Sample records for hsv amplicon vector-encoding

  1. Single-Step Conversion of Cells to Retrovirus Vector Producers with Herpes Simplex Virus–Epstein-Barr Virus Hybrid Amplicons

    PubMed Central

    Sena-Esteves, Miguel; Saeki, Yoshinaga; Camp, Sara M.; Chiocca, E. Antonio; Breakefield, Xandra O.

    1999-01-01

    We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV–Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 106 and 107 transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery. PMID:10559361

  2. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    PubMed

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  3. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    PubMed

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  4. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors

    PubMed Central

    Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537

  5. Evaluation of the immunogenicity of a recombinant HSV-1 vector expressing human group C rotavirus VP6 protein.

    PubMed

    Rota, Rosana P; Palacios, Carlos A; Temprana, C Facundo; Argüelles, Marcelo H; Mandile, Marcelo G; Mattion, Nora; Laimbacher, Andrea S; Fraefel, Cornell; Castello, Alejandro A; Glikmann, Graciela

    2018-06-01

    Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. HSV as a vector in vaccine development and gene therapy.

    PubMed

    Marconi, Peggy; Argnani, Rafaela; Epstein, Alberto L; Manservigi, Roberto

    2009-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.

  7. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis.

    PubMed

    Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N

    2008-03-01

    This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.

  8. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    PubMed

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  9. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord injured rats

    PubMed Central

    Miyazato, Minoru; Sugaya, Kimio; Goins, William F.; Goss, James R.; Chancellor, Michael B.; de Groat, William C.; Glorioso, Joseph C.; Yoshimura, Naoki

    2010-01-01

    We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 Kd form of the glutamic acid decarboxylase (GAD67) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in spinal cord injury (SCI) rats. One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. SCI rats without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40–45% and 38–40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD67 mRNA and protein levels were significantly increased in L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD67-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO following SCI predominantly via activation of spinal GABAA receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for the treatment of neurogenic DO. PMID:19225548

  10. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  11. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma.

    PubMed

    Reinblatt, Maura; Pin, Richard H; Bowers, William J; Federoff, Howard J; Fong, Yuman

    2005-12-01

    Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10 x HRE) was cloned upstream of the sFlk-1 gene (10 x HRE/sFlk-1). A novel HSV amplicon expressing 10 x HRE/sFlk-1 was genetically engineered (HSV10 x HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 x HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 x HRE/sFlk-1. Media from normoxic AsPC1 transduced with HSV10 x HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 x HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 x HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001). HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

  12. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    PubMed

    Sicurella, Mariaconcetta; Nicoli, Francesco; Gallerani, Eleonora; Volpi, Ilaria; Berto, Elena; Finessi, Valentina; Destro, Federica; Manservigi, Roberto; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Gavioli, Riccardo; Marconi, Peggy C

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.

  13. An Attenuated Herpes Simplex Virus Type 1 (HSV1) Encoding the HIV-1 Tat Protein Protects Mice from a Deadly Mucosal HSV1 Challenge

    PubMed Central

    Sicurella, Mariaconcetta; Nicoli, Francesco; Gallerani, Eleonora; Volpi, Ilaria; Berto, Elena; Finessi, Valentina; Destro, Federica; Manservigi, Roberto; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Gavioli, Riccardo; Marconi, Peggy C.

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination. PMID:25033084

  14. Unlabeled probes for the detection and typing of herpes simplex virus.

    PubMed

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  15. In vivo Knock-down of the HSV-1 Latency-Associated Transcript Reduces Reactivation from Latency.

    PubMed

    Watson, Zachary L; Washington, Shannan D; Phelan, Dane M; Lewin, Alfred S; Tuli, Sonal S; Schultz, Gregory S; Neumann, Donna M; Bloom, David C

    2018-06-06

    During Herpes Simplex Virus (HSV) latency, most viral genes are silenced with the exception of one region of the genome encoding the latency-associated transcript (LAT). This long non-coding RNA was originally described as having a role in enhancing HSV-1 reactivation. However, subsequent evidence showing that the LAT blocked apoptosis and promoted efficient establishment of latency suggested that its effects on reactivation were secondary to establishment. Here, we utilize an Adeno-associated Virus (AAV) vector to deliver a LAT-targeting hammerhead ribozyme to HSV-1-infected neurons of rabbits after the establishment of HSV-1 latency. The rabbits were then induced to reactivate latent HSV-1. Using this model, we show that decreasing LAT levels in neurons following the establishment of latency reduced the ability of the virus to reactivate. This demonstrates that the HSV-1 LAT RNA has a role in reactivation that is independent of its function in establishment of latency. In addition these results suggest the potential of AAV vectors expressing LAT-targeting ribozymes as a potential therapy for recurrent HSV disease such as herpes stromal keratitis, a leading cause of infectious blindness. Importance Herpes Simplex Virus (HSV) establishes a life long infection and remains dormant (latent) in our nerve cells. Occasionally HSV reactivates to cause disease, with HSV-1 typically causing cold sores whereas HSV-2 is the most common cause of genital herpes. The details of how HSV reactivates are largely unknown. Most of HSV's genes are silent during latency with the exception of RNAs made from the latency-associated transcript (LAT) region. While viruses that make less LAT do not reactivate efficiently, these viruses also do not establish latency as efficiently. Here we deliver a ribozyme that can degrade the LAT to the nerve cells of latently infected rabbits using a gene therapy vector. We show that this treatment blocks reactivation in the majority of the rabbits. This work shows that the LAT RNA is important for reactivation and the suggests the potential of this treatment as a therapy for treating HSV infections. Copyright © 2018 American Society for Microbiology.

  16. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV genemore » products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.« less

  17. Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV-1 Amplicon/Helper Virus for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-11-01

    that differentially expressed tumor suppressor miRNAs can be utilized to control the replication of an oncolytic DNA virus in a tumor-specific...demonstrated that the utilization of the tissue-specific promoter and the miRNA-mediated 3’UTRs in a targeted virotherapy is a viable approach with...elements into the whole HSV-1 viral genome should increase the safety margin substantially. The major advantage of the amplicon/helper system is its

  18. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a feasible treatment strategy to prevent PCO. PMID:21283526

  19. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

    PubMed

    Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin

    2015-06-01

    Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.

  20. Construction of Various γ34.5 Deleted Fluorescent-Expressing Oncolytic herpes Simplex type 1 (oHSV) for Generation and Isolation of HSV-Based Vectors

    PubMed

    Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan

    2017-07-01

    Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.

  1. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

    PubMed Central

    Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947

  2. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  3. A helper virus-free HSV-1 vector containing the vesicular glutamate transporter-1 promoter supports expression preferentially in VGLUT1-containing glutamatergic neurons.

    PubMed

    Zhang, Guo-rong; Geller, Alfred I

    2010-05-17

    Multiple potential uses of direct gene transfer into neurons require restricting expression to specific classes of glutamatergic neurons. Thus, it is desirable to develop vectors containing glutamatergic class-specific promoters. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. We previously reported a plasmid (amplicon) Herpes Simplex Virus (HSV-1) vector that placed the Lac Z gene under the regulation of the VGLUT1 promoter (pVGLUT1lac). Using helper virus-free vector stocks, we showed that this vector supported approximately 90% glutamatergic neuron-specific expression in postrhinal (POR) cortex, in rats sacrificed at either 4 days or 2 months after gene transfer. We now show that pVGLUT1lac supports expression preferentially in VGLUT1-containing glutamatergic neurons. pVGLUT1lac vector stock was injected into either POR cortex, which contains primarily VGLUT1-containing glutamatergic neurons, or into the ventral medial hypothalamus (VMH), which contains predominantly VGLUT2-containing glutamatergic neurons. Rats were sacrificed at 4 days after gene transfer, and the types of cells expressing ss-galactosidase were determined by immunofluorescent costaining. Cell counts showed that pVGLUT1lac supported expression in approximately 10-fold more cells in POR cortex than in the VMH, whereas a control vector supported expression in similar numbers of cells in these two areas. Further, in POR cortex, pVGLUT1lac supported expression predominately in VGLUT1-containing neurons, and, in the VMH, pVGLUT1lac showed an approximately 10-fold preference for the rare VGLUT1-containing neurons. VGLUT1-specific expression may benefit specific experiments on learning or specific gene therapy approaches, particularly in the neocortex. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    PubMed

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  5. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.

    PubMed

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2018-01-01

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less

  7. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  8. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.

    1990-11-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less

  9. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    NASA Astrophysics Data System (ADS)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  10. Dual silencing of Bcl-2 and Survivin by HSV-1 vector shows better antitumor efficacy in higher PKR phosphorylation tumor cells in vitro and in vivo.

    PubMed

    Chen, X; Zhou, Y; Wang, J; Wang, J; Yang, J; Zhai, Y; Li, B

    2015-08-01

    RNA interference (RNAi) is a promising tool for cancer therapy, but its delivery strategy is a major challenge for its application. Oncolytic herpes simplex virus type 1 (HSV-1) is not only an effective antitumor drug but also an excellent vector. Herein, RNAi of oncogenes Bcl-2 and Survivin was combined with oncolytic HSV-1 (ICP34.5-/ICP6-/ICP47-/CMV-GM-CSF) and a new vector HSV010-BS was constructed. Transfected cell viability assays and animal experiments revealed that the dual silencing of Bcl-2 and Survivin improved the antitumor effect of oncolytic HSV-1 in vitro and in vivo, while the antitumor effect was correlated with the phosphorylation levels of PKR of the tumor cells. The higher the phosphorylation levels of PKR of the tumor cells, the weaker the replication ability of oncolytic HSV-1, and the more powerful HSV010-BS was than its control vectors in inhibiting the growth of the tumor cells. The results provided direct supportive proofs for a new potential cancer therapy strategy.

  11. [Construction and expression of the eukaryotic expression vector carrying HSV-1 gC glycoprotein gene].

    PubMed

    Dang, Yin-li; Yan, Yan; Zhang, Xiao-xiao; Li, Pu-yuan; Yu, Lan; Zhang, Lei; Zhang, Fang-lin; Xu, Zhi-kai; Wu, Xing-an

    2011-05-01

    To stably express herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) in Chinese hamster ovary cells (CHO-K1). The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed and transfected into CHO-K1 cells by Lipofectamine 2000. The transfected cells were selected by G418 and methotrexate (MTX). The expression of HSV-1 gC was analyzed by Slot blot. HSV-1 gC proteins were purified with His-Ni Sepharose and then detected by Western blot. The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed successfully. CHO-K1 cells stably expressing HSV-1 gC proteins were established and confirmed by Western blot. The HSV-1 gC proteins have been expressed successfully and have good bioactivity. The results make it possible for further study and clinical use of HSV-1 gC.

  12. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  13. [Herpes simplex virus-mediated RNA interference targeting vesicular glutamate transporter 3 attenuates tactile allodynia in mice].

    PubMed

    Liu, Jie-Qiong; Li, Chen-Hong; Luo, Qiong; Yin, Ping-Ping; Lei, Tao; Luo, Fang

    2016-11-20

    To construct a replication-deficient herpes simplex virus (HSV-1) for delivering a short hairpin RNA (shRNA) targeting vesicular glutamate transporter 3 (VGLUT3) and observe its effect in alleviating allodynia in mice. The recombinant HSV-1 vector carrying the shRNA targeting Vglut3 (HSV-1-shvglut3) was constructed and inoculated in the sciatic nerve in a mouse model of mechanical allodynia to test its analgesia effect. Mechanical allodynia and heat hypersensitivity of the mice were tested by von Frey filaments and Hargreaves' test, respectively. VGLUT3 expression in the dorsal root ganglion (DRG) was evaluated by immunohistochemistry and Western blotting. Following inoculation in the sciatic nerve, the HSV vector HSV-1-shvglut3 was retrogradely transported to the DRG. Mechanical withdraw thresholds of the mouse models receiving HSV-1-shvglut3 inoculation were reversed to nearly the baseline level, and VGLUT3 expression in the DRG was down-regulated 2 weeks after vector inoculation. The analgesic effect lasted for over 2 weeks in these mice without obvious systematic side effects or changes in heat hypersensitivity threshold. Vglut3 in the DRG is a promising therapeutic target for alleviating mechanical allodynia, and HSV-1 vector-mediated RNA interference is safe and efficient for inducing long-lasting analgesia after peripheral inoculation of the vector.

  14. [HSV-1 based vector mediated IL-1Rα gene for knee osteoarthritis in rabbits].

    PubMed

    Wu, Yi; Li, Jianming; Kong, Ying; Chen, Ding; Liu, Bo; Wang, Wanchun

    2013-06-01

    To investigate the effect and mechanism of herpes simplex virus type 1 (HSV-1) based vector mediated interlukin-1 receptor antagonist (IL-1Rα) gene for knee osteoarthritis in rabbits. HSV-1 vectors containing IL-1Rα genes were constructed and injected into the joint space of the osteoarthritis knee in rabbits for 4 weeks. The rabbits were sacrificed, and the knees were lavaged, dissected and the effect of transgene expression was analyzed. Levels of IL-1Rα and IL-1 expression in the recovered lavage fluids were measured with a cytokine ELISA kit. Cartilage from the lesion areas of medial femoral condyle and synovium were observed with hematoxylin and eosin (cartilage and synovium) and toluidine blue (cartilage). The blank control group was injected pHSV-LacZ vector into rabbit knees. Intra-articular delivery of pHSV-IL-1Rα-LacZ resulted in a significant inhibition of IL-1 level and cartilage degradation compared with those in the blank control group (P<0.05). pHSV-LacZ is an ideal vector to mediate intra-articular gene delivery in the rabbit model of osteoarthritis. Continuous intra-articular expression of IL-1Rα can treat knee osteoarthritis by inhibiting IL-1.

  15. Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy.

    PubMed

    Workenhe, Samuel T; Simmons, Graydon; Pol, Jonathan G; Lichty, Brian D; Halford, William P; Mossman, Karen L

    2014-01-01

    Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.

  16. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    PubMed Central

    Shinn, Helen Ki; Yan, Chunri; Kim, Tae-Hwan; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Jayoung; Cha, Eun-Jong

    2016-01-01

    Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections. PMID:27377944

  17. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue.

    PubMed

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Shinn, Helen Ki; Kim, Ye-Hwan; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Ryu, Dong Hee; Ha, Yun-Sok; Kim, Tae-Hwan; Kwon, Tae Gyun; Kim, Jung Min; Suh, Sang Heon; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Isaac Yi; Kim, Jayoung; Cha, Hee-Jae; Choi, Yung-Hyun; Cha, Eun-Jong; Kim, Wun-Jae

    2016-06-01

    Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.

  18. Expression from cloned DNA of biologically active glycoprotein C of herpes simplex virus type 1 in mammalian cells.

    PubMed

    Ghosh-Choudhury, N; Butcher, M; Ghosh, H P

    1990-03-01

    A DNA fragment of the herpes simplex virus type 1 genome encoding glycoprotein C (gC-1) has been cloned into different eukaryotic expression vectors for transient and stable expression of the glycoprotein in a number of cell lines. All of these expression vectors use a non-HSV promoter, such as the adenovirus major late promoter or murine leukemia virus long terminal repeat promoter to express gC-1 in COS and CHO cells or 3T3 cells. The gC-1 protein synthesized was fully glycosylated with both N- and O-linked oligosaccharides. Synthesis of the mature 120K gC-1 glycoprotein involved partially glycosylated 100K and 105K proteins and the non-glycosylated 70K protein as intermediate molecules. Immunofluorescence studies showed that the expressed gC-1 was localized intracellularly in the nuclear envelope as well as on the cell surface. The expressed gC-1 was biologically active and could act as a receptor for the complement component C3b in the absence of other HSV proteins.

  19. pPCV, a versatile vector for cloning PCR products.

    PubMed

    Janner, Christiane R; Brito, Ana Lívia P; Moraes, Lidia Maria P; Reis, Viviane Cb; Torres, Fernando Ag

    2013-01-01

    The efficiency of PCR product cloning depends on the nature of the DNA polymerase employed because amplicons may have blunt-ends or 3' adenosines overhangs. Therefore, for amplicon cloning, available commercial vectors are either blunt-ended or have a single 3' overhanging thymidine. The aim of this work was to offer in a single vector the ability to clone both types of PCR products. For that purpose, a minimal polylinker was designed to include restriction sites for EcoRV and XcmI which enable direct cloning of amplicons bearing blunt-ends or A-overhangs, respectively, still offering blue/white selection. When tested, the resulting vector, pPCV, presented high efficiency cloning of both types of amplicons.

  20. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  1. A human trial of HSV mediated gene transfer for the treatment of chronic pain

    PubMed Central

    Wolfe, Darren; Mata, Marina; Fink, David J.

    2009-01-01

    Gene transfer to the dorsal root ganglion using replication defective herpes simplex virus (HSV)-based vectors reduces pain related behaviors in rodent models of inflammatory pain, neuropathic pain, and pain caused by cancer in bone. HSV vectors engineered to produce inhibitory neurotransmitters including the delta opioid agonist peptide enkephalin, the mu opioid agonist peptide endomorphin-2 and glutamic acid decarboxylase (GAD) to effect the release of gamma amino butyric acid (GABA) act to inhibit nociceptive neurotransmission at the first synapse between primary nociceptive and second-order neuron in the dorsal horn of spinal cord. HSV vectors engineered to release anti-inflammatory peptides including interleukin (IL)-4, IL-10 and the p55 soluble tumor necrosis factor α (TNFα) receptor reduce neuroimmune activation in the spinal dorsal horn. The path leading from preclinical animal studies to the ongoing phase 1 human trial of the enkephalin-producing vector in patients with pain from cancer, and plans for an efficacy trial with an opioid producing vector in inflammatory pain and an efficacy trial with a GAD producing vector in diabetic neuropathic pain are outlined. PMID:19242524

  2. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy

    PubMed Central

    Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ

    2005-01-01

    We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809

  3. Interleukin 10 mediated by herpes simplex virus vectors suppresses neuropathic pain induced by human immunodeficiency virus gp120 in rats.

    PubMed

    Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-09-01

    Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.

  4. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    PubMed Central

    Schmeisser, Falko; Weir, Jerry P

    2007-01-01

    Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors. PMID:17501993

  5. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    PubMed Central

    2010-01-01

    Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials. PMID:20836854

  6. Real-time nested multiplex PCR for the detection of herpes simplex virus types 1 and 2 and varicella zoster virus.

    PubMed

    O'Neill, Hugh J; Wyatt, Dorothy E; Coyle, Peter V; McCaughey, Conall; Mitchell, Frederick

    2003-12-01

    One hundred forty-nine specimens were tested in a LightCycler nested multiplex polymerase chain reaction (LCnmPCR) for Herpes simplex virus (HSV)1, HSV2, and VZV. Eighty-one were from genitourinary medicine (GUM) patients and the other 68 specimens were from other patients with skin lesions. The results were compared to a conventional multiplex nested PCR (nmPCR) using agarose gel electrophoresis. Twenty-five specimens were positive in both assays for HSV1 and 29 were positive for VZV. For HSV2 there were 27 positive in the LCnmPCR and 26 positive in the nmPCR assay. The melting temperatures (Tms) of each target were different with a mean of 84.75 degrees C for HSV1, 88.57 degrees C for HSV2, and 83.62 degrees C for VZV. The melting curves of positive specimens directly overlaid the melting curves of the positive controls in the assay. The LCnmPCR assay is a convenient alternative to conventional PCR using agarose gel electrophoresis. It improves specimen turnaround time by eliminating the need for gel electrophoresis, transillumination, and gel photography. It also shows increased sensitivity for HSV2 over our standard assay. This LCnmPCR reduces further the possibility of amplicon contamination with nested PCR protocols. Copyright 2003 Wiley-Liss, Inc.

  7. Effect of Sequence Polymorphisms on Performance of Two Real-Time PCR Assays for Detection of Herpes Simplex Virus

    PubMed Central

    Stevenson, Jeffery; Hymas, Weston; Hillyard, David

    2005-01-01

    Herpes simplex virus (HSV) is the most common cause of acquired, sporadic encephalitis in the United States. PCR identification of HSV in spinal fluid has become the diagnostic gold standard due to its sensitivity and potential for speed, replacing other methods such as culture. We developed a real-time PCR assay to detect HSV, using a new type of hybridization probe, the Eclipse probe. In this study, we ran 323 samples (171 positives and 152 negatives) with the Eclipse real-time PCR assay and compared these results with another PCR assay using gel detection. The real-time assay agreed with our reference method for 319 out of the 323 samples tested (99%). Using two different real-time PCR platforms, we discovered that SNPs within the amplicon's probe binding region that are used to distinguish HSV-1 from HSV-2 can decrease assay sensitivity. This problem is potentially a general one for assays using fluorescent probes to detect target amplification in a real-time format. While real-time PCR can be a powerful tool in the field of infectious disease, careful sequence evaluation and clinical validation are essential in creating an effective assay. PMID:15872272

  8. Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2▿

    PubMed Central

    Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786

  9. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2.

    PubMed

    Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.

  10. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre

    2007-01-20

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less

  11. Replication-Competent Controlled Herpes Simplex Virus

    PubMed Central

    Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria

    2015-01-01

    ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety. PMID:26269179

  12. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4+ Th1 immune responses and are protective in mouse and guinea pig models of vaginal challenge.

    PubMed

    Natuk, Robert J; Cooper, David; Guo, Min; Calderon, Priscilla; Wright, Kevin J; Nasar, Farooq; Witko, Susan; Pawlyk, Diane; Lee, Margaret; DeStefano, Joanne; Tummolo, Donna; Abramovitz, Aaron S; Gangolli, Seema; Kalyan, Narender; Clarke, David K; Hendry, R Michael; Eldridge, John H; Udem, Stephen A; Kowalski, Jacek

    2006-05-01

    Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.

  13. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    PubMed

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  14. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats.

    PubMed

    Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-07-30

    HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2',3'-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel mechanism-based approach to treating HIV-associated neuropathic pain using gene therapy.

  15. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats

    PubMed Central

    2014-01-01

    Background HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Results Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2′,3′-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. Conclusion The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel mechanism-based approach to treating HIV-associated neuropathic pain using gene therapy. PMID:25078297

  16. Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers.

    PubMed

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-06-01

    MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone.

  17. Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers

    PubMed Central

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-01-01

    Purpose: MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. Methods: In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. Results: The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Conclusions: Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone. PMID:26126436

  18. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    PubMed

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. Genital herpes is a highly prevalent chronic disease caused by HSV infection. To date, there is no licensed vaccine against HSV infection. This study describes intravaginal vaccination with a nonreplicating HPV-based vector expressing HSV glycoprotein antigens. The data presented in this study underscore the potential of HPV-based vectors as a platform for the induction of genital-tissue-resident memory T cell responses and the control of local manifestations of primary HSV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Topical Herpes Simplex Virus 2 (HSV-2) Vaccination with Human Papillomavirus Vectors Expressing gB/gD Ectodomains Induces Genital-Tissue-Resident Memory CD8+ T Cells and Reduces Genital Disease and Viral Shedding after HSV-2 Challenge

    PubMed Central

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N.; Pang, Yuk Ying; Thompson, Cynthia D.; Lowy, Douglas R.; Cohen, Jeffrey I.

    2014-01-01

    ABSTRACT No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8+ T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8+ T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. IMPORTANCE Genital herpes is a highly prevalent chronic disease caused by HSV infection. To date, there is no licensed vaccine against HSV infection. This study describes intravaginal vaccination with a nonreplicating HPV-based vector expressing HSV glycoprotein antigens. The data presented in this study underscore the potential of HPV-based vectors as a platform for the induction of genital-tissue-resident memory T cell responses and the control of local manifestations of primary HSV infection. PMID:25320297

  20. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes.

    PubMed

    Liu, Zhihong; Xiang, Yang; Wei, Zhun; Yu, Bo; Shao, Yong; Zhang, Jie; Yang, Hong; Li, Manmei; Guan, Ming; Wan, Jun; Zhang, Wei

    2013-11-01

    HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8⁺ T cell responses and protective immunity.

    PubMed

    Santana, Vinicius C; Diniz, Mariana O; Cariri, Francisco A M O; Ventura, Armando M; Cunha-Neto, Edécio; Almeida, Rafael R; Campos, Marco A; Lima, Graciela K; Ferreira, Luís C S

    2013-01-01

    Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.

  2. DNA sequence responsible for the amplification of adjacent genes.

    PubMed

    Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K

    1987-10-01

    A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.

  3. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and acquisition of HIV-1 infection 3- to 4-fold. A herpes vaccine that prevents genital lesions and asymptomatic genital shedding will have a substantial impact on two epidemics, i.e., both the HSV-2 and HIV-1 epidemics. We previously reported that a vaccine containing HSV-2 glycoprotein C (gC2) and glycoprotein D (gD2) reduced genital lesions and asymptomatic HSV-2 genital shedding in guinea pigs, yet the protection was not complete. We evaluated whether adding the T cell immunogens UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) would enhance the protection provided by the gC2/gD2 vaccine, which produces potent antibody responses. Here we report the efficacy of a combination vaccine containing gC2/gD2 and UL19/UL47 for prevention of genital disease, vaginal shedding of HSV-2 DNA, and latent infection of dorsal root ganglia in guinea pigs. PMID:26041292

  4. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    PubMed

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  5. Up to Four Distinct Polypeptides Are Produced from the γ34.5 Open Reading Frame of Herpes Simplex Virus 2

    PubMed Central

    Korom, Maria; Davis, Katie L.

    2014-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) ICP34.5 protein strongly influences neurovirulence and regulates several cellular antiviral responses. Despite the clinical importance of HSV-2, relatively little is known about its ICP34.5 ortholog. We found that HSV-2 produces up to four distinct forms of ICP34.5 in infected cells: a full-length protein, one shorter form sharing the N terminus, and two shorter forms sharing the C terminus. These forms appeared with similar kinetics and accumulated in cells over much of the replication cycle. We confirmed that the N-terminal form is translated from the primary unspliced transcript to a stop codon within the intron unique to HSV-2 γ34.5. We found that the N-terminal form was produced in a variety of cell types and by 9 of 10 clinical isolates. ICP27 influenced but was not required for expression of the N-terminal form. Western blotting and reverse transcription-PCR indicated the C-terminal forms did not contain the N terminus and were not products of alternative splicing or internal transcript initiation. Expression plasmids encoding methionine at amino acids 56 and 70 generated products that comigrated in SDS-PAGE with the C1 and C2 forms, respectively, and mutation of these sites abolished C1 and C2. Using a recombinant HSV-2 encoding hemagglutinin (HA)-tagged ICP34.5, we demonstrated that the C-terminal forms were also produced during infection of many human and mouse cell types but were not detectable in mouse primary neurons. The protein diversity generated from the HSV-2 γ34.5 open reading frame implies additional layers of cellular regulation through potential independent activities associated with the various forms of ICP34.5. IMPORTANCE The herpes simplex virus 1 (HSV-1) protein ICP34.5, encoded by the γ34.5 gene, interferes with several host defense mechanisms by binding cellular proteins that would otherwise stimulate the cell's autophagic, translational-arrest, and type I interferon responses to virus infection. ICP34.5 also plays a crucial role in determining the severity of nervous system infections with HSV-1 and HSV-2. The HSV-2 γ34.5 gene contains an intron not present in HSV-1 γ34.5. A shorter N-terminal form of HSV-2 ICP34.5 can be translated from the unspliced γ34.5 mRNA. Here, we show that two additional forms consisting of the C-terminal portion of ICP34.5 are generated in infected cells. Production of these N- and C-terminal forms is highly conserved among HSV-2 strains, including many clinical isolates, and they are broadly expressed in several cell types, but not mouse primary neurons. Multiple ICP34.5 polypeptides add additional complexity to potential functional interactions influencing HSV-2 neurovirulence. PMID:25031346

  6. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    PubMed

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  7. Isolation of Onchocerca lupi in Dogs and Black Flies, California, USA

    PubMed Central

    Hassan, Hassan K.; Bolcen, Shanna; Kubofcik, Joseph; Nutman, Thomas B.; Eberhard, Mark L.; Middleton, Kelly; Wekesa, Joseph Wakoli; Ruedas, Gimena; Nelson, Kimberly J.; Dubielzig, Richard; De Lombaert, Melissa; Silverman, Bruce; Schorling, Jamie J.; Adler, Peter H.; Beeler, Emily S.

    2015-01-01

    In southern California, ocular infections caused by Onchocerca lupi were diagnosed in 3 dogs (1 in 2006, 2 in 2012). The infectious agent was confirmed through morphologic analysis of fixed parasites in tissues and by PCR and sequencing of amplicons derived from 2 mitochondrially encoded genes and 1 nuclear-encoded gene. A nested PCR based on the sequence of the cytochrome oxidase subunit 1 gene of the parasite was developed and used to screen Simulium black flies collected from southern California for O. lupi DNA. Six (2.8%; 95% CI 0.6%–5.0%) of 213 black flies contained O. lupi DNA. Partial mitochondrial16S rRNA gene sequences from the infected flies matched sequences derived from black fly larvae cytotaxonomically identified as Simulium tribulatum. These data implicate S. tribulatum flies as a putative vector for O. lupi in southern California. PMID:25897954

  8. DNA immunization against experimental genital herpes simplex virus infection.

    PubMed

    Bourne, N; Stanberry, L R; Bernstein, D I; Lew, D

    1996-04-01

    A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.

  9. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in partmore » at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.« less

  10. Imaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model.

    PubMed

    Salabert, Anne-Sophie; Vaysse, Laurence; Beaurain, Marie; Alonso, Mathieu; Arribarat, Germain; Lotterie, Jean-Albert; Loubinoux, Isabelle; Tafani, Mathieu; Payoux, Pierre

    2017-01-01

    Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.

  11. Herpes Simplex Virus Is Equipped with RNA- and Protein-Based Mechanisms To Repress Expression of ATRX, an Effector of Intrinsic Immunity

    PubMed Central

    Jurak, Igor; Silverstein, Leah B.; Sharma, Mayuri

    2012-01-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3′ untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection. PMID:22787211

  12. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity.

    PubMed

    Jurak, Igor; Silverstein, Leah B; Sharma, Mayuri; Coen, Donald M

    2012-09-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.

  13. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    PubMed

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  14. Recombinant glycoprotein G analog for determination of specific immunoglobulins to herpes simplex virus type 2 by ELISA.

    PubMed

    Korshun, Ludmila; Vudmaska, Mariya; Moysa, Larissa; Kovtonjuk, Galina; Mikhalap, Svetlana; Ganova, Larissa; Spivak, Nikolay

    2013-12-01

    In order to the detection of type-specific IgG to herpes simplex virus type 2 (HSV-2) in human serum or plasma the recombinant analog of HSV-2 glycoprotein G (gG2) was created. To construct an expression vector the DNA fragment with a sequence identical to immunodominant regions of HSV-2 gG2 was cloned into modified vector pET28a containing of the glutation-S-transferase sequence (pET28-GST). Escherichia coli BL21 (DE3) were transformed with the recombinant plasmid. The target protein was expressed mainly in soluble form. Chromatographic purification of soluble GST-gG2 protein was performed taking into account the features of its primary structure that are 6His-tag and GST-tag. To determine the affinity constant of the specific IgG to GST-gG2 we used the method proposed by Friguet et al. (1985). The affinity constants were within the range of 10(7)-10(8)M(-1) proving their high-affinity. The purified recombinant HSV-2 antigen was used to design a diagnostic ELISA kit, which was evaluated with referent controls and standard panels of sera containing and/or not containing anti-HSV-2 IgG. Comparative evaluation of this kit and the commercially available "HSV-Type 2 IgG-ELISA" (NovaTec, Dietzenbach, Germany) kit was performed. There was no significant difference (P>0.05). It allows to use developed ELISA kit for clinical diagnosis of HSV-2 infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Prevalence of Intrathecal Acyclovir Resistant Virus in Herpes Simplex Encephalitis Patients.

    PubMed

    Mitterreiter, Johanna G; Titulaer, Maarten J; van Nierop, Gijsbert P; van Kampen, Jeroen J A; Aron, Georgina I; Osterhaus, Albert D M E; Verjans, Georges M G M; Ouwendijk, Werner J D

    2016-01-01

    Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR-associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients.

  16. Expression of Herpes Simplex Virus 1-Encoded MicroRNAs in Human Trigeminal Ganglia and Their Relation to Local T-Cell Infiltrates ▿

    PubMed Central

    Held, Kathrin; Junker, Andreas; Dornmair, Klaus; Meinl, Edgar; Sinicina, Inga; Brandt, Thomas; Theil, Diethilde; Derfuss, Tobias

    2011-01-01

    Herpes simplex type 1 (HSV-1) is a neurotropic virus which establishes lifelong latency in human trigeminal ganglia (TG). Currently, two nonexclusive control mechanisms of HSV-1 latency are discussed: antiviral CD8+ T cells and viral microRNAs (miRNAs) encoded by the latency associated transcript (LAT). We investigate here to what extent these mechanisms may contribute to the maintenance of HSV-1 latency. We show that only a small proportion of LAT+ neurons is surrounded by T cells in human TG. This indicates that viral latency in human TG might be controlled by other mechanisms such as viral miRNAs. Therefore, we assessed TG sections for the presence of HSV-1 miRNA, DNA, and mRNA by combining LAT in situ hybridization, T-cell immunohistochemistry, and single cell analysis of laser-microdissected sensory neurons. Quantitative reverse transcription-PCR (RT-PCR) revealed that LAT+ neurons with or without surrounding T cells were always positive for HSV-1 miRNAs and DNA. Furthermore, ICP0 mRNA could rarely be detected only in LAT+ neurons, as analyzed by single-cell RT-PCR. In contrast, in LAT− neurons that were surrounded by T cells, neither miRNAs nor the DNA of HSV-1, HSV-2, or varicella-zoster virus could be detected. These data indicate that the majority of LAT+ neurons is not directly controlled by T cells. However, miRNA expression in every latently infected neuron would provide an additional checkpoint before viral replication is initiated. PMID:21795359

  17. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    PubMed

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  18. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods

    PubMed Central

    Grzesik, Peter; Voorhies, Alexander A.; Alperovich, Nina; MacMath, Derek; Najera, Claudia D.; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N.; Montague, Michael G.; Friedman, Robert M.; Desai, Prashant J.

    2017-01-01

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats. PMID:28928148

  19. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein*

    PubMed Central

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557

  20. OAS and PKR are not Required for the Anti-viral Effect of Ad:IFN-γ Against Acute HSV-1 in Primary Trigeminal Ganglia Cultures

    PubMed Central

    Austin, Bobbie Ann; Halford, William; Silverman, Robert H.; Williams, Bryan R. G.; Carr, Daniel J. J.

    2005-01-01

    Three interferon-gamma (IFNG) induced anti-viral pathways have been reported. Involved anti-viral proteins include: Mx, RNaseL/2'-5'-OAS, and PKR. Involvement of OAS and PKR in IFNG-induced anti-HSV-1 pathways has not been previously reported, but IFNG induces OAS and PKR when other viruses invade the nervous system. The aim of the current study was to determine whether the absence of intact OAS and PKR anti-viral pathways affect the anti-viral activity of IFNG during acute HSV-1 infection within trigeminal ganglia (TG). To investigate this, primary TG cultures were established using TGs removed from C57BL/6 (Wt), RNase L knockout, and RNase L/PKR double knockout mice. Each dissociated TG was transduced with an adenoviral vector containing an IFNG transgene or vector alone. Viral titers following HSV-1 infection of primary TG cell cultures were determined. Significant differences in viral titer for Ad:Null versus Ad:IFNG tranduced TGs were found in each genotype. However, the effectiveness of Ad:IFNG was not reduced in the absence of both OAS and PKR pathways or OAS alone. Recombinant IFNG also exhibited anti-HSV-1 activity. The effectiveness of the IFNG transgene was lost in primary TG cells from IFNG receptor knockout mice. The data suggest that novel anti-HSV-1 mechanisms are induced by IFNG. PMID:16704298

  1. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    PubMed

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and acquisition of HIV-1 infection 3- to 4-fold. A herpes vaccine that prevents genital lesions and asymptomatic genital shedding will have a substantial impact on two epidemics, i.e., both the HSV-2 and HIV-1 epidemics. We previously reported that a vaccine containing HSV-2 glycoprotein C (gC2) and glycoprotein D (gD2) reduced genital lesions and asymptomatic HSV-2 genital shedding in guinea pigs, yet the protection was not complete. We evaluated whether adding the T cell immunogens UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) would enhance the protection provided by the gC2/gD2 vaccine, which produces potent antibody responses. Here we report the efficacy of a combination vaccine containing gC2/gD2 and UL19/UL47 for prevention of genital disease, vaginal shedding of HSV-2 DNA, and latent infection of dorsal root ganglia in guinea pigs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    PubMed

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  3. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    PubMed Central

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  5. Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C.

    PubMed Central

    Oyan, A M; Dolter, K E; Langeland, N; Goins, W F; Glorioso, J C; Haarr, L; Crumpacker, C S

    1993-01-01

    Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption. Images PMID:8386261

  6. Purification of full-length VP22 from cells infected with HSV-1: A two-pronged approach for the solubilization and purification of viral proteins for use in biochemical studies

    PubMed Central

    Dewberry, Ebony J.; Dunkerley, Eric; Duffy, Carol

    2012-01-01

    Summary VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus type 1 (HSV-1) tegument and has been shown to be important for virus replication and spread. However, the exact role(s) played by VP22 in the HSV-1 replication cycle have yet to be delineated. The lack of a procedure to purify full-length VP22 has limited molecular studies on VP22 function. A procedure was developed for the purification of soluble, full-length VP22 from cells infected with HSV-1. A recombinant virus encoding His-tagged VP22 was generated and found to express VP22 at levels comparable to the wild type virus upon infection of Vero cells. By experimenting with a wide variety of cell lysis buffer conditions, several buffers that promote the solubility of full-length VP22 were identified. Buffers that gave the highest levels of solubility were then used in immobilized metal ion affinity chromatography experiments to identify conditions that provided the greatest level of VP22 binding and recovery from cobalt and nickel affinity resins. Using this strategy soluble, full-length VP22 was purified from cells infected with HSV-1. PMID:22569534

  7. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    PubMed

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  8. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM.

    PubMed

    Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I

    2012-12-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.

  9. A Herpes Simplex Virus 2 Glycoprotein D Mutant Generated by Bacterial Artificial Chromosome Mutagenesis Is Severely Impaired for Infecting Neuronal Cells and Infects Only Vero Cells Expressing Exogenous HVEM

    PubMed Central

    Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.

    2012-01-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162

  10. Application and expression of HSV gG1 protein from a recombinant strain.

    PubMed

    Yan, Hua; Yan, Huishen; Huang, Tao; Li, Guocai; Gong, Weijuan; Jiao, Hongmei; Chen, Hongju; Ji, Mingchun

    2010-11-01

    According to the homologous sequence of glycoprotein G1 (gG1) genes from different strains of herpes simplex virus type 1 (HSV-1), a pair of primers was designed to amplify the gG1 gene fragment by PCR. Both the PCR product and the pGEX-4T-1 vector were digested with EcoR I and Sal I. The gG1 gene fragment was subcloned into the digested pGEX-4T-1 vector to construct a recombinant plasmid (pGEX-4T-1-gG1). The resultant plasmid was identified by dual-enzyme digestion and sequence analysis, and then transformed into Escherichia coli BL21 for expression under the induction of isopropyl β-D-1-thiogalactoside (IPTG). The expressed GST-gG1 fragment was detected by SDS-PAGE and purified by affinity chromatography. The properties of GST-gG1 fragment were evaluated by immunoblot analysis. Enzyme-linked immunosorbent assays (ELISAs) based on the GST-gG1 fragment were used for determining IgG or IgM to HSV-1. The GST-gG1 fragment-specific ELISA was also compared with ELISA with whole-HSV-1 antigen and commercial ELISA kits. The gG1-specific IgG and IFN-γ producing CD8+ T cells were induced in mice immunized with the GST-gG1 fragment. These results indicated that the GST-gG1 fragment could be used for replacing whole-virus antigen to detect IgM and IgG to HSV-1 in human sera, which provided a strategy for developing vaccines to protect HSV-1 infection using gG1 fragment. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Audiogenic seizure activity following HSV-1 GAD65 sense or antisense injection into inferior colliculus of Long-Evans rat.

