as well. The Grism Lens-Amplified Survey from Space (GLASS) has obtained spectra of ten thousands of objects in and behind 10 massive galaxy clusters, including the six Hubble Frontier Fields. Coaming the Hubble grism spectroscopy from GLASS results in 100s of spectra of z≥7 galaxy candidates. Taking advantage of the lensing magnification from the foreground clusters, the GLASS spectra reaches unprecedented depths in the near-infrared with flux limits below 10-18 erg/s/cm2. This has resulted in several Lyα detections at z˜7, tight limits on the emission line fluxes for non-detections, and the equivalent width distribution of Lyα in the very earlier Universe. Taking advantage of the extensive spectroscopic samples of z≥7 galaxies from GLASS, I will show how these samples can give us and unprecedented view of the cosmic reionization at z≥7.
Search for an evaporating ocean on the super-Earth HIP 116454b
NASA Astrophysics Data System (ADS)
Bourrier, Vincent
2017-08-01
The super-Earth HIP116454b was the first exoplanet detected by the K2 mission, in transit across a bright and nearby K1 dwarf (V=10.2, d=55 pc). The low density of the planet suggests it must have at least 30% water or a 0.5% H-He envelope. Given the strong XUV irradiation from the young (2 Gyr) host star, this H-He envelope should have been lost through evaporation in a few hundred millions year, suggesting that HIP 116454b likely contains a large mass fraction of water. The shallow transit depth makes difficult the search for water vapor in the lower atmosphere with HST/WFC3. The moderate orbital distance of this warm ( 700 K) planet favors the formation of a super-critical steam envelope, which should be promptly dissociated at high altitude by the XUV irradiation and become observable as hydrogen flowing within and beyond the Roche lobe. The host star is similar to HD 189733, host to an evaporating hot Jupiter, and numerical simulations of HIP116454b show that the hydrogen exosphere resulting from the dissociation of water is observable with HST/STIS at Ly-alpha. The detection of this exosphere would be the first signature of an evolved evaporating ocean on an extrasolar planet, as well as the first validation of internal structure models of exoplanets in this mass regime. It would also determine how to best search for water in the lower atmosphere of HIP116454b with the JWST. A non-detection of escaping hydrogen, as with 55 Cnc e and HD 97658b, would bring useful constraints on the nature of the planetary atmosphere, the evolutionary path of close-in super-Earths, and the progenitors of the rocky evaporation remnants detected by Kepler.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, R. B. C.; Miller, T. R.; Balick, B.
The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well withmore » the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.« less
NASA Technical Reports Server (NTRS)
Dever, Joyce; deGroh, Kim K.
2002-01-01
Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of approximately five years in the HST environment. Uncoated aluminized FEP Teflon(R) was determined to be the most appropriate thermal shield material and was used on the bi-stems of replacement solar arrays installed on HST during SMI in December 1993. The SMI -installed solar arrays air scheduled to be replaced during MST's fourth servicing mission (SM3B) in early 2002.
Probing Reionization at z >~ 7 with HST's Near-Infrared Grisms
NASA Astrophysics Data System (ADS)
Schmidt, Kasper B.
The epoch of reionization, i.e. the phase transition of the inter-galactic medium from neutral to fully ionized, is essential for our understanding of the evolution of the Universe and the formation of the first stars and galaxies. The Grism Lens-Amplified Survey from Space (GLASS) has obtained spectra of ten thousands of objects in and behind 10 massive galaxy clusters, including the six Hubble Frontier Fields. The grism spectroscopy from GLASS results in hundreds of spectra of z >~ 7 galaxy candidates. Taking advantage of the lensing magnification from the foreground clusters, the GLASS spectra reaches unprecedented depths in the near-infrared with observed flux limits of ~ 5 × 10-18erg/s/cm2 before correcting for the lens magnification. This has resulted in several Lyα detections at z ~ 7 and tight limits on the emission line fluxes for non-detections. From an ensemble of different photometric selections, we have assembled more than 150 z >~ 7 galaxy candidates from six of the ten GLASS clusters. Among these more than 20 objects show emission lines consistent with being Lyα at z >~ 7. The spatial extent of Lyα estimated from a stack of the most promising Lyα emitters at
Genetic Analysis of the Heparan Modification Network in Caenorhabditis elegans*
Townley, Robert A.; Bülow, Hannes E.
2011-01-01
Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans. PMID:21454666
Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout
1990-04-25
The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.