    PubMed

    Coleman, James R; Thompson, Karen C; Wilson, Marlene A; Wilson, Steven P

    2017-06-01

    Herpes virus technology involving manipulation of GAD65 was used to study effects on audiogenic seizures (AGS). Audiogenic seizure behaviors were examined following injections of replication-defective herpes simplex virus (HSV-1) vectors incorporating sense or antisense toward GAD65 along with 10% lac-Z into the central nucleus of inferior colliculus (CNIC) of Long-Evans rats. In seizure-sensitive animals developmentally primed by intense sound exposure, injection of GAD65 in the sense orientation increased wild running latencies and reduced incidence of clonus compared with lac-Z only, unoperated, and vehicle seizure groups. In contrast, infection of CNIC with GAD65 antisense virus resulted in 100% incidence of wild running and clonus behaviors in AGS animals. Unprimed animals not operated continued to show uniform absence of seizure activity. Administration of GAD65 antisense virus into CNIC produced novel wild running and clonus behaviors in some unprimed animals. Staining for β-galactosidase in all vector animals revealed no differences in pattern or numbers of immunoreactive cells at injection sites. Qualitatively, typical small and medium multipolar/stellate and medium fusiform neurons appeared in the CNIC of vector animals. These results demonstrate that HSV-1 vector constructs implanted into the CNIC can predictably influence incidence and severity of AGS and suggest that viral vectors can be useful in studying GABA mechanisms with potential for therapeutic application in epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sodium Chloride Enhances Recombinant Adeno-Associated Virus Production in a Serum-Free Suspension Manufacturing Platform Using the Herpes Simplex Virus System

    PubMed Central

    Adamson-Small, Laura; Potter, Mark; Byrne, Barry J.; Clément, Nathalie

    2017-01-01

    The increase in effective treatments using recombinant adeno-associated viral (rAAV) vectors has underscored the importance of scalable, high-yield manufacturing methods. Previous work from this group reported the use of recombinant herpes simplex virus type 1 (rHSV) vectors to produce rAAV in adherent HEK293 cells, demonstrating the capacity of this system and quality of the product generated. Here we report production and optimization of rAAV using the rHSV system in suspension HEK293 cells (Expi293F) grown in serum and animal component-free medium. Through adjustment of salt concentration in the medium and optimization of infection conditions, titers greater than 1 × 1014 vector genomes per liter (VG/liter) were observed in purified rAAV stocks produced in Expi293F cells. Furthermore, this system allowed for high-titer production of multiple rAAV serotypes (2, 5, and 9) as well as multiple transgenes (green fluorescent protein and acid α-glucosidase). A proportional increase in vector production was observed as this method was scaled, with a final 3-liter shaker flask production yielding an excess of 1 × 1015 VG in crude cell harvests and an average of 3.5 × 1014 total VG of purified rAAV9 material, resulting in greater than 1 × 105 VG/cell. These results support the use of this rHSV-based rAAV production method for large-scale preclinical and clinical vector production. PMID:28117600

  13. Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1.

    PubMed

    Sutherland, M R; Friedman, H M; Pryzdial, E L G

    2007-05-01

    We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. In the current study we investigated why these viruses may have evolved to generate thrombin. Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.

  14. Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1

    PubMed Central

    Franzoso, Francesca D.; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F.; Sutter, Sereina O.; Tobler, Kurt; Vogt, Bernd; Greber, Urs F.; Büning, Hildegard; Ackermann, Mathias

    2017-01-01

    ABSTRACT Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells. PMID:28515305

  15. Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods.

    PubMed

    Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T

    2012-02-01

    Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.

  16. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Kawata, Daisuke; Wu, Zetang

    2017-09-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  17. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood.

  18. Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus

    PubMed Central

    Okubo, Yu; Wakata, Aika; Suzuki, Takuma; Shibata, Tomoko; Ikeda, Hitomi; Yamaguchi, Miki; Cohen, Justus B.; Glorioso, Joseph C.; Tagaya, Mitsuo; Hamada, Hirofumi; Tahara, Hideaki

    2016-01-01

    ABSTRACT Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors. PMID:27707922

  19. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease.

    PubMed

    Morello, Christopher S; Levinson, Michael S; Kraynyak, Kimberly A; Spector, Deborah H

    2011-04-01

    To date, no vaccine that is safe and effective against herpes simplex virus 2 (HSV-2) disease has been licensed. In this study, we evaluated a DNA prime-formalin-inactivated-HSV-2 (FI-HSV2) boost vaccine approach in the guinea pig model of acute and recurrent HSV-2 genital disease. Five groups of guinea pigs were immunized and intravaginally challenged with HSV-2. Two groups were primed with plasmid DNAs encoding the secreted form of glycoprotein D2 (gD2t) together with two genes required for viral replication, either the helicase (UL5) and DNA polymerase (UL30) genes or the single-stranded DNA binding protein (UL29) and primase (UL52) genes. Both DNA-primed groups were boosted with FI-HSV2 formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Two additional groups were primed with the empty backbone plasmid DNA (pVAX). These two groups were boosted with MPL and alum (MPL-alum) together with either formalin-inactivated mock HSV-2 (FI-Mock) or with FI-HSV2. The final group was immunized with gD2t protein in MPL-alum. After challenge, 0/9 animals in the group primed with UL5, UL30, and gD2t DNAs and all 10 animals in the mock-immunized control group (pVAX-FI-Mock) developed primary lesions. All mock controls developed recurrent lesions through day 100 postchallenge. Only 1 guinea pig in the group primed with pVAX DNA and boosted with FI-HSV2 (pVAX-FI-HSV2 group) and 2 guinea pigs in the group primed with UL5, UL30, and gD2t DNAs and boosted with FI-HSV2 (UL5, UL30, gD2t DNA-FI-HSV2 group) developed recurrent lesions. Strikingly, the UL5, UL30, gD2t DNA-FI-HSV2 group showed a 97% reduction in recurrent lesion days compared with the mock controls, had the highest reduction in days with recurrent disease, and contained the lowest mean HSV-2 DNA load in the dorsal root ganglia.

  20. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform

    PubMed Central

    Adamson-Small, Laura; Potter, Mark; Falk, Darin J; Cleaver, Brian; Byrne, Barry J; Clément, Nathalie

    2016-01-01

    Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production. PMID:27222839

  1. Promoter-Based Theranostics for Prostate Cancer

    DTIC Science & Technology

    2016-06-01

    diagnosis vector consists of the tumor-specific PEG-promoter (PEG-Prom) and cDNA of human chorionic gonadotropin β chain (βhCG) as a reporter. We...transfection efficiency. We also used CpG-free cDNA of Figure 5. pCpGfree-PEGwt-HSV1-tk-neo vector expressed functional thymidine kinase in human

  2. The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

    PubMed

    Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W

    2013-09-01

    The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.

  3. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge.

    PubMed

    Morello, Christopher S; Kraynyak, Kimberly A; Levinson, Michael S; Chen, Zhijiang; Lee, Kuo-Fen; Spector, Deborah H

    2012-10-12

    Herpes Simplex Virus Type 2 (HSV-2) infection can result in life-long recurrent genital disease, asymptomatic virus shedding, and transmission. No vaccine to date has shown significant protection clinically. Here, we used a mouse model of genital HSV-2 infection to test the efficacy of a vaccine consisting of whole, formalin-inactivated HSV-2 (FI-HSV2) formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Vaccine components were administered alone or as a prime-boost immunization together with DNA vaccines encoding a truncated glycoprotein D2 (gD2t) and two conserved HSV-2 genes necessary for virus replication, UL5 (DNA helicase) and UL30 (DNA polymerase). Our results show: (1) compared with mock immunized controls, mice immunized with FI-HSV2 plus MPL/alum consistently showed protection against disease burden and total viral shedding while the mice immunized with gD2t protein with MPL/alum did not; (2) protection against genital disease and viral replication correlated with the type of boost in a prime-boost immunization with little advantage afforded by a DNA prime; (3) intramuscular (i.m.) immunization with FI-HSV2 in MPL/Alhydrogel adjuvant provided nearly complete protection against vaginal HSV-2 shedding after a lethal intravaginal (i.vag.) short-term challenge and long-term rechallenge; (4) single formulation immunization with DNA vaccines, FI-HSV2, and MPL in an aluminum phosphate (Adju-Phos) adjuvant did not increase protection relative to FI-HSV2/MPL/Adju-Phos alone; and (5) addition of MPL/alum to the FI-HSV2 was required for optimal protection against disease, viral replication, and latent virus load in the dorsal root ganglia (DRG). Most notably, an optimized vaccine formulation of FI-HSV2 MPL/Alhydrogel given i.m. completely protected against detectable vaginal HSV-2 shedding in the majority of animals and HSV-2 latent DNA in the DRG of all animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    PubMed Central

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225

  5. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    PubMed

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system.

  6. Anti-tumour therapeutic efficacy of OX40L in murine tumour model.

    PubMed

    Ali, Selman A; Ahmad, Murrium; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Choolun, Esther; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2004-09-09

    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy.

  7. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  8. [Construction and expression of HSV-2gD-Hsp70 fusion protein gene].

    PubMed

    Fan, Jian-Yong; Yang, Hui-Lan; Wang, Ying; Guan, Lei

    2006-11-01

    To construct and express Hsp70-HSV2gD fusion protein. Genes of Hsp70 and HSV-2gD were subcloned into vectors pGEX-4T-1 respectively. After confirmed by DNA sequence analysis, the recombinant plasmids pGEX-4T-HSP-gD was transformed into E. coli DH5alpha and induced to express with IPTG. The expressed protein was characterized by SDS-PAGE and Western blot after purified. BALB/c mice were immunized with fusion proteins respectively via intra-m uscular injection. The proliferation of spleen lymphocytes, the level of y-IFN in culture and anti-HSV-2gD IgG antibody in serum was detected was detected. The expressed protein was analyzed by SDS-PAGE after induced with IPTG, which showed a new band with an apparent molecular mass corresponding to the predicted size (118 kD). Western Blotting analysis demonstrates that the purified Hsp70-HSV2gD fusion protein had specific binding activity. The stimulation indexes of spleen lymphocytes, the level of gamma-IFN in culture and anti-HSV-2gD IgG antibody in serum of GST-Hsp70-gD group was obviously higher than that of other groups (P < 0.05 respectively). The successful expression of the Hsp70-HSV2gD fusion protein, which can induce immune responses, laid a solid foundation for its further research.

  9. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  10. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    PubMed

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1. Copyright © 2018 American Society for Microbiology.

  11. ATP Depletion Blocks Herpes Simplex Virus DNA Packaging and Capsid Maturation

    PubMed Central

    Dasgupta, Anindya; Wilson, Duncan W.

    1999-01-01

    During herpes simplex virus (HSV) assembly, immature procapsids must expel their internal scaffold proteins, transform their outer shell to form mature polyhedrons, and become packaged with the viral double-stranded (ds) DNA genome. A large number of virally encoded proteins are required for successful completion of these events, but their molecular roles are poorly understood. By analogy with the dsDNA bacteriophage we reasoned that HSV DNA packaging might be an ATP-requiring process and tested this hypothesis by adding an ATP depletion cocktail to cells accumulating unpackaged procapsids due to the presence of a temperature-sensitive lesion in the HSV maturational protease UL26. Following return to permissive temperature, HSV capsids were found to be unable to package DNA, suggesting that this process is indeed ATP dependent. Surprisingly, however, the display of epitopes indicative of capsid maturation was also inhibited. We conclude that either formation of these epitopes directly requires ATP or capsid maturation is normally arrested by a proofreading mechanism until DNA packaging has been successfully completed. PMID:9971781

  12. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas.

    PubMed

    Hélias-Rodzewicz, Zofia; Pérot, Gaëlle; Chibon, Frédéric; Ferreira, Céline; Lagarde, Pauline; Terrier, Philippe; Coindre, Jean-Michel; Aurias, Alain

    2010-12-01

    In a series of 404 adult soft tissue sarcomas, analyzed by array-CGH, we have observed in approximately 10% of them a genomic amplification of either chromosome bands 11q22 or 3p12. These two amplicons likely target the YAP1 and VGLL3 genes, respectively. Both genes encode proteins that are cofactors of the TEAD family of transcription factors. Very good correlations between amplification and expression levels were observed. Welch test analyses of transcriptome data demonstrate that tumors with amplicons share a large set of upregulated and downregulated genes. Inhibition of YAP1 and VGLL3 in cell lines with these amplifications/overexpressions leads to similar phenotypes: decrease of proliferation rate, and to a lesser extent decrease of migration properties. These data, and the fact that these amplicons are observed either in de-differentiated liposarcomas or in undifferentiated pleomorphic sarcomas, suggest that these genetics events could be involved in oncogenesis and progression of soft tissue sarcomas. © 2010 Wiley-Liss, Inc.

  13. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    PubMed Central

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  14. Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0

    PubMed Central

    Melchjorsen, Jesper; Pedersen, Finn S.; Mogensen, Søren C.; Paludan, Søren R.

    2002-01-01

    Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0. PMID:11861845

  15. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed

    2010-01-05

    Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less

  16. [Herpes simplex virus vaccine studies: from past to present].

    PubMed

    Us, Dürdal

    2006-10-01

    The dramatical increase in the prevalence of Herpes simplex virus (HSV) infections and the significant physical and psychosocial morbidity of HSV type 2 infections, generate the need for an efficacious HSV vaccine. The most important properties of HSVs that should be targeted for a successful vaccine are neuronal invasion, latency and reactivation in spite of specific host immune responses. The major expectation for an ideal HSV vaccine candidate is to induce sterilizing immunity, which must be effective at all portals of HSV entry; to prevent or reduce the symptomatic disease and to eliminate or at least to limit the asymptomatic viral shedding. The first vaccine studies have began in the 1920s and in the intervening eight decades there have been many attempts to develop an effective one. Although encouraging findings came from experiments in various animal models, human studies have been disappointing, unfortunately. The vaccine strategies that have undergone clinical evaluation until today included autoinoculation of live HSV, whole inactivated vaccines, attenuated live virus vaccines, modified live virus subunit vaccines, cell culture-derived subunit vaccines, recombinant subunit (glycoprotein) vaccines, DISC (Disabled Infectious Single Cycle) virus vaccines, viral vectors and naked DNA vaccines. In most of the clinical studies the failure of HSV vaccines in spite of inducing very high levels of specific neutralizing antibodies have emphasized that cell-mediated immune response, especially Thl type immunity is important in preventing both primary disease and recurrences with HSV, rather than humoral response. The most hopeful result was obtained with HSV-2 gD and alum/MPL vaccine in clinical studies. This vaccine was found 74% effective in preventing genital disease in HSV seronegative women but was not effective in men or seropositive women. In recent years it is possible to genetically engineer HSV to produce a vaccine strain that is protective without causing human disease. An example for this strategy was the development of a live attenuated vaccine from which neurovirulence gene (gamma1 34.5) has been removed. Another promising one was the replication-defective DISC virus HSV vaccine which is derived from a virus with an essential gene (e.g. gH gene) deleted, so the replication has been limited only to a single cycle. As a result, intensive HSV vaccine trials are currently underway, although all the previous attempts to produce an effective vaccine for the prophylaxis and immunotherapy against HSV have been largely unsuccessful. In this review the history of HSV vaccine development together with the preclinical and clinical studies from past to present has been summarized and recent progress for an effective HSV vaccine together with the further improvements required for an immunogenic vaccine have been discussed.

  17. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain.

    PubMed Central

    Muldoon, L. L.; Nilaver, G.; Kroll, R. A.; Pagel, M. A.; Breakefield, X. O.; Chiocca, E. A.; Davidson, B. L.; Weissleder, R.; Neuwelt, E. A.

    1995-01-01

    Delivery of adenovirus, herpes simplex virus (HSV), and paramagnetic monocrystalline iron oxide nanoparticles (MION) to rat brain (n = 64) was assessed after intracerebral inoculation or osmotic disruption of the blood-brain barrier (BBB). After intracerebral inoculation, the area of distribution was 7.93 +/- 0.43 mm2 (n = 9) for MION and 9.17 +/- 1.27 mm2 (n = 9) for replication-defective adenovirus. The replication-compromised HSV RH105 spread to 14.00 +/- 0.87 mm2 (n = 8), but also had a large necrotic center (3.54 +/- 0.47 mm2). No infection was detected when virus was administered intra-arterially without hyperosmotic mannitol. After osmotic BBB disruption, delivery of the viruses and MIONs was detected throughout the disrupted cerebral cortex. Positive staining was found in 4 to 845 cells/100 microns thick coronal brain section (n = 7) after adenovirus administration, and in 13 to 197 cells/section (n = 8) after HSV administration. Cells of glial morphology were more frequently stained after administration of adenovirus, whereas neuronal cells were preferentially stained after delivery of both HSV vectors and MION. In a preliminary test of vector delivery in the feline, MION was detected throughout the white matter tracts after inoculation into normal cat brain. Thus MION may be a tool for use in vivo, to monitor the delivery of virus to the central nervous system. Additionally, BBB disruption may be an effective method to globally deliver recombinant viruses to the CNS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7495307

  18. Transcriptional mapping of the varicella-zoster virus regulatory genes encoding open reading frames 4 and 63.

    PubMed Central

    Kinchington, P R; Vergnes, J P; Defechereux, P; Piette, J; Turse, S E

    1994-01-01

    Four of the 68 varicella-zoster virus (VZV) unique open reading frames (ORFs), i.e., ORFs 4, 61, 62, and 63, encode proteins that influence viral transcription and are considered to be positional homologs of herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins. In order to identify the elements that regulate transcription of VZV ORFs 4 and 63, the encoded mRNAs were mapped in detail. For ORF 4, a major 1.8-kb and a minor 3.0-kb polyadenylated [poly(A)+] RNA were identified, whereas ORF 63-specific probes recognized 1.3- and 1.9-kb poly(A)+ RNAs. Probes specific for sequences adjacent to the ORFs and mapping of the RNA 3' ends indicated that the ORF 4 RNAs were 3' coterminal, whereas the RNAs for ORF 63 represented two different termination sites. S1 nuclease mapping and primer extension analyses indicated a single transcription initiation site for ORF 4 at 38 bp upstream of the ORF start codon. For ORF 63, multiple transcriptional start sites at 87 to 95, 151 to 153, and (tentatively) 238 to 243 bp upstream of the ORF start codon were identified. TATA box motifs at good positional locations were found upstream of all mapped transcription initiation sites. However, no sequences resembling the TAATGARAT motif, which confers IE regulation upon HSV-1 IE genes, were found. The finding of the absence of this motif was supported through analyses of the regulatory sequences of ORFs 4 and 63 in transient transfection assays alongside those of ORFs 61 and 62. Sequences representing the promoters for ORFs 4, 61, and 63 were all stimulated by VZV infection but failed to be stimulated by coexpression with the HSV-1 transactivator Vmw65. In contrast, the promoter for ORF 62, which contains TAATGARAT motifs, was activated by VZV infection and coexpression with Vmw65. These results extend the transcriptional knowledge for VZV and suggest that ORFs 4 and 63 contain regulatory signals different from those of the ORF 62 and HSV-1 IE genes. Images PMID:8189496

  19. RNA binding properties of the US11 protein from four primate simplexviruses.

    PubMed

    Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto

    2011-11-03

    The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.

  20. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  1. [Hypoxia responsive element regulated herpes simplex virus-thymidine kinase system enhances killing effect of gancyclovir on Ewing's sarcoma cell line under hypoxic condition].

    PubMed

    Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin

    2006-08-01

    To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.

  2. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    PubMed

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  3. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    PubMed

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection. Copyright © 2017 American Society for Microbiology.

  4. Genes encoded within 8q24 on the amplicon of a large extrachromosomal element are selectively repressed during the terminal differentiation of HL-60 cells.

    PubMed

    Hirano, Tetsuo; Ike, Fumio; Murata, Takehide; Obata, Yuichi; Utiyama, Hiroyasu; Yokoyama, Kazunari K

    2008-04-02

    Human acute myeloblastic leukemia HL-60 cells become resistant to differentiation during long-term cultivation. After 150 passages, double minute chromosomes (dmins) found in early-passaged cells are replaced by large extrachromosomal elements (LEEs). In a DNA library derived from a purified fraction of LEEs, 12.6% (23/183) of clones were assigned to 8q24 and 9.2% (17/183) were assigned to 14q11 in the human genome. Fluorescence in situ hybridization (FISH) revealed a small aberrant chromosome, which had not been found in early-passaged cells, in addition to the purified LEEs. We determined that each LEE consisted of six discontinuous segments in a region that extended for 4.4Mb over the 8q24 locus. Five genes, namely, Myc (a proto-oncogene), NSMCE2 (for a SUMO ligase), CCDC26 (for a retinoic acid-dependent modulator of myeloid differentiation), TRIB1 (for a regulator of MAPK kinase) and LOC389637 (for a protein of unknown function), were encoded by the amplicon. Breaks in the chromosomal DNA within the amplicon were found in the NSMCE2 and CCDC26 genes. The discontinuous structure of the amplicon unit of the LEEs was identical with that of dmins in HL-60 early-passaged cells. The difference between them seemed, predominantly, to be the number (10-15 copies per LEE versus 2 or 3 copies per dmin) of constituent units. Expression of the Myc, NSMCE2, CCDC26 and LOC389637 and TRIB1 genes was constitutive in all lines of HL-60 cells and that of the first four genes was repressed during the terminal differentiation of early-passaged HL-60 cells. We also detected abnormal transcripts of CCDC26. Our results suggest that these genes were selected during the development of amplicons. They might be amplified and, sometimes, truncated to contribute to the maintenance of HL-60 cells in an undifferentiated state.

  5. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    NASA Astrophysics Data System (ADS)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  6. In vivo marking of spontaneous or vaccine-induced fibrosarcomas in the domestic house cat, using an adenoviral vector containing a bifunctional fusion protein, GAL-TEK.

    PubMed

    Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N

    1995-09-01

    We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.

  7. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    PubMed Central

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-01-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL−1 during 40 days, and HSV-1, 2.7 Log10 PFU mL−1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL−1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors. PMID:25078058

  8. Partial and Full PCR-Based Reverse Genetics Strategy for Influenza Viruses

    PubMed Central

    Chen, Hongjun; Ye, Jianqiang; Xu, Kemin; Angel, Matthew; Shao, Hongxia; Ferrero, Andrea; Sutton, Troy; Perez, Daniel R.

    2012-01-01

    Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids. PMID:23029501

  9. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    PubMed

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  10. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng

    2016-09-01

    Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.

  11. Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation

    PubMed Central

    Finnen, Renée L.; Pangka, Kyle R.

    2012-01-01

    Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle. PMID:22623775

  12. [Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects].

    PubMed

    Shi, Gui-Lan; Zhuang, Xiu-Fen; Han, Xiang-Ping; Li, Jie; Zhang, Yu; Zhang, Shu-Ren; Liu, Bin-Lei

    2012-02-01

    The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree. The findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.

  13. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus

    PubMed Central

    Kinoti, Wycliff M.; Constable, Fiona E.; Nancarrow, Narelle; Plummer, Kim M.; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods. PMID:28713347

  14. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus.

    PubMed

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus , occurring in 48 of the 61 Ilarvirus -positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus -like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus -like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus -like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.

  15. [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity.

    PubMed

    Zanzonico, Pat; Koehne, Guenther; Gallardo, Humilidad F; Doubrovin, Mikhail; Doubrovina, Ekaterina; Finn, Ronald; Blasberg, Ronald G; Riviere, Isabelle; O'Reilly, Richard J; Sadelain, Michel; Larson, Steven M

    2006-09-01

    Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [(131)I]-2'-fluoro-2'-deoxy-1-beta-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular (131)I (even at tracer levels), the nucleus absorbed dose (D ( n )) and dose-dependent immune functionality were evaluated for NIT(+) T cells labeled ex vivo in [(131)I]FIAU-containing medium. Based on in vitro kinetic studies of [(131)I]FIAU uptake by NIT(+) T cells, D ( n ) was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [(131)I]FIAU-labeled cells was assayed against (51)Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a (51)Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.

  16. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  17. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  18. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Zhang, Jia; Wang, Li; Xiao, Wei; Yu, Hong; Li, Yuntao; Li, Hongbo; Yuan, Chenyan; Hou, Xinxin; Zhang, Hao; Zhang, Dongsheng

    2013-01-01

    Comprehensive therapy based on the integration of hyperthermia, radiation, gene therapy and chemotherapy is a promising area of study in cancer treatment. Using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as a gene transfer vector, the authors transfected self-prepared pEgr1-HSV-TK into HepG2 cells and measured the expression of the exogenous gene HSV-TK by RT-PCR. The results showed that HSV-TK was successfully transfected into HepG2 cells and the expression levels of HSV-TK remained stable. Besides, PEI-MZF-NPs were used as magnetic media for thermotherapy to treat hepatoma by magnet-induced heating, combined with radiation-gene therapy. Both in vitro and in vivo results suggest that this combined treatment with gene, radiation and heating has a better therapeutic effect than any of them alone. The apoptotic rate and necrotic rate of the combined treatment group was 51.84% and 15.45%, respectively. In contrast, it was only 20.55% and 6.80% in the radiation-gene group, 7.49% and 3.62% in the radiation-alone group, 15.23% and 7.90% in the heating-alone group, and only 3.52% and 2.16% in the blank control group. The inhibition rate of cell proliferation (88.5%) of the combined treatment group was significantly higher than that of the radiation-gene group (59.5%), radiation-alone group (37.6%) and heating-alone group (60.6%). The tumor volume and mass inhibition rate of the combined treatment group was 94.45% and 93.38%, respectively, significantly higher than 41.28% and 33.58% of the radiation-alone group, 60.76% and 52.18% of the radiation-gene group, 79.91% and 77.40% of the heating-alone group. It is therefore concluded that this combined application of heating, radiation and gene therapy has a good synergistic and complementary effect and PEI-MZF-NPs can act as a novel non-viral gene vector and magnetic induction medium, which offers a viable approach for the treatment of cancer.

  19. Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy.

    PubMed

    Chattopadhyay, Munmun; Zhou, Zhigang; Hao, Shuanglin; Mata, Marina; Fink, David J

    2012-03-22

    Painful neuropathy is a common complication of diabetes. Previous studies have identified significant increases in the amount of voltage gated sodium channel isoforms Na(V)1.7 and Na(V)1.3 protein in the dorsal root ganglia (DRG) of rats with streptozotocin (STZ)-induced diabetes. We found that gene transfer-mediated release of the inhibitory neurotransmitters enkephalin or gamma amino butyric acid (GABA) from DRG neurons in diabetic animals reduced pain-related behaviors coincident with a reduction in Na(V)1.7 protein levels in DRG in vivo. To further evaluate the role of Na(V)α subunit levels in DRG in the pathogenesis of pain in diabetic neuropathy, we constructed a non-replicating herpes simplex virus (HSV)-based vector expressing a microRNA (miRNA) against Na(V)α subunits. Subcutaneous inoculation of the miRNA-expressing HSV vector into the feet of diabetic rats to transduce DRG resulted in a reduction in Na(V)α subunit levels in DRG neurons, coincident with a reduction in cold allodynia, thermal hyperalgesia and mechanical hyperalgesia. These data support the role of increased Na(V)α protein in DRG in the pathogenesis of pain in diabetic neuropathy, and provide a proof-of-principle demonstration for the development of a novel therapy that could be used to treat intractable pain in patients with diabetic neuropathy.

  20. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168.

  1. Co-opting the Fanconi Anemia Genomic Stability Pathway Enables Herpesvirus DNA Synthesis and Productive Growth

    PubMed Central

    Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian

    2015-01-01

    SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902

  2. Herpesvirus papio 2 encodes a virion host shutoff function.

    PubMed

    Bigger, John E; Martin, David W

    2002-12-05

    Infection of baboons with herpesvirus papio 2 (HVP-2) produces a disease that is similar to human infection with herpes simplex viruses (HSV). Molecular characterization of HVP-2 has demonstrated that the virion contains a factor which rapidly shuts off host cell protein synthesis after infection. Reduction of host cell protein synthesis occurs in parallel with the degradation of mRNA species. A homolog of the HSV virion host shutoff (vhs) gene was identified by Southern and DNA sequence analysis. The sequence of the HVP-2 vhs gene homolog had greater than 70% identity with the vhs genes of HSV 1 and 2. Disruption of the HVP-2 vhs open reading frame diminished the ability of the virus to shut off protein synthesis and degrade cellular mRNA, indicating that this gene was responsible for the vhs activity. The HVP-2 model system provides the opportunity to study the biological role of vhs in the context of a natural primate host. Further development of this system will provide a platform for proof-of-concept studies that will test the efficacy of vaccines that utilize vhs-deficient viruses.

  3. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences.

    PubMed

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-06-09

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.

  4. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences

    PubMed Central

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-01-01

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics. PMID:27279482

  5. Herpes Simplex Virus 2 MicroRNA miR-H6 Is a Novel Latency-Associated Transcript-Associated MicroRNA, but Reduction of Its Expression Does Not Influence the Establishment of Viral Latency or the Recurrence Phenotype▿

    PubMed Central

    Tang, Shuang; Bertke, Andrea S.; Patel, Amita; Margolis, Todd P.; Krause, Philip R.

    2011-01-01

    The herpes simplex virus 2 (HSV-2) viral microRNA (miRNA) designated miR-H6 is located upstream of the latency-associated transcript (LAT) promoter region on the strand opposite the LAT. Deletion of the LAT promoter and part of LAT exon 1 abolished HSV-2 miR-H6 expression in acutely and latently infected guinea pig dorsal root ganglia (DRG), suggesting that this region is needed both for the expression of LAT-encoded miRNAs and for miR-H6 expression in vivo. Relative to cells infected with a viral rescuant, miR-H6 expression was significantly reduced in cells infected with a mutant HSV-2 virus, NotPolyA, with an insertion of a simian virus (SV40) polyadenylation signal sequence between the LAT promoter and miR-H6 sequences. In addition, expression of miR-H6, but not LAT or viral DNA, was significantly reduced in both mouse trigeminal ganglia (TG) and guinea pig DRG latently infected with the NotPolyA mutant. Guinea pigs infected with NotPolyA experienced reduced neurological complications of acute infection relative to those infected with the rescuant, but the recurrence phenotype of the NotPolyA mutant was similar to those of its rescuant and wild-type HSV-2, indicating that reduction of miR-H6 expression is not by itself able to alter the establishment of latency for the wild-type virus or the recurrence phenotype. Furthermore, the mutation in NotPolyA did not affect the propensity of wild-type HSV-2 to establish latency in neurons positive for subtype marker KH10. In contrast to published reports regarding its HSV-1 homolog, HSV-2 miR-H6 did not affect ICP4 expression in transfected or infected cells. We hypothesize that viral miRNAs associated with LAT expression are likely to work collectively, contributing to the phenotype attributed to the LAT. PMID:21325410

  6. Comparison of immunogenicity and protective efficacy of genital herpes vaccine candidates herpes simplex virus 2 dl5-29 and dl5-29-41L in mice and guinea pigs.

    PubMed

    Hoshino, Yo; Pesnicak, Lesley; Dowdell, Kennichi C; Lacayo, Juan; Dudek, Timothy; Knipe, David M; Straus, Stephen E; Cohen, Jeffrey I

    2008-07-29

    A replication-defective herpes simplex virus (HSV)-2 vaccine, dl5-29, which is deleted for two essential early genes, UL5 and UL29, is highly immunogenic and protective in mice and guinea pigs. In a prior study, a derivative of HSV-2 dl5-29 termed dl5-29-41L, which has an additional deletion in UL41 (that encodes the virion-host shut-off protein), was more immunogenic and protective against challenge with wild-type HSV-2 in mice when compared with dl5-29. To determine if deletion of UL41 improves the efficacy of dl5-29 in protecting guinea pigs from HSV-2, animals were immunized with dl5-29, dl5-29-41L, or PBS. The geometric mean neutralizing antibody titers from the dl5-29 and dl5-29-41L recipients were comparable (10(1.97) and 10(2.19), respectively, p=0.15). After intravaginal challenge with wild-type HSV-2, the dl5-29-41L and dl5-29 recipients shed similar titers of HSV-2 from the vagina. Mean acute disease severity scores, numbers of recurrences during 3 months after infection, and latent viral loads in sacral ganglia were similar for dl5-29 and dl5-29-41L (all p values >0.05). dl5-29 and dl5-29-41L completely protected mice from lethal challenge with HSV-2 and induced virus-specific CD8(+) T cells in the spleens of the animals. Thus, dl5-29 was as immunogenic and protective as dl5-29-41L under these conditions. dl5-29 was at least 250,000-fold less virulent than parental virus by intracranial inoculation in healthy mice, and caused no disease in SCID mice. Both dl5-29-41L and dl5-29 are equally effective and immunogenic in guinea pigs, and dl5-29 is very safe in immunocompromised animals.

  7. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  8. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  9. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency associated transcript (LAT) negative mutant dLAT2903 with a disrupted LAT miR-H2

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is antisense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency-reactivation cycle of a LAT negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant induced reactivation model of HSV-1 compared to its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared to its parental wt virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared to its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype. PMID:26069184

  10. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy.

  11. Expression and Stability of Foreign Epitopes Introduced into 3A Nonstructural Protein of Foot-and-Mouth Disease Virus

    PubMed Central

    Li, Pinghua; Bai, Xingwen; Cao, Yimei; Han, Chenghao; Lu, Zengjun; Sun, Pu; Yin, Hong; Liu, Zaixin

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags. PMID:22848509

  12. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1α/CXCR4 system in rats.

    PubMed

    Huang, Wan; Zheng, Wenwen; Ouyang, Handong; Yi, Hyun; Liu, Shue; Zeng, Weian; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-03-01

    In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. Neuropathic pain was induced by intraperitoneal administration of 2',3'-dideoxycytidine (ddC, one of the NRTIs). Mechanical threshold was tested using von Frey filament fibers. Nonreplicating herpes simplex virus (HSV) vectors expressing p55 TNF soluble receptor (p55TNFSR) were inoculated into hindpaw of rats. The expression of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG was examined using Western blots. Intrathecal CXCR4 antagonist was administered. The present study demonstrated that (1) systemic ddC induced upregulation of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; (2) p55TNFSR mediated by a nonreplicating HSV vector reversed mechanical allodynia induced by systemic ddC; (3) intrathecal administration of the CXCR4 antagonist AMD3100 increased mechanical threshold; and (4) HSV vector expressing p55TNFSR reversed upregulation of TNF-α, SDF1-α, and CXCR4 induced by ddC in the lumbar spinal dorsal horn and the DRG. Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.

  13. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  14. Suppression of RIP3-dependent Necroptosis by Human Cytomegalovirus

    PubMed Central

    Omoto, Shinya; Guo, Hongyan; Talekar, Ganesh R.; Roback, Linda; Kaiser, William J.; Mocarski, Edward S.

    2015-01-01

    Necroptosis is an alternate programmed cell death pathway that is unleashed by caspase-8 compromise and mediated by receptor-interacting protein kinase 3 (RIP3). Murine cytomegalovirus (CMV) and herpes simplex virus (HSV) encode caspase-8 inhibitors that prevent apoptosis together with competitors of RIP homotypic interaction motif (RHIM)-dependent signal transduction to interrupt the necroptosis. Here, we show that pro-necrotic murine CMV M45 mutant virus drives virus-induced necroptosis during nonproductive infection of RIP3-expressing human fibroblasts, whereas WT virus does not. Thus, M45-encoded RHIM competitor, viral inhibitor of RIP activation, sustains viability of human cells like it is known to function in infected mouse cells. Importantly, human CMV is shown to block necroptosis induced by either TNF or M45 mutant murine CMV in RIP3-expressing human cells. Human CMV blocks TNF-induced necroptosis after RIP3 activation and phosphorylation of the mixed lineage kinase domain-like (MLKL) pseudokinase. An early, IE1-regulated viral gene product acts on a necroptosis step that follows MLKL phosphorylation prior to membrane leakage. This suppression strategy is distinct from RHIM signaling competition by murine CMV or HSV and interrupts an execution process that has not yet been fully elaborated. PMID:25778401

  15. Pyrosequencing analysis for characterization of bacterial diversity in a soil as affected by integrated livestock-cotton production systems

    USDA-ARS?s Scientific Manuscript database

    Impacts of integrated livestock-crop production systems compared to specialized systems on soil bacterial diversity have not been well documented. We used a bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) method to evaluate bacterial diversity of a clay loam soil (Fine, mixed, thermic To...

  16. Nested Machine Learning Facilitates Increased Sequence Content for Large-Scale Automated High Resolution Melt Genotyping

    PubMed Central

    Fraley, Stephanie I.; Athamanolap, Pornpat; Masek, Billie J.; Hardick, Justin; Carroll, Karen C.; Hsieh, Yu-Hsiang; Rothman, Richard E.; Gaydos, Charlotte A.; Wang, Tza-Huei; Yang, Samuel

    2016-01-01

    High Resolution Melt (HRM) is a versatile and rapid post-PCR DNA analysis technique primarily used to differentiate sequence variants among only a few short amplicons. We recently developed a one-vs-one support vector machine algorithm (OVO SVM) that enables the use of HRM for identifying numerous short amplicon sequences automatically and reliably. Herein, we set out to maximize the discriminating power of HRM + SVM for a single genetic locus by testing longer amplicons harboring significantly more sequence information. Using universal primers that amplify the hypervariable bacterial 16 S rRNA gene as a model system, we found that long amplicons yield more complex HRM curve shapes. We developed a novel nested OVO SVM approach to take advantage of this feature and achieved 100% accuracy in the identification of 37 clinically relevant bacteria in Leave-One-Out-Cross-Validation. A subset of organisms were independently tested. Those from pure culture were identified with high accuracy, while those tested directly from clinical blood bottles displayed more technical variability and reduced accuracy. Our findings demonstrate that long sequences can be accurately and automatically profiled by HRM with a novel nested SVM approach and suggest that clinical sample testing is feasible with further optimization. PMID:26778280

  17. Gene Editing Vectors for Studying Nicotinic Acetylcholine Receptors in Cholinergic Transmission.

    PubMed

    Peng, Can; Yan, Yijin; Kim, Veronica J; Engle, Staci E; Berry, Jennifer N; McIntosh, J Michael; Neve, Rachael L; Drenan, Ryan M

    2018-05-19

    Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. Production of loss-of-function insertions or deletions (indels) by these "all-in-one" HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT) positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  19. Characterization of a major late herpes simplex virus type 1 mRNA.

    PubMed

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  20. Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection.

    PubMed

    Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying

    2018-04-03

    Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.

  1. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin

    PubMed Central

    Grigoraki, Linda; Pipini, Dimitra; Labbé, Pierrick; Chaskopoulou, Alexandra; Weill, Mylene; Vontas, John

    2017-01-01

    Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. PMID:28394886

  2. Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase

    PubMed Central

    Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.

    2006-01-01

    One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included increases in both striatal tyrosine hydroxylase enzyme activity and in extracellular dopamine concentrations. Persistence of human tyrosine hydroxylase was revealed by expression of RNA and immunoreactivity. PMID:7669103

  3. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    PubMed

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.

    PubMed

    Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

    2012-09-01

    Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.

  6. Deletion of the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5 from the herpes simplex virus type 1 genome substantially impairs productive viral infection in cell culture and pathogenesis in the rat central nervous system.

    PubMed

    Rasty, S; Poliani, P L; Fink, D J; Glorioso, J C

    1997-08-01

    A distinctive feature of the genetic make-up of herpes simplex virus type 1 (HSV-1), a human neurotropic virus, is that approximately half of the 81 known viral genes are not absolutely required for productive infection in Vero cells, and most can be individually deleted without substantially impairing viral replication in cell culture. If large blocks of contiguous viral genes could be replaced with foreign DNA sequences, it would be possible to engineer highly attenuated recombinant HSV-1 gene transfer vectors capable of carrying large cellular genes or multiple genes having related functions. We report the isolation and characterization of an HSV-1 mutant, designated d311, containing a 12 kb deletion of viral DNA located between the L-S Junction a sequence and the U(S)6 gene, spanning the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5. Replication of d311 was totally inhibited in rat B103 and mouse Neuro-2A neuroblastoma cell lines, and was reduced by over three orders of magnitude in human SK-N-SH neuroblastoma cells compared to wild-type (wt) HSV-1 KOS. This suggested that the deleted genes, while nonessential for replication in Vero cells, play an important role in HSV replication in neuronal cells, particularly those of rodent origin. Unlike wt KOS which replicated locally and spread to other regions of brain following stereotactic inoculation into rat hippocampus, d311 was unable to replicate and spread within the brain, and did not cause any apparent local neuronal cell damage. These results demonstrate that d311 is highly attenuated for the rat central nervous system. d311 and other mutants of HSV containing major deletions of the nonessential genes within U(S) have the potential to serve as useful tools for gene transfer applications to brain.

  7. Elimination of mitochondrial DNA is not required for herpes simplex virus 1 replication.

    PubMed

    Duguay, Brett A; Saffran, Holly A; Ponomarev, Alina; Duley, Shayla A; Eaton, Heather E; Smiley, James R

    2014-03-01

    Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.

  8. Evaluation of the ruminal bacterial diversity of cattle fed diets containing citrus pulp pellets (CPP) using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)

    USDA-ARS?s Scientific Manuscript database

    The rumen microbial ecosystem has been extensively studied, but remains a mystery from a quantitative perspective. Dietary components and changes cause shifts in the ruminal microflora that can affect animal health and productivity, but the majority of these changes remain unknown. The objective of ...

  9. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk

    USDA-ARS?s Scientific Manuscript database

    The objective of the current study was to examine the effect of pasteurization of waste milk used to feed dairy calves on the bacterial diversity of their lower gut. Using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), fecal samples from dairy calves aging from 1 week to 6 mon...

  10. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Kons

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealedmore » that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.« less

  11. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  12. Molecular Test to Assign Individuals within the Cacopsylla pruni Complex

    PubMed Central

    Peccoud, Jean; Labonne, Gérard; Sauvion, Nicolas

    2013-01-01

    Crop protection requires the accurate identification of disease vectors, a task that can be made difficult when these vectors encompass cryptic species. Here we developed a rapid molecular diagnostic test to identify individuals of Cacopsylla pruni (Scopoli, 1763) (Hemiptera: Psyllidae), the main vector of the European stone fruit yellows phytoplasma. This psyllid encompasses two highly divergent genetic groups that are morphologically similar and that are characterized by genotyping several microsatellite markers, a costly and time-consuming protocol. With the aim of developing species-specific PCR primers, we sequenced the Internal Transcribed Spacer 2 (ITS2) on a collection of C . pruni samples from France and other European countries. ITS2 sequences showed that the two genetic groups represent two highly divergent clades. This enabled us to develop specific primers for the assignment of individuals to either genetic group in a single PCR, based on ITS2 amplicon size. All previously assigned individuals yielded bands of expected sizes, and the PCR proved efficient on a larger sample of 799 individuals. Because none appeared heterozygous at the ITS2 locus (i.e., none produced two bands), we inferred that the genetic groups of C . pruni , whose distribution is partly sympatric, constitute biological species that have not exchanged genes for an extended period of time. Other psyllid species (Cacopsylla, Psylla, Triozidae and Aphalaridae) failed to yield any amplicon. These primers are therefore unlikely to produce false positives and allow rapid assignment of C . pruni individuals to either cryptic species. PMID:23977301

  13. In Vivo Imaging of MDR1A Gene Expression

    DTIC Science & Technology

    2004-12-01

    Engineer PGK-neo and Renilla luciferase cassettes, already available, with appropriate loxP sites, into mdrla locus. Repeat for HSV-tk reporter. The...of the gene-targeting vector. under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated sequences of exon 2...between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the translated

  14. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D.

    PubMed Central

    Nicola, A V; Willis, S H; Naidoo, N N; Eisenberg, R J; Cohen, G H

    1996-01-01

    Glycoprotein D (gD) of herpes simplex virus (HSV) is essential for virus entry. Truncated forms of gD lacking the transmembrane and cytoplasmic tail regions have been shown to bind to cells and block plaque formation. Using complementation analysis and a panel of gD mutants, we previously identified four regions of gD (regions I to IV) which are important for virus entry. Here, we used baculovirus vectors to overexpress truncated forms of wild-type gD from HSV type 1 (HSV-1) [gD-1(306t)] and HSV-2 [gD-2(306t)] and four mutants, gD-1(inverted delta 34t), gD-1(inverted delta 126t), gD-1(inverted delta 243t), and gD-1(delta 290-299t), each having a mutation in one of the four functional regions. We used an enzyme-linked immunosorbent assay and circular dichroism to analyze the structure of these proteins, and we used functional assays to study the role of gD in binding, penetration, and cell-to-cell spread. gD-1 and gD-2 are similar in antigenic structure and thermal stability but vary in secondary structure. Mutant proteins with insertions in region I or II were most altered in structure and stability, while mutants with insertions in region III or IV were less altered. gD-1(306t) and gD-2(306t) inhibited both plaque formation and cell-to-cell transmission of HSV-1. In spite of obvious structural differences, all of the mutant proteins bound to cells, confirming that binding is not the only function of gD. The region I mutant did not inhibit HSV plaque formation or cell-to-cell spread, suggesting that this region is necessary for the function of gD in these processes. Surprisingly, the other three mutant proteins functioned in all of the in vitro assays, indicating that the ability of gD to bind to cells and inhibit infection does not correlate with its ability to initiate infection as measured by the complementation assay. The region IV mutant, gD-1(delta 290-299t), had an unexpected enhanced inhibitory effect on HSV infection. Taken together, the results argue against a single functional domain in gD. It is likely that different gD structural elements are involved in successive steps of infection. PMID:8648717

  15. Detection and discrimination of herpes simplex viruses, Haemophilus ducreyi, Treponema pallidum, and Calymmatobacterium (Klebsiella) granulomatis from genital ulcers.

    PubMed

    Mackay, Ian M; Harnett, Gerry; Jeoffreys, Neisha; Bastian, Ivan; Sriprakash, Kadaba S; Siebert, David; Sloots, Theo P

    2006-05-15

    Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), H. ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium (Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.

  16. Lentiviral vectors encoding shRNAs efficiently transduce and knockdown LINGO-1 but induce an interferon response and cytotoxicity in CNS neurons

    PubMed Central

    Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.

    2017-01-01

    Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506

  17. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  18. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.

    PubMed

    Abuin, A; Zhang, H; Bradley, A

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

  19. Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

    PubMed Central

    Abuin, Alejandro; Zhang, HeJu; Bradley, Allan

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017

  20. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  1. Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism.

    PubMed

    Bertke, Andrea S; Patel, Amita; Krause, Philip R

    2007-06-01

    Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2.

  2. Herpes Simplex Virus Latency-Associated Transcript Sequence Downstream of the Promoter Influences Type-Specific Reactivation and Viral Neurotropism▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Krause, Philip R.

    2007-01-01

    Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2. PMID:17409161

  3. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    PubMed

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK retroviral gene therapy is a primary effect that is dependent on tyrosine kinase activity. Specific immune responses generated after transfection may represent an important general side effect of gene therapy protocols. Elucidation of the mechanism of immunomodulation after gene therapy will likely yield safer and more effective clinical protocols.

  4. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  5. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  6. Evaluation of the Bacterial Diversity in Cecal Contents of Laying Hens Fed Various Molting Diets Using Bacterial Tag-Encoded FLX Amplicon Pyrosequencing (bTEFAP)

    USDA-ARS?s Scientific Manuscript database

    Laying hens are typically induced to molt in order to begin a new egg-laying cycle by withdrawing feed for up to 12-14 d. Fasted hens are more susceptible to colonization and tissue invasion by Salmonella Enteriditis. Much of this increased incidence in fasted hens is thought to be due to changes ...

  7. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors.

    PubMed

    Kawabe, Yoshinori; Shimomura, Takuya; Huang, Shuohao; Imanishi, Suguru; Ito, Akira; Kamihira, Masamichi

    2016-07-01

    Retroviral vectors have served as efficient gene delivery tools in various biotechnology fields. However, viral DNA is randomly inserted into the genome, which can cause problems, such as insertional mutagenesis and gene silencing. Previously, we reported a site-specific gene integration system, in which a transgene is integrated into a predetermined chromosomal locus of Chinese hamster ovary (CHO) cells using integrase-defective retroviral vectors (IDRVs) and Cre recombinase. In this system, a Cre expression plasmid is transfected into founder cells before retroviral transduction. In practical applications of site-specific gene modification such as for hard-to-transfect cells or for in vivo gene delivery, both the transgene and the Cre protein into retroviral virions should be encapsulate. Here, we generated novel hybrid IDRVs in which viral genome and enzymatically active Cre can be delivered (Cre-IDRVs). Cre-IDRVs encoding marker genes, neomycin resistance and enhanced green fluorescent protein (EGFP), flanked by wild-type and mutated loxP sites were produced using an expression plasmid for a chimeric protein of Cre and retroviral gag-pol. After analyzing the incorporation of the Cre protein into retroviral virions by Western blotting, the Cre-IDRV was infected into founder CHO cells, in which marker genes (hygromycin resistance and red fluorescent protein) flanked with corresponding loxP sites are introduced into the genome. G418-resistant colonies expressing GFP appeared and the site-specific integration of the transgene into the expected chromosomal site was confirmed by PCR and sequencing of amplicons. Moreover, when Cre-IDRV carried a gene expression unit for a recombinant antibody, the recombinant cells in which the antibody expression cassette was integrated in a site-specific manner were generated and the cells produced the recombinant antibody. This method may provide a promising tool to perform site-specific gene modification according to Cre-based cell engineering. Biotechnol. Bioeng. 2016;113: 1600-1610. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  9. Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections

    PubMed Central

    Schiffer, Joshua T.; Aubert, Martine; Weber, Nicholas D.; Mintzer, Esther; Stone, Daniel

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches. PMID:22718830

  10. [The alpha-herpesviridae in dermatology : Herpes simplex virus types I and II. German version].

    PubMed

    El Hayderi, L; Rübben, A; Nikkels, A F

    2017-03-01

    This review on herpes simplex virus type I and type II (HSV-I, HSV-II) summarizes recent developments in clinical manifestations and treatment interventions for primary and recurrent orolabial and genital herpes, as well as those regarding vaccination issues. Among the clinical presentations, the relationship between pyogenic granuloma and chronic HSV-I infection; HSV-related folliculitis; verrucous HSV-I and HSV-II lesions; the role of recurrent HSV-I infection in burning mouth syndrome; HSV-I and HSV-II infection of the periareolar area; zosteriform HSV; the "knife-cut sign"; and the preferential colonization and infection of preexisting dermatoses by HSV-I or HSV-II are discussed. The usual antiviral treatment regimens for primary and recurrent orolabial and genital herpes are compared to short-term and one-day treatment options. New anti-HSV-I and anti-HSV-II agents include amenavir, pritelivir, brincidofovir, valomaciclovir, and FV-100. Therapeutic or preventive vaccination against HSV-I and HSV-II infections still remains a highly desirable treatment aim, which, unfortunately, has no clinically relevant applications to date.

  11. Ethnic differences in HSV1 and HSV2 seroprevalence in Amsterdam, the Netherlands.

    PubMed

    Kramer, M A; Uitenbroek, D G; Ujcic-Voortman, J K; Pfrommer, C; Spaargaren, J; Coutinho, R A; Dukers-Muijrers, N H T M

    2008-06-12

    Herpes simplex virus type 1 (HSV1) and 2 (HSV2) infection can lead to significant morbidity, and HSV2 is considered a risk factor for HIV transmission. The majority of HSV-infected people are asymptomatic and unaware of their infection. We aimed to determine the HSV1 and HSV2 prevalence among various ethnic groups in a large urban area in the Netherlands. In 2004, serum samples from a population-based serum repository of 1,325 people over 18 years living in Amsterdam were tested for HSV1 and HSV2 antibodies in order to determine high-risk groups. Prevalence ratios were estimated and all analyses were weighted by sex, age, and ethnicity. In the general population of Amsterdam, 67% had HSV1 antibodies, 22% had HSV2 antibodies, 15% had HSV1 and HSV2 antibodies, and 26% had no indication of HSV infection. In multivariate analyses, HSV1 seroprevalence increased with age, and was higher among people of Turkish and Moroccan origin, homosexual men, and individuals with low educational level. HSV2 seroprevalence was associated with increasing age, Surinamese/Antillean background, and having a history of sexually transmitted infections (STI). These differences between ethnic groups in Amsterdam regarding the distribution of HSV1 and HSV2 infection emphasise the importance of an ethnic-specific approach of serological testing as well as campaigns aimed at behavioural change and counselling to raise awareness of the risk of HSV transmission.

  12. Review of 3200 serially received CSF samples submitted for type-specific HSV detection by PCR in the reference laboratory setting.

    PubMed

    Peter, J B; Sevall, J S

    2001-06-01

    Previously, studies of CNS infection have indicated substantially greater prevalence of HSV1 than HSV2. In reviewing unexpectedly high numbers of HSV2 infections among CSF specimens submitted to our laboratories for PCR testing, we discovered an age and gender bias suggesting a need to examine the demographics of those patients whose specimens tested positive for HSV. Some 3200 CSF specimens submitted for HSV testing were randomly selected for analysis. HSV1 was detected in 26 specimens (nine male, 17 female; average age 51 years) and HSV2 in 36 specimens (13 male, 23 female; average age 34 years). In general, there were almost twice as many HSV1 and HSV2 infections detected in females as in males. The entire group (22 male, 40 female) exhibited a preponderance of HSV2 over HSV1 infections (36:26). In contrast, the ratio of HSV2 to HSV1 infection was 3:13 in the over 60 age group of our study (11 of the 13 HSV1 infections in this age group occurred in females). In the subgroup of 21 patients aged 15-40 years (six male, 15 female), the ratio of HSV2 to HSV1 was 16:5. In the 15 infections in the group aged 41-60 years, the ratio of HSV2 to HSV1 was 12:4. In summary, our data indicate extraordinary differences in the relative frequency of HSV1 vs HSV2 CNS infections in teenagers, young adults (15-40 years), middle age (41-60) and in the elderly (>60 years), including a particular bias for HSV1 CNS infection in females over age 70 years. Copyright 2001 Academic Press.

  13. Seroprevalence of HSV-1 and HSV-2 antibodies in Canadian women screened for enrolment in a herpes simplex virus vaccine trial.

    PubMed

    Gorfinkel, I S; Aoki, F; McNeil, S; Dionne, M; Shafran, S D; Zickler, P; Halperin, S; Langley, J; Bellamy, A; Schulte, J; Heineman, T; Belshe, R

    2013-05-01

    Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) infections continue to be among the most common and unrecognized sexually transmitted infections in the world. Although treatable, HSV-1 and HSV-2 infections remain incurable. Hence, there is interest in the development of a vaccine to prevent genital herpes. As part of a multicentre, randomized, placebo-controlled trial to test such a vaccine, healthy women 18-30 years were enrolled as volunteers in several Canadian centres between 2005 and 2007. This study reports the seroprevalence of HSV-1 and HSV-2 antibodies in this group. A total of 2694 adult female volunteers in Canada with no known history of herpes simplex were screened for HSV antibodies using Western blot assay (the gold standard for diagnosis of HSV) for potential participation in a randomized, double-blind efficacy field trial of a herpes simplex vaccine. This trial provides a unique opportunity to examine the prevalence of antibodies to HSV-1 and of antibodies to HSV-2 in women with no known history of herpes simplex infection. The prevalence of antibodies to HSV-1 and to HSV-2 is compared with that found in previous Canadian studies that focused on a more general population. The overall seroprevalence of antibody to HSV-1 was 43%; that of HSV-2 was 2.5% and seropositivity to both was 2%. The prevalence of antibody to both HSV-1 and to HSV-2 increased with age. Seronegativity to both HSV-1 and HSV-2 was 56% in participating centres with populations under 250,000 and 46% in participating centres with populations over 250,000. Significant racial differences in seropositivity to HSV-1 and to HSV-2 were noted. The likelihood of participants being seropositive to HSV-1 and to HSV-2 was found to increase with age and to positively correlate with the population of the city in which they resided. Hypotheses are proposed to account for differences in racial seropositivity to HSV-1 and to HSV-2.

  14. Influence of Herpes Simplex Virus 1 Latency-Associated Transcripts on the Establishment and Maintenance of Latency in the ROSA26R Reporter Mouse Model

    PubMed Central

    Nicoll, M. P.; Proença, J. T.; Connor, V.

    2012-01-01

    Herpes simplex virus 1 (HSV-1) can establish life-long latent infection in sensory neurons, from which periodic reactivation can occur. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs). While not essential for any phase of latency, to date the LATs have been shown to increase the efficiency of both establishment and reactivation of latency in small-animal models. We sought to investigate the role of LAT expression in the frequency of latency establishment within the ROSA26R reporter mouse model utilizing Cre recombinase-encoding recombinant viruses harboring deletions of the core LAT promoter (LAP) region. HSV-1 LAT expression was observed to influence the number of latently infected neurons in trigeminal but not dorsal root ganglia. Furthermore, the relative frequencies of latency establishment of LAT-positive and LAT-negative viruses are influenced by the inoculum dose following infection of the mouse whisker pads. Finally, analysis of the infected cell population at two latent time points revealed a relative loss of latently infected cells in the absence of LAT expression. We conclude that the HSV-1 LATs facilitate the long-term stability of the latent cell population within the infected host and that interpretation of LAT establishment phenotypes is influenced by infection methodology. PMID:22696655

  15. LAT region factors mediating differential neuronal tropism of HSV-1 and HSV-2 do not act in trans.

    PubMed

    Bertke, Andrea S; Apakupakul, Kathleen; Ma, AyeAye; Imai, Yumi; Gussow, Anne M; Wang, Kening; Cohen, Jeffrey I; Bloom, David C; Margolis, Todd P

    2012-01-01

    After HSV infection, some trigeminal ganglion neurons support productive cycle gene expression, while in other neurons the virus establishes a latent infection. We previously demonstrated that HSV-1 and HSV-2 preferentially establish latent infection in A5+ and KH10+ sensory neurons, respectively, and that exchanging the latency-associated transcript (LAT) between HSV-1 and HSV-2 also exchanges the neuronal preference. Since many viral genes besides the LAT are functionally interchangeable between HSV-1 and HSV-2, we co-infected HSV-1 and HSV-2, both in vivo and in vitro, to determine if trans-acting viral factors regulate whether HSV infection follows a productive or latent pattern of gene expression in sensory neurons. The pattern of HSV-1 and HSV-2 latent infection in trigeminal neurons was no different following co-infection than with either virus alone, consistent with the hypothesis that a trans-acting viral factor is not responsible for the different patterns of latent infection of HSV-1 and HSV-2 in A5+ and KH10+ neurons. Since exchanging the LAT regions between the viruses also exchanges neuronal preferences, we infected transgenic mice that constitutively express 2.8 kb of the LAT region with the heterologous viral serotype. Endogenous expression of LAT did not alter the pattern of latent infection after inoculation with the heterologous serotype virus, demonstrating that the LAT region does not act in trans to direct preferential establishment of latency of HSV-1 and HSV-2. Using HSV1-RFP and HSV2-GFP in adult trigeminal ganglion neurons in vitro, we determined that HSV-1 and HSV-2 do not exert trans-acting effects during acute infection to regulate neuron specificity. Although some neurons were productively infected with both HSV-1 and HSV-2, no A5+ or KH10+ neurons were productively infected with both viruses. Thus, trans-acting viral factors do not regulate preferential permissiveness of A5+ and KH10+ neurons for productive HSV infection and preferential establishment of latent infection.

  16. LAT Region Factors Mediating Differential Neuronal Tropism of HSV-1 and HSV-2 Do Not Act in Trans

    PubMed Central

    Bertke, Andrea S.; Apakupakul, Kathleen; Ma, AyeAye; Imai, Yumi; Gussow, Anne M.; Wang, Kening; Cohen, Jeffrey I.; Bloom, David C.; Margolis, Todd P.

    2012-01-01

    After HSV infection, some trigeminal ganglion neurons support productive cycle gene expression, while in other neurons the virus establishes a latent infection. We previously demonstrated that HSV-1 and HSV-2 preferentially establish latent infection in A5+ and KH10+ sensory neurons, respectively, and that exchanging the latency-associated transcript (LAT) between HSV-1 and HSV-2 also exchanges the neuronal preference. Since many viral genes besides the LAT are functionally interchangeable between HSV-1 and HSV-2, we co-infected HSV-1 and HSV-2, both in vivo and in vitro, to determine if trans-acting viral factors regulate whether HSV infection follows a productive or latent pattern of gene expression in sensory neurons. The pattern of HSV-1 and HSV-2 latent infection in trigeminal neurons was no different following co-infection than with either virus alone, consistent with the hypothesis that a trans-acting viral factor is not responsible for the different patterns of latent infection of HSV-1 and HSV-2 in A5+ and KH10+ neurons. Since exchanging the LAT regions between the viruses also exchanges neuronal preferences, we infected transgenic mice that constitutively express 2.8 kb of the LAT region with the heterologous viral serotype. Endogenous expression of LAT did not alter the pattern of latent infection after inoculation with the heterologous serotype virus, demonstrating that the LAT region does not act in trans to direct preferential establishment of latency of HSV-1 and HSV-2. Using HSV1-RFP and HSV2-GFP in adult trigeminal ganglion neurons in vitro, we determined that HSV-1 and HSV-2 do not exert trans-acting effects during acute infection to regulate neuron specificity. Although some neurons were productively infected with both HSV-1 and HSV-2, no A5+ or KH10+ neurons were productively infected with both viruses. Thus, trans-acting viral factors do not regulate preferential permissiveness of A5+ and KH10+ neurons for productive HSV infection and preferential establishment of latent infection. PMID:23300908

  17. Recurrences after oral and genital herpes simplex virus infection. Influence of site of infection and viral type.

    PubMed

    Lafferty, W E; Coombs, R W; Benedetti, J; Critchlow, C; Corey, L

    1987-06-04

    We prospectively followed 39 adults with concurrent primary herpes simplex virus (HSV) infection (12 with HSV type 1 and 27 with HSV type 2) of the oropharynx and genitalia, caused by the same virus in each person, to evaluate the influence of viral type (HSV-1 vs. HSV-2) and site of infection (oropharyngeal vs. genital) on the frequency of recurrence. The subsequent recurrence patterns of HSV infection differed markedly according to viral type and anatomical site. Oral-labial recurrences developed in 5 of 12 patients with HSV-1 and 1 of 27 patients with HSV-2 (P less than 0.001). Conversely, genital recurrences developed in 24 of 27 patients with HSV-2 and 3 of 12 patients with HSV-1 (P less than 0.01). The mean rate of subsequent genital recurrences (due to HSV-1 and HSV-2) was 0.23 per month, whereas the mean rate of oral-labial recurrences was only 0.04 per month (P less than 0.001). The mean monthly frequencies of recurrence were, in order, genital HSV-2 infections, 0.33 per month; oral-labial HSV-1 infections, 0.12 per month; genital HSV-1 infections, 0.020 per month; and oral HSV-2 infections, 0.001 per month (P less than 0.01 for each comparison). We conclude that the likelihood of reactivation of HSV infection differs between HSV-1 and HSV-2 infections and between the sacral and trigeminal anatomical sites. The sixfold more frequent clinical recurrence rate of genital HSV infections as compared with oral-labial HSV infections may account for the relatively rapid increase in the prevalence of clinically recognized genital herpes in recent years.

  18. Evaluation of the bacterial diversity in the rumen and feces of cattle fed different diets containing levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)

    USDA-ARS?s Scientific Manuscript database

    Dietary components and changes cause shifts in the intestinal ecology of the gut, which can play a role in animal health and productivity. However, most information about the microbial populations in the gut of livestock species has not been quantitative. In the present study, we utilized a new m...

  19. Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria

    PubMed Central

    Chadha, Pooja; Sarfo, Akua; Zhang, Dan; Abraham, Thomas; Carmichael, Jillian

    2016-01-01

    ABSTRACT The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses. PMID:27847362

  20. Herpesviruses and the microbiome.

    PubMed

    Dreyfus, David H

    2013-12-01

    The focus of this article will be to examine the role of common herpesviruses as a component of the microbiome of atopic patients and to review clinical observations suggesting that atopic patients might be predisposed to more severe and atypical herpes-related illness because their immune response is biased toward a TH2 cytokine profile. Human populations are infected with 8 herpesviruses, including herpes simplex virus HSV1 and HSV2 (also termed HHV1 and HHV2), varicella zoster virus (VZV or HHV3), EBV (HHV4), cytomegalovirus (HHV5), HHV6, HHV7, and Kaposi sarcoma-associated herpesvirus (termed KSV or HHV8). Herpesviruses are highly adapted to lifelong infection of their human hosts and thus can be considered a component of the human "microbiome" in addition to their role in illness triggered by primary infection. HSV1 and HSV2 infection and reactivation can present with more severe cutaneous symptoms termed eczema herpeticum in the atopic population, similar to the more severe eczema vaccinatum, and drug reaction with eosinophilia and systemic symptoms syndrome (DRESS) is associated with reactivation of HSV6 and possibly other herpesviruses in both atopic and nonatopic patients. In this review evidence is reviewed that primary infection with herpesviruses may have an atypical presentation in the atopic patient and conversely that childhood infection might alter the atopic phenotype. Reactivation of latent herpesviruses can directly alter host cytokine profiles through viral expression of cytokine-like proteins, such as IL-10 (EBV) or IL-6 (cytomegalovirus and HHV8), viral encoded and secreted siRNA and microRNAs, and modulation of expression of host transcription pathways, such as nuclear factor κB. Physicians caring for allergic and atopic populations should be aware of common and uncommon presentations of herpes-related disease in atopic patients to provide accurate diagnosis and avoid unnecessary laboratory testing or incorrect diagnosis of other conditions, such as drug allergy or autoimmune disease. Antiviral therapy and vaccines should be administered promptly when indicated clinically. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Evaluation of mixed infection cases with both herpes simplex virus types 1 and 2.

    PubMed

    Kaneko, Hisatoshi; Kawana, Takashi; Ishioka, Ken; Ohno, Shigeaki; Aoki, Koki; Suzutani, Tatsuo

    2008-05-01

    Herpes simplex virus type 1 (HSV-1) is isolated principally from the upper half of the body innervated by the trigeminal ganglia whereas herpes simplex virus type 2 (HSV-2) is generally isolated from the lower half of the body innervated by the sacral ganglia. However, recent reports suggest that HSV-1 and HSV-2 can each infect both the upper and lower half of the body causing a variety of symptoms and there is a possibility that HSV-1 and HSV-2 infections can occur simultaneously with both causing symptoms. HSV type in clinical isolates from 87 patients with genital herpes and 57 with ocular herpes was determined by the polymerase chain reaction (PCR), and six cases of mixed infection with both HSV-1 and HSV-2 were identified. Of the six cases, three were patients with genital herpes and three were ocular herpes patients. Analysis of the copy number of the HSV-1 and HSV-2 genome by a quantitative real time PCR demonstrated that HSV-1 was dominant at a ratio of approximately 100:1 in the ocular infections. In contrast, the HSV-2 genome was present at a 4-40 times higher frequency in isolates from genital herpes patients. There was no obvious difference between the clinical course of mixed infection and those of single HSV-1 or HSV-2 infections. This study indicated that the frequency of mixed infection with both HSV-1 and HSV-2 is comparatively higher than those of previous reports. The genome ratio of HSV-1 and HSV-2 reflects the preference of each HSV type for the target organ.

  2. Frequent Genital HSV-2 Shedding among Women during Labor in Soweto, South Africa

    PubMed Central

    Nyati, Mandisa; Gray, Glenda; De Bruyn, Guy; Selke, Stacy; Magaret, Amalia; Huang, Meei-Li; Velaphi, Sithembiso; Corey, Lawrence; Wald, Anna

    2014-01-01

    Background. Despite high herpes simplex virus type 2 (HSV-2) incidence and prevalence among women in Africa, we are unaware of published neonatal herpes reports. To assess neonatal HSV transmission potential in South Africa, we investigated the frequency of the strongest risk factors: HSV acquisition in late pregnancy and HSV shedding during labor. Methods. Women admitted in early labor to a hospital in Soweto underwent HSV serologic testing and genital swab collection for HSV PCR. HSV-2 seronegative women were assessed for seroconversion 4–6 weeks after delivery. Results. Of 390 women enrolled, 229 (58.7%) were HSV-2 seropositive. Genital HSV-2 was detected in 17.2% of HSV-2 seropositive women, including 26 of 115 HIV-positive and 13 of 110 HIV-negative women (22.6% versus 11.8%; RR, 1.91; 95% CI, 1.04–3.53; P = 0.038), but in none of 161 HSV-2 seronegative women. Among the 91 HSV-2 seronegative women followed after delivery, none seroconverted. Conclusions. HSV-2 reactivation is common among South African women during labor, especially those with HIV coinfection. To determine the epidemiology of neonatal herpes in South Africa and to investigate whether the lack of reported cases is due to alterations in immune control or HSV-2 virulence, studies evaluating acutely ill neonates for HSV and studies of maternal HSV-2 shedding patterns are needed. PMID:24963269

  3. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Cornea and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Vahed, Hawa; Roy, Soumyabrata; Walia, Sager S; Kim, Grace J; Fouladi, Mona A; Yamada, Taikun; Ly, Vincent T; Lam, Cynthia; Lou, Anthony; Nguyen, Vivianna; Boldbaatar, Undariya; Geertsema, Roger; Fraser, Nigel W; BenMohamed, Lbachir

    2018-06-13

    Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in Human Leukocyte Antigen- (HLA-) transgenic rabbit model of ocular herpes (HLA Tg rabbit). Three asymptomatic (ASYMP) peptide epitopes were selected from the HSV-1 membrane glycoprotein C (UL44 400-408 ), the DNA replication binding helicase (UL9 196-204 ), and the tegument protein (UL25 572-580 ), all preferentially recognized by CD8 + T cells from "naturally protected" HSV-1-seropositive healthy ASYMP individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8 + T cell peptide epitopes (UL44 400-408 , UL9 196-204 and UL25 572-580 ), delivered subcutaneously with CpG 2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic AAV8 vector, expressing the T cell-attracting CXCL10 chemokine (pull). The frequency, function of HSV-specific CD8 + T cells induced by the prime/pull vaccine were assessed in peripheral blood, cornea, and trigeminal ganglia (TG). Compared to peptides alone, the peptides/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ + ) CD107 + CD8 + T cells that infiltrated both the cornea and TG. CD8 + T cells mobilization into cornea and TG of prime/pull- vaccinated rabbits was associated with a significant reduction in corneal herpes infection and disease following an ocular HSV-1 challenge (McKrae). These findings draw attention to the novel prime/pull vaccine strategy to mobilize anti-viral CD8 + T cells into tissues protecting them against herpes infection and disease. IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8 + T cells locally in the cornea and TG, the sites of acute and latent herpes infections. Mobilization of antiviral CD8 + T cells into cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpes infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8 + T cells within infected tissues. Copyright © 2018 American Society for Microbiology.

  4. Vector adaptive predictive coder for speech and audio

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)

    1990-01-01

    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.

  5. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing.

    PubMed

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  6. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications

    PubMed Central

    Djogbénou, Luc S.; Berthomieu, Arnaud; Makoundou, Patrick; Baba-Moussa, Lamine S.; Fiston-Lavier, Anna-Sophie; Belkhir, Khalid; Labbé, Pierrick; Weill, Mylène

    2016-01-01

    Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa. PMID:27918584

  7. Identification of Blood Meals from Potential Arbovirus Mosquito Vectors in the Peruvian Amazon Basin

    PubMed Central

    Palermo, Pedro M.; Aguilar, Patricia V.; Sanchez, Juan F.; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G.; Halsey, Eric S.

    2016-01-01

    The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. PMID:27621304

  8. Daily Acyclovir to Decrease Herpes Simplex Virus Type 2 (HSV-2) Transmission from HSV-2/HIV-1 Coinfected Persons: A Randomized Controlled Trial

    PubMed Central

    Mujugira, Andrew; Magaret, Amalia S.; Celum, Connie; Baeten, Jared M.; Lingappa, Jairam R.; Morrow, Rhoda Ashley; Fife, Kenneth H.; Delany-Moretlwe, Sinead; de Bruyn, Guy; Bukusi, Elizabeth A.; Karita, Etienne; Kapiga, Saidi; Corey, Lawrence; Wald, Anna; Celum, Connie; Wald, Anna; Lingappa, Jairam; Baeten, Jared M.; Campbell, Mary; Corey, Lawrence; Coombs, Robert W.; Hughes, James P.; Magaret, Amalia; McElrath, M. Juliana; Morrow, Rhoda; Mullins, James I.; Coetzee, David; Fife, Kenneth; Were, Edwin; Essex, Max; Makhema, Joseph; Katabira, Elly; Ronald, Allan; Kayitenkore, Kayitesi; Karita, Etienne; Bukusi, Elizabeth; Cohen, Craig; Kanweka, William; Allen, Susan; Vwalika, Bellington; Kapiga, Saidi; Manongi, Rachel; Farquhar, Carey; John-Stewart, Grace; Kiarie, James; Inambao, Mubiana; Farm, Orange; Delany-Moretlwe, Sinead; Rees, Helen; de Bruyn, Guy; Gray, Glenda; McIntyre, James; Rwamba Mugo, Nelly

    2013-01-01

    Background. Daily suppressive therapy with valacyclovir reduces risk of sexual transmission of herpes simplex virus type 2 (HSV-2) in HSV-2–serodiscordant heterosexual couples by 48%. Whether suppressive therapy reduces HSV-2 transmission from persons coinfected with HSV-2 and human immunodeficiency virus type 1 (HIV-1) is unknown. Methods. Within a randomized trial of daily acyclovir 400 mg twice daily in African HIV-1 serodiscordant couples, in which the HIV-1–infected partner was HSV-2 seropositive, we identified partnerships in which HIV-1–susceptible partners were HSV-2 seronegative to estimate the effect of acyclovir on risk of HSV-2 transmission. Results. We randomly assigned 911 HSV-2/HIV-1–serodiscordant couples to daily receipt of acyclovir or placebo. We observed 68 HSV-2 seroconversions, 40 and 28 in acyclovir and placebo groups, respectively (HSV-2 incidence, 5.1 cases per 100 person-years; hazard ratio [HR], 1.35 [95% confidence interval, .83–2.20]; P = .22). Among HSV-2–susceptible women, vaginal drying practices (adjusted HR, 44.35; P = .004) and unprotected sex (adjusted HR, 9.91; P = .002) were significant risk factors for HSV-2 acquisition; having more children was protective (adjusted HR, 0.47 per additional child; P = .012). Among HSV-2–susceptible men, only age ≤30 years was associated with increased risk of HSV-2 acquisition (P = .016). Conclusions. Treatment of African HSV-2/HIV-1–infected persons with daily suppressive acyclovir did not decrease risk of HSV-2 transmission to susceptible partners. More-effective prevention strategies to reduce HSV-2 transmission from HIV-1–infected persons are needed. PMID:23901094

  9. [Three cases of herpes simplex virus type 2 myelitis--detection of HSV2 DNA in cerebrospinal fluid].

    PubMed

    Nakajima, H; Furutama, D; Shinoda, K; Ohsawa, N; Nakagawa, T

    1993-07-01

    Polymerase chain reaction (PCR) technique has been successfully used to detect herpes simplex virus (HSV) from patients with HSV encephalitis. By PCR assay capable of differentiating HSV1 and 2, we detected HSV 2 DNA in cerebrospinal fluid (CSF) from patients with HSV myelitis and discussed the clinical findings. Three cases of HSV myelitis (a 49-year-old female, two 38- and 44-year-old males) were studied. All cases were characterized by transverse myelopathy of the thoracic cord, and two patients had recurrence. In all cases HSV1 antibodies were significantly elevated in serum and CSF. We used 500 microliters of CSF for PCR, and prepared one common upstream primer and two type specific downstream primers for HSV1 and HSV2. Using three primers simultaneously different sizes of PCR products were amplified from HSV1 and HSV2 DNA. PCR products subjected to electrophoresis on 1.2% agarose and stained with ethidium bromide. Still more southern blot hybridization was performed to detect DNA by 35S-end-labelled oligonucleotide prove. HSV2 DNA was amplified from CSF in all cases by PCR, and HSV2 DNA was detected at both first and second episode in two relapsing myelitis. No case of relapsing myelitis by HSV2 has been reported. The PCR technique is useful for diagnosis of HSV1 and 2 myelitis, and its would suggest that some patients of idiopathic myelopathy could be due to HSV2 myelitis and HSV2 myelitis may not be rare.

  10. [Distribution of herpes simplex virus type 1 and 2 genomes in the human spinal ganglia].

    PubMed

    Obara, Y

    1994-09-01

    Herpes simplex virus (HSV) is well known for its propensity to cause recurrent oral or genital mucosal infections in humans. HSV-1 is involved primarily in oral lesions, whereas HSV-2 is more frequently involved in genital lesions. Based on this, it is thought that HSV-1 may produce latent infections in trigeminal ganglia, and HSV-2 in the sacral ganglia. However the distribution pattern of latent HSV-1 and HSV-2 infections in spinal ganglia remains unknown. Using the polymerase chain reaction we detected latent herpes HSV-1 and HSV-2 in human spinal ganglia obtained from autopsy material. A pair of primers which were specific for a part of the HSV-1 and HSV-2 DNA polymerase domain were employed. HSV-1 and HSV-2 DNAs were detected in 11 of 40 (28%) and 15 of 40 (38%) cervical ganglia, respectively, 52 of 103 (50%) and 47 of 103 (46%) thoracic ganglia, 16 of 53 (30%) and 17 of 53 (32%) lumbar ganglia, and 3 of 20 (15%) and 3 of 20 (15%) sacral ganglia. These findings suggest that latent HSV-1 and HSV-2 infections have a widespread distribution from the cervical ganglia to sacral ganglia. Importantly this study demonstrated latent HSV-1 infection of both the lumbar and sacral ganglia for the first time.

  11. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2)more » replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.« less

  12. Efficacy of the Herpes Simplex Virus 2 (HSV-2) Glycoprotein D/AS04 Vaccine against Genital HSV-2 and HSV-1 Infection and Disease in the Cotton Rat Sigmodon hispidus Model

    PubMed Central

    McKay, Jamall; Mbaye, Aissatou; Sanford-Crane, Hannah; Blanco, Jorge C. G.; Huber, Ashley; Herold, Betsy C.

    2015-01-01

    ABSTRACT Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. IMPORTANCE In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the recent failure of GSK HSV-2 vaccine Simplirix (gD/AS04) to protect humans against HSV-2 and the surprising finding that the vaccine protected against HSV-1 genital herpes instead. In this study, we report that gD/AS04 has higher efficacy against HSV-1 compared to HSV-2 genital herpes in the novel DMPA-synchronized cotton rat model of HSV-1 and HSV-2 infection. The findings help explain the results of the Simplirix trial. PMID:26178984

  13. Efficacy of the Herpes Simplex Virus 2 (HSV-2) Glycoprotein D/AS04 Vaccine against Genital HSV-2 and HSV-1 Infection and Disease in the Cotton Rat Sigmodon hispidus Model.

    PubMed

    Boukhvalova, Marina; McKay, Jamall; Mbaye, Aissatou; Sanford-Crane, Hannah; Blanco, Jorge C G; Huber, Ashley; Herold, Betsy C

    2015-10-01

    Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the recent failure of GSK HSV-2 vaccine Simplirix (gD/AS04) to protect humans against HSV-2 and the surprising finding that the vaccine protected against HSV-1 genital herpes instead. In this study, we report that gD/AS04 has higher efficacy against HSV-1 compared to HSV-2 genital herpes in the novel DMPA-synchronized cotton rat model of HSV-1 and HSV-2 infection. The findings help explain the results of the Simplirix trial. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294

  15. Type specificity of complement-fixing antibody against herpes simplex virus type 2 AG-4 early antigen in patients with asymptomatic infection.

    PubMed Central

    Sherlock, C H; Ashley, R L; Shurtleff, M L; Mack, K D; Corey, L

    1986-01-01

    We evaluated the type specificity of complement-fixing (CF) antibody against the AG-4 early antigen of herpes simplex virus (HSV) type 2 (HSV-2) by comparing a commercial AG-4 CF kit (Simplex-2; Gene Link Australia, Inc., Princeton, N.J.) with quantal microneutralization (MN) and absorption-Western blotting in testing sera from patients with and without a history of genital herpes. Sera characterized as HSV type 1 (HSV-1) or HSV-2 positive or negative by MN were selected and tested by CF, and those with discordant results were further analyzed for specific antibodies by absorption with HSV-1 or HSV-2 antigen and Western blotting with heterologous HSV proteins. A total of 34 of 42 (81%) sera HSV-2 positive by MN, 19 of 43 (44%) sera HSV-1 positive by MN, and 0 of 19 sera negative by MN were positive by CF. Absorption-Western blotting showed that 12 of 18 (67%) sera HSV-1 positive by MN but positive by CF had no HSV-2-specific antibody and that all 7 sera HSV-2 positive by MN but negative by CF had HSV-2-specific antibody. When MN and absorption-Western blotting data were combined to analyze patients with no history of genital herpes, 7 of 19 (37%) with no HSV-2-specific antibody were positive by CF, and 7 of 27 (26%) with HSV-2-specific antibody were negative by CF. The positive and negative predictive values for the CF test were 78 and 75%, respectively, in this group. The presence of antibody to the HSV AG-4 antigen does not discriminate sufficiently between HSV-1- and HSV-2-infected patients to be of value in predicting HSV-2 infection in the absence of symptomatic disease. Images PMID:3023439

  16. Application of a reverse dot blot, DNA-DNA hydridization method to quantify host-feeding tendencies of two sibling species in the Anopheles gambiae complex

    PubMed Central

    Fritz, Megan L; Miller, James R; Bayoh, M Nabie; Vulule, John M; Landgraf, Jeffrey R; Walker, Edward D

    2012-01-01

    A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used for identification of Anopheles gambiae s.s. and An. arabiensis hosts. Of 299 blood fed and half gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; 69.5% were An. arabiensis, and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable to conventional PCR followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome B gene. Of the 174 amplicon-producing samples used for comparison of these two methods, 147 were identifiable by direct sequencing, and 139 of these same by RDBA. An. arabiensis blood meals were mostly (>90%) bovine in origin, whereas An. gambiae s.s. fed upon humans > 90% of the time. RDBA detected that 2 of 112 An. arabiensis had blood from more than one host species, whereas PCR and direct sequencing did not. Recent insecticide-treated bednet (ITN) use in Kisian has likely caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. RDBA provides an opportunity to study changes in host-feeding by members of the An. gambiae complex as a response to the broadening distribution of vector control measures targeting host-selection behaviors. PMID:24188164

  17. Anti-CeHV1 antibodies of two cynomolgus macaques cross-react with HSV2 but not HSV1 antigens in ELISA.

    PubMed

    Coutrot, Edwin; Blancher-Sardou, Marie; Blancher, Antoine

    2008-02-01

    The aim of the study was to compare the cross-reactivity of macaque anti-CeHV1 antibodies with type 1 and type 2 human herpes simplex viruses (HSV1 and HSV2). We studied the serum of 344 animals which had been tested either positive (n = 39) or negative (n = 305) for the presence of CeHV1 antibodies by expert laboratories. Macaque serums were studied by means of two ELISA: one based on HSV1 antigen-coated wells, the other on polystyrene beads coated with HSV1 and HSV2 antigens in approximately equal proportions. In the serum of two animals originating from Vietnam, we found anti-CeHV1 antibodies cross-reacting with HSV2 but not with HSV1 antigens. For the serum with the highest titer, inhibition by soluble antigens confirmed the high affinity of the antibodies for HSV2 antigens. Tests using HSV1 and HSV2 in a combined way are better suited to macaque screening than tests using only HSV1 antigens.

  18. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  19. Analysis of the Microbial Diversity in the Fecal Material of Giraffes.

    PubMed

    Schmidt, Jessica M; Henken, Susan; Dowd, Scot E; McLaughlin, Richard William

    2018-03-01

    Using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing, the microbiota of the fecal material of seven giraffes living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL was investigated. In all samples, the most predominant bacterial phylum was the Firmicutes followed by Bacteroidetes. The most predominant fungi were members of the phylum Ascomycota followed by Neocallimastigomycota in five of seven samples. The reverse was true in the other two samples.