A strategy for recovery: Report of the HST Strategy Panel
NASA Technical Reports Server (NTRS)
Brown, R. A. (Editor); Ford, H. C. (Editor)
1991-01-01
The panel met to identify and assess strategies for recovering the Hubble Space Telescope (HST) capabilities degraded by a spherical aberration. The panels findings and recommendations to correct the problem with HST are given. The optical solution is a pair of mirrors for each science instrument field of view. The Corrective Optics Space Telescope Axial Replacement (COSTAR) is the proposed device to carry and deploy the corrective optics. A 1993 servicing mission is planned.
Aligning HST Images to Gaia: A Faster Mosaicking Workflow
NASA Astrophysics Data System (ADS)
Bajaj, V.
2017-11-01
We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.
Dark side of the Universe after Planck data
NASA Astrophysics Data System (ADS)
Cheng, Cheng; Huang, Qing-Guo
2014-02-01
Recently released Planck data imply a smaller Hubble constant H0 than that from the Hubble Space Telescope project (HST) and a larger percentage of the matter components Ωm compared to the Supernova Legacy Survey (SNLS) in the Λ cold dark matter (CDM) model. In this paper we found that even though the tension on H0 between Planck and HST can be relaxed if the dark radiation is introduced [ΔNeff=0.536-0.224+0.229 at 68% CL from the data sets of Planck+WMAP polarization (WP)+baryon acoustic oscillation (BAO)+the combination of supernova Union2.1 compilation of 580 Supernovae (Union2.1)+HST], Ωm from Planck is still not nicely compatible with that from SNLS. The tensions between Planck and other astrophysical data sets can be significantly relaxed in the wCDM model, and the combination of these data sets prefers a phantomlike dark energy at more than 95% CL: w =-1.15±0.07 and w=-1.16±0.06 at 68% CL from Planck+WP+BAO+Union2.1+HST and Planck+WP+BAO+SNLS+HST, respectively. From the statistical point of view, there is no evidence for a time-evolving equation of state (Δχ2=-0.3 compared to a constant equation of state for the combination of Planck+WP+BAO+SNLS+HST).
Tool for Torquing Circular Electrical-Connector Collars
NASA Technical Reports Server (NTRS)
Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ
2006-01-01
An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.
Formation Timescales for High-Mass X-ray Binaries in M33
NASA Astrophysics Data System (ADS)
Garofali, Kristen; Williams, Benjamin F.; Hillis, Tristan; Gilbert, Karoline M.; Dolphin, Andrew E.; Eracleous, Michael; Binder, Breanna
2018-06-01
We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival HST and Chandra imaging to find blue stars associated with X-ray positions. We use the HST photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of < 5 Myr and ˜ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from ˜ 8 M⊙ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at < 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.
HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA
NASA Technical Reports Server (NTRS)
1990-01-01
Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its
The new European Hubble archive
NASA Astrophysics Data System (ADS)
De Marchi, Guido; Arevalo, Maria; Merin, Bruno
2016-01-01
The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.
NASA Astrophysics Data System (ADS)
Guaita, L.; Pentericci, L.; Grazian, A.; Vanzella, E.; Nonino, M.; Giavalisco, M.; Zamorani, G.; Bongiorno, A.; Cassata, P.; Castellano, M.; Garilli, B.; Gawiser, E.; Le Brun, V.; Le Fèvre, O.; Lemaux, B. C.; Maccagni, D.; Merlin, E.; Santini, P.; Tasca, L. A. M.; Thomas, R.; Zucca, E.; De Barros, S.; Hathi, N. P.; Amorin, R.; Bardelli, S.; Fontana, A.
2016-03-01
Context. Determining the strength of the Lyman continuum (LyC) and the fraction of LyC escape have implications for the properties of the emitting sources at any redshift, but also for the re-ionization of the Universe at z > 6. Aims: We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Methods: We selected a sample of about 200 sources at z ~ 3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Lyα emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 Å rest frame (3.11 < z < 3.53). We estimated the ratio between ionizing (LyC flux) and 1400 Å non-ionizing emissions for AGN and galaxies. Results: By running population synthesis models, we assume an average intrinsic Lν(1400 Å)/Lν(900 Å) ratio of 5 as the representative value for our sample. With this value and an average treatment of the lines of sight of the inter-galactic medium, we estimate the LyC escape fraction relative to the intrinsic value (fescrel(LyC)). We do not directly detect ionizing radiation from any individual SFG, but we are able to set a 1(2)σ upper limit of fescrel(LyC) < 12(24)%. This result is consistent with other non-detections published in the literature. No meaningful limits can be calculated for the sub-sample of Lyα emitters. We obtain one significant direct detection for an AGN at z = 3.46, with fescrel(LyC) = (72 ± 18)%. Conclusions: Our upper limit on fescrel(LyC) implies that the SFGs studied here do not present either the physical properties or the geometric conditions suitable for efficient LyC-photon escape. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Programs 170.A-0788, 074.A-0709, 171.A-3045, 275.A-5060, and 185.A-0791.