  20. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012

    PubMed Central

    Looker, Katharine J.; Magaret, Amalia S.; May, Margaret T.; Turner, Katherine M. E.; Vickerman, Peter; Gottlieb, Sami L.; Newman, Lori M.

    2015-01-01

    Background Herpes simplex virus type 1 (HSV-1) commonly causes orolabial ulcers, while HSV-2 commonly causes genital ulcers. However, HSV-1 is an increasing cause of genital infection. Previously, the World Health Organization estimated the global burden of HSV-2 for 2003 and for 2012. The global burden of HSV-1 has not been estimated. Methods We fitted a constant-incidence model to pooled HSV-1 prevalence data from literature searches for 6 World Health Organization regions and used 2012 population data to derive global numbers of 0-49-year-olds with prevalent and incident HSV-1 infection. To estimate genital HSV-1, we applied values for the proportion of incident infections that are genital. Findings We estimated that 3709 million people (range: 3440–3878 million) aged 0–49 years had prevalent HSV-1 infection in 2012 (67%), with highest prevalence in Africa, South-East Asia and Western Pacific. Assuming 50% of incident infections among 15-49-year-olds are genital, an estimated 140 million (range: 67–212 million) people had prevalent genital HSV-1 infection, most of which occurred in the Americas, Europe and Western Pacific. Conclusions The global burden of HSV-1 infection is huge. Genital HSV-1 burden can be substantial but varies widely by region. Future control efforts, including development of HSV vaccines, should consider the epidemiology of HSV-1 in addition to HSV-2, and especially the relative contribution of HSV-1 to genital infection. PMID:26510007

  1. A high resolution melting (HRM) technology-based assay for cost-efficient clinical detection and genotyping of herpes simplex virus (HSV)-1 and HSV-2.

    PubMed

    Lieveld, M; Carregosa, A; Benoy, I; Redzic, N; Berth, M; Vanden Broeck, D

    2017-10-01

    Genital herpes can be caused by two very similar viruses, herpes simplex virus (HSV)-1 or HSV-2. These two HSV types cannot be distinguished clinically, but genotyping is recommended in the first-episodes of genital herpes to guide counselling and management. Quantitative polymerase chain reaction (qPCR) is the preferred diagnostic method for HSV typing. However, commercial qPCR methods use expensive fluorescent labeled probes for detection. Furthermore, most low-cost methods are not able to differentiate between HSV-1 and -2. The aim of this study was to develop a high resolution melting (HRM) technology-based assay for sensitive HSV-1 and HSV-2 detection and genotyping. Using a panel of 46 clinical specimens, the performance of the HRM assay was compared to two commercial HSV tests: the HRM assay detected HSV in all 23 positive samples, with no false positive results (100% concordance with HSV I/II Real-TM assay). Additionally, the HRM assay correctly genotyped both HSV types in a subset of these clinical samples, as determined by the Realstar HSV PCR Kit. The HSV HRM assay provides a cost-effective alternative method to conventional more expensive assays and can be used in routine clinical specimens, in cases where it is particularly necessary to detect and distinguish HSV-1 from -2. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.

    PubMed

    Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P; Krause, Philip R

    2015-05-01

    In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Characterization of Herpes Simplex Virus 2 Primary MicroRNA Transcript Regulation

    PubMed Central

    Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P.

    2015-01-01

    ABSTRACT In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. IMPORTANCE The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5′ ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection. PMID:25673716

  4. Structural and antigenic identification of the ORF12 protein (alpha TIF) of equine herpesvirus 1.

    PubMed

    Lewis, J B; Thompson, Y G; Feng, X; Holden, V R; O'Callaghan, D; Caughman, G B

    1997-04-14

    The equine herpesvirus 1 (EHV-1) homolog of the herpes simplex virus type 1 (HSV-1) tegument phosphoprotein, alpha TIF (Vmw65; VP16), was identified previously as the product of open reading frame 12 (ORF12) and shown to transactivate immediate early (IE) gene promoters. However, a specific virion protein corresponding to the ORF12 product has not been identified definitively. In the present study the ORF12 protein, designated ETIF, was identified as a 60-kDa virion component on the basis of protein fingerprint analyses in which the limited proteolysis profiles of the major 60-kDa in vitro transcription/ translation product of an ORF12 expression vector (pT7-12) were compared to those of purified virion proteins of similar size. ETIF was localized to the viral tegument in Western blot assays of EHV-1 virions and subvirion fractions using polyclonal antiserum and monoclonal antibodies generated against a glutathione-S-transferase-ETIF fusion protein. Northern and Western blot analyses of EHV-1-infected cell lysates prepared under various metabolic blocks indicated that ORF12 is expressed as a late gene, and cross reaction of polyclonal anti-GST-ETIF with a 63.5-kDa HSV-1 protein species suggested that ETIF and HSV-1 alpha TIF are antigenically related. Last, DNA band shift assays used to assess ETIF-specific complex formation indicated that ETIF participates in an infected cell protein complex with the EHV-1 IE promoter TAATGARAT motif.

  5. Red-shifted fluorescent proteins mPlum and mRaspberry and polynucleotides encoding the same

    DOEpatents

    Tsien, Roger Y [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-07-01

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  6. DNA encoding for plant digalactosyldiacylglycerol galactosyltransferase and methods of use

    DOEpatents

    Benning, Christoph; Doermann, Peter

    2003-11-04

    The cDNA encoding digalactosyldiacylglycerol galactosyltransferase (DGD1) is provided. The deduced amino acid sequence is also provided. Methods of making and using DGD1 to screen for new herbicides and alter a plant's leaf lipid composition are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors.

  7. Vector assembly of colloids on monolayer substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  8. Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains.

    PubMed

    Priengprom, Thongkoon; Ekalaksananan, Tipaya; Kongyingyoes, Bunkerd; Suebsasana, Supawadee; Aromdee, Chantana; Pientong, Chamsai

    2015-03-11

    An andrographolide analogue, 3, 19-isopropylideneandrographolide (IPAD), exerts an inhibitory effect on replication of wild-type herpes simplex virus serotype 1 (HSV-1). In this study, we examined the anti-viral activity of IPAD on HSV wild types (HSV-1 strain KOS and HSV-2 clinical isolate) and HSV-1 drug-resistant strains (DRs). Synergistic effects of IPAD with acyclovir (ACV) were also evaluated. MTT and cytopathic effect (CPE) reduction assays were performed to determine cytotoxicity and anti-viral activities, respectively. A combination assay was used to determine synergistic effects of IPAD and ACV. Presence of viral DNA and protein in experimental cells was investigated using the polymerase chain reaction and western blotting, respectively. A non-cytotoxic concentration of IPAD (20.50 μM) completely inhibited CPE formation induced by HSV wild types and HSV-1 DRs after viral entry into the cells. The anti-HSV activities included inhibition of viral DNA and protein synthesis. The minimum inhibitory concentrations of ACV for HSV wild types and HSV-1 DRs were 20.20 and 2,220.00 μM, respectively. Combination of ACV with IPAD showed synergistic effects in inhibition of CPE formation, viral DNA and protein synthesis by HSV wild types as well as HSV-1 DRs. For the synergistic effects on HSV wild types and HSV-1 DRs, the effective concentrations of ACV were reduced. These results showed the inhibitory potential of IPAD on HSV wild types and HSV-1 DRs and suggested that IPAD could be used in combination with ACV for treatment of HSV-1 DRs infections.

  9. Comparison of the Simplexa HSV1 & 2 Direct kit and laboratory-developed real-time PCR assays for herpes simplex virus detection.

    PubMed

    Kuypers, Jane; Boughton, Gregory; Chung, Jina; Hussey, Lindsay; Huang, Meei-Li; Cook, Linda; Jerome, Keith R

    2015-01-01

    Rapid detection and differentiation of herpes simplex viruses (HSV) is important for patient management and treatment, especially in HSV meningoencephalitis. Results of Simplexa HSV1 & 2 Direct kit (Focus Diagnostics), an FDA-cleared sample-to-result method providing results in ∼ 75 min, were compared to those of laboratory-developed real-time PCR assays (LDT) for detection of HSV1 and HSV2. Samples tested included 168 cerebral spinal fluid (CSF) collected prospectively and 150 tested retrospectively: 81 from clinical testing and 69 from subjects in a neonatal herpes study; and 53 plasma and sera. Each sample was tested by both methods on the same day. Three of 318 CSF had invalid Simplexa Direct results and negative LDT results. Three neonatal samples with low HSV viral loads by LDT could not be typed; two were HSV2 positive and one was negative by Simplexa Direct. Of 312 CSF with valid, type-specific results, HSV1 was detected in 16 by LDT and in 17 by Simplexa Direct; HSV2 was detected in 48 by LDT and in 49 by Simplexa Direct. Concordance rates were 98.4% (κ 0.84) and 97.1% (κ 0.89) for HSV1 and HSV2, respectively. Positive percent agreements were 87.5% for HSV1 and 91.7% for HSV2. Two and four CSF were positive only by LDT and three and five were positive only by Simplexa Direct for HSV1 and HSV2, respectively. Simplexa HSV1 & 2 assay performed well compared to an established LDT. The faster turn-around-time compared to LDT will allow for more rapid antiviral treatment and better patient management. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    PubMed

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  11. Virus-Specific Immune Memory at Peripheral Sites of Herpes Simplex Virus Type 2 (HSV-2) Infection in Guinea Pigs

    PubMed Central

    Xia, Jingya; Veselenak, Ronald L.; Gorder, Summer R.; Bourne, Nigel; Milligan, Gregg N.

    2014-01-01

    Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation. PMID:25485971

  12. Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression

    PubMed Central

    Kramer, Martha F.; Cook, W. James; Roth, Frederick P.; Zhu, Jia; Holman, Holly; Knipe, David M.; Coen, Donald M.

    2003-01-01

    The persistence of herpes simplex virus (HSV) and the diseases that it causes in the human population can be attributed to the maintenance of a latent infection within neurons in sensory ganglia. Little is known about the effects of latent infection on the host neuron. We have addressed the question of whether latent HSV infection affects neuronal gene expression by using microarray transcript profiling of host gene expression in ganglia from latently infected versus mock-infected mouse trigeminal ganglia. 33P-labeled cDNA probes from pooled ganglia harvested at 30 days postinfection or post-mock infection were hybridized to nylon arrays printed with 2,556 mouse genes. Signal intensities were acquired by phosphorimager. Mean intensities (n = 4 replicates in each of three independent experiments) of signals from mock-infected versus latently infected ganglia were compared by using a variant of Student's t test. We identified significant changes in the expression of mouse neuronal genes, including several with roles in gene expression, such as the Clk2 gene, and neurotransmission, such as genes encoding potassium voltage-gated channels and a muscarinic acetylcholine receptor. We confirmed the neuronal localization of some of these transcripts by using in situ hybridization. To validate the microarray results, we performed real-time reverse transcriptase PCR analyses for a selection of the genes. These studies demonstrate that latent HSV infection can alter neuronal gene expression and might provide a new mechanism for how persistent viral infection can cause chronic disease. PMID:12915567

  13. Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria.

    PubMed

    Oram, Mark; Woolston, Joelle E; Jacobson, Andrew D; Holmes, Randall K; Oram, Diana M

    2007-04-15

    In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.

  14. The Quantity of Latent Viral DNA Correlates with the Relative Rates at Which Herpes Simplex Virus Types 1 and 2 Cause Recurrent Genital Herpes Outbreaks

    PubMed Central

    Lekstrom-Himes, Julie A.; Pesnicak, Lesley; Straus, Stephen E.

    1998-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) have evolved specific anatomic tropisms and site-dependent rates of reactivation. To determine whether reactivation rates depend on distinct abilities of HSV-1 and -2 to establish latency and to express latency-associated transcripts (LATs), virulent strains of each virus were studied in the guinea pig genital model. Following infection with equivalent titers of virus, the quantities of latent HSV-2 genomes and LATs were higher in lumbosacral ganglia, and HSV-2 infections recurred more frequently and lasted longer than HSV-1 infections. In contrast, if the inoculum of HSV-1 was 10 times that of HSV-2, the quantity of HSV-1 DNA and LATs increased correspondingly and HSV-1 infections were as likely to recur as those with HSV-2. The quantity of latent virus DNA correlates with and may be a major determinant of the site-specific patterns and rates of reactivation of HSV-1 and -2. PMID:9525595

  15. Herpes simplex virus type 1 and type 2 in the Netherlands: seroprevalence, risk factors and changes during a 12-year period.

    PubMed

    Woestenberg, Petra J; Tjhie, Jeroen H T; de Melker, Hester E; van der Klis, Fiona R M; van Bergen, Jan E A M; van der Sande, Marianne A B; van Benthem, Birgit H B

    2016-08-02

    Genital herpes results in considerable morbidity, including risk of neonatal herpes, and is increasingly being caused by Herpes Simplex Virus (HSV) type 1. Possibly children are less often HSV-1 infected, leaving them susceptible until sexual debut. We assessed changes in the Dutch HSV-1 and HSV-2 seroprevalence over time and determinants associated with HSV seropositivity. We used data from two population-based seroepidemiological studies conducted in 1995-6 and 2006-7 with a similar study design. Serum samples of 6 months to 44-year-old participants were tested for type-specific HSV antibodies using HerpesSelect® with a cut-off level of >1.10 for seropositivity. Age and sex-specific HSV-1 and HSV-2 seroprevalence was weighted for the Dutch population. Logistic regression was performed to investigate determinants associated with HSV seropositivity. Overall, weighted HSV-1 seroprevalence was significantly lower in 2006-7 [42.7 % 95 % confidence interval (CI) 39.9-45.4] than in 1995-6 (47.7 % 95 % CI 44.8-50.7), especially among 10- to 14-year-olds. Overall, weighted HSV-2 seroprevalence remained stable: 6.8 % in 1995-6 and 6.0 % in 2006-7. Adults who ever had sexual intercourse were more often seropositive for HSV-1 [adjusted Odds Ratio (aOR) 1.69 95 % CI 1.33-2.16] and HSV-2 (aOR 2.35 95 % CI 1.23-4.52). Age at sexual debut was the only sexual risk determinant associated with HSV-1 seropositivity. Because of the lower HSV-1 seroprevalence in 2006-7 compared to 1995-6, more adults are susceptible to genital HSV-1, including women of reproductive age. Given the higher risk of neonatal herpes when HSV is acquired during pregnancy, prevention and control measures during pregnancy also targeting HSV-1, are important.

  16. Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.

    PubMed

    Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R

    2009-10-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.

  17. Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.

    2009-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003

  18. Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery.

    PubMed

    Henry, Kevin A

    2018-01-01

    Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.

  19. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance.

    PubMed

    Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; Ep Mundhofir, Farmaditya; Mh Faradz, Sultana; Hisatome, Ichiro

    2017-03-01

    High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100-400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1 .

  20. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance

    PubMed Central

    Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; EP Mundhofir, Farmaditya; MH Faradz, Sultana; Hisatome, Ichiro

    2017-01-01

    Background High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Methods Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Results Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100–400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. Conclusion In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1. PMID:28331418

  1. Amplification of Herpes Simplex Virus Types 1 and 2 and Human Herpes Virus Type 5 Polymerase Gene Segment From Formalin-Fixed Brain Tissue From Alzheimer’s Disease Patients

    DTIC Science & Technology

    2005-08-01

    The neuronal nitric oxide synthase (NOS1) gene target was amplified and sequenced in all samples tested, in addition to HSV1 , HSV2 , or Human Herpes...Triphosphate DNA Deoxyribonucleic acid GAPDH Glyceraldehyde-3 -phosphate dehydrogenase HSV Herpes Simplex Virus HSV1 Herpes Simplex Virus Type 1 HSV2 Herpes... HSV2 ) share 50-70 % homology. HSV1 is primarily associated with oral and ocular lesions, while HSV2 is primarily associated with genital and anal lesions

  2. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  3. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  4. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron.

    PubMed

    Gäken, J; Jiang, J; Daniel, K; van Berkel, E; Hughes, C; Kuiper, M; Darling, D; Tavassoli, M; Galea-Lauri, J; Ford, K; Kemeny, M; Russell, S; Farzaneh, F

    2000-12-01

    Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.

  5. Decreasing seroprevalence of herpes simplex virus type 1 and type 2 in Germany leaves many people susceptible to genital infection: time to raise awareness and enhance control.

    PubMed

    Korr, Gerit; Thamm, Michael; Czogiel, Irina; Poethko-Mueller, Christina; Bremer, Viviane; Jansen, Klaus

    2017-07-06

    Herpes simplex infections (HSV1/2) are characterized by recurrent symptoms, a risk of neonatal herpes, and the facilitation of HIV transmission. In Germany, HSV1/2 infections are not notifiable and data are scarce. A previous study found higher HSV1/2 seroprevalences in women in East Germany than in women in West Germany. We assessed changes in the HSV1/2 seroprevalences over time and investigated determinants associated with HSV1/2 seropositivity to guide prevention and control. The study was based on the German Health Interview and Examination Survey for Adults (DEGS; 2008-2011) and the German National Health Interview and Examination Survey (GNHIES; 1997-1999). We tested serum samples from DEGS participants for HSV1 and HSV2 immunoglobulin G. We used Pearson's χ 2 test to compare the HSV1/HSV2 seroprevalences in terms of sex, age, and region of residence (East/West Germany) and investigated potential determinants by calculating prevalence ratios (PR) with log-binomial regression. All statistical analyses included survey weights. In total, 6627 DEGS participants were tested for HSV1, and 5013 were also tested for HSV2. Overall, HSV1 seroprevalence decreased significantly from 1997-1999 (82.1%; 95%CI 80.6-83.6) to 2008-2011 (78.4%; 95%CI 77.8-79.7). In the same period, overall HSV2 seroprevalence decreased significantly from 13.3% (95%CI 11.9-14.9) to 9.6% (95%CI 8.6-10.8), notably in 18-24-year-old men (10.4 to 0%) in East Germany. Women were more likely than men to be seropositive for HSV1 (PR 1.1) or HSV2 (PR 1.6). A lower level of education, smoking, and not speaking German were associated with HSV1 in both sexes. Women of older age, who smoked, or had a history of abortion and men of older age or who had not attended a nursery school during childhood were more often seropositive for HSV2. The reduced seroprevalences of HSV1 and HSV2 leave more people susceptible to genital HSV1/2 infections. Practitioners should be aware of HSV infection as a differential diagnosis for genital ulcers. We recommend educational interventions to raise awareness of the sexual transmission route of HSV1/2, possible consequences, and prevention. Interventions should especially target pregnant women, their partners, and people at risk of HIV.

  6. Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1

    PubMed Central

    Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun

    2015-01-01

    ABSTRACT Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. IMPORTANCE This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. PMID:26559832

  7. Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1.

    PubMed

    Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun; Zheng, Chunfu; He, Sudan

    2016-01-15

    Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. T-cell Responses to HSV-1 in Persons Who Have Survived Childhood Herpes Simplex Encephalitis.

    PubMed

    Ott, Mariliis; Jing, Lichen; Lorenzo, Lazaro; Casanova, Jean-Laurent; Zhang, Shen-Ying; Koelle, David M

    2017-08-01

    Herpes simplex encephalitis (HSE) after primary herpes simplex virus (HSV)-1 infection can occur in children due to inborn errors of cell-intrinsic immunity in the central nervous system. Paradoxically, symptomatic mucocutaneous HSV-1 recurrences are rare survivors of childhood HSE. T-cell-acquired immunity is thought to be involved in control of recurrent mucocutaneous HSV infection. We thus tested HSV-1-specific immunity in HSE survivors. We obtained serum and peripheral blood mononuclear cells (PBMCs) from participants a median of 13.5 years after HSE. HSV-1 and HSV-2 IgG was detected by type-specific immunoblot. PBMCs from subjects passing quality control criteria were tested using enzyme-linked immunospot assay for CD4 interferon-γ responses with an HSV-1 lysate and for CD8 responses using pooled synthetic HSV-1 peptide CD8 T-cell epitopes. Healthy adult PBMCs were used to standardize assays and as comparators. All participants were HSV-1 seropositive. Most (23/24) HSE survivors had human leukocyte antigen class I types matching the human leukocyte antigen restriction of the pooled peptides. We detected HSV-specific CD8 T-cell responses in 14 of 24 (58%) HSE survivors and in 9 of 9 healthy HSV-1 seropositive adults. HSV-specific CD4 T-cell responses were present in all 5 HSE subjects tested and in 8 of 9 healthy adults. Response magnitudes were overlapping between subject groups. The defects in cell-intrinsic immunity leading to failure to control primary central nervous system HSV-1 infection do not preclude the acquisition of specific immunity or the control of recurrent mucocutaneous HSV infections. The rarity and lack of severe or recurrent mucocutaneous HSV infection in survivors of childhood HSE corresponds with intact adaptive T-cell immunity.

  9. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development.

    PubMed

    Schiffer, Joshua T; Gottlieb, Sami L

    2017-09-25

    Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recurrent herpetic keratitis: failure to detect herpes simplex virus infection using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test.

    PubMed

    Kumano, Y; Yamamoto, M; Inomata, H; Sakuma, S; Hidaka, Y; Minagawa, H; Mori, R

    1990-01-01

    A 35-year-old man had developed recurrent herpetic keratitis characterized by dendritic keratitis at intervals of a year. We were able to culture cytopathic agents repeatedly from his lesions by inoculating Vero cells. The cultures yielded definitive evidence of a virus that caused a cytopathic effect within 3 days. However, these virus strains could not be identified as herpes simplex virus (HSV) in immunofluorescence assays using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test. Rather they were identified as strains of HSV type 1 (HSV-1) on the basis of plaque morphology, neutralization tests, electron-microscopic examination and DNA restriction endonuclease analysis. Our results allow us to assume the existence of HSV-1 strains isolated clinically that are negative to analysis using the Syva Micro-Trak HSV1/HSV2 direct specimen identification/typing test.

  11. Distribution of herpes simplex virus types 1 and 2 genomes in human spinal ganglia studied by PCR and in situ hybridization.

    PubMed

    Obara, Y; Furuta, Y; Takasu, T; Suzuki, S; Suzuki, H; Matsukawa, S; Fujioka, Y; Takahashi, H; Kurata, T; Nagashima, K

    1997-06-01

    Clinical data indicate that the recurring herpes simplex virus (HSV) from oro-labial lesions is HSV subtype 1 and that the virus from genital lesions is HSV-2. This suggests that HSV-1 and HSV-2 reside in latent forms in the trigeminal ganglia and sacral ganglia, respectively. However, the distribution of latent HSV-1 and HSV-2 infections in human spinal ganglia has not been fully examined. This report concerns the application of polymerase chain reaction (PCR) and in situ hybridization (ISH) to such a study. By using PCR and employing the respective primers, HSV-1 and HSV-2 DNAs were detected in 207 of 524 samples from 262 spinal ganglia (from the cervical to the sacral ganglia) examined on both sides. The percentages of HSV-1 and HSV-2 detected in a given set of ganglia were similar, indicating an absence of site preference. By ISH, few but positive hybridization signals were detected evenly in sacral ganglia sections. The data suggest that regional specificity of recurrent HSV infections is not due to regional distribution of latent virus, but that local host factors may be important for recurrences.

  12. Stress Hormones Epinephrine and Corticosterone Selectively Modulate Herpes Simplex Virus 1 (HSV-1) and HSV-2 Productive Infections in Adult Sympathetic, but Not Sensory, Neurons

    PubMed Central

    Ives, Angela M.

    2017-01-01

    ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that become infected by HSV-1 and HSV-2 express stress hormone receptors and are responsive to hormone fluctuations. Our results show that autonomic neurons are more responsive to epinephrine and corticosterone than are sensory neurons, demonstrating that the autonomic nervous system plays a substantial role in HSV pathogenesis. Furthermore, these results suggest that stress responses have the potential to differentially impact HSV-1 and HSV-2 so as to produce divergent outcomes of infection. PMID:28404850

  13. False-negative type-specific glycoprotein G antibody responses in STI clinic patients with recurrent HSV-1 or HSV-2 DNA positive genital herpes, The Netherlands.

    PubMed

    van Rooijen, Martijn S; Roest, Wim; Hansen, Gino; Kwa, David; de Vries, Henry J C

    2016-06-01

    Herpes simplex virus (HSV) type-discriminating antibody tests (glycoprotein G (gG) directed) are used to identify naïve persons and differentiate acute infections from recurrences. We studied test characteristics of three commercially available antibody tests in patients with recurrent (established by viral PCR tests) herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2) genital herpes episodes. Serum samples (at minimum 3 months after t=0) were examined for the presence of gG-1-specific or gG-2-specific antibodies using the HerpeSelect 1 and 2 Immunoblot IgG, the HerpeSelect 1 and 2 enzyme linked immunoassays IgG and the LIAISON HSV-1 and HSV-2 IgG indirect chemiluminescence immunoassays. The immunoblot was HSV-1 positive in 70.6% (95% CI 44.0% to 89.7%), the LIAISON in 88.2% (95% CI 63.5% to 98.5%) and the ELISA in 82.4% (95% CI 56.6% to 96.2%) of the 17 patients with a recurrent HSV-1 episode. From 33 patients with a recurrent HSV-2 episode, the immunoblot was HSV-2 positive in 84.8% (95% CI 68.1% to 94.9%), the LIAISON in 69.7% (95% CI 51.3% to 84.4%) and the ELISA in 84.8% (95% CI 68.1% to 94.9%). Among 15/17 (88.2%; 95% CI 63.5% to 98.5%) patients with HSV-1 and 30/33 (90.1%; 95% CI 75.7% to 98.1%) patients with HSV-2, HSV-1 or HSV-2 antibodies, respectively, were detected in at least one of the three antibody tests. Commercial type-specific gG HSV-1 or HSV-2 antibody assays were false negative in 12-30% of patients with recurrent HSV-1 or HSV-2 DNA positive genital lesions. The clinical and epidemiological use of type-specific HSV serology can be hampered by false-negative results, especially if based on a single test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Development of a Glycoprotein D-Expressing Dominant-Negative and Replication-Defective Herpes Simplex Virus 2 (HSV-2) Recombinant Viral Vaccine against HSV-2 Infection in Mice ▿

    PubMed Central

    Akhrameyeva, Natalie V.; Zhang, Pengwei; Sugiyama, Nao; Behar, Samuel M.; Yao, Feng

    2011-01-01

    Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4+ and CD8+ T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease. PMID:21389121

  15. Immunogenicity, Protective Efficacy, and Non-Replicative Status of the HSV-2 Vaccine Candidate HSV529 in Mice and Guinea Pigs

    PubMed Central

    Bernard, Marie-Clotilde; Barban, Véronique; Pradezynski, Fabrine; de Montfort, Aymeric; Ryall, Robert; Caillet, Catherine; Londono-Hayes, Patricia

    2015-01-01

    HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine. PMID:25837802

  16. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa.

    PubMed

    Tata, Sunitha; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Corey, Lawrence; Wald, Anna

    2010-02-15

    Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; P<.001). HSV-2 reactivation occurs frequently at widely spaced regions throughout the genital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.

  17. Diagnosis of genital herpes simplex virus infection in the clinical laboratory

    PubMed Central

    2014-01-01

    Since the type of herpes simplex virus (HSV) infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is always recommended. Although PCR has been the diagnostic standard method for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, could replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, antigen detection—an immunofluorescence test or enzyme immunoassay from samples from symptomatic patients--could be employed, but HSV type determination is of importance. Type-specific serology based on glycoprotein G should be used for detecting asymptomatic individuals but widespread screening for HSV antibodies is not recommended. In conclusion, rapid and accurate laboratory diagnosis of HSV is now become a necessity, given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy. PMID:24885431

  18. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    PubMed Central

    Kazuki, Y; Hoshiya, H; Takiguchi, M; Abe, S; Iida, Y; Osaki, M; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; Kajitani, N; Yoshino, T; Kazuki, K; Ishihara, C; Takehara, S; Tsuji, S; Ejima, F; Toyoda, A; Sakaki, Y; Larionov, V; Kouprina, N; Oshimura, M

    2011-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis. PMID:21085194

  19. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    PubMed

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  20. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  1. Cytoplasmically Retargeted HSV1-tk/GFP Reporter Gene Mutants for Optimization of Noninvasive Molecular-Genetic Imaging

    PubMed Central

    Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani

    2003-01-01

    Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307

  2. Evaluation of an enzyme immunoassay system for measuring herpes simplex virus (HSV) type 1-specific and HSV type 2-specific IgG antibodies.

    PubMed

    Prince, H E; Ernst, C E; Hogrefe, W R

    2000-01-01

    MRL Diagnostics has developed a dual enzyme immunoassay (EIA) system that employs the recombinant Herpes Simplex Virus (HSV) type-specific glycoproteins G1 (HSV1) and G2 (HSV2) to detect HSV type-specific IgG antibodies. This system was evaluated using 155 consecutive sera previously tested in a conventional dual EIA system (Zeus) that employs multiple HSV1 and HSV2 proteins to detect type-common as well as type-specific antibodies. Sera were also analyzed by Western blot to determine the true HSV type-specific IgG reactivity pattern. Of 110 sera giving concordant reactivity patterns in the MRL and Zeus EIA systems, 108 (98%) also displayed concordant Western blot patterns; two sera gave false positive HSV2 reactivity in both EIA systems. Of 45 sera giving discordant MRL and Zeus EIA reactivity patterns, 41 (91%) displayed a Western blot reactivity pattern that matched the MRL reactivity pattern. Both the HSV1 IgG component and the HSV2 IgG component of the MRL EIA system were 100% sensitive and > 95% specific. In contrast, the Zeus HSV1 IgG EIA was 98% sensitive and 79% specific, and the Zeus HSV2 IgG EIA was 85% sensitive and 79% specific. An analysis of the distribution of index values in the MRL EIA system showed that low-positive values (1.0-3.0) were rare, but, when detected, often represented false positive results; only 11 MRL low-positive results were observed, but all 6 MRL false positive results were found within this low-positive subgroup. These findings show that the MRL dual EIA system effectively detects HSV type-specific IgG antibodies. Copyright 2000 Wiley-Liss, Inc.

  3. Cell-mediated immunity to herpes simplex virus: recognition of type-specific and type-common surface antigens by cytotoxic T cell populations.

    PubMed Central

    Eberle, R; Russell, R G; Rouse, B T

    1981-01-01

    In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790

  4. Longitudinal Study on Oral Shedding of Herpes Simplex Virus 1 and Varicella-Zoster Virus in Individuals Infected with HIV

    PubMed Central

    van Velzen, Monique; Ouwendijk, Werner J.D.; Selke, Stacy; Pas, Suzan D.; van Loenen, Freek B.; Osterhaus, Albert D.M.E.; Wald, Anna; Verjans, Georges M.G.M.

    2014-01-01

    Primary herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) infection leads to a life-long latent infection of ganglia innervating the oral mucosa. HSV-1 and VZV reactivation is more common in immunocompromised individuals and may result in viral shedding in saliva. We determined the kinetics and quantity of oral HSV-1 and VZV shedding in HSV-1 and VZV seropositive individuals infected with HIV and to assess whether HSV-1 shedding involves reactivation of the same strain intra-individually. HSV-1 and VZV shedding was determined by real-time PCR of sequential daily oral swabs (n=715) collected for a median period of 31 days from 22 individuals infected with HIV. HSV-1 was genotyped by sequencing the viral thymidine kinase gene. Herpesvirus shedding was detected in 18 of 22 participants. Shedding of HSV-1 occurred frequently, on 14.3% of days, whereas solely VZV shedding was very rare. Two participants shed VZV. The median HSV-1 load was higher compared to VZV. HSV-1 DNA positive swabs clustered into 34 shedding episodes with a median duration of 2 days. The prevalence, duration and viral load of herpesvirus shedding did not correlate with CD4 counts and HIV load. The genotypes of the HSV-1 viruses shed were identical between and within shedding episodes of the same person, but were different between individuals. One-third of the individuals shed an HSV-1 strain potentially refractory to acyclovir therapy. Compared to HSV-1, oral VZV shedding is rare in individuals infected with HIV. Recurrent oral HSV-1 shedding is likely due to reactivation of the same latent HSV-1 strain. PMID:23780621

  5. Human herpes simplex viruses in benign and malignant thyroid tumours.

    PubMed

    Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl

    2010-06-01

    To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.

  6. Evaluation of non-extracted genital swabs for real-time HSV PCR.

    PubMed

    Miari, Victoria F; Wall, Gavin R; Clark, Duncan A

    2015-01-01

    Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  7. Seroprevalence of HSV1 and HSV2 infections in family planning clinic attenders.

    PubMed

    Kaur, R; Gupta, N; Baveja, U K

    2005-12-01

    Few studies from India documented seroprevalence of HSV 1 and 2 infection in different population groups. We determined HSV 1 and 2 seroprevalence in a cohort of adults 16-40 year of age, attending the family planning clinic. For the overall study population, 63% were seropositives, 33.3% for HSV 1 alone. 16.6% for HSV 2 and 13.3% had mixed infection. By the statistical analysis, the mean age difference between the two sexes for either infection was not significant. HSV-2 seroprevalence was associated with an increasing age. Men were more likely than women to be seropositive for HSV2. More studies from India are required to coroborate our findings.

  8. Bacteriophage-based Vectors for Site-specific Insertion of DNA in the Chromosome of Corynebacteria

    PubMed Central

    Oram, Mark; Woolston, Joelle E.; Jacobson, Andrew D.; Holmes, Randall K.; Oram, Diana M.

    2007-01-01

    In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as β. β-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally-encoded genes, is regulated by the DtxR protein in response to Fe2+ levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the β-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae ΔdtxR strain. Additionally, strains of β-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for β, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species. PMID:17275217

  9. Type-specific detection of herpes simplex virus type 1 and type 2 using the cobas® HSV 1 and 2 test on the cobas® 4800 platform.

    PubMed

    Van Der Pol, Barbara

    2016-11-01

    HSV-1 and HSV-2 are among the most common causes of sexually transmitted infections (stis) globally. these infections are strongly associated with increased risk of hiv acquisition and rare, but devastating, neonatal disease. available treatment options can reduce HSV transmission and improve quality of life. accurate diagnosis early in disease can improve patient management. Areas covered: This paper describes the clinical manifestations of HSV infection often used for clinical diagnostic purposes. The paper then describes the evolution of laboratory diagnostic assays. Serology, culture and molecular diagnostics are described since all are currently in use. The features and performance characteristics of the cobas 4800 HSV1 and HSV2 Test (cobas HSV) on the cobas 4800® system (cobas 4800) are described in detail. Expert commentary: Diagnosis of HSV has historically been unreliable or technically difficult, but the availability of molecular assays such as the cobas HSV test for detection and typing of herpes can improve our ability to correctly manage this disease. Utilization of tools such as the cobas HSV assay may help shorten the time to accurate diagnosis and treatment thus potentially reducing the risk of transmission and the global burden of HSV.

  10. Herpes simplex virus specific T cell response in a cohort with primary genital infection correlates inversely with frequency of subsequent recurrences.

    PubMed

    Franzen-Röhl, Elisabeth; Schepis, Danika; Atterfelt, Fredrik; Franck, Kristina; Wikström, Arne; Liljeqvist, Jan-Åke; Bergström, Tomas; Aurelius, Elisabeth; Kärre, Klas; Berg, Louise; Gaines, Hans

    2017-05-01

    During the last decades, a changing epidemiological pattern of genital herpes simplex virus (HSV) infection has emerged. Primary infection is now caused as often by HSV-1 as by HSV-2. Once established, HSV can be reactivated leading to recurrent mucocutaneous lesions as well as meningitis. Why some otherwise immune-competent individuals experience severe and frequent recurrences is not known, and the immunological mechanism underlying recurrent symptomatic HSV infection is not fully understood. In this study, we investigate and characterise the immune response of patients with first episode of HSV genital infection and its relation to the frequency of symptomatic recurrences. In this cohort study, clinical and immunological data were collected from 29 patients who were followed 1 year after presenting with a first episode of genital or meningeal HSV infection. They were classified by PCR and serology as those with primary HSV-1, primary HSV-2 and non-primary HSV-2 infection. HSV-specific interleukin(Il)-4 and Il-10 responses at first visit were higher in primary infected HSV-2 infected patients experiencing lower numbers of recurrences during subsequent year. The median number of recurrences following primary HSV-2 genital infection may partly be predicted by the strength of an early HSV-specific IL-4 and IL-10 response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Intracellular localization of varicella-zoster virus ORF39 protein and its functional relationship to glycoprotein K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govero, Jennifer; Hall, Susan; Heineman, Thomas C.

    2007-02-20

    Varicella-zoster virus (VZV) encodes two multiply inserted membrane proteins, open reading frame (ORF) 39 protein (ORF39p) and glycoprotein K (gK). The HSV-1 homologs of these proteins are believed to act in conjunction with each other during viral egress and cell-cell fusion, and they directly influence each other's intracellular trafficking. However, ORF39p and VZV gK have received very limited study largely due to difficulties in producing antibodies to these highly hydrophobic proteins. To overcome this obstacle, we introduced epitope tags into both ORF39p and gK and examined their intracellular distributions in transfected and infected cells. Our data demonstrate that both ORF39pmore » and gK accumulate predominately in the ER of cultured cells when expressed in the absence of other VZV proteins or when coexpressed in isolation from other VZV proteins. Therefore, the transport of VZV ORF39p and gK does not exhibit the functional interdependence seen in their HSV-1 homologs. However, during infection, the primary distributions of ORF39p and gK shift from the ER to the Golgi, and they are also found in the plasma membrane indicating that their intracellular trafficking during infection depends on other VZV-encoded proteins. During infection, ORF39p and gK tightly colocalize with VZV envelope glycoproteins B, E and H; however, the coexpression of ORF39p or gK with other individual viral glycoproteins is insufficient to alter the transport of either ORF39p or gK.« less

  12. Detecting the Lyme Disease Spirochete, Borrelia Burgdorferi, in Ticks Using Nested PCR.

    PubMed

    Wills, Melanie K B; Kirby, Andrea M; Lloyd, Vett K

    2018-02-04

    Lyme disease is a serious vector-borne infection that is caused by the Borrelia burgdorferi sensu lato family of spirochetes, which are transmitted to humans through the bite of infected Ixodes ticks. The primary etiological agent in North America is Borrelia burgdorferi sensu stricto. As geographic risk regions expand, it is prudent to support robust surveillance programs that can measure tick infection rates, and communicate findings to clinicians, veterinarians, and the general public. The molecular technique of nested polymerase chain reaction (nPCR) has long been used for this purpose, and it remains a central, inexpensive, and robust approach in the detection of Borrelia in both ticks and wildlife. This article demonstrates the application of nPCR to tick DNA extracts to identify infected specimens. Two independent B. burgdorferi targets, genes encoding Flagellin B (FlaB) and Outer surface protein A (OspA), have been used extensively with this technique. The protocol involves tick collection, DNA extraction, and then an initial round of PCR to detect each of the two Borrelia-specific loci. Subsequent polymerase chain reaction (PCR) uses the product of the first reaction as a new template to generate smaller, internal amplification fragments. The nested approach improves upon both the specificity and sensitivity of conventional PCR. A tick is considered positive for the pathogen when inner amplicons from both Borrelia genes can be detected by agarose gel electrophoresis.

  13. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.

    PubMed

    Basso, Luiz R; Bartiss, Ann; Mao, Yuxin; Gast, Charles E; Coelho, Paulo S R; Snyder, Michael; Wong, Brian

    2010-12-01

    Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Preventing herpes simplex virus in the newborn.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2014-12-01

    Genital herpes simplex virus (HSV) infections are very common worldwide. Approximately 22% of pregnant women are infected genitally with HSV, and most of them are unaware of this. The most devastating consequence of maternal genital herpes is HSV disease in the newborn. Although neonatal HSV infections remain uncommon, due to the significant morbidity and mortality associated with the infection, HSV infection in the newborn is often considered in the differential diagnosis of ill neonates. This review summarizes the epidemiology and management of neonatal HSV infections and discusses strategies to prevent HSV infection in the newborn. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Modelling efforts needed to advance herpes simplex virus (HSV) vaccine development: Key findings from the World Health Organization Consultation on HSV Vaccine Impact Modelling.

    PubMed

    Gottlieb, Sami L; Giersing, Birgitte; Boily, Marie-Claude; Chesson, Harrell; Looker, Katharine J; Schiffer, Joshua; Spicknall, Ian; Hutubessy, Raymond; Broutet, Nathalie

    2017-06-21

    Development of a vaccine against herpes simplex virus (HSV) is an important goal for global sexual and reproductive health. In order to more precisely define the health and economic burden of HSV infection and the theoretical impact and cost-effectiveness of an HSV vaccine, in 2015 the World Health Organization convened an expert consultation meeting on HSV vaccine impact modelling. The experts reviewed existing model-based estimates and dynamic models of HSV infection to outline critical future modelling needs to inform development of a comprehensive business case and preferred product characteristics for an HSV vaccine. This article summarizes key findings and discussions from the meeting on modelling needs related to HSV burden, costs, and vaccine impact, essential data needs to carry out those models, and important model components and parameters. Copyright © 2017. Published by Elsevier Ltd.

  16. Houttuynia cordata Targets the Beginning Stage of Herpes Simplex Virus Infection

    PubMed Central

    Hung, Pei-Yun; Ho, Bing-Ching; Lee, Szu-Yuan; Chang, Sui-Yuan; Kao, Chuan-Liang; Lee, Shoei-Sheng; Lee, Chun-Nan

    2015-01-01

    Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV. PMID:25643242

  17. Houttuynia cordata targets the beginning stage of herpes simplex virus infection.

    PubMed

    Hung, Pei-Yun; Ho, Bing-Ching; Lee, Szu-Yuan; Chang, Sui-Yuan; Kao, Chuan-Liang; Lee, Shoei-Sheng; Lee, Chun-Nan

    2015-01-01

    Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.

  18. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    PubMed

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

  19. Clinical relevance of herpes simplex virus viremia in Intensive Care Unit patients.

    PubMed

    Lepiller, Q; Sueur, C; Solis, M; Barth, H; Glady, L; Lefebvre, F; Fafi-Kremer, S; Schneider, F; Stoll-Keller, F

    2015-07-01

    To determine the clinical relevance of herpes simplex virus (HSV) viremia episodes in critically ill adult patients. 1556 blood samples obtained for HSV PCR analysis in Intensive Care Unit (ICU) patients over 4 years were retrospectively analyzed, focusing on the comprehensive analysis of 88 HSV-viremic patients. HSV DNA was detected in 11.8% of samples from the ICU. HSV viral loads remained below 5×10(2) copies/ml in 68.2% of patients and exceeded 10(4) copies/ml in 7.9%. Episodes of HSV-viremia correlated with immunosuppressed status and mechanical ventilation in 79.5% and 65.9% of patients, respectively. Only a subset of patients exhibited HSV-related organ damage, including pneumonia and hepatitis (10.2% and 2.3%, respectively). The mortality rate in HSV-viremic patients was not significantly increased compared to the overall mortality rate in the ICU (27.3% vs. 22.9%, p = 0.33). Only patients with high HSV viral loads tended to have a higher, though non-significant, death rate (57.1%, p = 0.14). Our results suggest HSV viremia is common in ICU patients, potentially favored by immunocompromised status and mechanical ventilation. The global impact of HSV-viremia on mortality in the ICU was low. Quantifying HSV DNA may help identifying patients at-risk of severe HSV-induced symptoms. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Direct immunofluorescence assay compared to cell culture for the diagnosis of mucocutaneous herpes simplex virus infections in children.

    PubMed

    Caviness, A Chantal; Oelze, Lindsay L; Saz, Ulas E; Greer, Jewel M; Demmler-Harrison, Gail J

    2010-09-01

    Direct immunofluorescence assay (DFA) is commonly used for the rapid identification of herpes simplex virus (HSV) infection in mucocutaneous lesions, yet little is known about its diagnostic accuracy. To determine the diagnostic yield and accuracy of HSV DFA for the diagnosis of mucocutaneous HSV infection in pediatric patients. Retrospective cross-sectional study of all patients who underwent HSV DFA testing by the Texas Children's Hospital Diagnostic Virology between January 1, 1995 and December 31, 2005. HSV DFA sensitivity, specificity, positive likelihood ratio (LRs), and negative LRs were estimated using viral culture as the reference standard. 659 specimens were submitted for HSV DFA with concurrent viral cultures. Viral cultures were positive for HSV type 1 in 158 (24%) and HSV type 2 in 2 (0.3%). There were 433 different patients with a median age of 8.6 years. Types of lesions were as follows: 50% ulcerative, 26% vesicular, 8% erythema or purpura, 5% pustular, and 11% missing. Of the 659 specimens submitted for HSV DFA, 160 (24%) were inconclusive due to inadequate cells. Of the 499 adequate specimens, overall HSV DFA test accuracy was: sensitivity 61%, specificity 99%, LR positive 40, and LR negative 0.39. A quarter of specimens submitted for HSV DFA testing are not adequate for DFA testing. When HSV DFA can be performed, it is specific, but not sensitive, for the identification of mucocutaneous HSV infection in children. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Seroprevalence of Herpes Simplex Virus type-2 (HSV-2) among pregnant women who participated in a national HIV surveillance activity in Haiti.

    PubMed

    Domercant, Jean Wysler; Jean Louis, Frantz; Hulland, Erin; Griswold, Mark; Andre-Alboth, Jocelyne; Ye, Tun; Marston, Barbara J

    2017-08-18

    Herpes simplex virus type 2 (HSV-2), one the most common causes of genital ulcers, appears to increase both the risk of HIV acquisition and HIV transmission. HSV-2/HIV co-infection among pregnant women may increase the risk of perinatal transmission of HIV. This study describes rates of HSV-2 among pregnant women in Haiti and HSV-2 test performance in this population. Unlinked residual serum specimens from the 2012 National HIV and Syphilis Sentinel Surveillance Survey among pregnant women in Haiti were tested using two commercial kits (Focus HerpeSelect, Kalon) for HSV-2 antibodies. We evaluated rates of HSV-2 seropositivity and HSV-2/HIV co-infection, associations between HSV-2 and demographic characteristics using multivariable Cox proportional hazards modeling, and HSV-2 test performance in this population. Serum samples from 1000 pregnant women (all 164 HIV positive and 836 random HIV negative) were selected. The overall weighted prevalence of HSV-2 was 31.4% (95% CI: 27.7-35.4) and the prevalence of HIV-positivity among HSV-2 positive pregnant women was five times higher than the prevalence among HSV-2 negative women (4.8% [95% CI: 3.9-6.0] vs. 0.9% [95% CI: 0.6-1.3], respectively). Factors significantly associated with HSV-2 positivity were HIV-positivity (PR: 2.27 [95% CI: 1.94-2.65]) and older age (PRs: 1.41 [95% CI: 1.05-1.91] for 20-24 years, 1.71 [95% CI:1.13-2.60] for 30-34 years, and 1.55 [95% CI: 1.10-2.19] for 35 years or greater]), while rural residence was negatively associated with HSV-2 positivity (PR 0.83 [95% CI: 0.69-1.00]), after controlling for other covariables. For this study a conservative Focus index cutoff of 3.5 was used, but among samples with a Focus index value ≥2.5, 98.4% had positive Kalon tests. The prevalence of HSV-2 is relatively high among pregnant women in Haiti. Public health interventions to increase access to HSV-2 screening in antenatal services are warranted.

  2. Application of a reverse dot blot DNA-DNA hydridization method to quantify host-feeding tendencies of two sibling species in the Anopheles gambiae complex.

    PubMed

    Fritz, M L; Miller, J R; Bayoh, M N; Vulule, J M; Landgraf, J R; Walker, E D

    2013-12-01

    A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours. © 2013 The Royal Entomological Society.

  3. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  4. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing

    PubMed Central

    Constable, Fiona E.; Nancarrow, Narelle; Plummer, Kim M.; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored. PMID:28632759

  5. Virologic and Immunologic Evidence of Multifocal Genital Herpes Simplex Virus 2 Infection

    PubMed Central

    Zhu, Jia; Jing, Lichen; Laing, Kerry J.; McClurkan, Christopher M.; Klock, Alexis; Diem, Kurt; Jin, Lei; Stanaway, Jeffrey; Tronstein, Elizabeth; Kwok, William W.; Huang, Meei-li; Selke, Stacy; Fong, Youyi; Magaret, Amalia; Koelle, David M.; Wald, Anna; Corey, Lawrence

    2014-01-01

    ABSTRACT Genital herpes simplex virus (HSV) reactivation is thought to be anatomically and temporally localized, coincident with limited ganglionic infection. Short, subclinical shedding episodes are the most common form of HSV-2 reactivation, with host clearance mechanisms leading to rapid containment. The anatomic distribution of shedding episodes has not been characterized. To precisely define patterns of anatomic reactivation, we divided the genital tract into a 22-region grid and obtained daily swabs for 20 days from each region in 28 immunocompetent, HSV-2-seropositive persons. HSV was detected via PCR, and sites of asymptomatic HSV shedding were subjected to a biopsy procedure within 24 h. CD4+ and CD8+ T cells were quantified by immunofluorescence, and HSV-specific CD4+ T cells were identified by intracellular cytokine cytometry. HSV was detected in 868 (7%) of 11,603 genital swabs at a median of 12 sites per person (range, 0 to 22). Bilateral HSV detection occurred on 83 (67%) days with shedding, and the median quantity of virus detected/day was associated with the number of sites positive (P < 0.001). In biopsy specimens of asymptomatic shedding sites, we found increased numbers of CD8+ T cells compared to control tissue (27 versus 13 cells/mm2, P = 0.03) and identified HSV-specific CD4+ T cells. HSV reactivations emanate from widely separated anatomic regions of the genital tract and are associated with a localized cellular infiltrate that was demonstrated to be HSV specific in 3 cases. These data provide evidence that asymptomatic HSV-2 shedding contributes to chronic inflammation throughout the genital tract. IMPORTANCE This detailed report of the anatomic patterns of genital HSV-2 shedding demonstrates that HSV-2 reactivation can be detected at multiple bilateral sites in the genital tract, suggesting that HSV establishes latency throughout the sacral ganglia. In addition, genital biopsy specimens from sites of asymptomatic HSV shedding have increased numbers of CD8+ T cells compared to control tissue, and HSV-specific CD4+ T cells are found at sites of asymptomatic shedding. These findings suggest that widespread asymptomatic genital HSV-2 shedding is associated with a targeted host immune response and contributes to chronic inflammation throughout the genital tract. PMID:24554666

  6. Virologic and immunologic evidence of multifocal genital herpes simplex virus 2 infection.

    PubMed

    Johnston, Christine; Zhu, Jia; Jing, Lichen; Laing, Kerry J; McClurkan, Christopher M; Klock, Alexis; Diem, Kurt; Jin, Lei; Stanaway, Jeffrey; Tronstein, Elizabeth; Kwok, William W; Huang, Meei-Li; Selke, Stacy; Fong, Youyi; Magaret, Amalia; Koelle, David M; Wald, Anna; Corey, Lawrence

    2014-05-01

    Genital herpes simplex virus (HSV) reactivation is thought to be anatomically and temporally localized, coincident with limited ganglionic infection. Short, subclinical shedding episodes are the most common form of HSV-2 reactivation, with host clearance mechanisms leading to rapid containment. The anatomic distribution of shedding episodes has not been characterized. To precisely define patterns of anatomic reactivation, we divided the genital tract into a 22-region grid and obtained daily swabs for 20 days from each region in 28 immunocompetent, HSV-2-seropositive persons. HSV was detected via PCR, and sites of asymptomatic HSV shedding were subjected to a biopsy procedure within 24 h. CD4(+) and CD8(+) T cells were quantified by immunofluorescence, and HSV-specific CD4(+) T cells were identified by intracellular cytokine cytometry. HSV was detected in 868 (7%) of 11,603 genital swabs at a median of 12 sites per person (range, 0 to 22). Bilateral HSV detection occurred on 83 (67%) days with shedding, and the median quantity of virus detected/day was associated with the number of sites positive (P < 0.001). In biopsy specimens of asymptomatic shedding sites, we found increased numbers of CD8(+) T cells compared to control tissue (27 versus 13 cells/mm(2), P = 0.03) and identified HSV-specific CD4(+) T cells. HSV reactivations emanate from widely separated anatomic regions of the genital tract and are associated with a localized cellular infiltrate that was demonstrated to be HSV specific in 3 cases. These data provide evidence that asymptomatic HSV-2 shedding contributes to chronic inflammation throughout the genital tract. This detailed report of the anatomic patterns of genital HSV-2 shedding demonstrates that HSV-2 reactivation can be detected at multiple bilateral sites in the genital tract, suggesting that HSV establishes latency throughout the sacral ganglia. In addition, genital biopsy specimens from sites of asymptomatic HSV shedding have increased numbers of CD8(+) T cells compared to control tissue, and HSV-specific CD4(+) T cells are found at sites of asymptomatic shedding. These findings suggest that widespread asymptomatic genital HSV-2 shedding is associated with a targeted host immune response and contributes to chronic inflammation throughout the genital tract.

  7. Performance evaluation of the Aptima HSV-1 and 2 assay for the detection of HSV in cutaneous and mucocutaneous lesion specimens.

    PubMed

    Sam, Soya S; Caliendo, Angela M; Ingersoll, Jessica; Abdul-Ali, Deborah; Kraft, Colleen S

    Timely and precise laboratory diagnosis of Herpes simplex viruses (HSV) is required to guide clinical management. The study evaluated limit of detection (LOD) and performance characteristics of the Aptima HSV 1 & 2 assay in comparison to four assays. The multi-center study compared qualitative detection of HSV-1 and 2 by the Aptima HSV-1 and 2 assay (Hologic) to ELVIS culture, Lyra Direct (Quidel), AmpliVue (Quidel) and a laboratory developed test (LDT). LOD was performed using VTM and STM diluted viral concentrations and clinical performance was evaluated using 505 swab specimens. The Aptima LOD studies performed showed a lower detection limit for STM specimens as 1450 copies/mL and 430 copies/mL for HSV1 and HSV-2 respectively; the LOD for VTM specimens was 9370 copies/mL and 8045 copies/mL for HSV-1 and HSV-2 respectively. When the assays were analyzed based on the positive consensus result established the Aptima had 95% of percent positive agreement (PPA) and 100% negative percent agreement (NPA) for the HSV-1. For the HSV-2, the PPA and NPA for Aptima were 96% and 100% respectively. AmpliVue had 1.8% invalid rate, while Lyra had no invalid results but an inhibition rate of 0.8%. Aptima and LDT did not have any invalid or inhibited results. The results indicate that the Aptima HSV-1 & 2 assay is sensitive and the performance characteristics of the Aptima assay is comparable to the assays analyzed for the detection and differentiation of HSV-1 and 2 from cutaneous and mucocutaneous lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prevalence and Determinants of Herpes Simplex Virus Type 2 (HSV-2)/Syphilis Co-Infection and HSV-2 Mono-Infection among Human Immunodeficiency Virus Positive Men Who Have Sex with Men: a Cross-Sectional Study in Northeast China.

    PubMed

    Hu, Qing-Hai; Xu, Jun-Jie; Chu, Zhen-Xing; Zhang, Jing; Yu, Yan-Qiu; Yu, Huan; Ding, Hai-Bo; Jiang, Yong-Jun; Geng, Wen-Qing; Wang, Ning; Shang, Hong

    2017-05-24

    This study assessed the prevalence and determinants of herpes simplex virus type 2 (HSV-2)/syphilis co-infection and HSV-2 mono-infection in human immunodeficiency virus (HIV)-positive men who have sex with men (MSM) in China. A cross-sectional study was conducted of 545 HIV-positive MSM in Shenyang between February 2009 and October 2014. Participants underwent physical examinations and serological tests for HSV-2 and syphilis. A multinomial logistic regression was used to identify the risk factors associated with HSV-2/syphilis co-infection and HSV-2 mono-infection. The prevalence of HSV-2 mono-infection, syphilis mono-infection, and HSV-2/syphilis co-infection (95% confidence interval) was 48.6% (44.4-52.8%), 34.3% (30.3-38.3%), and 22.9% (19.4-26.5%), respectively. After controlling within HSV-2/syphilis-seropositive cases, regression analysis revealed that the related factors for HSV-2/syphilis co-infection included age (25-50 vs. ≤ 24 years: adjusted odds ratio [aOR], 4.55; > 50 vs. ≤ 24 years: aOR, 43.02), having regular female sexual partner(s) in the past 6 months (aOR, 0.43), and age at first MSM experience (≤ 18 vs. > 18 years: aOR, 2.59) (all P < 0.05). The high prevalence of HSV-2 mono infection and HSV-2/syphilis co-infection in HIV-positive MSM indicates a high secondary HIV transmission risk. A campaign for detection and treatment of HSV-2 and syphilis is urgently required for HIV-positive MSM in China.

  9. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens.

    PubMed

    Gitman, Melissa R; Ferguson, David; Landry, Marie L

    2013-11-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type.

  10. Comparison of Simplexa HSV 1 & 2 PCR with Culture, Immunofluorescence, and Laboratory-Developed TaqMan PCR for Detection of Herpes Simplex Virus in Swab Specimens

    PubMed Central

    Gitman, Melissa R.; Ferguson, David

    2013-01-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type. PMID:24006008

  11. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less

  12. Herpes simplex virus 2 modulates apoptosis and stimulates NF-{kappa}B nuclear translocation during infection in human epithelial HEp-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedowitz, Jamie C.; Blaho, John A.

    2005-11-25

    Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5more » hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNF{alpha} plus cycloheximide treatment. (v) NF-{kappa}B translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1.« less

  13. Identification of Blood Meals from Potential Arbovirus Mosquito Vectors in the Peruvian Amazon Basin.

    PubMed

    Palermo, Pedro M; Aguilar, Patricia V; Sanchez, Juan F; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G; Halsey, Eric S

    2016-11-02

    The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. © The American Society of Tropical Medicine and Hygiene.

  14. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  15. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract.

    PubMed

    Posavad, C M; Zhao, L; Mueller, D E; Stevens, C E; Huang, M L; Wald, A; Corey, L

    2015-01-01

    Relatively little is known about the human T-cell response to herpes simplex virus type 2 (HSV-2) in the female genital tract, a major site of heterosexual HSV-2 acquisition, transmission, and reactivation. In order to understand the role of local mucosal immunity in HSV-2 infection, T-cell lines were expanded from serial cervical cytobrush samples from 30 HSV-2-infected women and examined for reactivity to HSV-2. Approximately 3% of the CD3+ T cells isolated from the cervix were HSV-2 specific and of these, a median of 91.3% were CD4+, whereas a median of 3.9% were CD8+. HSV-2-specific CD4+ T cells expanded from the cervix were not only more frequent than CD8+ T cells but also exhibited greater breadth in terms of antigenic reactivity. T cells directed at the same HSV-2 protein were often detected in serial cervical cytobrush samples and in blood. Thus, broad and persistent mucosal T-cell responses to HSV-2 were detected in the female genital tract of HSV-2+ women suggesting that these cells are resident at the site of HSV-2 infection. Understanding the role of these T cells at this biologically relevant site will be central to the elucidation of adaptive immune mechanisms involved in controlling HSV-2 disease.

  16. Topical application of polyethylenimine as a candidate for novel prophylactic therapeutics against genital herpes caused by herpes simplex virus.

    PubMed

    Hayashi, Kyoko; Onoue, Hiroki; Sasaki, Kohei; Lee, Jung-Bum; Kumar, Penmetcha K R; Gopinath, Subash C B; Maitani, Yoshie; Kai, Takashi; Hayashi, Toshimitsu

    2014-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) cause genital herpes, which can enhance the acquisition of human immunodeficiency virus. The development of anti-HSV agents with novel mechanisms of action is urgently required in the topical therapy of genital herpes. In this study, the in vitro and in vivo anti-HSV effects of Epomin SP-012(®), a highly cationic polyethylenimine, were evaluated. When the in vitro antiviral effects of SP-012 were assessed, this compound showed potent activity against HSV-1 and HSV-2. It inhibited the attachment of HSV-2 to host cells and cell-to-cell spread of infection in a concentration-dependent manner and exerted a virucidal effect. No SP-012-resistant HSV-2 was found when the virus was successively passaged in the presence of SP-012. In a mouse genital herpes model, topically administered SP-012 inhibited the progression of the disease caused by HSV infection. These data illustrate that SP-012 may be a novel class of HSV inhibitor that would be acceptable for long-term topical application.

  17. HSV1 and 2 detection in the CSF of multiple sclerosis patients by real-time PCR.

    PubMed

    Koros, Christos; Ioannidis, Anastasios; Acquaviva, Tereza; Zoga, Margarita; Nikolaou, Chryssoula; Chatzipanagiotou, Stylianos; Kossyvakis, Athanassios; Anagnostouli, Maria

    2014-01-01

    The pathogenic role of Herpes Simplex Virus (HSV) 1 and 2 in Multiple Sclerosis (MS) still remains obscure. The aim of our study was the assessment of HSV1 and 2 DNA prevalence in the cerebrospinal fluid (CSF) of MS patients compared to patients with other neurological disorders (OND). HSV1 and HSV2 DNA detection in the CSF of patients was performed by real time polymerase chain reaction (PCR). The genome of HSV1 was present in the CSF of 4.7% of MS patients (4 out of 85), while HSV2 was not detected in any patient. In the sub-group of OND patients, HSV1 was detected in 7.9% of patients (3 out of 38) and HSV2 was detected in 5.3% of patients (2 out of 38). Our data are in accordance with a limited number of previous reports, supporting a prevalence of HSV1 genome in less than 5% of MS patients. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Epidemiology of orofacial herpes simplex virus infections in the general population in France: results of the HERPIMAX study.

    PubMed

    Malvy, D; Ezzedine, K; Lançon, F; Halioua, B; Rezvani, A; Bertrais, S; Chanzy, B; Malkin, J-E; Morand, P; De Labareyre, C; Hercberg, S; El Hasnaoui, A

    2007-11-01

    Prevalence of clinically manifest orofacial herpes in the general population is poorly characterized. Objectives To establish the lifetime prevalence of clinically manifest orofacial herpes and its relationship with herpes simplex virus (HSV) serotype in the French general population. Subjects (N = 2796) were serotyped for HSV1 and HSV2 and provided data on herpetic symptoms by questionnaire. Subjects reporting at least one episode of orobuccal ulcerative mucosal lesions were classified as clinically manifest orofacial herpes. Lifetime prevalence of clinically manifest orofacial herpes was 38.3% (42.1% in women, 32.4% in men). Prevalence in subjects seropositive for HSV1 was 50.3%. This prevalence rate was independent of HSV2 serotype. Prevalence in subjects infected with HSV2 alone was similar to that in subjects seronegative for HSV. Lack of case ascertainment limits precision of the data. Clinically manifest orofacial herpes was reported in one third of the sample, principally associated with HSV1 infection. HSV2 infection did not produce orofacial lesions nor influence clinical manifestations of HSV1 infection.

  19. Determining the IgM and IgG antibodies titer against HSV1, HSV2 and CMV in the serum of schizophrenia patients.

    PubMed

    Mohagheghi, Masome; Eftekharian, Mohammad Mahdi; Taheri, Mohammad; Alikhani, Mohammad Yousef

    2018-02-05

    Schizophrenia is a destructive clinical syndrome with diverse mental pathologies. Different mechanisms and factors have a role in this disease. A possible mechanism is that teratogenic viruses cause brain changes and results in the disease appearance. The schizophrenia patients were diagnosed by psychologists and with the consent of patients, five CC of venous blood was drawn. Than Serum samples were isolated and immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2) and cytomegalovirus (CMV) were quantified by ELISA sandwich kit. The Results showed that anti-CMV and anti-HSV1 and anti-HSV2 IgG antibodies in schizophrenia patients were increased significantly (p< 0.05). The increasing of the anti-HSV2 IgM was also observed but increasing amount of the anti-HSV1 IgM was not statistically significant (p< 0.05). Therefore, as a result of this study CMV and HSV1 and HSV2 infection can probably intensify the symptoms in schizophrenia patients.

  20. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    PubMed

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  1. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection*

    PubMed Central

    Zhang, Jie; Liu, Huan; Wei, Bin

    2017-01-01

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1. PMID:28378566

  2. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    PubMed

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection. Copyright © 2017 American Society for Microbiology.

  3. Comparative neurovirulence and latency of HSV1 and HSV2 following footpad inoculation in mice.

    PubMed

    McKendall, R R

    1980-01-01

    The effect of virus dose and animal age on the appearance of acute and latent neurologic infection by HSV1 and HSV2 was studied in Balb/c and ICR mice inoculated in the footpad. At low viral doses HSV2 was found to be 1,500 times more neurovirulent than HSV1. At high doses there was no difference in neurovirulence. Age-acquired resistance to disease was shown to be less complete with HSV2 than with HSV1. Neurovirulence was shown to be associated with spread of infection to the spinal ganglia. The data indicate that the factor(s) responsible for the differential neurovirulence of these two viruses is related to events at the level of the footpad and/or sciatic nerve.

  4. Herpes simplex virus type 1 is the leading cause of genital herpes in New Brunswick.

    PubMed

    Garceau, Richard; Leblanc, Danielle; Thibault, Louise; Girouard, Gabriel; Mallet, Manon

    2012-01-01

    Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L'Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to 39 years of age and in 32% of patients ≥40 years of age. The difference in rates of HSV1 infection between the 10 to 39 years of age group and the ≥40 years of age group was statistically significant (P<0.001 [χ(2)]). In a similar Canadian study performed in Nova Scotia, HSV1 was recovered in 53.7% of positive cultures (male, 36.7%; female, 58.1%). The rates of HSV1 infection reported by this study and the present study were significantly different (P<0.001 [χ(2)] for male, P=0.012 for female). In New Brunswick, HSV1 is the dominant type of HSV isolated in samples collected from a genital site. Significant rate differences were demonstrated between the groups 10 to 39 years of age and ≥40 years of age. Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L’Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to 39 years of age and in 32% of patients ≥40 years of age. The difference in rates of HSV1 infection between the 10 to 39 years of age group and the ≥40 years of age group was statistically significant (P<0.001 [χ 2 ]). In a similar Canadian study performed in Nova Scotia, HSV1 was recovered in 53.7% of positive cultures (male, 36.7%; female, 58.1%). The rates of HSV1 infection reported by this study and the present study were significantly different (P<0.001 [χ 2 ] for male, P=0.012 for female). In New Brunswick, HSV1 is the dominant type of HSV isolated in samples collected from a genital site. Significant rate differences were demonstrated between the groups 10 to 39 years of age and ≥40 years of age.

  5. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  6. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  7. Comparison of the Host Immune Response to Herpes Simplex Virus 1 (HSV-1) and HSV-2 at Two Different Mucosal Sites

    PubMed Central

    Zheng, Min; Conrady, Christopher D.; Ward, Julie M.; Bryant-Hudson, Katie M.

    2012-01-01

    A study was undertaken to compare the host immune responses to herpes simplex virus 1 (HSV-1) and HSV-2 infection by the ocular or genital route in mice. Titers of HSV-2 from tissue samples were elevated regardless of the route of infection. The elevation in titers of HSV-2, including cell infiltration and cytokine/chemokine levels in the central nervous system relative to those found following HSV-1 infection, was correlative with inflammation. These results underscore a dichotomy between the host immune responses to closely related alphaherpesviruses. PMID:22532684

  8. Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (HSV-1) and HSV-2 Infections in Adult Trigeminal Neurons

    PubMed Central

    Ma, AyeAye; Margolis, Mathew S.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893

  9. Ocular HSV-1: Is the Cornea a Reservoir for Viral Latency or a Fast Pit Stop?

    PubMed Central

    Kennedy, David P.; Clement, Christian; Arceneaux, Richard L.; Bhattacharjee, Partha S.; Huq, Tashfin S.; Hill, James M.

    2010-01-01

    Purpose To present a review supporting and refuting evidence from mouse, rabbit, non-human primate, and human studies of herpes simplex virus type 1 (HSV-1) concerning corneal latency. Methods More than 50 research papers on HSV-1 published in peer-reviewed journals were examined. Results Infectious HSV-1 has been found in mouse denervated tissues and in tissues with negative cultures from the corresponding ganglion. However, the different mouse strains have shown varied responses to different strains of HSV, making it difficult to relate such findings to humans. Rabbit studies provide excellent evidence for HSV-1 corneal latency including data on HSV-1 migration from the cornea into the corneoscleral rim and on the distribution of HSV-1 DNA in the cornea. However, the available methods for the detection of infectious HSV-1 may not be sensitive enough to detect low-level infection. Infectious HSV-1 has been successfully isolated from the tears of non-human primates in the absence of detectable corneal lesions. The recurrence of corneal ulcers in non-human primates before the appearance of infectious HSV-1 in tears suggests that the origin of the HSV-1 is the cornea, rather than the TG. Human studies presented evidence of both ganglion and corneal latency. Conclusion Understanding HSV-1 disease progression and the possibility of corneal latency could lead to more effective treatments for herpetic keratitis. However, it is unlikely that operational latency in the cornea will be definitively proven unless a new method with higher sensitivity for the detection of infectious virus is developed. PMID:21304287

  10. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy

    PubMed Central

    Ning, Jianfang; Wakimoto, Hiroaki

    2014-01-01

    Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) “armed” viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma. PMID:24999342

  11. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2.

    PubMed

    Burrel, Sonia; Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-12-01

    Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2

    PubMed Central

    Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-01-01

    ABSTRACT Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. IMPORTANCE This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. PMID:26401046

  13. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb.

    PubMed

    Li, Ting; Liu, Libao; Wu, Hongling; Chen, Shaodan; Zhu, Qinchang; Gao, Hao; Yu, Xiongtao; Wang, Yi; Su, Wenhan; Yao, Xinsheng; Peng, Tao

    2017-08-01

    Early events in herpes simplex virus type 1 (HSV-1) infection reactivate latent human immunodeficiency virus, Epstein-Barr virus, and human papillomavirus in the presence of acyclovir (ACV). The common use of nucleoside analog medications, such as ACV and pencyclovir, has resulted in the emergence of drug-resistant HSV-1 strains in clinical therapy. Therefore, new antiherpetics that can inhibit early events in HSV-1 infection should be developed. An example of this treatment is Houttuynia cordata Thunb. water extract, which can inhibit HSV-1 infection through multiple mechanisms. In this study, the anti-HSV-1 activity of Houttuynoid A, a new type of flavonoid isolated from H. cordata, was investigated. Three different assays confirmed that this compound could exhibit strong in vitro anti-HSV-1 activity. One assay verified that this compound could inhibit HSV-1 multiplication and prevent lesion formation in a HSV-1 infection mouse model. Mechanism analysis revealed that this compound could inactivate HSV-1 infectivity by blocking viral membrane fusion. Moreover, Houttuynoid A exhibited antiviral activities against other alpha herpes viruses, such as HSV-2 and varicella zoster virus (VZV). In conclusion, Houttuynoid A may be a useful antiviral agent for HSV-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017.

    PubMed

    Gottlieb, Sami L; Giersing, Birgitte K; Hickling, Julian; Jones, Rebecca; Deal, Carolyn; Kaslow, David C

    2017-12-07

    The development of vaccines against herpes simplex virus (HSV) is an important global goal for sexual and reproductive health. A key priority to advance development of HSV vaccines is the definition of preferred product characteristics (PPCs), which provide strategic guidance on World Health Organization (WHO) preferences for new vaccines, specifically from a low- and middle-income country (LMIC) perspective. To start the PPC process for HSV vaccines, the WHO convened a global stakeholder consultation in March 2017, to define the priority public health needs that should be addressed by HSV vaccines and discuss the key considerations for HSV vaccine PPCs, particularly for LMICs. Meeting participants outlined an initial set of overarching public health goals for HSV vaccines in LMICs, which are: to reduce the acquisition of HIV associated with HSV-2 infection in high HIV-prevalence populations and to reduce the burden of HSV-associated disease, including mortality and morbidity due to neonatal herpes and impacts on sexual and reproductive health. Participants also considered the role of prophylactic versus therapeutic vaccines, whether both HSV-2 and HSV-1 should be targeted, important target populations, and infection and disease endpoints for clinical trials. This article summarizes the main discussions from the consultation. Copyright © 2017.

  16. Cutaneous leishmaniasis in the central provinces of Hama and Edlib in Syria: Vector identification and parasite typing.

    PubMed

    Haddad, Nabil; Saliba, Hanadi; Altawil, Atef; Villinsky, Jeffrey; Al-Nahhas, Samar

    2015-10-12

    Cutaneous leishmaniasis is a disease transmitted by sand fly bites. This disease is highly prevalent in Syria where Leishmania major and Leishmania tropica are the known aetiological agents. In 2011, more than 58,000 cases were reported in the country by the Ministry of Health. The central region of the country harbors 20 % of the reported cases. However, the epidemiology of the disease in this area is not well understood. An epidemiological survey was conducted in 2010 to identity the circulating parasite and the sand fly vector in the central provinces of Edlib and Hama. Sand fly specimens were collected using CDC light traps and identified morphologically. Total DNA was extracted from the abdomens of female specimens and from Giemsa-stained skin lesion smears of 80 patients. Leishmania parasites were first identified by sequencing the ITS1 gene amplicons. Then polymorphism analysis was performed using the RFLP technique. A total of 2142 sand flies were collected. They belonged to eight species, among which Phlebotomus sergenti and Phlebotomus papatasi were the most predominant. L. tropica ITS1 gene was amplified from two pools of P. sergenti specimens and from skin smears of cutaneous leishmaniasis patients. This suggests that P. sergenti is the potential vector species in the study area. The digestion profiles of the obtained amplicons by TaqI restriction enzyme were identical for all analysed L. tropica parasites. Moreover, L. infantum ITS1 gene was amplified from two pools of Phlebotomus tobbi in the relatively humid zone of Edlib. L. tropica is confirmed to be the aetiological agent of cutaneous leishmaniasis cases in the central provinces. RFLP technique failed to show any genetic heterogeneity in the ITS1 gene among the tested parasites. The molecular detection of this parasite in human skin smears and in P. sergenti supports the vector status of this species in the study area. The detection of L. infantum in P. tobbi specimens indicates a potential circulation of this parasite in the humid zone of Edlib. Further epidemiological studies are needed to evaluate the burden of this visceral parasite in the study region.

  17. First estimates of the global and regional incidence of neonatal herpes infection

    PubMed Central

    Looker, K. J.; Magaret, A. S.; May, M. T.; Turner, K. M. E.; Vickerman, P.; Newman, L. M.; Gottlieb, S. L.

    2017-01-01

    Background Neonatal herpes is a rare but potentially devastating condition (60% fatality without treatment). Transmission usually occurs during delivery from mothers with herpes simplex virus type 1 (HSV-1) or HSV-2 genital infection. The global burden has never been quantified. We developed a novel methodology for burden estimation and present first WHO global and regional estimates of the annual number of neonatal herpes cases during 2010–2015. Methods Previous estimates of HSV-1 and HSV-2 prevalence and incidence in women aged 15–49 years were applied to 2010–2015 birth rates to estimate infections during pregnancy. Published risks of neonatal HSV transmission were then applied according to whether maternal infection was incident or prevalent with HSV-1 or HSV-2 to estimate neonatal herpes cases. Findings Globally the overall rate of neonatal herpes was estimated to be ~10 cases per 100,000 births, equivalent to a best-estimate of ~14,000 cases annually (HSV-1: ~4,000; HSV-2: ~10,000). We estimated that the most neonatal herpes cases occurred in Africa, due to high maternal HSV-2 infection and high birth rates. HSV-1 contributed more cases than HSV-2 in the Americas, Europe and Western Pacific. High rates of genital HSV-1 infection and moderate HSV-2 prevalence meant the Americas had the highest overall rate. However, our estimates are highly sensitive to the core assumptions, and considerable uncertainty exists for many settings given sparse underlying data. Interpretation These neonatal herpes estimates mark the first attempt to quantify the global burden of this rare but serious condition. Better primary data collection on neonatal herpes is critically needed to reduce uncertainty and refine future estimates. This is particularly important in resource-poor settings where we may have underestimated cases. Nevertheless, these first estimates suggest development of new HSV prevention measures such as vaccines could have additional benefits beyond reducing genital ulcer disease and HSV-associated HIV transmission, through prevention of neonatal herpes. Funding World Health Organization PMID:28153513

  18. Ancient Recombination Events between Human Herpes Simplex Viruses

    PubMed Central

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.

    2017-01-01

    Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565

  19. Genital herpes.

    PubMed

    Garland, Suzanne M; Steben, Marc

    2014-10-01

    Genital herpes is a relatively common infection caused by herpes simplex virus (HSV) type one or two (HSV-1, HSV-2) respectively. It is acquired most commonly via sexual activity. More recently there has been an increase in infections due to HSV-1. Most new cases of genital HSV are not diagnosed due to HSV infections having short-lived signs and symptoms, or in many instances are asymptomatic. Hence many people infected with HSV are unaware that they have it. The risk of transmission to a partner is highest during outbreak periods, when there are visible lesions, although genital HSV can also be transmitted during asymptomatic periods. Use of condoms and antiviral medications assist in preventing transmission. Antiviral agents are effective in controlling clinical episodes, but do not eradicate infection, which remains latent for the life of a patient. Despite the surge in vaccine research, there is unfortunately no readily available preventative or therapeutic vaccine for HSV to date. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Herpes Simplex Virus: Beyond the Basics.

    PubMed

    Kobty, Magidah

    2015-01-01

    One of the most common sexually transmitted infections is the herpes simplex virus (HSV) Type 2. Although the incidence of newborn infection is not as common as in adults, approximately 1,500 neonates are diagnosed annually with HSV infection. HSV can be detrimental to the life of a newborn, with morbidity and mortality rates of up to 65 percent. This article addresses the maternal and fetal complications of HSV and the impact of HSV on the newborn along with diagnostic evaluation methods. In addition, treatment options and evidence-based practices regarding HSV are defined. Despite growing technology and medical treatment for early identification of HSV, this virus remains challenging and can deeply impact the life of an infant and his or her family. Early diagnosis, treatment, and intervention of an infant with HSV are crucial to ensure the livelihood of the newborn.

  1. [Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].

    PubMed

    Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e

    2010-06-01

    To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.

  2. Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation.

    PubMed

    Chen, Xiaoqing; Wang, Zhongxia; Yang, Ziying; Wang, Jingjing; Xu, Yunxia; Tan, Ren-Xiang; Li, Erguang

    2011-11-01

    Houttuynia cordata Thunb. is a medicinal plant widely used in folk medicine in several Asian countries. It has been reported that a water extract of H. cordata exhibits activity against herpes simplex virus (HSV) and the virus of severe acute respiratory syndrome (SARS), although the mechanisms are not fully understood yet. Previous studies have demonstrated absolute requirement of NF-κB activation for efficient replication of HSV-1 and HSV-2 and inhibition of NF-κB activation has been shown to suppress HSV infection. Here we show that a hot water extract of H. cordata (HCWE) inhibits HSV-2 infection through inhibition of NF-κB activation. The IC(50) was estimated at 50 μg/ml of lyophilized HCWE powder. At 150 and 450 μg/ml, HCWE blocked infectious HSV-2 production by more than 3 and 4 logs, respectively. The inhibitory activity was concomitant with an inhibition of NF-κB activation by HSV-2 infection. Although activation of NF-κB and Erk MAPK has been implicated for HSV replication and growth, HCWE showed no effect on HSV-2-induced Erk activation. Furthermore, we show that treatment with quercetin, quercitrin or isoquercitrin, major water extractable flavonoids from H. cordata, significantly blocked HSV-2 infection. These results together demonstrated that H. cordata blocks HSV-2 infection through inhibition of NF-κB activation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Neonatal herpes simplex virus infection: epidemiology and treatment.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. HSV-2: in pursuit of a vaccine

    PubMed Central

    Johnston, Christine; Koelle, David M.; Wald, Anna

    2011-01-01

    Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines. PMID:22133885

  5. High conservation of herpes simplex virus UL5/UL52 helicase-primase complex in the era of new antiviral therapies.

    PubMed

    Collot, Marianne; Rouard, Caroline; Brunet, Christel; Agut, Henri; Boutolleau, David; Burrel, Sonia

    2016-04-01

    The emergence of herpes simplex virus (HSV) resistance to current antiviral drugs, that all target the viral DNA polymerase, constitutes a major obstacle to antiviral treatment effectiveness of HSV infections, especially in immunocompromised patients. A novel and promising class of inhibitors of the HSV UL5/UL52 helicase-primase (HP) complex has been reported to hinder viral replication with a high potency. In this study, we describe the low natural polymorphism (interstrain identity >99.1% at both nucleotide and amino acid levels) of HSV HP complex subunits pUL5 and pUL52 among 64 HSV (32 HSV-1 and 32 HSV-2) clinical isolates, and we show that the HSV resistance profile to the first-line antiviral drug acyclovir (ACV) does not impact on the natural polymorphism of HSV HP complex. Genotypic tools and polymorphism data concerning HSV HP complex provided herein will be useful to detect drug resistance mutations in a relevant time frame when HP inhibitors (HPIs), i.e., amenamevir and pritelivir, will be available in medical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Inhibition of HSV-1 Replication by Gene Editing Strategy

    PubMed Central

    Roehm, Pamela C.; Shekarabi, Masoud; Wollebo, Hassen S.; Bellizzi, Anna; He, Lifan; Salkind, Julian; Khalili, Kamel

    2016-01-01

    HSV-1 induced illness affects greater than 85% of adults worldwide with no permanent curative therapy. We used RNA-guided CRISPR/Cas9 gene editing to specifically target for deletion of DNA sequences of the HSV-1 genome that span the region directing expression of ICP0, a key viral protein that stimulates HSV-1 gene expression and replication. We found that CRISPR/Cas9 introduced InDel mutations into exon 2 of the ICP0 gene profoundly reduced HSV-1 infectivity in permissive human cell culture models and protected permissive cells against HSV-1 infection. CRISPR/Cas9 mediated targeting ICP0 prevented HSV-1-induced disintegration of promonocytic leukemia (PML) nuclear bodies, an intracellular event critical to productive HSV-1 infection that is initiated by interaction of the ICP0 N-terminus with PML. Combined treatment of cells with CRISPR targeting ICP0 plus the immediate early viral proteins, ICP4 or ICP27, completely abrogated HSV-1 infection. We conclude that RNA-guided CRISPR/Cas9 can be used to develop a novel, specific and efficacious therapeutic and prophylactic platform for targeted viral genomic ablation to treat HSV-1 diseases. PMID:27064617

  7. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro.

    PubMed

    Bertke, Andrea S; Swanson, Sophia M; Chen, Jenny; Imai, Yumi; Kinchington, Paul R; Margolis, Todd P

    2011-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5(+) neurons and most HSV-2 LAT expression in KH10(+) neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5(+) and KH10(+) neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5(+) neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5(+) neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.