History of Hubble Space Telescope (HST)
1981-01-01
This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1979-03-01
This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1981-01-01
This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Astronauts Hoffman and Musgrave install the Magnetic Sensing System on HST
1993-12-07
STS061-77-102 (7 Dec 1993) --- Astronauts Jeffrey A. Hoffman (left) and F. Story Musgrave are partially silhouetted against the Indian Ocean as they work to install the Magnetic Sensing System (MSS) on the Hubble Space Telescope (HST). Musgrave is anchored to the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm. The HST is positioned along the southern end of Madagascar, 325 nautical miles away. Visible on the western coast are the sediment laden Onilahy and Fiherenana Rivers which empty into Saint Augustin Bay. North of Fiherenana River is the Mangoky River. The circular feature on the southern end of Madagascar and to the right of HST is the L'ivakoany Mountains. The eastern coast is relatively straight compared to the western coast.
STS-109/Columbia/HST Pre-Launch Activities/Launch On Orbit-Landing-Crew Egress
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-109 Space Shuttle Mission begins with introduction of the seven crew members: Commander Scott D. Altman, pilot Duane G. Carey, payload commander John M. Grunsfeld, mission specialists: Nancy J. Currie, James H. Newman, Richard M. Linnehan, and Michael J. Massimino. Spacewalking NASA astronauts revive the Hubble Space Telescope's (HST) sightless infrared eyes, outfitting the observatory with an experimental refrigerator designed to resuscitate a comatose camera. During this video presentation John Grunsfeld and Rick Linnehan bolt the new cryogenic cooler inside HST and hung a huge radiator outside the observatory and replaces the telescope power switching station. In the video we can see how the shuttle robot arm operator, Nancy Currie, releases the 13-ton HST. Also, the landing of the Space Shuttle Columbia is presented.
Eta Carinae's Change of State: The End Game
NASA Astrophysics Data System (ADS)
Davidson, Kris
2017-08-01
Eta Car is the only giant-eruption survivor that can be observed well. Hence it is genuinely unique for testing instability theories which are crucial for very massive stars. Fortuitously, a rapid change of state began about 1998. This represents an unexpected stage in the recovery following the Great Eruption (supernova impostor event) seen 170 years ago. Now there are reasons to think that the change of state is nearly complete. HST/STIS has been the main source of information on this phenomenon, and is the only instrument that can show the final (or nearly final) state. Therefore we propose to complete this record in Cy 25. The archival value is very high, because similar observations will later be impossible; the star is changing irreversibly. HST is needed, because UV is essential and because all ground-based spectroscopy of eta Car is heavily contaminated by emission lines formed about 0.3 arcsec away. For this object each HST orbit produces many high-quality spectra. The same data apply to other problems, e.g. exotic emission processes in the ejecta, bipolar structures, and the nature of the companion star.We propose STIS observations: (1) A final update of the central star's wind spectrum at selected NUV-to-red wavelengths. (2) Brief UV spectroscopy with the MAMA echelle. This will be the only such data obtained at a time when the companion star is near apoastron. (3) Special sampling of the Homunculus ejecta-nebula using STIS/CCD with long exposure times. This was done once before, in 2000, and major changes have occurred since then.
NASA Astrophysics Data System (ADS)
Schneider, Glenn; Thompson, Rodger I.; Smith, Bradford A.; Terrile, Richard J.
1998-08-01
The Near IR Camera and Multi-Object Spectrometer (NICMOS), installed into the Hubble Space Telescope (HST) in February 1997, incorporates a coronagraphic imaging capability. The coronagraph is comprised of two optical elements. The camera 2 field divider mirror, upon which the HST f/24 input beam is imaged, includes a 170 micrometers diameter hole which contains approximately 93 percent of the encircled energy from a stellar Point Spread Function (PSF) at a wavelength of 1.6 micrometers . The coronagraphic hole lowers both the diffracted energy in the surrounding region by reducing the high spatial frequency components of the occulted core of the PSF< and down stream scattering. The geometrical radius of this occulting spot, when re-imaged through the camera 2 f/45 optics, is approximately 4 pixels at the detector focal plane. An oversized cold pupil-plane mask, with radial structures co-aligned with the HST secondary mirror spider, acts over the whole 19.1 inch by 19.2 field to further reduce the diffracted energy in the direction of the spider vanes. The absolute performance levels of the coronagraph were ascertained during the servicing mission observatory verification program. Using a differential imaging strategy we expect to achieve statistically significant detectors of sub-stellar companions at 1.6 micrometers with a (Delta) H of approximately 10 and separations as close as 0.5 inch. The NICMOS environments of nearby stars programs is exploiting this capability in systematic surveys of nearby, and young stars searching for brown dwarfs and giant planets, and protoplanetary disks around main-sequence stars.
The Origin of Ultra-Faint Galaxies
NASA Astrophysics Data System (ADS)
Sand, David
2017-08-01
We request 24 orbits of HST/ACS to obtain imaging in F606W and F814W of apparent tidal features in two ultra-faint dwarf galaxies: Hercules and Leo V. This will enable us to test whether the stars in ultra- faint galaxies-as a population-have been affected by Galactic tides. Most of the new dwarfs show signs of tidal interaction in ground-based photometry, several have measured ellipticities greater than 0.5, and kinematics of a subset show velocity gradients. These ubiquitous hints for tidal effects among distant dwarfs is particularly surprising and suggestive. If most ultra-faint dwarfs are disturbed by tides, then recent tests of galaxy formation in the near field have unstable foundations.HST resolution provides an opportunity to assess whether tidal features (accompanied by tentative kinematic gradients) seen in ground-based observations of Hercules and Leo V are genuine or are instead clumps of compact background galaxies masquerading as stellar debris. In Hercules, a further test is possible: searching for a distance gradient along the stretched body of the galaxy. Parallel pointings will sample similar dwarf-centric radii away from the tidal features, assuring an unambiguous result. Whether we confirm or rule out the presence of stellar loss in these objects, the consequences are important-the origin of the ultra-faint dwarfs tells us the lower limit to both galaxy formation and the number of dark matter subhalos inhabiting the Milky Way.This program is only possible with HST: its exquisite resolution can separate compact galaxies from main sequence dwarf stars at faint magnitudes, which even the best multi-band ground-based schemes struggle with.
2002-04-01
This picture of the galaxy UGC 10214 was was taken by the Advanced Camera for Surveys (ACS), which was installed aboard the Hubble Space Telescope (HST) in March 2002 during HST Servicing Mission 3B (STS-109 mission). Dubbed the "Tadpole," this spiral galaxy is unlike the textbook images of stately galaxies. Its distorted shape was caused by a small interloper, a very blue, compact galaxy visible in the upper left corner of the more massive Tadpole. The Tadpole resides about 420 million light-years away in the constellation Draco. Seen shining through the Tadpole's disk, the tiny intruder is likely a hit-and-run galaxy that is now leaving the scene of the accident. Strong gravitational forces from the interaction created the long tail of debris, consisting of stars and gas that stretch our more than 280,000 light-years. The galactic carnage and torrent of star birth are playing out against a spectacular backdrop: a "wallpaper pattern" of 6,000 galaxies. These galaxies represent twice the number of those discovered in the legendary Hubble Deep Field, the orbiting observatory's "deepest" view of the heavens, taken in 1995 by the Wide Field and planetary camera 2. The ACS picture, however, was taken in one-twelfth of the time it took to observe the original HST Deep Field. In blue light, ACS sees even fainter objects than were seen in the "deep field." The galaxies in the ACS picture, like those in the deep field, stretch back to nearly the begirning of time. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.
NASA Technical Reports Server (NTRS)
Wirzburger, John H.
2005-01-01
For f i h years, the science mission of the Hubble Space Telescope (HST) required using at least three of six rate gyros for attitude control. In the past, HST has mitigated gyro hardware failures by replacement of the failed units through Space Shuttle Servicing Missions. Following the tragic loss of Space Shuttle Columbia on STS-107, the desire to have a safe haven for astronauts during missions has resulted in the cancellation of all planned maxu14 missions to HST. While a robotic servicing mission is being currently being planned, controlling with alternate sensors to replace failed gyros can extend the HST Science mission until the robotic mission can be performed and extend science at HST s end of life. A two-gym control law has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), fixed head star trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms and attitude error to less than 10 milli-arcseconds prior to science imaging. The MSS and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth occultation of FHSTs and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and corrects the majority of attitude error in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law d a m p T2G rates and controls HST attitude during science imaging. This paper describes the M2G control law. Details of M2G algorithms are presented, including computation of the HST 3-axis attitude error estimate, design of the M2G control law, SISO hear stability analyses, and restrictions on operations to maintain the h d t h and safety requirement of a 10degree maximum attitude error. Results of simulations performed in HSTSIM, a high-fidelity non-linear time domain simulation, are presented to predict HST on-orbit performance in attitude hold and maneuver modes. Simulation results are compared to on-orbit data from M2G flight tests performed in November and December 2004 and February 2005. Flight telemetry, using a currently available third gyro, shows that HST attitude error with the new M2G control law is maintained below the 10-degree requirement, and attitude errors are under 2 degrees for 95% of the time.