  8. Differentiation of herpes simplex virus types 1 and 2 in clinical samples by a real-time taqman PCR assay.

    PubMed

    Corey, Lawrence; Huang, Meei-Li; Selke, Stacy; Wald, Anna

    2005-07-01

    While the clinical manifestations of HSV-1 and -2 overlap, the site of CNS infection, complications, response to antivirals, frequency of antiviral resistance, and reactivation rate on mucosal surfaces varies between HSV-1 and -2. Detection of HSV DNA by PCR has been shown to be the most sensitive method for detecting HSV in clinical samples. As such, we developed a PCR-based assay to accurately distinguish HSV-1 from HSV-2. Our initial studies indicated the assay using type specific primers was slightly less efficient for detecting HSV-1 and -2 DNA than the high throughput quantitative PCR assay we utilize that employs type common primers to gB. We subsequently evaluated the type specific assay on 3,131 specimens that had HSV DNA detected in the type common PCR assay. The typing results of these specimens were compared with the monoclonal antibody staining results of culture isolates collected from the same patients at the same time, and the HSV serologic status of the patient. The typing assay accurately identified both HSV-1 and -2 with a specificity of >99.5% and was significantly more sensitive than typing by culture and subsequent monoclonal antibody assays. Complete concordance was seen between the typing assay and HSV serologic status of the patient. Dual (HSV-1 and -2) infection in clinical samples was recognized in 2.6% of clinical samples using the new typing assay. This assay, when used in combination with the type common assay, can now accurately type almost all mucosal and visceral HSV isolates by molecular techniques. Copyright (c) 2005 Wiley-Liss, Inc.

  9. Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp.

    PubMed

    Zu, Yuangang; Fu, Yujie; Wang, Wei; Wu, Nan; Liu, Wei; Kong, Yu; Schiebel, Hans-Martin; Schwarz, Günther; Schnitzler, Paul; Reichling, Jürgen

    2010-03-01

    Aqueous and ethanolic extracts of Cajanus cajan (Fabaceae) were examined in vitro for their antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The antiviral activity was determined using a plaque reduction assay. The cytotoxic concentration (CC50) as well as the inhibitory concentration (IC50) of the extracts was determined from dose-response curves. All extracts tested revealed a high antiviral activity against cell-free HSV-1 and HSV-2. The most active one was the Cajanus ethanol extract with IC50 values of 0.022 microg/ml for HSV-1 and 0.1 microg/ml for HSV-2. In order to identify the mode of antiviral action, the extracts were added to the host cells or viruses at different stages of infection. HSV-1 and HSV-2 were considerably inactivated when the viruses were pretreated with the extracts for 1 h prior to cell infection. At maximum non-cytotoxic concentrations of the extracts, plaque formation was significantly reduced by 95-99% for HSV-1 and HSV-2. In a time-dependent assay with cell-free HSV-1 over a period of 2 h, a clearly time-dependent effect was demonstrated whereby the Cajanus ethanol extract revealed a much higher activity than the Cajanus aqueous one. The results obtained indicate that the extracts affect HSV before cell adsorption, but have no effect on the intracellular virus replication. According to our findings, a therapeutic application of Cajanus ethanolic extracts containing crème or ointment as antiviral agent in recurrent HSV infection appears to be promising. Copyright (c) 2010 S. Karger AG, Basel.

  10. A5-Positive Primary Sensory Neurons Are Nonpermissive for Productive Infection with Herpes Simplex Virus 1 In Vitro▿

    PubMed Central

    Bertke, Andrea S.; Swanson, Sophia M.; Chen, Jenny; Imai, Yumi; Kinchington, Paul R.; Margolis, Todd P.

    2011-01-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5+ neurons and most HSV-2 LAT expression in KH10+ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5+ and KH10+ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5+ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5+ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes. PMID:21507969

  11. A Live-Attenuated HSV-2 ICP0 − Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    PubMed Central

    Halford, William P.; Püschel, Ringo; Gershburg, Edward; Wilber, Andrew; Gershburg, Svetlana; Rakowski, Brandon

    2011-01-01

    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0 − virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0 − virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein. PMID:21412438

  12. Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2

    PubMed Central

    Lamers, Susanna L.; Weiner, Brian; Ray, Stuart C.; Colgrove, Robert C.; Diaz, Fernando; Jing, Lichen; Wang, Kening; Saif, Sakina; Young, Sarah; Henn, Matthew; Laeyendecker, Oliver; Tobian, Aaron A. R.; Cohen, Jeffrey I.; Koelle, David M.; Quinn, Thomas C.; Knipe, David M.

    2015-01-01

    ABSTRACT Herpes simplex virus 2 (HSV-2), the principal causative agent of recurrent genital herpes, is a highly prevalent viral infection worldwide. Limited information is available on the amount of genomic DNA variation between HSV-2 strains because only two genomes have been determined, the HG52 laboratory strain and the newly sequenced SD90e low-passage-number clinical isolate strain, each from a different geographical area. In this study, we report the nearly complete genome sequences of 34 HSV-2 low-passage-number and laboratory strains, 14 of which were collected in Uganda, 1 in South Africa, 11 in the United States, and 8 in Japan. Our analyses of these genomes demonstrated remarkable sequence conservation, regardless of geographic origin, with the maximum nucleotide divergence between strains being 0.4% across the genome. In contrast, prior studies indicated that HSV-1 genomes exhibit more sequence diversity, as well as geographical clustering. Additionally, unlike HSV-1, little viral recombination between HSV-2 strains could be substantiated. These results are interpreted in light of HSV-2 evolution, epidemiology, and pathogenesis. Finally, the newly generated sequences more closely resemble the low-passage-number SD90e than HG52, supporting the use of the former as the new reference genome of HSV-2. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a causative agent of genital and neonatal herpes. Therefore, knowledge of its DNA genome and genetic variability is central to preventing and treating genital herpes. However, only two full-length HSV-2 genomes have been reported. In this study, we sequenced 34 additional HSV-2 low-passage-number and laboratory viral genomes and initiated analysis of the genetic diversity of HSV-2 strains from around the world. The analysis of these genomes will facilitate research aimed at vaccine development, diagnosis, and the evaluation of clinical manifestations and transmission of HSV-2. This information will also contribute to our understanding of HSV evolution. PMID:26018166

  13. Theaflavin-3,3′-Digallate and Lactic Acid Combinations Reduce Herpes Simplex Virus Infectivity

    PubMed Central

    Xu, Weimin

    2013-01-01

    The present study examined the efficacy of using multiple mechanisms as part of a topical microbicide to inactivate herpes simplex virus (HSV) by combining theaflavin-3,3′-digallate (TF-3) and lactic acid (LA) over the pH range of 4.0 to 5.7 to mimic conditions in the female reproductive tract. Six clinical isolates of HSV-2 and two clinical isolates of HSV-1 were almost completely inactivated when TF-3 (100 μM) was present with LA over the pH range of 4.5 to 5.7, whereas four additional HSV-1 clinical isolates required TF-3 concentrations of 250 to 500 μM for comparable virus titer reduction. LA (1%) alone at pH 4.0 reduced the titers of laboratory and clinical isolates of HSV-1 and HSV-2 by ≥5 log10, but most LA-dependent antiviral activity was lost at a pH of ≥4.5. When HSV-1 and HSV-2 were incubated at pH 4.0 without LA virus titers were not reduced. At pH 4.0, HSV-1 and HSV-2 titers were reduced 5 log10 in 20 min by LA alone. TF-3 reduced HSV-2 titers by 5 log10 in 20 to 30 min at pH 4.5, whereas HSV-1 required 60 min for comparable inactivation. Mixtures of TF-3 and LA stored at 37°C for 1 month at pH 4.0 to 5.7 maintained antiviral activity. Semen, but not cervical vaginal fluid, decreased LA-dependent antiviral activity at pH 4.0, but adding TF-3 to the mixture reduced HSV titers by 4 to 5 log10. These results indicate that a combination microbicide containing TF-3 and LA could reduce HSV transmission. PMID:23716050

  14. Survey of Navy Funded Marine Mammal Research and Studies FY 00-01

    DTIC Science & Technology

    2001-05-10

    protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to

  15. Differential Detection of Enterovirus and Herpes Simplex Virus in Cerebrospinal Fluid by Real-Time RT-PCR.

    PubMed

    Sarquiz-Martínez, Brenda; González-Bonilla, César R; Santacruz-Tinoco, Clara Esperanza; Muñoz-Medina, José E; Pardavé-Alejandre, Héctor D; Barbosa-Cabrera, Elizabeth; Ramírez-González, José Ernesto; Díaz-Quiñonez, José Alberto

    2017-01-01

    Enterovirus (EV) and herpes simplex virus 1 and 2 (HSV1 and HSV2) are the main etiologic agents of central nervous system infections. Early laboratory confirmation of these infections is performed by viral culture of the cerebrospinal fluid (CSF), or the detection of specific antibodies in serum (e.g., HSV). The sensitivity of viral culture ranges from 65 to 75%, with a recovery time varying from 3 to 10 days. Serological tests are faster and easy to carry out, but they exhibit cross-reactivity between HSV1 and HSV2. Although molecular techniques are more sensitive (sensitivity >95%), they are more expensive and highly susceptible to cross-contamination. A real-time RT-PCR for the detection of EV, HSV1, and HSV2 was compared with end-point nested PCR. We tested 87 CSF samples of patients with a clinical diagnosis of viral meningitis or encephalitis. Fourteen samples were found to be positive by RT-PCR, but only 8 were positive by end-point PCR. The RT-PCR showed a specificity range of 94-100%, the negative predictive value was 100%, and the positive predictive value was 62, 100, and 28% for HSV1, HSV2, and EV, respectively. Real-time RT-PCR detected EV, HSV1, and HSV2 with a higher sensitivity and specificity than end-point nested RT-PCR. © 2017 S. Karger AG, Basel.

  16. Assessment of IgG Antibodies Against HSV1, HSV2, CMV and EBV in Patients with Pemphigus Vulgaris Versus Healthy People.

    PubMed

    Ghalayani, Parichehr; Rashidi, Fateme; Saberi, Zahra

    2015-11-01

    Regarding the implication of viruses particularly herpes in pemphigus vulgaris, we sought to assess and compare the level of immunoglobulin G (IgG) antibodies against herpes simplex virus types 1 and 2 (HSV1 and HSV2), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in patients with pemphigus vulgaris and healthy people. In this cross-sectional study, 25 patients with pemphigus vulgaris and 27 healthy individuals comprised the experimental and control groups, respectively. Serum samples were taken from both groups; the levels of IgG antibodies against HSV1, HSV2, CMV and EBV were measured using ELISA. Immunoglobulin G titer was higher for all four viruses in the patient group in comparison to the control group. This difference was significant for anti-EBV (P= 0.005), anti-CMV (P=0.0001) and anti-HSV2 (P=0.001) but not significant for anti-HSV1 (P= 0.36). Viruses including EBV, CMV, and HSV2 probably play a role in the pathogenesis of pemphigus in addition to the effects of genetics, toxins and other predisposing factors. In this study, no statistically significant relationship was observed between HSV1 and pemphigus vulgaris, which was probably due to the high titer of anti-HSV1 IgG in healthy individuals in the community. More studies must be done in this regard.

  17. Patterns of herpes simplex virus shedding over 1 month and the impact of acyclovir and HIV in HSV-2-seropositive women in Tanzania

    PubMed Central

    Weiss, Helen A; LeGoff, Jerome; Changalucha, John; Clayton, Tim C; Ross, David A; Belec, Laurent; Hayes, Richard J; Watson-Jones, Deborah

    2011-01-01

    Objectives Few studies have examined the frequency and duration of genital herpes simplex virus (HSV) shedding in sub-Saharan Africa. This study describes HSV shedding patterns among a sample of HSV-2-seropositive women enrolled in a placebo-controlled trial of HSV suppressive therapy (acyclovir 400 mg twice a day) in Tanzania. Methods Trial participants were invited to participate in a substudy involving 12 clinic visits over 4 weeks. At each visit, cervical, vaginal and external skin swabs were taken and analysed for HSV DNA using inhouse real-time PCR. Results HSV shedding was mainly subclinical (90%; 57/63 shedding days in the placebo arm). The most frequent shedding site was the external skin, but HSV DNA was detected from all three sites on 42% (27/63) of shedding days. In HIV-negative women, HSV DNA was detected on 3% (9/275) of days in the acyclovir versus 11% (33/309) in the placebo arm, while in HIV-positive women, detection was on 14% (23/160) versus 19% (30/155) of days, respectively. Conclusions HSV shedding was common, varying greatly by individual. Shedding rates were similar to studies in African and non-African settings. Among HIV-negative women, shedding rates were lower in the acyclovir arm; however, acyclovir did not substantially impact on HSV shedding in HIV-positive women. PMID:21653932

  18. Intratypic variability of a tandem repeat locus within the DNA polymerase gene of human herpes simplex virus type 2.

    PubMed

    Sun, Yongjiang; Chan, Roy Kum Wah; Tan, Suat Hoon

    2004-01-01

    In this study, the irntratypic variability of a tandem repeat locus within the DNA polymerase (pol) gene of human herpes simplex virus type 2 (HSV2) was uncovered. The locus contained variable numbers of tandem dodecanucleotide (5'-GAC GAG GAC GGG-3') repetitive units. Our result showed that approximately 95% of analyzed HSV2 clinical isolates and the current GenBank HSV2 strains contained two copies of the repetitive units. From genital herpes specimens, three new HSV2 strains, which respectively contained 1, 3, and 4 copies of the repetitive units, were identified. This variable number of tandem repeat (VNTR) locus is absent in HSV1, and thus it also contributes to the intertypic variability of HSV1 and HSV2. The intratypic variability of the locus may be useful for HSV2 strain genotyping and this application is discussed.

  19. [Natural history of HSV1 and HSV2 infection. Asymptomatic viral excretion. Mother-infant transmission. Indirect transmission].

    PubMed

    Morand, P

    2002-04-01

    Recurrent asymptomatic viral shedding accounts for most of the oral, sexual and neonatal transmissions of herpes simplex infections (HSV). In immunocompetent individuals asymptomatic shedding, as determined by culture, occurs during 2-8p.100 of days, and more for persons with HIV infection or if measured by PCR. Antiviral therapy dramatically decrease but does not eliminate asymptomatic shedding. The main risk of HSV transmission to the neonate is during vaginal delivery from infected asymptomatic mothers who acquire HSV genital infection late in pregnancy. Because the survival of HSV out of the oral-genital secretions is weak, indirect and/or nosocomial transmisions of HSV are very rare and should be controlled by common-sense precautions. The prevention of the acquisition of genital or neonatal HSV infection is a challenge because it is based on the understanding and the control of asymptomatic shedding.

  20. Autophagy interaction with herpes simplex virus type-1 infection

    PubMed Central

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  1. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  3. CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8+ TEM and CD8+ TRM Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Chilukuri, Sravya; Syed, Sabrina A; Tran, Tien T; Furness, Julie; Bahraoui, Elmostafa; BenMohamed, Lbachir

    2017-07-15

    Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8 + T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8 + T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8 + T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3 + CD8 + T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10 -/- or CXCR3 -/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10 -/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8 + T cells (T EM ) and tissue-resident memory CD8 + T cells (T RM ), but not of central memory CD8 + T cells (T CM ), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10 -/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8 + T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease. IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8 + T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8 + T EM and CD8 + T RM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8 + T EM and CD8 + T RM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel "prime/pull" therapeutic ocular herpes vaccine strategy is proposed and discussed. Copyright © 2017 American Society for Microbiology.

  4. Herpes encephalitis is a disease of middle aged and elderly people: polymerase chain reaction for detection of herpes simplex virus in the CSF of 516 patients with encephalitis. The Study Group.

    PubMed

    Koskiniemi, M; Piiparinen, H; Mannonen, L; Rantalaiho, T; Vaheri, A

    1996-02-01

    To assess the diagnostic potential of the polymerase chain reaction (PCR) in herpes simplex virus (HSV) encephalitis. Samples of CSF from 516 patients with encephalitis were studied for HSV-DNA by PCR. Samples taken one to 29 days from the onset of symptoms from 38 patients (7.4%) were positive, 32 (6.2%) for HSV-1 and six (1.2%) for HSV-2. At follow up, eight of 28 patients studied were still HSV-PCR positive. A diagnostic serum:CSF antibody ratio to HSV but not to other viruses was detected in 25 of the 38 HSV-PCR positive patients thus supporting the initial PCR findings. Patients positive by HSV-PCR were concentrated in the age group > or = 40 years, and especially in patients aged 60-64 years, of whom nine of 24 (37.5%) were positive. The HSV-PCR was negative in all other patients with encephalitis of known or unknown aetiology. This group included 34 patients with a diagnostic serum:CSF antibody ratio to other viruses. A dual infection, HSV and another microbe, was considered possible in seven patients. The HSV-PCR is a rapid and useful diagnostic method during the early phase of encephalitis. It may be useful in monitoring the efficacy of treatment and allowing the recognition of new features in the appearance of herpes encephalitis. The HSV-PCR test and antibody determinations from serum and CSF are complementary methods, which should both be applied in pursuit of clinical laboratory diagnosis of these conditions.

  5. Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis.

    PubMed

    Borderie, Vincent M; Gineys, Raquel; Goldschmidt, Pablo; Batellier, Laurence; Laroche, Laurent; Chaumeil, Christine

    2012-11-01

    To assess the clinical relevance of tear anti-herpes simplex virus (HSV) antibody measurement for the diagnosis of herpes simplex keratitis. Records of 364 patients clinically suspect of HSV-related keratitis who had tear anti-HSV IgG assessment (tear-quantified anti-HSV IgG/filtrated IgG ratio) in our institution between January 2000 and August 2008 were retrospectively analyzed. Patients were classified into 4 groups as follows: group 1, anti-HSV IgG negative in serum and tears; group 2, anti-HSV IgG negative in tears and positive in serum; group 3, anti-HSV IgG nonsignificantly positive in tears and positive in serum; and group 4, anti-HSV IgG significantly positive in serum and tears. Randomly selected patient charts from each group were reviewed for clinical data. The prevalence of anti-HSV IgG in blood increased with age from >70% before 20 years to 95% after 70 years. The prevalence of anti-HSV IgG in tears increased with age from 20% before 20 years to >50% after 70 years. The presence (either significant or not) of anti-HSV IgG in tears was significantly associated with decreased corneal sensation, presence of stromal opacities, and with neurotrophic keratitis. Logistic regression showed no significant association between age and clinical signs except for herpetic ulcers and herpetic necrotizing keratitis. Tear production of anti-HSV IgG increases with age, and it is associated with sequelae of herpes simplex keratitis. Conversely, it is poorly associated with clinical signs of acute herpes simplex keratitis.

  6. The frequency of herpes simplex virus changes in anal Pap smear and its association with squamous intraepithelial lesions in high-risk male patients.

    PubMed

    Greebon, Leslie J; Avery, Diane L; Prihoda, Thomas J; Valente, Philip T; Policarpio-Nicolas, Maria Luisa C

    2014-06-01

    While there are studies postulating a model of synergism between human papillomavirus (HPV) and herpes simplex virus (HSV) in cervical carcinogenesis, the frequency of anal herpes as well as its association with anal squamous intraepithelial lesions (ASILs) has been understudied in men. This study evaluates the frequency of HSV changes in anal Pap smears and its association with ASILs in a high-risk population. A computerized search for specimens associated with anal cytology that had positive findings of HSV was performed. The electronic medical records were examined for past diagnosis of herpes, HSV serology prior to or after cytology, and if the patient received treatment after cytologic diagnosis of HSV. Of the 470 anal Pap smears (Thin-prep) examined, seven had cellular changes consistent with HSV infection. All patients were asymptomatic human immunodeficiency virus (HIV) positive males with no prior HSV serology tests. Two patients had prior diagnoses of HSV infection. Cytologic abnormalities were identified in 86% ranging from atypical squamous cells of undetermined significance to high grade squamous intraepithelial lesion. Three patients were treated after the HSV cytologic diagnosis. The frequency of HSV changes in anal Pap smear is low (1.48%), but the presence of concomitant cytologic abnormalities is high (86%). While our findings suggest the possible role of HSV as a HPV co-factor in ASILs, larger studies are needed to support this. Identification of HSV infection on anal Pap smear is important for institution of patient treatment and subsequent reduction of transmission. Copyright © 2014 Wiley Periodicals, Inc.

  7. Herpes simplex virus type 2 (HSV-2) genital shedding in HSV-2-/HIV-1-co-infected women receiving effective combination antiretroviral therapy.

    PubMed

    Péré, Héléne; Rascanu, Aida; LeGoff, Jérome; Matta, Mathieu; Bois, Frédéric; Lortholary, Olivier; Leroy, Valériane; Launay, Odile; Bélec, Laurent

    2016-03-01

    The dynamics of genital shedding of HSV-2 DNA was assessed in HIV-1-infected women taking combination antiretroviral therapy (cART). HIV-1 RNA, HIV-1 DNA and HSV DNA loads were measured during 12-18 months using frozen plasma, PBMC and cervicovaginal lavage samples from 22 HIV-1-infected women, including 17 women naive for antiretroviral therapy initiating cART and 5 women with virological failure switching to a new regimen. Nineteen (86%) women were HSV-2-seropositive. Among HSV-2-/HIV-1-co-infected women, HIV-1 RNA loads showed a rapid fall from baseline after one month of cART, in parallel in paired plasma and cervicovaginal secretions. In contrast, HIV-1 DNA loads did not show significant variations from baseline up to 18 months of treatment in both systemic and genital compartments. HSV DNA was detected at least once in 12 (63%) of 19 women during follow up: HSV-2 shedding in the genital compartment was observed in 11% of cervicovaginal samples at baseline and in 16% after initiating or switching cART. Cervicovaginal HIV-1 RNA loads were strongly associated with plasma HIV-1 RNA loads over time, but not with cervicovaginal HSV DNA loads. Reactivation of genital HSV-2 replication frequently occurred despite effective cART in HSV-2-/HIV-1-co-infected women. Genital HSV-2 replication under cART does not influence cervicovaginal HIV-1 RNA or DNA shedding. © The Author(s) 2015.

  8. More About Vector Adaptive/Predictive Coding Of Speech

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Gersho, Allen

    1992-01-01

    Report presents additional information about digital speech-encoding and -decoding system described in "Vector Adaptive/Predictive Encoding of Speech" (NPO-17230). Summarizes development of vector adaptive/predictive coding (VAPC) system and describes basic functions of algorithm. Describes refinements introduced enabling receiver to cope with errors. VAPC algorithm implemented in integrated-circuit coding/decoding processors (codecs). VAPC and other codecs tested under variety of operating conditions. Tests designed to reveal effects of various background quiet and noisy environments and of poor telephone equipment. VAPC found competitive with and, in some respects, superior to other 4.8-kb/s codecs and other codecs of similar complexity.

  9. Population-level effect of potential HSV2 prophylactic vaccines on HIV incidence in sub-Saharan Africa

    PubMed Central

    Freeman, Esther E.; White, Richard G.; Bakker, Roel; Orroth, Kate K.; Weiss, Helen A.; Buvé, Anne; Hayes, Richard J.; Glynn, Judith R.

    2009-01-01

    Herpes simplex virus type-2 (HSV2) infection increases HIV transmission. We explore the impact of a potential prophylactic HSV2 vaccination on HIV incidence in Africa using STDSIM an individual-based model. A campaign that achieved 70% coverage over 5 years with a vaccine that reduced susceptibility to HSV2 acquisition and HSV2 reactivation by 75% for 10 years, reduced HIV incidence by 30–40% after 20 years (range 4–66%). Over 20 years, in most scenarios fewer than 100 vaccinations were required to avert one HIV infection. HSV2 vaccines could have a substantial impact on HIV incidence. Intensified efforts are needed to develop an effective HSV2 vaccine. PMID:19071187

  10. Population-level effect of potential HSV2 prophylactic vaccines on HIV incidence in sub-Saharan Africa.

    PubMed

    Freeman, Esther E; White, Richard G; Bakker, Roel; Orroth, Kate K; Weiss, Helen A; Buvé, Anne; Hayes, Richard J; Glynn, Judith R

    2009-02-05

    Herpes simplex virus type-2 (HSV2) infection increases HIV transmission. We explore the impact of a potential prophylactic HSV2 vaccination on HIV incidence in Africa using STDSIM an individual-based model. A campaign that achieved 70% coverage over 5 years with a vaccine that reduced susceptibility to HSV2 acquisition and HSV2 reactivation by 75% for 10 years, reduced HIV incidence by 30-40% after 20 years (range 4-66%). Over 20 years, in most scenarios fewer than 100 vaccinations were required to avert one HIV infection. HSV2 vaccines could have a substantial impact on HIV incidence. Intensified efforts are needed to develop an effective HSV2 vaccine.

  11. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments

    PubMed Central

    McRose, Darcy L.; Zhang, Xinning; Kraepiel, Anne M. L.; Morel, François M. M.

    2017-01-01

    The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient ‘canonical’ Mo-nitrogenase, whereas Fe-only and V-(‘alternative’) nitrogenases are often considered ‘backup’ enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation. PMID:28293220

  12. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments.

    PubMed

    McRose, Darcy L; Zhang, Xinning; Kraepiel, Anne M L; Morel, François M M

    2017-01-01

    The nitrogenase enzyme, which catalyzes the reduction of N 2 gas to NH 4 + , occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical ( nifD ) and alternative ( anfD and vnfD ) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation.

  13. [Efficacy of HSV-tk/GCV system on human laryngeal squamous cell cancer in vitro].

    PubMed

    Ding, Xiu-yong; Qin, Yong; Li, Fu-ying; Cong, Tie-chuan

    2006-05-01

    Efficacy of HSV-tk/GCV system antitumor effects was assessed on human laryngeal cancer cell line Hep-2 in vitro. To assess the HSV-tk/CGV system whether has an antitumour effect on human laryngeal squamous cell cancer Hep-2 in vitro. The mechanisms of cytotoxity were also assessed. Hep-2 cells were transfected with HSV-tk gene by lipofection. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the HSV-tk gene expression. MTT was utilized to test for the cytotoxicity of this system. The cell-circle arrest and apoptosis were analyzed by flowcytometry assay. HSV-tk gene transfected cells demonstrated obvious cytoreductivity followed by ganciclovir (GCV) administration and this cytoreductivity showed partial GCV dose-independent. HSV-tk gene transfected cells demonstrated obvious s-phase arrest, no apoptosis and necrosis occurred. The HSV-tk/GCV system can inhabit the growth of Hep-2 cells effectively. S-phase arrest perhaps is the main reason that leads to the cell inhibition in our study. HSV-tk/GCV system has potential antitumor effects for the future clinical practice.

  14. Ancient Recombination Events between Human Herpes Simplex Viruses.

    PubMed

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2017-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Current thinking on genital herpes.

    PubMed

    Hofstetter, Annika M; Rosenthal, Susan L; Stanberry, Lawrence R

    2014-02-01

    Genital herpes has a high global prevalence and burden of disease. This manuscript highlights recent advances in our understanding of genital herpes simplex virus (HSV) infections. Studies demonstrate a changing epidemiological landscape with an increasing proportion of genital herpes cases associated with HSV type 1. There is also growing evidence that the majority of infected individuals exhibit frequent, brief shedding episodes that are most often asymptomatic, which likely contribute to high HSV transmission rates. Given this finding as well as readily available serological assays, some have proposed that routine HSV screening be performed; however, this remains controversial and is not currently recommended. Host immune responses, particularly local CD4 and CD8 T cell activity, are crucial for HSV control and clearance following initial infection, during latency and after reactivation. Prior HSV immunity may also afford partial protection against HSV reinfection and disease. Although HSV vaccine trials have been disappointing to date and existing antiviral medications are limited, novel prophylactic and therapeutic modalities are currently in development. Although much remains unknown about genital herpes, improved knowledge of HSV epidemiology, pathogenesis and host immunity may help guide new strategies for disease prevention and control.

  16. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture.

    PubMed

    Croen, K D; Ostrove, J M; Dragovic, L; Straus, S E

    1991-01-01

    The ability of herpes simplex virus type 2 (HSV-2) to establish latency in and reactivate from sacral dorsal root sensory ganglia is the basis for recurrent genital herpes. The expression of HSV-2 genes in latently infected human sacral ganglia was investigated by in situ hybridization. Hybridizations with a probe from the long repeat region of HSV-2 revealed strong nuclear signals overlying neurons in sacral ganglia from five of nine individuals. The RNA detected overlaps with the transcript for infected cell protein O but in the opposite, or "anti-sense," orientation. These observations mimic those made previously with HSV-1 in human trigeminal ganglia and confirm the recent findings during latency in HSV-2-infected mice and guinea pigs. Northern hybridization of RNA from infected Vero cells showed that an HSV-2 latency-associated transcript was similar in size to the larger (1.85 kb) latency transcript of HSV-1. Thus, HSV-1 and HSV-2 latency in human sensory ganglia are similar, if not identical, in terms of their cellular localization and pattern of transcription.

  17. Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy.

    PubMed

    Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan

    2013-10-10

    Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.

  18. Clinical evaluation of a helicase-dependant amplification (HDA)-based commercial assay for the simultaneous detection of HSV-1 and HSV-2.

    PubMed

    Teo, Jeanette W P; Chiang, Donald; Jureen, Roland; Lin, Raymond T P

    2015-11-01

    In this study, we evaluate the performance of a commercial assay, the AmpliVue HSV 1+2 Assay (Quidel), which employs HDA for the detection of both HSV-1 and HSV-2. The assay was tested on 307 clinical specimens (genital, oral, and dermal). When compared to shell vial virus culture and immunofluorescence typing of HSV, the positive percent agreement and negative percent agreement values were 98.2% and 90.9%, respectively. Excellent assay performance was demonstrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Herpes simplex encephalitis : from virus to therapy.

    PubMed

    Rozenberg, Flore; Deback, Claire; Agut, Henri

    2011-06-01

    Herpes simplex virus (HSV) is the cause of herpes simplex encephalitis (HSE), a devastating human disease which occurs in 2-4 cases per million/year. HSE results either from a primary infection or virus reactivation, in accordance with the common pattern of HSV infection which is a chronic lifelong process. However its pathophysiology remains largely unknown and its poor prognosis is in contrast with the usually good tolerance of most clinical herpetic manifestations. HSE is due to HSV type 1 (HSV-1) in most cases but HSV type 2 (HSV-2) may be also implicated, especially in infants in the context of neonatal herpes. Polymerase chain reaction detection of HSV DNA in cerebrospinal fluid is the diagnosis of choice for HSE. Acyclovir, a nucleoside analogue which inhibits viral DNA polymerase activity, is the reference treatment of HSE while foscarnet constitutes an alternative therapy and the efficacy of cidofovir is currently uncertain in that context. The emergence of HSV resistance to acyclovir, a phenomenon which is mainly observed among immunocompromised patients, is a current concern although no case of HSE due to an acyclovir-resistant HSV strain has been reported to date. Nevertheless the identification and development of novel therapeutic strategies against HSV appears to be a non dispensable objective for future research in virology.

  20. Guidance on management of asymptomatic neonates born to women with active genital herpes lesions.

    PubMed

    Kimberlin, David W; Baley, Jill

    2013-02-01

    Herpes simplex virus (HSV) infection of the neonate is uncommon, but genital herpes infections in adults are very common. Thus, although treating an infant with neonatal herpes is a relatively rare occurrence, managing infants potentially exposed to HSV at the time of delivery occurs more frequently. The risk of transmitting HSV to an infant during delivery is determined in part by the mother's previous immunity to HSV. Women with primary genital HSV infections who are shedding HSV at delivery are 10 to 30 times more likely to transmit the virus to their newborn infants than are women with recurrent HSV infection who are shedding virus at delivery. With the availability of commercial serological tests that reliably can distinguish type-specific HSV antibodies, it is now possible to determine the type of maternal infection and, thus, further refine management of infants delivered to women who have active genital HSV lesions. The management algorithm presented herein uses both serological and virological studies to determine the risk of HSV transmission to the neonate who is delivered to a mother with active herpetic genital lesions and tailors management accordingly. The algorithm does not address the approach to asymptomatic neonates delivered to women with a history of genital herpes but no active lesions at delivery.

  1. Guidance on Management of Asymptomatic Neonates Born to Women With Active Genital Herpes Lesions

    PubMed Central

    Kimberlin, David W.; Baley, Jill; Brady, Michael T.; Byington, Carrie L.; Davies, H. Dele; Edwards, Kathryn M.; Glode, Mary P.; Jackson, Mary Anne; Keyserling, Harry L.; Maldonado, Yvonne A.; Murray, Dennis L.; Orenstein, Walter A.; Schutze, Gordon E.; Willoughby, Rodney E.; Zaoutis, Theoklis E.; Papile, Lu-Ann; Bhutani, Vinod K.; Carlo, Waldemar A.; Cummings, James; Kumar, Praveen; Polin, Richard A.; Tan, Rosemarie C.; Wang, Kasper S.; Watterberg, Kristi L.

    2013-01-01

    Herpes simplex virus (HSV) infection of the neonate is uncommon, but genital herpes infections in adults are very common. Thus, although treating an infant with neonatal herpes is a relatively rare occurrence, managing infants potentially exposed to HSV at the time of delivery occurs more frequently. The risk of transmitting HSV to an infant during delivery is determined in part by the mother’s previous immunity to HSV. Women with primary genital HSV infections who are shedding HSV at delivery are 10 to 30 times more likely to transmit the virus to their newborn infants than are women with recurrent HSV infection who are shedding virus at delivery. With the availability of commercial serological tests that reliably can distinguish type-specific HSV antibodies, it is now possible to determine the type of maternal infection and, thus, further refine management of infants delivered to women who have active genital HSV lesions. The management algorithm presented herein uses both serological and virological studies to determine the risk of HSV transmission to the neonate who is delivered to a mother with active herpetic genital lesions and tailors management accordingly. The algorithm does not address the approach to asymptomatic neonates delivered to women with a history of genital herpes but no active lesions at delivery. PMID:23359576

  2. Encoding the local connectivity patterns of fMRI for cognitive task and state classification.

    PubMed

    Onal Ertugrul, Itir; Ozay, Mete; Yarman Vural, Fatos T

    2018-06-15

    In this work, we propose a novel framework to encode the local connectivity patterns of brain, using Fisher vectors (FV), vector of locally aggregated descriptors (VLAD) and bag-of-words (BoW) methods. We first obtain local descriptors, called mesh arc descriptors (MADs) from fMRI data, by forming local meshes around anatomical regions, and estimating their relationship within a neighborhood. Then, we extract a dictionary of relationships, called brain connectivity dictionary by fitting a generative Gaussian mixture model (GMM) to a set of MADs, and selecting codewords at the mean of each component of the mixture. Codewords represent connectivity patterns among anatomical regions. We also encode MADs by VLAD and BoW methods using k-Means clustering. We classify cognitive tasks using the Human Connectome Project (HCP) task fMRI dataset and cognitive states using the Emotional Memory Retrieval (EMR). We train support vector machines (SVMs) using the encoded MADs. Results demonstrate that, FV encoding of MADs can be successfully employed for classification of cognitive tasks, and outperform VLAD and BoW representations. Moreover, we identify the significant Gaussians in mixture models by computing energy of their corresponding FV parts, and analyze their effect on classification accuracy. Finally, we suggest a new method to visualize the codewords of the learned brain connectivity dictionary.

  3. The Long and Winding Road: From the High-Affinity Choline Uptake Site to Clinical Trials for Malignant Brain Tumors.

    PubMed

    Lowenstein, P R; Castro, M G

    2016-01-01

    Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing. © 2016 Elsevier Inc. All rights reserved.

  4. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals.

    PubMed

    Thakur, Vikram; Gonzalez, Mayra; Pennington, Kristen; Chattopadhyay, Munmun

    2016-04-01

    Painful diabetic neuropathy is a common and difficult to treat complication of diabetes. A growing body of evidence implicates the role of inflammatory mediators in the damage to the peripheral axons and in the pathogenesis of neuropathic pain. Increased expression of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the peripheral nervous system suggests the possibility of change in pain perception in diabetes. In this study we investigated that continuous delivery of IL10 in the nerve fibers achieved by HSV vector mediated transduction of dorsal root ganglion (DRG) in animals with Type 1 diabetes, blocks the nociceptive and stress responses in the DRG neurons by reducing IL1β expression along with inhibition of phosphorylation of p38 MAPK (mitogen-activated protein kinase) and protein kinase C (PKC). The continuous expression of IL10 also alters Toll like receptor (TLR)-4 expression in the DRG with increased expression of heat shock protein (HSP)-70 in conjunction with the reduction of pain. Taken together, this study suggests that macrophage activation in the peripheral nervous system may be involved in the pathogenesis of pain in Type 1 diabetes and therapeutic benefits of HSV mediated local expression of IL10 in the DRG with the reduction of a number of proinflammatory cytokines, subsequently inhibits the development of painful neuropathy along with a decrease in stress associated markers in the DRG. This basic and preclinical study provides an important evidence for a novel treatment strategy that could lead to a clinical trial for what is currently a treatment resistant complication of diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Assessment of IgG Antibodies Against HSV1, HSV2, CMV and EBV in Patients with Pemphigus Vulgaris Versus Healthy People

    PubMed Central

    Ghalayani, Parichehr; Rashidi, Fateme; Saberi, Zahra

    2015-01-01

    Objectives: Regarding the implication of viruses particularly herpes in pemphigus vulgaris, we sought to assess and compare the level of immunoglobulin G (IgG) antibodies against herpes simplex virus types 1 and 2 (HSV1 and HSV2), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in patients with pemphigus vulgaris and healthy people. Materials and Methods: In this cross-sectional study, 25 patients with pemphigus vulgaris and 27 healthy individuals comprised the experimental and control groups, respectively. Serum samples were taken from both groups; the levels of IgG antibodies against HSV1, HSV2, CMV and EBV were measured using ELISA. Results: Immunoglobulin G titer was higher for all four viruses in the patient group in comparison to the control group. This difference was significant for anti-EBV (P= 0.005), anti-CMV (P=0.0001) and anti-HSV2 (P=0.001) but not significant for anti-HSV1 (P= 0.36). Conclusion: Viruses including EBV, CMV, and HSV2 probably play a role in the pathogenesis of pemphigus in addition to the effects of genetics, toxins and other predisposing factors. In this study, no statistically significant relationship was observed between HSV1 and pemphigus vulgaris, which was probably due to the high titer of anti-HSV1 IgG in healthy individuals in the community. More studies must be done in this regard. PMID:27507994

  6. QSAR and molecular graphics analysis of N2-phenylguanines as inhibitors of herpes simplex virus thymidine kinases.

    PubMed

    Gaudio, A C; Richards, W G; Takahata, Y

    2000-02-01

    A quantitative structure-activity relationship study of N2-(substituted)-phenylguanines (PHG) as inhibitors of herpes simplex virus thymidine kinase (HSV TK) was performed. The activity of a set of PHG derivatives were analyzed against the thymidine kinase of herpes simplex virus types 1 (HSV1 TK) and 2 (HSV2 TK). Classic and calculated physicochemical parameters were included in the analysis. The results showed that there is an important difference in the activity of the meta substituted PHG derivatives against HSV1 TK and HSV2 TK. The activity of the meta derivatives against HSV2 TK is influenced by a steric effect, which is not observed against HSV1 TK. The superposition of the three-dimensional structures of the active sites of HSV1 TK (crystal structure) and HSV2 TK (homology model) revealed that the amino acid Ile97 is located near the meta position in the HSV1 TK active site, whereas the amino acid Leu97 is located near the meta position in the HSV2 TK active site. This single difference in the active sites of both enzymes can explain the source of the steric effect and serves as an indication that our previously proposed binding mode for the PHG derivatives is plausible. However, another observed mutation in the active site region, Ala168 by Ser168, suggests that an alternative binding mode, similar to that of ganciclovir, could be possible.

  7. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A conserved carboxy-terminal domain in the major tegument structural protein VP22 facilitates virion packaging of a chimeric protein during productive herpes simplex virus 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, Elisabeth F.M.; Blaho, John A., E-mail: john.blaho@mssm.ed

    2009-05-10

    Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least amore » portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.« less

  9. Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    DTIC Science & Technology

    2006-06-01

    21. Geisbert TW, Hensley LE , Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  10. Infant Deaths Due To Herpes Simplex Virus, Congenital Syphilis, and HIV in New York City.

    PubMed

    Sampath, Amitha; Maduro, Gil; Schillinger, Julia A

    2016-04-01

    Neonatal infection with herpes simplex virus (HSV) is not a nationally reportable disease; there have been few population-based measures of HSV-related infant mortality. We describe infant death rates due to neonatal HSV as compared with congenital syphilis (CS) and HIV, 2 reportable, perinatally transmitted diseases, in New York City from 1981 to 2013. We identified neonatal HSV-, CS-, and HIV-related deaths using International Classification of Diseases (ICD) codes listed on certificates of death or stillbirth issued in New York City. Deaths were classified as HSV-related if certificates listed (1) any HSV ICD-9/ICD-10 codes for deaths ≤42 days of age, (2) any HSV ICD-9/ICD-10 codes and an ICD code for perinatal infection for deaths at 43 to 365 days of age, or (3) an ICD-10 code for congenital HSV. CS- and HIV-related deaths were those listing any ICD code for syphilis or HIV. There were 34 deaths due to neonatal HSV (0.82 deaths per 100 000 live births), 38 from CS (0.92 per 100 000), and 262 from HIV (6.33 per 100 000). There were no CS-related deaths after 1996, and only 1 HIV-related infant death after 2004. The neonatal HSV-related death rate during the most recent decade (2004-2013) was significantly higher than in previous years. The increasing neonatal HSV-related death rate may reflect increases in neonatal herpes incidence; an increasing number of pregnant women have never had HSV type 1 and are therefore at risk of acquiring infection during pregnancy and transmitting to their infant. Copyright © 2016 by the American Academy of Pediatrics.

  11. The Anti-Human Immunodeficiency Virus Drug Tenofovir, a Reverse Transcriptase Inhibitor, Also Targets the Herpes Simplex Virus DNA Polymerase.

    PubMed

    Andrei, Graciela; Gillemot, Sarah; Topalis, Dimitrios; Snoeck, Robert

    2018-02-14

    Genital herpes is an important cofactor for acquisition of human immunodeficiency virus (HIV) infection, and effective prophylaxis is a helpful strategy to halt both HIV and herpes simplex virus (HSV) transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV type 2 (HSV-2) acquisition. HSV type 1 (HSV-1) and HSV-2 mutants were selected for resistance to tenofovir and PMEO-DAPy (6-phosphonylmethoxyethoxy-2,4-diaminopyrimidine, an acyclic nucleoside phosphonate with dual anti-HSV and anti-HIV activity) by stepwise dose escalation. Several plaque-purified viruses were characterized phenotypically (drug resistance profiling) and genotypically (sequencing of the viral DNA polymerase gene). Tenofovir resistant and PMEO-DAPy-resistant viruses harbored specific amino acid substitutions associated with resistance not only to tenofovir and PMEO-DAPy but also to acyclovir and foscarnet. These amino acid changes (A719V, S724N, and L802F [HSV-1] and M789T and A724V [HSV-2]) were also found in clinical isolates recovered from patients refractory to acyclovir and/or foscarnet therapy or in laboratory-derived strains. A total of 10 (HSV-1) and 18 (HSV-2) well-characterized DNA polymerase mutants had decreased susceptibility to tenofovir and PMEO-DAPy. Tenofovir and PMEO-DAPy target the HSV DNA polymerase, and clinical isolates with DNA polymerase mutations emerging under acyclovir and/or foscarnet therapy showed cross-resistance to tenofovir and PMEO-DAPy. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Prolonged detection of herpes simplex virus type 2 (HSV-2) DNA in cerebrospinal fluid despite antiviral therapy in a patient with HSV-2-associated radiculitis.

    PubMed

    Ganzenmueller, Tina; Karaguelle, Deniz; Schmitt, Corinna; Puppe, Wolfram; Stachan-Kunstyr, Rita; Bronzlik, Paul; Sauerbrei, Andreas; Wegner, Florian; Heim, Albert

    2012-01-01

    Herpes simplex virus type 2 (HSV-2) can cause radiculo-myelitis as a neurological manifestation. We report a case of ongoing HSV-2 DNA positivity in the cerebrospinal fluid (CSF) of at least eight weeks under antiviral therapy with acyclovir in a highly immunocompromised hemato-oncologic patient with HSV-2-associated radiculitis. Upon admission, the patient presented with pain, leg paresis, and urinary incontinence, as well as pleocytosis in the CSF. Quantitative real-time PCR of the CSF at day 3 after admission revealed HSV-2 with a concentration of 2.0×10(5) copies/ml and treatment with acyclovir intravenously and prednisolone by mouth was started. Clinical symptoms resolved almost completely after approximately 3 weeks of antiviral therapy. However, CSF samples of day 12, 19, 26, 33, 39, 48 and 54 after admission showed a slow decline of HSV-2 DNA concentrations. HSV-2 DNA was still detectable (1.6×10(4) copies/ml) at day 54 after admission. Genotypic resistance testing showed, as far as available, no mutations indicative for acyclovir resistance. Since an increasing specific antibody index for HSV was observed, we speculate that the prolonged detectability of HSV-2 DNA in the CSF might not necessarily indicate ongoing viral replication but neutralized virus. Other hypotheses and the consequences on treatment are discussed. To our knowledge this is the first report about the long-term viral load kinetics of HSV-2 in the CSF of a patient with radiculitis under antiviral therapy, highlighting the need for further studies on HSV DNA kinetics in the CSF and their significance for an appropriate antiviral treatment.

  13. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    PubMed

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Genital Herpes Simplex Virus Type 2 Shedding Among Adults With and Without HIV Infection in Uganda

    PubMed Central

    Phipps, Warren; Nakku-Joloba, Edith; Krantz, Elizabeth M.; Selke, Stacy; Huang, Meei-Li; Kambugu, Fred; Orem, Jackson; Casper, Corey; Corey, Lawrence; Wald, Anna

    2016-01-01

    Background. Despite the high prevalence of herpes simplex virus type 2 (HSV-2) in sub-Saharan Africa, the natural history of infection among Africans is not well characterized. We evaluated the frequency of genital HSV shedding in HIV-seropositive and HIV-seronegative men and women in Uganda. Methods. Ninety-three HSV-2–seropositive Ugandan adults collected anogenital swab specimens for HSV DNA quantification by polymerase chain reaction 3 times daily for 6 weeks. Results. HSV-2 was detected from 2484 of 11 283 swab specimens collected (22%), with a median quantity of 4.3 log10 HSV copies/mL (range, 2.2–8.9 log10 HSV copies/mL). Genital lesions were reported on 749 of 3875 days (19%), and subclinical HSV shedding was detected from 1480 of 9113 swab specimens (16%) collected on days without lesions. Men had higher rates of total HSV shedding (relative risk [RR], 2.0 [95% confidence interval {CI}, 1.3–2.9]; P < .001); subclinical shedding (RR, 1.7 [95% CI, 1.1–2.7]; P = .01), and genital lesions (RR, 2.1 [95% CI, 1.2–3.4]; P = .005), compared with women. No differences in shedding rates or lesion frequency were observed based on HIV serostatus. Conclusions. HSV-2 shedding frequency and quantity are high among HSV-2–seropositive adults in sub-Saharan Africa, including persons with and those without HIV infection. Shedding rates were particularly high among men, which may contribute to the high prevalence of HSV-2 and early acquisition among African women. PMID:26486633

  15. Genital Herpes Simplex Virus Type 2 Shedding Among Adults With and Without HIV Infection in Uganda.

    PubMed

    Phipps, Warren; Nakku-Joloba, Edith; Krantz, Elizabeth M; Selke, Stacy; Huang, Meei-Li; Kambugu, Fred; Orem, Jackson; Casper, Corey; Corey, Lawrence; Wald, Anna

    2016-02-01

    Despite the high prevalence of herpes simplex virus type 2 (HSV-2) in sub-Saharan Africa, the natural history of infection among Africans is not well characterized. We evaluated the frequency of genital HSV shedding in HIV-seropositive and HIV-seronegative men and women in Uganda. Ninety-three HSV-2-seropositive Ugandan adults collected anogenital swab specimens for HSV DNA quantification by polymerase chain reaction 3 times daily for 6 weeks. HSV-2 was detected from 2484 of 11 283 swab specimens collected (22%), with a median quantity of 4.3 log10 HSV copies/mL (range, 2.2-8.9 log10 HSV copies/mL). Genital lesions were reported on 749 of 3875 days (19%), and subclinical HSV shedding was detected from 1480 of 9113 swab specimens (16%) collected on days without lesions. Men had higher rates of total HSV shedding (relative risk [RR], 2.0 [95% confidence interval {CI}, 1.3-2.9]; P < .001); subclinical shedding (RR, 1.7 [95% CI, 1.1-2.7]; P = .01), and genital lesions (RR, 2.1 [95% CI, 1.2-3.4]; P = .005), compared with women. No differences in shedding rates or lesion frequency were observed based on HIV serostatus. HSV-2 shedding frequency and quantity are high among HSV-2-seropositive adults in sub-Saharan Africa, including persons with and those without HIV infection. Shedding rates were particularly high among men, which may contribute to the high prevalence of HSV-2 and early acquisition among African women. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. HSV-1 DNA in Tears and Saliva of Normal Adults

    PubMed Central

    Kaufman, Herbert E.; Azcuy, Ann M.; Varnell, Emily D.; Sloop, Gregory D.; Thompson, Hilary W.; Hill, James M.

    2005-01-01

    Purpose. To assess the frequency of shedding of herpes simplex virus type 1 (HSV-1) DNA in tears and saliva of asymptomatic individuals. Methods Fifty subjects without signs of ocular herpetic disease participated. Serum samples from all subjects were tested for HSV IgG antibodies by enzyme-linked immunosorbent assay (ELISA) and for HSV-1 by neutralization assay. HSV-1 DNA copy number and frequency of shedding were determined by real-time polymerase chain reaction (PCR) analysis of tear and saliva samples collected twice daily for 30 consecutive days. Results Thirty-seven (74%) of the 50 subjects were positive for HSV IgG by ELISA. The percentages of positive eye and mouth swabs were approximately equivalent: 33.5% (941/2806) and 37.5% (1020/2723), respectively. However, the percentage of samples with high HSV-1 genome copy numbers was greater in saliva than in tears, which may have been a result of the sample volume collected. Shedding frequency in tears was nearly the same in men (347/1003; 34.6%) and women (594/1705; 34.8%); in saliva, men had a higher frequency of shedding (457/1009; 45.3% vs. 563/1703; 33.1%, men versus women). Overall, 49 (98%) of 50 subjects shed HSV-1 DNA at least once during the course of the 30-day study. Conclusions The percentage of asymptomatic subjects who intermittently shed HSV-1 DNA in tears or saliva was higher than the percentage of subjects with positive ELISA or neutralization antibodies to HSV. Because most HSV transmission occurs during asymptomatic shedding, further knowledge of the prevalence of HSV-1 DNA in tears and saliva is warranted to control its spread. Shedding is simple to study, and its suppression may be an efficient way to evaluate new antivirals in humans. PMID:15623779

  17. Identification of a Lytic-Cycle Epstein-Barr Virus Gene Product That Can Regulate PKR Activation

    PubMed Central

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response. PMID:12477828

  18. Identification of a lytic-cycle Epstein-Barr virus gene product that can regulate PKR activation.

    PubMed

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response.

  19. Molecular characterization of class 1 integrons from Irish thermophilic Campylobacter spp.

    PubMed

    O'Halloran, Fiona; Lucey, Brigid; Cryan, Bartley; Buckley, Tom; Fanning, Séamus

    2004-06-01

    In this study a large random collection (n = 378) of Irish thermophilic Campylobacter isolates were investigated for the presence of integrons, genetic elements associated with the dissemination of antimicrobial resistance. Purified genomic DNA from each isolate was analysed by PCR for the presence of class 1 integrons. Four gene cassette-associated amplicons were completely characterized. Sixty-two of the isolates possessed a complete class 1 integron with a recombined gene cassette located within a 1.0 kb amplicon containing an aadA2 gene. This cassette was present in both Campylobacter jejuni and Campylobacter coli isolates and following sequence analysis was shown to be similar to sequences recently reported in Salmonella enterica Hadar and on an 85 kb plasmid conferring quinolone resistance in Escherichia coli. Aminoglycoside aadA2-encoding class 1 integrons were identified among unrelated Campylobacter spp. Amino acid sequence comparisons revealed identical structures in both Salmonella and E. coli. The presence of class 1 integrons in Campylobacter spp. may be significant should these organisms enter the food chain and especially when antimicrobial treatment for severe infections is being considered.

  20. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    PubMed

    Lee, Dhong Hyun; Zandian, Mandana; Kuo, Jane; Mott, Kevin R; Chen, Shuang; Arditi, Moshe; Ghiasi, Homayon

    2017-05-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  1. A diagnostic method for herpes simplex keratitis by simultaneous measurement of viral DNA and virus-specific secretory IgA in tears: an evaluation.

    PubMed

    Shoji, Jun; Sakimoto, Tohru; Inada, Noriko; Kamei, Yuko; Matsubara, Masao; Takamura, Etsuko; Sawa, Mitsuru

    2016-07-01

    We performed simultaneous measurement of herpes simplex virus (HSV) DNA by real-time polymerase chain reaction (real-time PCR) and of HSV-specific secretory IgA antibody (HSV-sIgA) by enzyme-linked immunosorbent assay (ELISA) in tears obtained using Schirmer strips in order to investigate its diagnostic efficacy for herpes simplex keratitis (HSK). A total of 59 affected eyes from 59 patients with clinically suspected HSK (HSK group) and 23 eyes from 23 healthy volunteers (control group) were enrolled in this study. The HSK group was divided into five subgroups: dendritic/geographic keratitis, disciform keratitis, necrotizing keratitis, atypical keratitis, and others. The tear samples were taken using Schirmer strips to determine the HSV DNA and HSV-sIgA levels. The overall sensitivity and specificity were 55.8 and 100 % for HSV DNA and 49.2 and 82.6 % for HSV-sIgA. The HSV DNA levels in the disciform keratitis subgroup (median, 3.1 × 10(2) copies/sample) were significantly lower than those in the dendritic/geographic keratitis subgroup (median, 2.3 × 10(4) copies/sample) (P < 0.05, Mann-Whitney test). The HSV-sIgA levels in the disciform keratitis subgroup (median, 50.0 NU/ml) were significantly higher than those in the control group (median, 18.0 NU/ml) (P < 0.05, Steel test). The positive and negative predictive values obtained by simultaneous measurement of HSV DNA and sIgA were 90.9 and 61.3 %, respectively. The combination of laboratory detection of HSV DNA by real-time PCR and of HSV-sIgA by ELISA using tear samples enables higher reliability in diagnosing the subgroups of HSK, although the HSV DNA value is relatively lower in disciform HSK than in dendritic/geographic HSK.

  2. The Herpes Simplex Virus 1 Latency-Associated Transcript Promotes Functional Exhaustion of Virus-Specific CD8+ T Cells in Latently Infected Trigeminal Ganglia: a Novel Immune Evasion Mechanism▿

    PubMed Central

    Chentoufi, Aziz A.; Kritzer, Elizabeth; Tran, Michael V.; Dasgupta, Gargi; Lim, Chang Hyun; Yu, David C.; Afifi, Rasha E.; Jiang, Xianzhi; Carpenter, Dale; Osorio, Nelson; Hsiang, Chinhui; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2011-01-01

    Following ocular herpes simplex virus 1 (HSV-1) infection of C57BL/6 mice, HSV-specific (HSV-gB498–505 tetramer+) CD8+ T cells are induced, selectively retained in latently infected trigeminal ganglia (TG), and appear to decrease HSV-1 reactivation. The HSV-1 latency-associated transcript (LAT) gene, the only viral gene that is abundantly transcribed during latency, increases reactivation. Previously we found that during latency with HSV-1 strain McKrae-derived viruses, more of the total TG resident CD8 T cells expressed markers of exhaustion with LAT+ virus compared to LAT− virus. Here we extend these findings to HSV-1 strain 17syn+-derived LAT+ and LAT− viruses and to a virus expressing just the first 20% of LAT. Thus, the previous findings were not an artifact of HSV-1 strain McKrae, and the LAT function involved mapped to the first 1.5 kb of LAT. Importantly, to our knowledge, we show here for the first time that during LAT+ virus latency, most of the HSV-1-specific TG resident CD8 T cells were functionally exhausted, as judged by low cytotoxic function and decreased gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. This resulted in LAT− TG having more functional HSV-gB498–505 tetramer+ CD8+ T cells compared to LAT+ TG. In addition, LAT expression, in the absence of other HSV-1 gene products, appeared to be able to directly or indirectly upregulate both PD-L1 and major histocompatibility complex class I (MHC-I) on mouse neuroblastoma cells (Neuro2A). These findings may constitute a novel immune evasion mechanism whereby the HSV-1 LAT directly or indirectly promotes functional exhaustion (i.e., dysfunction) of HSV-specific CD8+ T cells in latently infected TG, resulting in increased virus reactivation. PMID:21715478

  3. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice

    PubMed Central

    Lee, Dhong Hyun; Zandian, Mandana; Mott, Kevin R.; Chen, Shuang

    2017-01-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice. PMID:28542613

  4. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    NASA Astrophysics Data System (ADS)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  5. Glutamine supplementation suppresses herpes simplex virus reactivation.

    PubMed

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  6. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    PubMed

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  7. Low acceptance of HSV-2 testing among high-risk women.

    PubMed

    Roth, A M; Dodge, B M; Van Der Pol, B; Reece, M; Zimet, G D

    2011-06-01

    We evaluated the acceptability of a community-based herpes simplex virus type 2 (HSV-2) screening programme for at-risk women and assessed factors related to uptake of point of care HSV-2 testing. One hundred recently arrested women (median age 34 years) were recruited from a community court handling lower-level misdemeanour cases in Indianapolis, Indiana. Individuals completed a survey assessing factors related to HSV-2 screening intentions and were offered point of care HSV-2 testing. Rates of HSV-2 infection in this population are high; 61.1% of women tested were positive. The majority (81%) accepted a prescription for suppressive therapy. Women in this sample indicated that HSV-2 screening is an important component of health care but were unwilling to pay the US$10 it cost to be tested. To encourage this and other high-risk populations to be screened for HSV-2, public health resources will be needed to help individuals overcome cost-related barriers to care.

  8. Role of type-specific herpes simplex virus-1 and 2 serology as a diagnostic modality in patients with clinically suspected genital herpes: A comparative study in Indian population from a tertiary care hospital.

    PubMed

    Patwardhan, Vrushali; Bhalla, Preena

    2016-01-01

    Type-specific serology (TSS) test for herpes simplex virus (HSV) have been used as a research tool in seroepidemiological studies for some years. However, TSS as a diagnostic modality for diagnosis of current episode of genital herpes is not well documented. To measure the seroprevalence of type-specific HSV Type 1 (HSV-1) and Type 2 (HSV-2) IgG antibodies in cases provisionally diagnosed as primary and recurrent genital herpes and to evaluate the role of TSS as a diagnostic modality for diagnosis of genital herpes versus polymerase chain reaction (PCR). A cross-sectional study was performed over a period of 10 months in which 44 adult patients with clinically suspected genital herpes were recruited. An in-house glycoprotein G gene base PCR was performed directly from the genital lesion specimen for simultaneous detection and typing of HSV. TSS was performed to detect IgG antibody against HSV-1 and 2 in all patients using commercially available kits, and the results were compared. Seroprevalence of HSV-1 IgG was 43% among primary and 65% among recurrent genital herpes cases (P = 0.22). Whereas that of HSV-2 IgG was found to be 14% and 83% in respective patient group (P = 0.0001). When compared to PCR results HSV-1 IgG detection in both primary and recurrent genital herpes diagnosis had poor specificity, positive predictive value, and sensitivity. Whereas, HSV-2 serology had a sensitivity of 13.33% and 73.33% in primary and recurrent genital herpes and specificity of 83.33% and 85.71%, respectively. HSV-2 IgG detection helps in strengthening the diagnosis of recurrent HSV-2 disease, whereas the absence of HSV-2 IgG antibody helps in excluding genital herpes as a likely cause of recurrent genital ulceration. However, detection of HSV-1 IgG antibody may not be useful for diagnosis in patients of genital ulcer disease.

  9. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  10. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Chiuchiolo, Maria J; Sanagasetti, Deepthi; Mao, Yun; Patel, Vivekkumar B; Yang, Jianchang; Kaminsky, Stephen M; Crystal, Ronald G; Rosengart, Todd K

    2017-02-01

    The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Hyaluronic acid synthase-2 gene transfer into the joints of Beagles by use of recombinant adeno-associated viral vectors.

    PubMed

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Cornell, Cathleen Sookdeo; Nambiar, Bindu; Figueiredo, Monica Dias

    2018-05-01

    OBJECTIVE To evaluate gene transfer of recombinant adeno-associated viral (rAAV) vectors with AAV2 or AAV5 capsid and encoding hyaluronic acid (HA) synthase-2 (HAS2) into joints of healthy dogs. ANIMALS 22 purpose-bred Beagles. PROCEDURES Plasmid expression cassettes encoding canine HAS2 (cHAS2) were assessed in vitro for concentration and molecular size of secreted HA. Thereafter, rAAV2-cHAS2 vectors at 3 concentrations and rAAV5-cHAS2 vectors at 1 concentration were each administered intra-articularly into the left stifle joint of 5 dogs; 2 dogs received PBS solution instead. Synovial fluid HA concentration and serum and synovial fluid titers of neutralizing antibodies against AAV capsids were measured at various points. Dogs were euthanized 28 days after treatment, and cartilage and synovium samples were collected for vector DNA and mRNA quantification and histologic examination. RESULTS Cell transfection with plasmids encoding cHAS2 resulted in an increase in production and secretion of HA in vitro. In vivo, the rAAV5-cHAS2 vector yielded uniform genome transfer and cHAS2 expression in collected synovium and cartilage samples. In contrast, rAAV2-cHAS2 vectors were detected inconsistently in synovium and cartilage samples and failed to produce clear dose-related responses. Histologic examination revealed minimal synovial inflammation in joints injected with rAAV vectors. Neutralizing antibodies against AAV capsids were detected in serum and synovial fluid samples from all vector-treated dogs. CONCLUSIONS AND CLINICAL RELEVANCE rAAV5-mediated transfer of the gene for cHAS2 into healthy joints of dogs by intra-articular injection appeared safe and resulted in vector-derived cHAS2 production by synoviocytes and chondrocytes. Whether this treatment may increase HA production by synoviocytes and chondrocytes in osteoarthritic joints remains to be determined.

  12. Molecular Characterization of Herpes Simplex Virus 2 Strains by Analysis of Microsatellite Polymorphism

    PubMed Central

    Ait-Arkoub, Zaïna; Voujon, Delphine; Deback, Claire; Abrao, Emiliana P.; Agut, Henri; Boutolleau, David

    2013-01-01

    The complete 154-kbp linear double-stranded genomic DNA sequence of herpes simplex virus 2 (HSV-2), consisting of two extended regions of unique sequences bounded by a pair of inverted repeat elements, was published in 1998 and since then has been widely employed in a wide range of studies. Throughout the HSV-2 genome are scattered 150 microsatellites (also referred to as short tandem repeats) of 1- to 6-nucleotide motifs, mainly distributed in noncoding regions. Microsatellites are considered reliable markers for genetic mapping to differentiate herpesvirus strains, as shown for cytomegalovirus and HSV-1. The aim of this work was to characterize 12 polymorphic microsatellites within the HSV-2 genome by use of 3 multiplex PCR assays in combination with length polymorphism analysis for the rapid genetic differentiation of 56 HSV-2 clinical isolates and 2 HSV-2 laboratory strains (gHSV-2 and MS). This new system was applied to a specific new HSV-2 variant recently identified in HIV-1-infected patients originating from West Africa. Our results confirm that microsatellite polymorphism analysis is an accurate tool for studying the epidemiology of HSV-2 infections. PMID:23966512

  13. Genital HSV Shedding among Kenyan Women Initiating Antiretroviral Therapy

    PubMed Central

    Manguro, Griffins O.; Masese, Linnet N.; Deya, Ruth W.; Magaret, Amalia; Wald, Anna; McClelland, R. Scott; Graham, Susan M.

    2016-01-01

    Objectives Genital ulcer disease (GUD) prevalence increases in the first month of antiretroviral treatment (ART), followed by a return to baseline prevalence by month 3. Since most GUD is caused by herpes simplex virus type 2 (HSV-2), we hypothesized that genital HSV detection would follow a similar pattern after treatment initiation. Methods We conducted a prospective cohort study of 122 HSV-2 and HIV-1 co-infected women with advanced HIV disease who initiated ART and were followed closely with collection of genital swab specimens for the first three months of treatment. Results At baseline, the HSV detection rate was 32%, without significant increase in genital HSV detection noted during the first month or the third month of ART. HIV-1 shedding declined during this period; no association was also noted between HSV and HIV-1 shedding during this period. Conclusion Because other studies have reported increased HSV detection in women initiating ART and we have previously reported an increase in GUD during early ART, it may be prudent to counsel HIV-1 infected women initiating ART that HSV shedding in the genital tract may continue after ART initiation. PMID:27683204

  14. [The therapeutic effect of HSV1-hGM-CSF combined with doxorubicin on the mouse breast cancer model].

    PubMed

    Zhuang, X F; Zhang, S R; Liu, B L; Wu, J L; Li, X Q; Gu, H G; Shu, Y

    2018-03-23

    Objective: To evaluate the oncolytic effect of herpes simplex virus type 1 which carried recombined human granulocyte-macrophage colony-stimulating factor (HSV1-hGM-CSF) on the mouse breast cancer cell line 4T1 and compare the anticancer effects of HSV1-hGM-CSF, doxorubicin alone or combination on the breast cancer in mice. Methods: We investigated the cytotoxic effect on 4T1 cells in vitro, the cell growth, cell apoptosis and cell cycle of 4T1 cells treated with oncolytic HSV1-hGM-CSF at different MOIs (0, 0.5, 1 and 2) and doxorubicin at different concentrations (0, 2, 4 and 8 μg/ml). The effects of oncolytic HSV1-hGM-CSF and doxorubicin on the tumor growth, survival time and their side effects on the mouse breast cancer model were observed. Results: Both oncolytic HSV1-hGM-CSF and doxorubicin significantly inhibited the proliferation of 4T1 cells in vitro . Doxorubicin induced the G(2)/M phase arrest of 4T1 cells, while the cytotoxicity of oncolytic HSV1-hGM-CSF was no cell cycle-dependent.At day 16 after treatment with doxorubicin and HSV1-hGM-CSF, the tumor volume of 4T1 tumor bearing mice were (144.40±27.68)mm(3,) (216.80±57.18)mm(3,) (246.10±21.90)mm(3,) (327.50±44.24)mm(3,) (213.30±32.31)mm(3) and (495.80±75.87)mm(3) in the groups of doxorubicin combined with high dose HSV1-hGM-CSF, doxorubicin combined with low dose HSV1-hGM-CSF, doxorubicin alone, high dose HSV1-hGM-CSF alone, low dose HSV1-hGM-CSF alone and control, respectively.Compared with the control group, both doxorubicin and HSV1-hGM-CSF treatment exhibited significant reduction of primary tumor volume in vivo ( P <0.001). The median survival times were 48, 50, 40, 42, 43 and 37 days in the six groups mentioned above, respectively. The median survival period of doxorubicin alone, high dose HSV1-hGM-CSF alone and low dose HSV1-hGM-CSF alone were significantly longer than that of control ( P <0.05). Conclusion: Synergistic effect of sequential treatment with doxorubicin and oncolytic HSV1-hGM-CSF is observed in 4T1 mouse breast cancer.

  15. [Natural history of HSV1 and HSV2 transmission modes and epidemiology consequences of HSV infection on HIV infection. Prevention].

    PubMed

    Malkin, J E

    2002-04-01

    Both Herpes simplex viruses HSV1 and HSV2 are transmitted by direct mucosal or cutaneo-mucosal contact between individuals. HSV1 is the leading cause of orofacial herpes and HSV2 the most frequently encountered cause of genital herpes. There are however a number of environmental and behavioral factors that modify the epidemiological pattern in both infections. These factors also affect virus dynamics and spread. In developing countries, HSV1 infections continues to be acquired in early childhood. In developed countries, displacement of this acquisition towards adolescence and adulthood explains, in part, the increase in genital herpes caused by HSV1. HVS2 infection progresses in the sexually active population worldwide. Although the rate of seroprevalance varies greatly from one continent to another, women are still more often infected than men. HSV2 genital infection is a cofactor for transmission and acquisition of HIV, which, in certain African regions where the two infections are highly prevalent, explains in part the progression of the HIV epidemic. Until a vaccine becomes available, the prevention depends on abstention from all oral and genital contact during periods of active disease. For genital herpes, use of a preservative has only a relative protective effect and the contribution of suppressive treatment in potentially contaminated subjects is under evaluation.

  16. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834

  17. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.

  18. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host–pathogen standoff

    PubMed Central

    Rosato, Pamela C; Leib, David A

    2015-01-01

    Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus. PMID:26213562

  19. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir

    PubMed Central

    Marshall, Jason D.; Dorwart, Michael R.; Heeke, Darren S.; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H.; Eisenberg, Roselyn J.

    2017-01-01

    ABSTRACT Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo. In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. PMID:28228587

  20. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. Copyright © 2017 American Society for Microbiology.

  1. Evaluation of multiplex real-time PCR for detection of Haemophilus ducreyi, Treponema pallidum, herpes simplex virus type 1 and 2 in the diagnosis of genital ulcer disease in the Rakai District, Uganda.

    PubMed

    Suntoke, T R; Hardick, A; Tobian, A A R; Mpoza, B; Laeyendecker, O; Serwadda, D; Opendi, P; Gaydos, C A; Gray, R H; Wawer, M J; Quinn, T C; Reynolds, S J

    2009-04-01

    To develop a real-time PCR assay that reliably and accurately detects the predominant sexually transmitted aetiological agents of genital ulcer disease (GUD) (Haemophilus ducreyi, Treponema pallidum and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)) and to assess the use of real-time PCR diagnostic testing in a rural African field site. Two multiplex real-time PCR reactions were used to detect H ducreyi/and HSV-1/HSV-2 in ulcer swabs from 100 people with symptomatic genital ulcers in rural Rakai, Uganda. Results were compared with syphilis, HSV-1 and HSV-2 serology. Of 100 GUD samples analysed from 43 HIV positive and 57 HIV negative individuals, 71% were positive for one or more sexually transmitted infection (STI) pathogens by real-time PCR (61% for HSV-2, 5% for T pallidum, 3% for HSV-1, 1% for H ducreyi and 1% for dual H ducreyi/HSV-2). The frequency of HSV in genital ulcers was 56% (32/57) in HIV negative individuals and 77% (33/43) in HIV positive individuals (p = 0.037). Assay reproducibility was evaluated by repeat PCR testing in the USA with 96% agreement (kappa = 0.85). STI pathogens were detected in the majority of GUD swab samples from symptomatic patients in Rakai, Uganda, by real-time PCR. HSV-2 was the predominant cause of genital ulcers. Real-time PCR technology can provide sensitive, rapid and reproducible evaluation of GUD aetiology in a resource-limited setting.

  2. Chlamydial Pre-Infection Protects from Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model

    PubMed Central

    Slade, Jessica; Hall, Jennifer V.; Kintner, Jennifer; Schoborg, Robert V.

    2016-01-01

    Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans. PMID:26726882

  3. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II

    PubMed Central

    Long, Melissa C.; Leong, Vivian; Schaffer, Priscilla A.; Spencer, Charlotte A.; Rice, Stephen A.

    1999-01-01

    Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550–5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13 or ICP22 mutants led to significantly reduced amounts of viral genome transcription at late times after infection. Together, our results suggest that ICP22 and UL13 are involved in a common pathway that alters RNAP II phosphorylation and that in some cell lines this change promotes viral late transcription. PMID:10364308

  4. A Herpes Simplex Virus 2 (HSV-2) gD Mutant Impaired for Neural Tropism Is Superior to an HSV-2 gD Subunit Vaccine To Protect Animals from Challenge with HSV-2.

    PubMed

    Wang, Kening; Goodman, Kyle N; Li, Daniel Y; Raffeld, Mark; Chavez, Mayra; Cohen, Jeffrey I

    2016-01-01

    A recent phase 3 trial with soluble herpes simplex virus 2 (HSV-2) glycoprotein D (gD2t) in adjuvant failed to show protection against genital herpes. We postulated that live attenuated HSV-2 would provide more HSV antigens for induction of virus-specific antibodies and cellular immunity than would gD2t. We previously reported an HSV-2 mutant, HSV2-gD27, in which the nectin-1 binding domain of gD2 is altered so that the virus is impaired for infecting neural cells, but not epithelial cells, in vitro and is impaired for infecting dorsal root ganglia in mice (K. Wang, J. D. Kappel, C. Canders, W. F. Davila, D. Sayre, M. Chavez, L. Pesnicak, and J. I. Cohen, J Virol 86:12891-12902, 2012, doi:10.1128/JVI.01055-12). Here we report that the mutations in HSV2-gD27 were stable when the virus was passaged in cell culture and during acute infection of mice. HSV2-gD27 was attenuated in mice when it was inoculated onto the cornea, intramuscularly (i.m.), intravaginally, and intracranially. Vaccination of mice i.m. with HSV2-gD27 provided better inhibition of challenge virus replication in the vagina than when the virus was used to vaccinate mice intranasally or subcutaneously. Comparison of i.m. vaccinations with HSV2-gD27 versus gD2t in adjuvant showed that HSV2-gD27 induced larger reductions of challenge virus replication in the vagina and reduced latent viral loads in dorsal root ganglia but induced lower serum neutralizing antibody titers than those obtained with gD2t in adjuvant. Taken together, our data indicate that a live attenuated HSV-2 vaccine impaired for infection of neurons provides better protection from vaginal challenge with HSV-2 than that obtained with a subunit vaccine, despite inducing lower titers of HSV-2 neutralizing antibodies in the serum. Genital herpes simplex is one of the most prevalent sexually transmitted diseases. Though HSV-2 disease is usually mild, it can be life threatening in neonates and immunocompromised persons. In addition, genital herpes increases the frequency of HIV infection and transmission. HSV-2 maintains a latent infection in sensory neurons and cannot be cleared with antiviral drugs. The virus frequently reactivates, resulting in virus shedding in the genital area, which serves as a source for transmission. A prophylactic vaccine is needed to prevent disease and to control the spread of the virus. Previous human trials of subunit vaccines have been unsuccessful. Here we report the results of vaccinating mice with a new type of live attenuated HSV-2 vaccine that is impaired for infection of neurons and provides better protection of mice than that obtained with a subunit vaccine. The strategy of altering the cell tropism of a virus is a new approach for a live attenuated vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Herpesvirus capsid assembly and DNA packaging

    PubMed Central

    Heming, Jason D.; Conway, James F.; Homa, Fred L.

    2017-01-01

    Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442

  6. Compositional Verification with Abstraction, Learning, and SAT Solving

    DTIC Science & Technology

    2015-05-01

    arithmetic, and bit-vectors (currently, via bit-blasting). The front-end is based on an existing tool called UFO [8] which converts C programs to the Horn...supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based on the tool UFO [8]. It encodes safety of...tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad

  7. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  8. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system

    NASA Technical Reports Server (NTRS)

    Raphael, David

    1995-01-01

    This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.

  9. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1994-01-01

    HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons

  10. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    NASA Astrophysics Data System (ADS)

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  11. Asymptomatic Herpes Simplex Virus Infection in Iranian Mothers and Their Newborns.

    PubMed

    Tavakoli, Ahmad; Monavari, Seyed Hamidreza; Bokharaei-Salim, Farah; Mollaei, Hamidreza; Abedi-Kiasari, Bahman; Fallah, Fatemeh Hoda; Mortazavi, Helya Sadat

    2017-02-01

    This study aims to determine the prevalence of herpes simplex virus (HSV) infection among pregnant women as well as congenital infection of their newborns in Tehran. One hundred samples of blood sera from pregnant women were analyzed for the presence of HSV specific antibodies. Umbilical cord blood samples from the newborns were analyzed for the presence of HSV DNA using real-time PCR. HSV IgG and IgM antibodies were found in 97% and 2% of pregnant women, respectively. Of all the 100 cord blood samples, 6 were positive for HSV DNA in which 2 cases were from mothers who had detectable IgM. It was notable that all corresponding mothers of six HSV positive infants had detectable IgG antibodies in their sera. It was demonstrated that the presence of HSV DNA in cord blood of newborns could be a risk marker for maternal-fetal transmission of the virus in asymptomatic pregnant women.

  12. The challenge of developing a herpes simplex virus 2 vaccine

    PubMed Central

    Dropulic, Lesia K; Cohen, Jeffrey I

    2013-01-01

    HSV infections are prevalent worldwide. A vaccine to prevent genital herpes would have a significant impact on this disease. Several vaccines have shown promise in animal models; however, so far these have not been successful in human clinical studies. Prophylactic HSV vaccines to prevent HSV infection or disease have focused primarily on eliciting antibody responses. Potent antibody responses are needed to result in sufficiently high levels of virus-specific antibody in the genital tract. Therapeutic vaccines that reduce recurrences need to induce potent T-cell responses at the site of infection. With the increasing incidence of HSV-1 genital herpes, an effective herpes vaccine should protect against both HSV-1 and HSV-2. Novel HSV vaccines, such as replication-defective or attenuated viruses, have elicited humoral and cellular immune responses in preclinical studies. These vaccines and others hold promise in future clinical studies. PMID:23252387

  13. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  14. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    PubMed

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  15. Rabbit and Mouse Models of HSV-1 Latency, Reactivation, and Recurrent Eye Diseases

    PubMed Central

    Webre, Jody M.; Hill, James M.; Nolan, Nicole M.; Clement, Christian; McFerrin, Harris E.; Bhattacharjee, Partha S.; Hsia, Victor; Neumann, Donna M.; Foster, Timothy P.; Lukiw, Walter J.; Thompson, Hilary W.

    2012-01-01

    The exact mechanisms of HSV-1 establishment, maintenance, latency, reactivation, and also the courses of recurrent ocular infections remain a mystery. Comprehensive understanding of the HSV-1 disease process could lead to prevention of HSV-1 acute infection, reactivation, and more effective treatments of recurrent ocular disease. Animal models have been used for over sixty years to investigate our concepts and hypotheses of HSV-1 diseases. In this paper we present descriptions and examples of rabbit and mouse eye models of HSV-1 latency, reactivation, and recurrent diseases. We summarize studies in animal models of spontaneous and induced HSV-1 reactivation and recurrent disease. Numerous stimuli that induce reactivation in mice and rabbits are described, as well as factors that inhibit viral reactivation from latency. The key features, advantages, and disadvantages of the mouse and rabbit models in relation to the study of ocular HSV-1 are discussed. This paper is pertinent but not intended to be all inclusive. We will give examples of key papers that have reported novel discoveries related to the review topics. PMID:23091352

  16. Status of vaccine research and development of vaccines for herpes simplex virus.

    PubMed

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  17. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    PubMed

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. Copyright © 2017 American Society for Microbiology.

  18. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus

    PubMed Central

    Deschamps, Thibaut

    2017-01-01

    ABSTRACT Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2′3′-cyclic GAMP (2′3′-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. PMID:28179534

  19. Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice

    PubMed Central

    Liu, Meng; Thankachan, Stephen; Kaur, Satvinder; Begum, Suraiya; Blanco-Centurion, Carlos; Sakurai, Takeshi; Yanagisawa, Masashi; Neve, Rachael; Shiromani, Priyattam J.

    2008-01-01

    Gene transfer has proven to be an effective neurobiological tool in a number of neurodegenerative diseases, but it is not known if it can correct a sleep disorder. Narcolepsy is a neurodegenerative sleep disorder linked to the loss of neurons containing the neuropeptide orexin, also known as hypocretin. Here, a replication-defective herpes simplex virus-1 amplicon-based vector was constructed to transfer the gene for mouse prepro-orexin into mice with a genetic deletion of the orexin gene. After in vitro tests confirmed successful gene transfer into cells, the gene vector was delivered to the lateral hypothalamus of orexin knockout (KO) mice where the orexin peptide was robustly expressed in the somata and processes of numerous neurons, and the peptide product was detected in the cerebrospinal fluid. During the 4-day life-span of the vector the incidence of cataplexy declined by 60%, and the levels of rapid eye movement sleep during the second half of the night were similar to levels in wild-type mice, indicating that narcoleptic sleep–wake behavior in orexin KO mice can be improved by targeted gene transfer. PMID:18973565

  20. First identification of the herpes simplex virus by skin-dedicated ex vivo fluorescence confocal microscopy during herpetic skin infections.

    PubMed

    Cinotti, E; Perrot, J L; Labeille, B; Campolmi, N; Thuret, G; Naigeon, N; Bourlet, T; Pillet, S; Cambazard, F

    2015-06-01

    Skin-dedicated ex vivo fluorescence confocal microscopy (FCM) has so far been used to identify cutaneous tumours on freshly excised samples using acridine orange as fluorochrome. To use FCM for a new indication, namely, the identification of the herpes simplex virus (HSV) in skin lesions, using fluorescent antibodies. Six roof samples from skin vesicles suspicious for HSV lesions were incubated with anti-HSV-1 and anti-HSV-2 antibodies coupled with fluorescein isothiocyanate, and examined under skin-dedicated ex vivo FCM. The positive controls were swabs taken from the floor of each vesicle and observed under conventional direct fluorescence assay (DFA) and by viral cultures. Roof samples from three bullae of bullous pemphigoid were the negative controls. Using ex vivo FCM, the samples from the lesions clinically suspicious for HSV infection were seen to be fluorescent after incubation with anti-HSV-1, and were negative after incubation with anti-HSV-2 antibodies. Conventional DFA with an optical microscope and cultures confirmed the presence of HSV-1 infection. By using fluorescent antibodies to identify precise structures, ex vivo FCM can be used for indications other than tumour identification. More specifically, it can be an additional diagnostic tool for HSV infection. © 2014 British Association of Dermatologists.

  1. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  2. Bcl-2 Blocks a Caspase-Dependent Pathway of Apoptosis Activated by Herpes Simplex Virus 1 Infection in HEp-2 Cells

    PubMed Central

    Galvan, Veronica; Brandimarti, Renato; Munger, Joshua; Roizman, Bernard

    2000-01-01

    Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate. PMID:10644366

  3. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  4. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  5. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

    PubMed

    Posavad, C M; Zhao, L; Dong, L; Jin, L; Stevens, C E; Magaret, A S; Johnston, C; Wald, A; Zhu, J; Corey, L; Koelle, D M

    2017-09-01

    Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.

  6. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  7. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies.