AO 0235+164 and Surrounding Field: Surprising HST Results
NASA Technical Reports Server (NTRS)
Burbidge, E. M.; Beaver, E. A.; Cohen, Ross D.; Junkkarinen, V. T.; Lyons, R. W.
1996-01-01
Results obtained with the Hubble Space Telescope on the highly variable radio, x-ray, and gamma-ray emitting QSO (or BL Lac object) AO 0235 + 164 are presented and analyzed. WFPC2 images were obtained in 1994 June, when AO 0235 + 164 was bright (m approx. 17), and the results are described in Sec. 3. After subtraction of the PSF of the QSO, hereafter called AO following the nomenclature of Yanny et al. (1989), the companion object named A, 2 sec south of AO, is discovered not to be an elliptical galaxy as hypothesized earlier, but to be an AGN object, with a central UV-bright point-source nucleus and faint surrounding nebulosity extending to AO. The second companion object 1.3 sec east of AO discovered by Yanny et al. (1989) and named object Al, appears more like a normal spiral galaxy. We have measured the positions, luminosities, and colors of some 30 faint objects in the field around AO 0235 + 16; most are extended and may be star-forming galaxies in a loose group or cluster. Our most surprising result of the HST observations comes from FOS spectra obtained in 1995 July, discussed in Sec. 4. Because of a positioning error of the telescope and AO's faintness at that time (m approx. 20), object A was observed instead of the intended target AO. Serendipitously, we discovered A to have broad deep BALQSO-type absorptions of C IV, Si IV, N V shortward of broad emissions. A is thus ejecting high velocity, highly ionized gas into the surrounding IGM. We discuss in Sec. 5 the relationship of the objects in the central 10 sec X 1O sec region around AO, where redshifts z(sub e) = 0.94, z(sub a) = 0.524, 0.851 in AO, (sub e) = 0.524 and Z(sub BAL)=0.511 in A, are found. We hypothesize that some of the 30 faint objects in the 77 sec. x 77 sec. field may be part of a large star-forming region at z approx. 0.5, as suggested for a few objects by Yanny et al. (1989). The proximity of two highly active extragalactic objects, AO 0235+164 and its AGN companion A, is remarkable and one of the authors (EMB) suggests it may require consideration of a non-cosmological component of redshift in AO 0235+164.
Discovery of bright z ≃ 7 galaxies in the UltraVISTA survey
NASA Astrophysics Data System (ADS)
Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Ideue, Y.; Ihara, Y.; Rogers, A. B.; Taniguchi, Y.
2012-11-01
We have exploited the new, deep, near-infrared UltraVISTA imaging of the Cosmological Evolution Survey (COSMOS) field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ≃ 7. The year-one UltraVISTA data provide contiguous Y, J, H, Ks imaging over 1.5 deg2, reaching a 5σ detection limit of Y + J ≃ 25 (AB mag, 2-arcsec-diameter aperture). The central ≃1 deg2 of this imaging coincides with the final deep optical (u*, g, r, i) data provided by the Canada-France-Hawaii Telescope (CFHT) Legacy Survey and new deep Subaru/Suprime-Cam z'-band imaging obtained specifically to enable full exploitation of UltraVISTA. It also lies within the Hubble Space Telescope (HST) I814 band and Spitzer/Infrared Array Camera imaging obtained as part of the COSMOS survey. We have utilized this unique multiwavelength dataset to select galaxy candidates at redshifts z > 6.5 by searching first for Y + J-detected objects which are undetected in the CFHT and HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower redshift galaxy contaminants and cool galactic M, L, T dwarf stars. The final result of this process is a small sample of (at most) 10 credible galaxy candidates at z > 6.5 (from over 200 000 galaxies detected in the year-one UltraVISTA data) which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked spectral energy distribution yields zphot = 6.98 ± 0.05 with a stellar mass M* ≃ 5 × 109 M⊙ and rest-frame ultraviolet (UV) spectral slope β ≃ -2.0 ± 0.2 (where fλ ∝ λβ). The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are dwarf stars cannot be completely excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf star contamination, but also contains objects likely to lie at redshifts just below z = 6.5. We show that the three even-brighter z ≳ 7 galaxy candidates reported in the COSMOS field by Capak et al. are in fact all lower redshift galaxies at z ≃ 1.5-3.5. Consequently the new z ≃ 7 galaxies reported here are the first credible z ≃ 7 Lyman-break galaxies discovered in the COSMOS field and, as the most UV luminous discovered to date at these redshifts, are prime targets for deep follow-up spectroscopy. We explore their physical properties, and briefly consider the implications of their inferred number density for the form of the galaxy luminosity function at z ≃ 7.
STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103
1990-04-25
During STS-31 checkout, the Hubble Space Telescope (HST) is held in a pre-deployment position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS). The view, taken from the crew cabin overhead window W7, shows the starboard solar array (SA) panel (center) and two high gain antennae (HGA) (on either side) stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.
View of HST as it approaches Endeavour, taken from aft flight deck window
1993-12-04
STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.
HST Proper Motions of Distant Globular Clusters: Constraining the Formation & Mass of the Milky Way
NASA Astrophysics Data System (ADS)
Sohn, S. Tony; van der Marel, Roeland P.; Deason, Alis; Bellini, Andrea; Besla, Gurtina; Watkins, Laura
2018-04-01
Proper motions (PMs) are required to calculate accurate orbits of globular clusters (GCs) in the Milky Way (MW) halo. We present our HST program to create a PM database for 20 GCs at distances of R GC = 10-100 kpc. Targets are discussed along with PM measurement methods. We also describe how our PM results can be used for Gaia as an external check, and discuss the synergy between HST and Gaia as astrometric instruments in the coming years.
Black Hole in Search of a Home
NASA Astrophysics Data System (ADS)
2005-09-01
Astronomers Discover Bright Quasar Without Massive Host Galaxy An international team of astronomers [1] used two of the most powerful astronomical facilities available, the ESO Very Large Telescope (VLT) at Cerro Paranal and the Hubble Space Telescope (HST), to conduct a detailed study of 20 low redshift quasars. For 19 of them, they found, as expected, that these super massive black holes are surrounded by a host galaxy. But when they studied the bright quasar HE0450-2958, located some 5 billion light-years away, they couldn't find evidence for an encircling galaxy. This, the astronomers suggest, may indicate a rare case of collision between a seemingly normal spiral galaxy and a much more exotic object harbouring a very massive black hole. With masses up to hundreds of millions that of the Sun, "super massive" black holes are the most tantalizing objects known. Hiding in the centre of most large galaxies, including our own Milky Way (see ESO PR 26/03), they sometimes manifest themselves by devouring matter they engulf from their surroundings. Shining up to the largest distances, they are then called "quasars" or "QSOs" (for "quasi-stellar objects"), as they had initially been confused with stars. Decades of observations of quasars have suggested that they are always associated with massive host galaxies. However, observing the host galaxy of a quasar is a challenging work, because the quasar is radiating so energetically that its host galaxy is hard to detect in the flare. ESO PR Photo 28a/05 ESO PR Photo 28a/05 Two Quasars with their Host Galaxy [Preview - JPEG: 400 x 760 pix - 82k] [Normal - JPEG: 800 x 1520 pix - 395k] [Full Res - JPEG: 1722 x 3271 pix - 4.0M] Caption: ESO PR Photo 28a/05 shows two examples of quasars from the sample studied by the astronomers, where the host galaxy is obvious. In each case, the quasar is the bright central spot. The host of HE1239-2426 (left), a z=0.082 quasar, displays large spiral arms, while the host of HE1503+0228 (right), having a redshift of 0.135, is more fuzzy and shows only hints of spiral arms. Although these particular objects are rather close to us and constitute therefore easy targets, their host would still be perfectly visible at much higher redshift, including at distances as large as the one of HE0450-2958 (z=0.285). The observations were done with the ACS camera on the HST. ESO PR Photo 28b/05 ESO PR Photo 28b/05 The Quasar without a Home: HE0450-2958 [Preview - JPEG: 400 x 760 pix - 53k] [Normal - JPEG: 800 x 1520 pix - 197k] [Full Res - JPEG: 1718 x 3265 pix - 1.5M] Caption of ESO PR Photo 28b/05: (Left) HST image of the z=0.285 quasar HE0450-2958. No obvious host galaxy centred on the quasar is seen. Only a strongly disturbed and star forming companion galaxy is seen near the top of the image. (Right) Same image shown after applying an efficient image sharpening method known as MCS-deconvolution. In contrast to the usual cases, as the ones shown in ESO PR Photo 28a/05, the quasar is not situated at the centre of an extended host galaxy, but on the edge of a compact structure, whose spectra (see ESO PR Photo 28c/05) show it to be composed of gas ionised by the quasar radiation. This gas may have been captured through a collision with the star-forming galaxy. The star indicated on the figure is a nearby galactic star seen by chance in the field of view. To overcome this problem, the astronomers devised a new and highly efficient strategy. Using ESO's VLT for spectroscopy and HST for imagery, they observed their quasars at the same time as a reference star. Simultaneous observation of a star allowed them to measure at best the shape of the quasar point source on spectra and images, and further to separate the quasar light from the other contribution, i.e. from the underlying galaxy itself. This very powerful image and spectra sharpening method ("MCS deconvolution") was applied to these data in order to detect the finest details of the host galaxy (see e.g. ESO PR 19/03). Using this efficient technique, the astronomers could detect a host galaxy for all but one of the quasars they studied. No stellar environment was found for HE0450-2958, suggesting that if any host galaxy exists, it must either have a luminosity at least six times fainter than expected a priori from the quasar observed luminosity, or a radius smaller than about 300 light-years. Typical radii for quasar host galaxies range between 6,000 and 50,000 light-years, i.e. they are at least 20 to 170 times larger. "With the data we managed to secure with the VLT and the HST, we would have been able to detect a normal host galaxy", says Pierre Magain (Université de Liège, Belgium), lead author of the paper reporting the study. "We must therefore conclude that, contrary to our expectations, this bright quasar is not surrounded by a massive galaxy." Instead, the astronomers detected just besides the quasar a bright cloud of about 2,500 light-years in size, which they baptized "the blob". The VLT observations show this cloud to be composed only of gas ionised by the intense radiation coming from the quasar. It is probably the gas of this cloud which is feeding the supermassive black hole, allowing it to become a quasar. ESO PR Photo 28c/05 ESO PR Photo 28c/05 Spectrum of Quasar HE0450-2958, the Blob and the Companion Galaxy (FORS/VLT) [Preview - JPEG: 400 x 561 pix - 112k] [Normal - JPEG: 800 x 1121 pix - 257k] [HiRes - JPEG: 2332 x 3268 pix - 1.1M] Caption: ESO PR Photo 28c/05 presents the spectra of the three objects indicated in ESO PR Photo 28b/05 as obtained with FORS1 on ESO's Very Large Telescope. The spectrum of the companion galaxy shown on the top panel reveals strong star formation. Thanks to the image sharpening process, it has been possible to separate very well the spectra of the quasar (centre) from that of the blob (bottom). The spectrum of the blob shows exclusively strong narrow emission lines having properties indicative of ionisation by the quasar light. There is no trace of stellar light, down to very faint levels, in the surrounding of the quasar. A strongly perturbed galaxy, showing all signs of a recent collision, is also seen on the HST images 2 arcseconds away (corresponding to about 50,000 light-years), with the VLT spectra showing it to be presently in a state where it forms stars at a frantic rate. "The absence of a massive host galaxy, combined with the existence of the blob and the star-forming galaxy, lead us to believe that we have uncovered a really exotic quasar, says team member Frédéric Courbin (Ecole Polytechnique Fédérale de Lausanne, Switzerland). "There is little doubt that a burst in the formation of stars in the companion galaxy and the quasar itself have been ignited by a collision that must haven taken place about 100 million years ago. What happened to the putative quasar host remains unknown." HE0450-2958 constitutes a challenging case of interpretation. The astronomers propose several possible explanations, that will need to be further investigated and confronted. Has the host galaxy been completely disrupted as a result of the collision? It is hard to imagine how that could happen. Has an isolated black hole captured gas while crossing the disc of a spiral galaxy? This would require very special conditions and would probably not have caused such a tremendous perturbation as is observed in the neighbouring galaxy. Another intriguing hypothesis is that the galaxy harbouring the black hole was almost exclusively made of dark matter. "Whatever the solution of this riddle, the strong observable fact is that the quasar host galaxy, if any, is much too faint", says team member Knud Jahnke (Astrophysikalisches Institut Potsdam, Germany). The report on HE0450-2958 is published in the September 15, 2005 issue of the journal Nature ("Discovery of a bright quasar without a massive host galaxy" by Pierre Magain et al.).
A Precessing Jet in the CH Cyg Symbiotic System
NASA Astrophysics Data System (ADS)
Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.
2010-02-01
Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.
Direct imaging of an asymmetric debris disk in the HD 106906 planetary system
Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...
2015-11-13
Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
a Snapshot Survey of X-Ray Selected Central Cluster Galaxies
NASA Astrophysics Data System (ADS)
Edge, Alastair
1999-07-01
Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.
Probing the young circumplanetary environment of Beta Pic b during transit egress
NASA Astrophysics Data System (ADS)
Wang, Jason
2017-08-01
Among the thousands of known exoplanets, Beta Pic b is the only directly imaged exoplanet with a nearly edge-on orbit. We show that the latest astrometric measurements rule out a transit by the planet at 10-sigma significance, but we are certain that the Hill sphere of the planet will transit. With a period of 22 years and no other system like it, this Hill sphere transit provides a rare opportunity to study the evolving circumplanetary environment of a young and well-characterized exoplanet. To compliment GO-14621, our Cycle 25 proposal to monitor the ingress of the Hill sphere, we propose a modest HST program to photometrically search for signatures of the planet's large scale circumplanetary material during the egress of the Hill sphere transit. The existence of such material is plausible given that Beta Pic's young age is similar to that of the ring-bearing J1407b system. Combined with GO-14621 and less-precise but dedicated ground-based monitoring, these observations will give us a comprehensive set of observations about this young circumplanetary environment. Given the sparse observational data of circumplanetary environments, non-detections will also be valuable for constraining the timescales relevant to circumplanetary material and moon formation. If photometric variations are detected with HST, these results would yield empirical information concerning the dynamics of the system and the evolution of planetary systems as a whole.
Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale
NASA Technical Reports Server (NTRS)
Sandage, Allan; Bedke, John
1988-01-01
A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.
Dithering Observations with JWST's NIRCam
NASA Astrophysics Data System (ADS)
Anderson, Jay
2011-01-01
Preparations for planning observations with JWST are already well underway at STScI. Many of the aspects of HST observation planning will carry over to JWST, but some things will be different. With HST, users are able to define arbitrary dither patterns (or use no dithering at all) in their Phase-2 submissions. This has allowed many observers to optimize their data quality for the particular science they are focused on. But, unfortunately, when the data reach the archive, the images are often less valuable to the community than they could be, either because of a lack of good dithering or because the association-based pipeline is not optimized for the particular dither pattern used. JWST will do things differently. Except in rare circumstances, such as planetary-transit observations, JWST users will be forced to dither, and they will have a limited set of dithering options to choose from. The NIRCam teams at STScI and UAz have designed a set of dither patterns that are flexible enough to meet the various anticipated science objectives, but they will also be homogeneous enough that the archive and association products will be of uniformly high quality.
History of Hubble Space Telescope (HST)
2001-08-24
Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.
Calibration of HST wide field camera for quantitative analysis of faint galaxy images
NASA Technical Reports Server (NTRS)
Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.
1994-01-01
We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.
Super star clusters, their environment, and the formation of galactic winds
NASA Astrophysics Data System (ADS)
Westmoquette, Mark S.
Starbursts and starburst-driven outflows play a central role in the evolution of galaxies. However, the paucity of detailed observations of superwinds limits our current understanding of these complex systems. To this end we have undertaken two intensive ground- and space-based observing campaigns aimed at studying the ionized gas conditions in two nearby starburst galaxies, M82 and NGC 1569. These two systems host starbursts on different scales: M82 contains densely-packed star cluster complexes that drive a large-scale bipolar superwind, whereas NGC 1569 exhibits a set of discrete superbubbles powered by only a handful of young massive clusters. We have used long-slit spectra, obtained with the Hubble Space Telescope (HST), together with HST and ground-based imaging from the WIYN 3.5 m telescope, to observe M82 at optical wavelengths. The high quality HST spectroscopy obtained with the Space Telescope Imaging Spectrograph (STIS), have allowed us to investigate the properties of the gas across the starburst core. By combining high-resolution HST imaging with deep WIYN observations, we have created the most comprehensive image of the M82 superwind to date, and used it to characterise the outflow morphology. We also observed the centre of NGC 1569 with the Integral Field Unit (IFU) of the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-North telescope, and M82 with the WIYN/DensePak and SparsePak IFUs. We decomposed the observed emission-line profile shapes, and identified an underlying broad (>100 kms-1) component across the starburst cores of both galaxies. By mapping the spatial variation of each individual line component, we have developed a new model to explain the broad emission and the state of the interstellar medium (ISM) in the central starbursts. We have also observed the outer-wind environment of NGC 1569 with the WIYN SparsePak instrument. We find that the broad line is only found within 500-700 pc of the centre, and speculate that the boundary of this region may indicate the point at which bulk motions begin to dominate over turbulence.
The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star
NASA Technical Reports Server (NTRS)
Fox, Ori D.; Van Dyk, Schuyler D.; Dwek, Eli; Smith, Nathan; Filippenko, Alexei V.; Andrews, Jennifer; Arendt, Richard G.; Foley, Ryan J.; Kelly, Patrick L.; Miller, Adam;
2017-01-01
A blue source in pre-explosion Hubble Space Telescope (HST)/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 Sigma astrometric error circle (approx. 0." 24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently forpost-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0."061(+/-) 0."008 (15 +/- 2 pc) from the underlying and extended source ofemission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (less than 56 Myr) cluster and still argues for a massive (greater than 30 solar mass) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.