    PubMed

    Das, Bhabatosh; Kumari, Reena; Pant, Archana; Sen Gupta, Sourav; Saxena, Shruti; Mehta, Ojasvi; Nair, Gopinath Balakrish

    2014-12-01

    CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Potential of Gene Therapy for the Treatment of Pituitary Tumors

    PubMed Central

    Goya, R G.; Sarkar, D.K.; Brown, O.A.; Hereñú, C.B.

    2010-01-01

    Pituitary adenomas constitute the most frequent neuroendocrine pathology, comprising up to 15% of primary intracranial tumors. Current therapies for pituitary tumors include surgery and radiotherapy, as well as pharmacological approaches for some types. Although all of these approaches have shown a significant degree of success, they are not devoid of unwanted side effects, and in most cases do not offer a permanent cure. Gene therapy—the transfer of genetic material for therapeutic purposes—has undergone an explosive development in the last few years. Within this context, the development of gene therapy approaches for the treatment of pituitary tumors emerges as a promising area of research. We begin by presenting a brief account of the genesis of prolactinomas, with particular emphasis on how estradiol induces prolactinomas in animals. In so doing, we discuss the role of each of the recently discovered growth inhibitory and growth stimulatory substances and their interactions in estrogen action. We also evaluate the cell-cell communication that may govern these growth factor interactions and subsequently promote the growth and survival of prolactinomas. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental prolactinomas or somatomammotropic tumors with adenoviral vector-mediated transfer of the suicide gene for the herpes simplex type 1 (HSV1) thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters, like the human prolactin or human growth hormone promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. In a different type of approach, an adenoviral vector, encoding the human retinoblastoma suppressor oncogene, has been successfully used to rescue the phenotype of spontaneous pituitary tumors of the pars intermedia in mice. We close the article by discussing the future of molecular therapies. We point out that although, gene therapy represents a key step in the development of molecular medicine, it has inherent limitations. As a consequence, it is our view that at some point, genetic therapies will have to move from exogenous gene transfer (i.e. gene therapy) to endogenous gene repair. This approach will call for radically new technologies, such as nanotechnology, whose present state of development is outlined. PMID:15032616

  10. Reactivation of Herpes Simplex Virus Type 2 After Initiation of Antiretroviral Therapy

    PubMed Central

    Tobian, Aaron A. R.; Grabowski, Mary K.; Serwadda, David; Newell, Kevin; Ssebbowa, Paschal; Franco, Veronica; Nalugoda, Fred; Wawer, Maria J.; Gray, Ronald H.; Quinn, Thomas C.; Reynolds, Steven J.

    2013-01-01

    Background. The association between initiation of antiretroviral therapy (ART) for human immunodeficiency virus (HIV) infection and possible herpes simplex virus type 2 (HSV-2) shedding and genital ulcer disease (GUD) has not been evaluated. Methods. GUD and vaginal HSV-2 shedding were evaluated among women coinfected with HIV and HSV-2 (n = 440 for GUD and n = 96 for HSV-2 shedding) who began ART while enrolled in a placebo-controlled trial of HSV-2 suppression with acyclovir in Rakai, Uganda. Monthly vaginal swabs were tested for HSV-2 shedding, using a real-time quantitative polymerase chain reaction assay. Prevalence risk ratios (PRRs) of GUD were estimated using log binomial regression. Random effects logistic regression was used to estimate odds ratios (ORs) of HSV-2 shedding. Results. Compared with pre-ART values, GUD prevalence increased significantly within the first 3 months after ART initiation (adjusted PRR, 1.94; 95% confidence interval [CI], 1.04–3.62) and returned to baseline after 6 months of ART (adjusted PRR, 0.80; 95% CI, .35–1.80). Detection of HSV-2 shedding was highest in the first 3 months after ART initiation (adjusted OR, 2.58; 95% CI, 1.48–4.49). HSV-2 shedding was significantly less common among women receiving acyclovir (adjusted OR, 0.13; 95% CI, .04–.41). Conclusions. The prevalence of HSV-2 shedding and GUD increased significantly after ART initiation, possibly because of immune reconstitution inflammatory syndrome. Acyclovir significantly reduced both GUD and HSV-2 shedding and should be considered to mitigate these effects following ART initiation. PMID:23812240

  11. Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice

    PubMed Central

    Royer, Derek J.; Carr, Meghan M.; Chucair-Elliott, Ana J.; Halford, William P.

    2017-01-01

    ABSTRACT Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology. IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic “cold sores” to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential. PMID:28122977

  12. Sexual network drivers of HIV and herpes simplex virus type 2 transmission

    PubMed Central

    Omori, Ryosuke; Abu-Raddad, Laith J.

    2017-01-01

    Objectives: HIV and herpes simplex virus type 2 (HSV-2) infections are sexually transmitted and propagate in sexual networks. Using mathematical modeling, we aimed to quantify effects of key network statistics on infection transmission, and extent to which HSV-2 prevalence can be a proxy of HIV prevalence. Design/methods: An individual-based simulation model was constructed to describe sex partnering and infection transmission, and was parameterized with representative natural history, transmission, and sexual behavior data. Correlations were assessed on model outcomes (HIV/HSV-2 prevalences) and multiple linear regressions were conducted to estimate adjusted associations and effect sizes. Results: HIV prevalence was one-third or less of HSV-2 prevalence. HIV and HSV-2 prevalences were associated with a Spearman's rank correlation coefficient of 0.64 (95% confidence interval: 0.58–0.69). Collinearities among network statistics were detected, most notably between concurrency versus mean and variance of number of partners. Controlling for confounding, unmarried mean/variance of number of partners (or alternatively concurrency) were the strongest predictors of HIV prevalence. Meanwhile, unmarried/married mean/variance of number of partners (or alternatively concurrency), and clustering coefficient were the strongest predictors of HSV-2 prevalence. HSV-2 prevalence was a strong predictor of HIV prevalence by proxying effects of network statistics. Conclusion: Network statistics produced similar and differential effects on HIV/HSV-2 transmission, and explained most of the variation in HIV and HSV-2 prevalences. HIV prevalence reflected primarily mean and variance of number of partners, but HSV-2 prevalence was affected by a range of network statistics. HSV-2 prevalence (as a proxy) can forecast a population's HIV epidemic potential, thereby informing interventions. PMID:28514276

  13. Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection.

    PubMed

    Deethae, A; Peerapornpisal, Y; Pekkoh, J; Sangthong, P; Tragoolpua, Y

    2018-06-01

    To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC 50 ) of 4363·30 μg ml -1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC 50 ) and selective index (SI) values of 164·20 and 2·17 μg ml -1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC 50 and SI values of 75·03 and 3·34 μg ml -1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection. © 2018 The Society for Applied Microbiology.

  14. A novel multiplex real-time PCR assay for the detection and quantification of HPV16/18 and HSV1/2 in cervical cancer screening.

    PubMed

    Zhao, Youyun; Cao, Xuan; Tang, Jingfeng; Zhou, Li; Gao, Yinglin; Wang, Jiangping; Zheng, Yi; Yin, Shanshan; Wang, Yefu

    2012-04-01

    Infection with human papillomavirus (HPV), particularly HPV16 and HPV18, is the main cause of invasive cervical cancer, although other factors such as herpes simplex virus (HSV) may act in conjunction with HPV in this context. To explore the possibility of developing a system for rapid diagnosis and clinical screening of cervical cancer, we developed a multiplex real-time PCR assay that can simultaneously detect and quantify HPV16/18 and HSV1/2. To evaluate its possibilities and practical uses, 177 samples collected from patients with suspected HPV and HSV infection in exfoliated cervical cells, genital herpes or labial herpes were tested by multiplex real-time PCR and compared with results obtained by DNA sequencing. Each virus was detected over a range from 1.0 × 10(1) to 1.0 × 10(7) copies/reaction. The clinical sensitivity was 100% for HPV16/18 and HSV1/2. The clinical specificity was 97.1% for HPV16, 98.1% for HPV18, 97.0% for HSV1 and 96.0% for HSV2. The kappa value was 0.96 for HPV16, 0.92 for HPV18, 0.94 for HSV1 and 0.93 for HSV2, when DNA sequencing was used as the reference standard. In summary, this novel multiplex real-time PCR allows the rapid and specific detection of HPV16/18 and HSV1/2, as well as coinfection with HPV and HSV, in clinical samples. In the future, this multiplex real-time PCR assay will assist in cervical cancer screening, viral treatment evaluation and epidemiological studies in which high throughput analysis is required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Herpes Simplex Virus 1 Tropism for Human Sensory Ganglion Neurons in the Severe Combined Immunodeficiency Mouse Model of Neuropathogenesis

    PubMed Central

    Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-01-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control. PMID:23269807

  16. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed. PMID:29559905

  17. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology

    PubMed Central

    2013-01-01

    Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets. PMID:23514126

  18. Decline in Herpes Simplex Virus Type 2 Among Non-Injecting Heroin and Cocaine Users in New York City, 2005 to 2014: Prospects for Avoiding a Resurgence of Human Immunodeficiency Virus.

    PubMed

    Des Jarlais, Don C; Arasteh, Kamyar; Feelemyer, Jonathan; McKnight, Courtney; Tross, Susan; Perlman, David C; Campbell, Aimee N C; Hagan, Holly; Cooper, Hannah L F

    2017-02-01

    Herpes simplex virus type 2 (HSV-2) infection increases both susceptibility to and transmissibility of human immunodeficiency virus (HIV), and HSV-2 and HIV are often strongly associated in HIV epidemics. We assessed trends in HSV-2 prevalence among non-injecting drug users (NIDUs) when HIV prevalence declined from 16% to 8% among NIDUs in New York City. Subjects were current non-injecting users of heroin and/or cocaine and who had never injected illicit drugs. Three thousand one hundred fifty-seven NIDU subjects were recruited between 2005 and 2014 among persons entering Mount Sinai Beth Israel substance use treatment programs. Structured interviews, HIV, and HSV-2 testing were administered. Change over time was assessed by comparing 2005 to 2010 with 2011 to 2014 periods. Herpes simplex virus type 2 incidence was estimated among persons who participated in multiple years. Herpes simplex virus type 2 prevalence was strongly associated with HIV prevalence (odds ratio, 3.9; 95% confidence interval, 2.9-5.1) from 2005 to 2014. Herpes simplex virus type 2 prevalence declined from 60% to 56% (P = 0.01). The percentage of NIDUs with neither HSV-2 nor HIV infection increased from 37% to 43%, (P < 0.001); the percentage with HSV-2/HIV coinfection declined from 13% to 6% (P < 0.001). Estimated HSV-2 incidence was 1 to 2/100 person-years at risk. There were parallel declines in HIV and HSV-2 among NIDUs in New York City from 2005 to 2014. The increase in the percentage of NIDUs with neither HSV-2 nor HIV infection, the decrease in the percentage with HSV-2/HIV coinfection, and the low to moderate HSV-2 incidence suggest some population-level protection against resurgence of HIV. Prevention efforts should be strengthened to end the combined HIV/HSV-2 epidemic among NIDUs in New York City.

  19. Effect of genital herpes on cervicovaginal HIV shedding in women co-infected with HIV AND HSV-2 in Tanzania.

    PubMed

    Todd, Jim; Riedner, Gabriele; Maboko, Leonard; Hoelscher, Michael; Weiss, Helen A; Lyamuya, Eligius; Mabey, David; Rusizoka, Mary; Belec, Laurent; Hayes, Richard

    2013-01-01

    To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV. Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1) 57 women at 70 clinic visits with clinical genital herpes; (2) 39 of the same women at 46 clinic visits when asymptomatic; (3) 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4) 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL), herpetic lesions, HSV shedding and other factors were examined. Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03). In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL) was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41-0.60, p<0.001) and HSV shedding (β = 0.24 per log10 copies/ml increase, 95% CI:0.16-0.32, p<0.001) but not the presence of herpetic lesions (β = -0.10, 95%CI:-0.28-0.08, p = 0.27). HIV PVL and HSV shedding were more important determinants of genital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility.

  20. Effect of Genital Herpes on Cervicovaginal HIV Shedding in Women Co-Infected with HIV AND HSV-2 in Tanzania

    PubMed Central

    Todd, Jim; Riedner, Gabriele; Maboko, Leonard; Hoelscher, Michael; Weiss, Helen A.; Lyamuya, Eligius; Mabey, David; Rusizoka, Mary; Belec, Laurent; Hayes, Richard

    2013-01-01

    Objectives To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV. Design Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1) 57 women at 70 clinic visits with clinical genital herpes; (2) 39 of the same women at 46 clinic visits when asymptomatic; (3) 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4) 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL), herpetic lesions, HSV shedding and other factors were examined. Results Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03). In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL) was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41–0.60, p<0.001) and HSV shedding (β = 0.24 per log10 copies/ml increase, 95% CI:0.16–0.32, p<0.001) but not the presence of herpetic lesions (β = −0.10, 95%CI:−0.28–0.08, p = 0.27). Conclusions HIV PVL and HSV shedding were more important determinants of genital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility. PMID:23516595

  1. Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    PubMed Central

    Eing, Bodo R.; Müller, Marcus; King, Nicholas J. C.; Klupp, Barbara; Mettenleiter, Thomas C.; Kühn, Joachim E.

    2012-01-01

    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons. PMID:22589716

  2. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2

    PubMed Central

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-01-01

    Background Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. Material/Methods All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1×105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). Results The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. Conclusions We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone. PMID:26856414

  3. Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress.

    PubMed

    Chen, Deyan; Su, Airong; Fu, Yuxuan; Wang, Xiaohui; Lv, Xiaowen; Xu, Wentao; Xu, Shijie; Wang, Huanru; Wu, Zhiwei

    2015-11-01

    Herpes simplex virus types 1 and 2 (HSV-1 and -2) are highly prevalent in many populations and therapeutic options are limited. Both viruses can establish latency by maintaining viral genomes in neurons of sensory ganglia. Primary or recurrent HSV infections may lead to deleterious outcomes: HSV-1 infection may result in corneal blindness and encephalitis and HSV-2 infection leads to herpes genitalis. While no effective vaccine is available, acyclovir is widely used for therapy, which targets and inhibits viral DNA polymerase. Although acyclovir is of low toxicity, resistant strains arise due to persistent use, mainly in immune compromised patients. In our effort to identify new HSV inhibitory molecules, harmine was found to potently inhibit HSV infection. Harmine, a beta-carbon alkaloid with an indole core structure and a pyridine ring, is widely distributed in plants. Earlier studies showed that harmine exhibited pharmacological activities such as antifungal, antimicrobial, antitumor, antiplasmodial and antioxidants. In the current study, we showed that harmine was a potent inhibitor of HSV-2 infection in vitro assays with EC50 value at around 1.47μM and CC50 value at around 337.10μM. The HSV RNA transcription, protein synthesis, and virus titers were reduced by the presence of harmine in a dose dependent manner. Further study on the mechanism of the anti-HSV activity showed that harmine blocked HSV-induced ROS production and the upregulated cytokine/chemokine expression, but our evidence showed that the inhibition of viral replication was unlikely mediated by the blocking of ROS production. We demonstrated that harmine significantly reduced HSV-2-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. We found that harmine also inhibited HSV-2-mediated p38 kinase and c-Jun N-terminal kinases (JNK) phosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    PubMed

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  6. Daily oral tenofovir and emtricitabine-tenofovir preexposure prophylaxis reduces herpes simplex virus type 2 acquisition among heterosexual HIV-1-uninfected men and women: a subgroup analysis of a randomized trial.

    PubMed

    Celum, Connie; Morrow, Rhoda A; Donnell, Deborah; Hong, Ting; Hendrix, Craig W; Thomas, Katherine K; Fife, Kenneth H; Nakku-Joloba, Edith; Mujugira, Andrew; Baeten, Jared M

    2014-07-01

    Daily oral preexposure prophylaxis (PrEP) using the antiretroviral tenofovir disoproxil fumarate (TDF) alone or in combination with emtricitabine (FTC-TDF) reduces the risk for HIV-1 acquisition. Tenofovir has in vitro activity against herpes simplex virus type 2 (HSV-2). To assess the efficacy of daily oral PrEP with tenofovir and FTC-TDF in the prevention of HSV-2 acquisition. Subgroup analysis of data from a randomized, placebo-controlled trial with concealed allocation. (ClinicalTrials.gov: NCT00557245). Multiple sites in Kenya and Uganda. Heterosexual men and women who were seronegative for HIV-1 and HSV-2 and at high risk for HIV-1 acquisition due to having an HIV-1-infected partner. Once-daily oral tenofovir disoproxil fumarate (TDF), alone or combined with emtricitabine (FTC-TDF), compared with placebo. HSV-2 seroconversion. A total of 131 participants seroconverted to HSV-2 (79 of 1041 assigned to tenofovir or FTC-TDF PrEP [HSV-2 incidence, 5.6 per 100 person-years] and 52 of 481 assigned to placebo [HSV-2 incidence, 7.7 per 100 person-years]). The hazard ratio (HR) for HSV-2 acquisition with daily oral PrEP was 0.70 (95% CI, 0.49 to 0.99; P = 0.047) compared with placebo, and the absolute risk reduction was 2.1 per 100 person-years. Among the 1044 participants with HSV-2-infected partners, the HR for PrEP was 0.67 (CI, 0.46 to 0.98; P = 0.038) compared with placebo, and the absolute risk reduction was 3.1 per 100 person-years. Randomization was not stratified by HSV-2 status, and diagnostic tests to exclude participants with acute HSV-2 at baseline are not available. Daily oral tenofovir-based PrEP significantly reduced the risk for HSV-2 acquisition among heterosexual men and women. Modest protection against HSV-2 is an added benefit of HIV-1 prevention with oral tenofovir-based PrEP. Bill & Melinda Gates Foundation.

  7. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas

    PubMed Central

    Duggal, Neil; Jaishankar, Dinesh; Yadavalli, Tejabhiram; Hadigal, Satvik; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-01-01

    Purpose Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. Methods A β-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. Results Cultured corneas and the use of β-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod–shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. Conclusions The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments face. PMID:28275313

  8. HSV-2-Driven Increase in the Expression of α4β7 Correlates with Increased Susceptibility to Vaginal SHIVSF162P3 Infection

    PubMed Central

    Goode, Diana; Truong, Rosaline; Villegas, Guillermo; Calenda, Giulia; Guerra-Perez, Natalia; Piatak, Michael; Lifson, Jeffrey D.; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa; Martinelli, Elena

    2014-01-01

    The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7 high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7 high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7 high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission. PMID:25521298

  9. HSV-2-driven increase in the expression of α4β7 correlates with increased susceptibility to vaginal SHIV(SF162P3) infection.

    PubMed

    Goode, Diana; Truong, Rosaline; Villegas, Guillermo; Calenda, Giulia; Guerra-Perez, Natalia; Piatak, Michael; Lifson, Jeffrey D; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa; Martinelli, Elena

    2014-12-01

    The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.

  10. Seroprevalence and risk factors of herpes simplex virus type-2 infection among pregnant women in Northeast India.

    PubMed

    Biswas, Dipankar; Borkakoty, Biswajyoti; Mahanta, Jagadish; Walia, Kamini; Saikia, Lahari; Akoijam, Brogen S; Jampa, Lobsang; Kharkongar, Alia; Zomawia, Eric

    2011-11-23

    Herpes simplex virus type-2 (HSV-2) is one of the most common sexually transmitted infections that facilitate human immunodeficiency virus (HIV) acquisition by over two fold or more. The development of HSV-2 control methods as a measure to control HIV epidemic in high HSV-2/HIV areas has become a priority. Two out of the six high HIV prevalent states of India are located in the Northeastern region of India. Due to lack of documented HSV-2 studies from this part of the country; there was a need for estimating the seroprevalence and risk factors of HSV-2 infection in this defined population. Pregnant women (n = 1640) aged18 years and above attending antenatal clinics of tertiary referral hospitals in five Northeastern states of India were screened for type specific HSV-2 IgG antibodies. Blood samples were collected from all the participants after conducting interviews. Univariate and multivariate analyses were performed to identify the risk factors associated with HSV-2 seropositivity. Overall seroprevalence of HSV-2 infection was 8.7% (142/1640; 95% CI 7.3-10.0) with a highest prevalence of 15.0% (46/307; 95% CI 11.0-19.0) in the state of Arunachal Pradesh. Higher seroprevalence was observed with increasing age (Adj. Odds Ratio [AOR] 1.9 for 22-25 years old, AOR 2.29 for > 29 years old). The risk factors associated with HSV-2 seropositives were multiple sex partners (AOR 2.5, p = 0.04), condom non-user's (AOR 4.7, p <0.001), early coitarchal age (age of first intercourse) 'less than 18 years' (AOR 9.6, p = 0.04), middle income group (AOR 2.1, p = 0.001) compared to low income group and low level of education (AOR 3.7, p = 0.02) compared to higher education. HSV-2 seropositivity was higher among Christians (12.6%) compared to Muslims (3.8%). The most frequent clinical symptoms among HSV-2 seropositives were excess vaginal discharge in last one year (53.5%, 76/142) and pelvic pain (26.1%, 37/142). While among subjects with genital ulcers, HSV-2 seroprevalence was 36.8% (7/19). Overall seroprevalence of HSV-2 infection among pregnant women of Northeast India is relatively low. The generation of awareness among high risk groups may have played key role to limit the infection. The role of vaccination against HSV-2 in near future and elimination of HSV-2 viral shedding along with genital tract inflammation in high HIV/HSV-2 areas may be an option for initiating successful intervention strategies to reduce the transmission and acquisition of HIV infection in Northeast India.

  11. Seroprevalence and risk factors of herpes simplex virus type-2 infection among pregnant women in Northeast India

    PubMed Central

    2011-01-01

    Background Herpes simplex virus type-2 (HSV-2) is one of the most common sexually transmitted infections that facilitate human immunodeficiency virus (HIV) acquisition by over two fold or more. The development of HSV-2 control methods as a measure to control HIV epidemic in high HSV-2/HIV areas has become a priority. Two out of the six high HIV prevalent states of India are located in the Northeastern region of India. Due to lack of documented HSV-2 studies from this part of the country; there was a need for estimating the seroprevalence and risk factors of HSV-2 infection in this defined population. Methods Pregnant women (n = 1640) aged18 years and above attending antenatal clinics of tertiary referral hospitals in five Northeastern states of India were screened for type specific HSV-2 IgG antibodies. Blood samples were collected from all the participants after conducting interviews. Univariate and multivariate analyses were performed to identify the risk factors associated with HSV-2 seropositivity. Results Overall seroprevalence of HSV-2 infection was 8.7% (142/1640; 95% CI 7.3-10.0) with a highest prevalence of 15.0% (46/307; 95% CI 11.0-19.0) in the state of Arunachal Pradesh. Higher seroprevalence was observed with increasing age (Adj. Odds Ratio [AOR] 1.9 for 22-25 years old, AOR 2.29 for > 29 years old). The risk factors associated with HSV-2 seropositives were multiple sex partners (AOR 2.5, p = 0.04), condom non-user's (AOR 4.7, p <0.001), early coitarchal age (age of first intercourse) 'less than 18 years' (AOR 9.6, p = 0.04), middle income group (AOR 2.1, p = 0.001) compared to low income group and low level of education (AOR 3.7, p = 0.02) compared to higher education. HSV-2 seropositivity was higher among Christians (12.6%) compared to Muslims (3.8%). The most frequent clinical symptoms among HSV-2 seropositives were excess vaginal discharge in last one year (53.5%, 76/142) and pelvic pain (26.1%, 37/142). While among subjects with genital ulcers, HSV-2 seroprevalence was 36.8% (7/19). Conclusions Overall seroprevalence of HSV-2 infection among pregnant women of Northeast India is relatively low. The generation of awareness among high risk groups may have played key role to limit the infection. The role of vaccination against HSV-2 in near future and elimination of HSV-2 viral shedding along with genital tract inflammation in high HIV/HSV-2 areas may be an option for initiating successful intervention strategies to reduce the transmission and acquisition of HIV infection in Northeast India. PMID:22111810

  12. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis.

    PubMed

    Looker, Katharine J; Elmes, Jocelyn A R; Gottlieb, Sami L; Schiffer, Joshua T; Vickerman, Peter; Turner, Katherine M E; Boily, Marie-Claude

    2017-12-01

    HIV and herpes simplex virus type 2 (HSV-2) infections cause a substantial global disease burden and are epidemiologically correlated. Two previous systematic reviews of the association between HSV-2 and HIV found evidence that HSV-2 infection increases the risk of HIV acquisition, but these reviews are now more than a decade old. For this systematic review and meta-analysis, we searched PubMed, MEDLINE, and Embase (from Jan 1, 2003, to May 25, 2017) to identify studies investigating the risk of HIV acquisition after exposure to HSV-2 infection, either at baseline (prevalent HSV-2 infection) or during follow-up (incident HSV-2 infection). Studies were included if they were a cohort study, controlled trial, or case-control study (including case-control studies nested within a cohort study or clinical trial); if they assessed the effect of pre-existing HSV-2 infection on HIV acquisition; and if they determined the HSV-2 infection status of study participants with a type-specific assay. We calculated pooled random-effect estimates of the association between prevalent or incident HSV-2 infection and HIV seroconversion. We also extended previous investigations through detailed meta-regression and subgroup analyses. In particular, we investigated the effect of sex and risk group (general population vs higher-risk populations) on the relative risk (RR) of HIV acquisition after prevalent or incident HSV-2 infection. Higher-risk populations included female sex workers and their clients, men who have sex with men, serodiscordant couples, and attendees of sexually transmitted infection clinics. We identified 57 longitudinal studies exploring the association between HSV-2 and HIV. HIV acquisition was almost tripled in the presence of prevalent HSV-2 infection among general populations (adjusted RR 2·7, 95% CI 2·2-3·4; number of estimates [N e ]=22) and was roughly doubled among higher-risk populations (1·7, 1·4-2·1; N e =25). Incident HSV-2 infection in general populations was associated with the highest risk of acquisition of HIV (4·7, 2·2-10·1; N e =6). Adjustment for confounders at the study level was often incomplete but did not significantly affect the results. We found moderate heterogeneity across study estimates, which was explained by risk group, world region, and HSV-2 exposure type (prevalent vs incident). We found evidence that HSV-2 infection increases the risk of HIV acquisition. This finding has important implications for management of individuals diagnosed with HSV-2 infection, particularly for those who are newly infected. Interventions targeting HSV-2, such as new HSV vaccines, have the potential for additional benefit against HIV, which could be particularly powerful in regions with a high incidence of co-infection. World Health Organization. Copyright This is an Open Access article published under the CC BY-NC-ND 3.0 IGO license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In any use of this article, there should be no suggestion that WHO endorses any specific organisation, products or services. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL.

  13. Preparation and infrared/raman classification of 630 spectroscopically encoded styrene copolymers.

    PubMed

    Fenniri, Hicham; Chun, Sangki; Terreau, Owen; Bravo-Vasquez, Juan-Pablo

    2008-01-01

    The barcoded resins (BCRs) were introduced recently as a platform for encoded combinatorial chemistry. One of the main challenges yet to be overcome is the demonstration that a large number of BCRs could be generated and classified with high confidence. Here, we describe the synthesis and classification of 630 polystyrene-based copolymers prepared from the combinatorial association of 15 spectroscopically active styrene monomers. Each of the 630 copolymers displayed a unique vibrational fingerprint (infrared and Raman), which was converted into a spectral vector. To each of the 630 copolymers, a vector of the known (reference) composition was assigned. Unknown (prediction) vectors were decoded using multivariate data analysis. From the inner product of the reference and prediction vectors, a correlation map comparing 396 900 copolymer pairs (630 x 630) was generated. In 100% of the cases, the highest correlation was obtained for polymer pairs in which the reference and prediction vectors correspond to copolymers prepared from identical styrene monomers, thus demonstrating the high reliability of this encoding strategy. We have also established that the spectroscopic barcodes generated from the Raman and infrared spectra are independent of the copolymers' morphology (beaded versus bulk polymers). Besides the demonstration of the generality of the polymer barcoding strategy, the analytical methods developed here could in principle be extended to the investigation of the composition and purity of any other synthetic polymer and biopolymer library, or even scaffold-based combinatorial libraries.

  14. Global biogeographic sampling of bacterial secondary metabolism

    PubMed Central

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Guimarães, Denise O; de Frias, Ulysses A; Pupo, Monica T; Seepe, Prudy; Feng, Zhiyang; Brady, Sean F

    2015-01-01

    Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts. DOI: http://dx.doi.org/10.7554/eLife.05048.001 PMID:25599565

  15. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.

  16. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  17. The Tolypocladium inflatum CPA element encodes a RecQ helicase-like gene.

    PubMed

    Kempken, Frank

    2008-12-01

    Previously, a repetitive CPA element was discovered in the genome of the filamentous fungus Tolypocladium inflatum; however, no further characterization was technically possible at that time. In this study, PCR amplification was used to detect a 4 kb conserved portion of the CPA element that appeared to be present in most, if not all, genomic CPA elements. The amplicons included a large open reading frame that was most similar to a RecQ helicase-like gene from Metarhizium anisopliae. The repetitive nature of the CPA element suggests that it is related to the eukaryotic Helitron class of transposable elements.

  18. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    Provided are isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Zhang, Yu

    Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  2. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  3. Identification of Methanoculleus spp. as active methanogens during anoxic incubations of swine manure storage tank samples.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L; Topp, Edward; Verastegui, Yris; Brooks, Stephen P J; Matias, Fernando; Neufeld, Josh D; Talbot, Guylaine

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-(13)C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of (13)C into DNA was detectable at in situ acetate concentrations (~7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the (13)C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis.

  4. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae

    PubMed Central

    Lagkouvardos, Ilias; Weinmaier, Thomas; Lauro, Federico M; Cavicchioli, Ricardo; Rattei, Thomas; Horn, Matthias

    2014-01-01

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir. PMID:23949660

  5. Identification of Methanoculleus spp. as Active Methanogens during Anoxic Incubations of Swine Manure Storage Tank Samples

    PubMed Central

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L.; Topp, Edward; Verastegui, Yris; Brooks, Stephen P. J.; Matias, Fernando; Neufeld, Josh D.

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-13C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of 13C into DNA was detectable at in situ acetate concentrations (∼7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the 13C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis. PMID:23104405

  6. The Incidence and Genetic Diversity of Apple Mosaic Virus (ApMV) and Prune Dwarf Virus (PDV) in Prunus Species in Australia

    PubMed Central

    Constable, Fiona E.; Nancarrow, Narelle; Rodoni, Brendan

    2018-01-01

    Apple mosaic virus (ApMV) and prune dwarf virus (PDV) are amongst the most common viruses infecting Prunus species worldwide but their incidence and genetic diversity in Australia is not known. In a survey of 127 Prunus tree samples collected from five states in Australia, ApMV and PDV occurred in 4 (3%) and 13 (10%) of the trees respectively. High-throughput sequencing (HTS) of amplicons from partial conserved regions of RNA1, RNA2, and RNA3, encoding the methyltransferase (MT), RNA-dependent RNA polymerase (RdRp), and the coat protein (CP) genes respectively, of ApMV and PDV was used to determine the genetic diversity of the Australian isolates of each virus. Phylogenetic comparison of Australian ApMV and PDV amplicon HTS variants and full length genomes of both viruses with isolates occurring in other countries identified genetic strains of each virus occurring in Australia. A single Australian Prunus infecting ApMV genetic strain was identified as all ApMV isolates sequence variants formed a single phylogenetic group in each of RNA1, RNA2, and RNA3. Two Australian PDV genetic strains were identified based on the combination of observed phylogenetic groups in each of RNA1, RNA2, and RNA3 and one Prunus tree had both strains. The accuracy of amplicon sequence variants phylogenetic analysis based on segments of each virus RNA were confirmed by phylogenetic analysis of full length genome sequences of Australian ApMV and PDV isolates and all published ApMV and PDV genomes from other countries. PMID:29562672

  7. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  8. A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1

    PubMed Central

    Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.

    2009-01-01

    Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021

  9. Emergence of herpes simplex type 1 as the main cause of recurrent genital ulcerative disease in women in Northern Ireland.

    PubMed

    Coyle, P V; O'Neill, H J; Wyatt, D E; McCaughey, C; Quah, S; McBride, M O

    2003-05-01

    Genital herpes is a common infection affecting some 20% of sexually active people. Although herpes simplex virus (HSV) types 1 and 2 can both establish genital latency, reactivation from the sacral ganglia favours HSV-2. Over the past decade the incidence of type 1 genital infection in women has greatly increased. To determine whether the increased prevalence of HSV-1 genital infection was benign or influencing the pattern of virus recovery in recurrent infection. A retrospective analysis of laboratory computer records was undertaken. Patients attending six genitourinary medicine (GUM) departments, over an 80 months period, were identified. Recurrent infection was confirmed where virus was recovered from at least two separate episodes of genital ulceration that were separated by an interval of 12 or more weeks. Episodes were further analysed for frequency, age, gender and virus type. Sixty nine patients with recurrent genital herpetic infection were identified. HSV-1 and HSV-2 were predominantly recovered from recurrent genital infections in females (34 HSV-1 vs. ten HSV-2) and males (one HSV-1 vs. 24 HSV-2), respectively (P>0.001). The mean age of females and males, at the initial diagnosis, was 26 and 39 years. There was no difference in the recurrence rate by type. HSV-1 has become the commonest cause of recurrent genital ulceration in Northern Ireland, almost entirely due its recent increased prevalence in women over the last decade. Women are experiencing genital herpetic infections at an earlier age than men.

  10. Herpes virus seroepidemiology in the adult Swedish population.

    PubMed

    Olsson, Jan; Kok, Eloise; Adolfsson, Rolf; Lövheim, Hugo; Elgh, Fredrik

    2017-01-01

    Herpes viruses establish a life-long latency and can cause symptoms during both first-time infection and later reactivation. The aim of the present study was to describe the seroepidemiology of Herpes simplex type 1 (HSV1), Herpes simplex type 2 (HSV2), Cytomegalovirus (CMV), Varicella Zoster virus (VZV) and Human herpes virus type 6 (HHV6) in an adult Swedish population (35-95 years of age). Presence of antibodies against the respective viruses in serum from individuals in the Betula study was determined with an enzyme-linked immunosorbent assay (ELISA). Singular samples from 535 persons (53.9% women, mean age at inclusion 62.7 ± 14.4 years) collected 2003-2005 were analyzed for the five HHVs mentioned above. In addition, samples including follow-up samples collected 1988-2010 from 3,444 persons were analyzed for HSV. Prevalence of HSV1 was 79.4%, HSV2 12.9%, CMV 83.2%, VZV 97.9%, and HHV6 97.5%. Herpes virus infections were more common among women ( p  = 0.010) and a lower age-adjusted HSV seroprevalence was found in later birth cohorts ( p  < 0.001). The yearly incidence of HSV infection was estimated at 14.0/1000. Women are more often seropositive for HHV, especially HSV2. Age-adjusted seroprevalence for HSV was lower in later birth cohorts indicating a decreasing childhood and adolescent risk of infection.

  11. The effect of valacyclovir on HIV and HSV-2 in HIV-infected persons on antiretroviral therapy with previously unrecognised HSV-2.

    PubMed

    Van Wagoner, Nicholas; Geisler, William M; Bachmann, Laura H; Hook, Edward W

    2015-07-01

    In the absence of antiretroviral therapy, valacyclovir may reduce HIV viral load and increase CD4+ T-lymphocyte count. We sought to evaluate the impact of valacyclovir on HIV and HSV-2 in co-infected patients receiving antiretroviral therapy with previously unrecognised HSV-2 infection. A prospective, randomised-controlled, 24-week trial of valacyclovir 1000 mg was performed. Mean CD4+ T-lymphocyte count at 24 weeks compared to baseline CD4+ T-lymphocyte count was the primary outcome. HIV viral load suppression, HSV-2 outbreaks and asymptomatic HSV-2 shedding were secondary outcomes. Participants were randomised to valacyclovir (N = 66) or placebo (N = 35). Study completion was 64%. There was no change in 24 weeks compared to baseline CD4+ T-lymphocyte count in either group (valacyclovir p = 0.91, placebo p = 0.59) or the proportion with HIV viral load suppression (valacyclovir p = 0.75, placebo p = 1.0). Genital HSV and asymptomatic HSV-2 shedding were rare. Valacyclovir had no effect on CD4+ T-lymphocyte count or HIV viral load in this population. Valacyclovir may reduce clinical outbreaks and asymptomatic HSV-2 shedding, but the rarity of these events, along with its lack of benefit on HIV, does not support its use in this clinical setting. © The Author(s) 2014.

  12. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases.

    PubMed

    Thongsripong, Panpim; Chandler, James Angus; Green, Amy B; Kittayapong, Pattamaporn; Wilcox, Bruce A; Kapan, Durrell D; Bennett, Shannon N

    2018-01-01

    Vector-borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito-associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next-generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti , Ae. albopictus , and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered ( Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human-impacted landscapes that may ultimately affect vector-borne disease risk.

  13. Serologic Screening for Genital Herpes Infection: US Preventive Services Task Force Recommendation Statement.

    PubMed

    Bibbins-Domingo, Kirsten; Grossman, David C; Curry, Susan J; Davidson, Karina W; Epling, John W; García, Francisco A R; Kemper, Alex R; Krist, Alex H; Kurth, Ann E; Landefeld, C Seth; Mangione, Carol M; Phillips, William R; Phipps, Maureen G; Pignone, Michael P; Silverstein, Michael; Tseng, Chien-Wen

    2016-12-20

    Genital herpes is a prevalent sexually transmitted infection in the United States, occurring in almost 1 in 6 persons aged 14 to 49 years. Infection is caused by 2 subtypes of the herpes simplex virus (HSV), HSV-1 and HSV-2. Antiviral medications may provide symptomatic relief from outbreaks but do not cure HSV infection. Neonatal herpes infection, while uncommon, can result in substantial morbidity and mortality. To update the 2005 US Preventive Services Task Force (USPSTF) recommendation on screening for genital herpes. The USPSTF reviewed the evidence on the accuracy, benefits, and harms of serologic screening for HSV-2 infection in asymptomatic persons, including those who are pregnant, as well as the effectiveness and harms of preventive medications and behavioral counseling interventions to reduce future symptomatic episodes and transmission to others. Based on the natural history of HSV infection, its epidemiology, and the available evidence on the accuracy of serologic screening tests, the USPSTF concluded that the harms outweigh the benefits of serologic screening for genital HSV infection in asymptomatic adolescents and adults, including those who are pregnant. The USPSTF recommends against routine serologic screening for genital HSV infection in asymptomatic adolescents and adults, including those who are pregnant. (D recommendation).

  14. Prevalence of herpes simplex virus 1 and 2 antibodies in patients with autism spectrum disorders.

    PubMed

    Gentile, Ivan; Zappulo, Emanuela; Bonavolta, Raffaele; Maresca, Roberta; Riccio, Maria Pia; Buonomo, Antonio Riccardo; Portella, Giuseppe; Vallefuoco, Luca; Settimi, Alessandro; Pascotto, Antonio; Borgia, Guglielmo; Bravaccio, Carmela

    2014-01-01

    The etiology of autism spectrum disorder (ASD) is unknown, even though it is hypothesized that a viral infection could trigger this disorder. The aim of this study was to evaluate the seropositivity rate and antibody level of Herpes Simplex Virus 1 (HSV1) and Herpes Simplex Virus 2 (HSV2) in children with ASD compared to same-aged healthy controls. We compared seropositivity rate and levels of antibodies to HSV1/2 in 54 children with ASD (19 with autistic disorder and 35 with non-autistic ASD) and in 46 controls. Seropositivity rate and levels of anti-HSV1/2 were not dissimilar between cases and controls. Exposure to HSV2 was minimal. Rate of contact with HSV1 and HSV2 assessed by the mean of detection of specific antibodies was similar between children with ASD and healthy controls. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. From HSV infection to erythema multiforme through autoimmune crossreactivity.

    PubMed

    Lucchese, Alberta

    2018-06-01

    Scientific and clinical data indicate that human herpes simplex virus 1 (HSV1) and, at a lesser extent, human herpes simplex virus 2 (HSV2) are factor(s) implicated in the development of erythema multiforme (EM). With a focus on oral EM, the present structured review of proteomic and epitope databases searched for the molecular basis that might link HSV1 and HSV2 infections to EM. It was found that a high number of peptides are shared between the two HSVs and human proteins related to the oral mucosa. Moreover, a great number of the shared peptides are also present in epitopes that have been experimentally validated as immunopositive in the human host. The results suggest the involvement of HSV infections in the induction of oral EM via a mechanism of autoimmune cross-reactivity and, in particular, highlight a potential major role for 180kDa bullous pemphigoid antigen and HSV1 infection in the genesis of crossreactions potentially conducive to EM. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Drug-resistant herpes simplex virus in HIV infected patients.

    PubMed

    Lolis, Margarita S; González, Lenis; Cohen, Philip J; Schwartz, Robert A

    2008-01-01

    Herpes simplex virus type 2 (HSV2) infection is a major source of morbidity in human immunodeficiency virus (HIV)-infected patients, since reactivations - whether symptomatic or asymptomatic - are associated with increased HIV viral load and viral shedding. Acyclovir, valacyclovir and famcyclovir are indicated for the treatment of HSV2 in HIV patients. This class of drugs has been shown to enhance survival in HIV-infected individuals. However, with the emergence of drug-resistant strains of HSV2, the rates of resistance among HIV patients are almost ten-fold those in immunocompetent individuals, comparing 0.6% to 6%. These HSV2 infections tend to be more severe and to recur. More ominously, disease progression of HIV is promoted by concurrent infection with HSV2. Intravenous foscarnet and cidofovir may be used for acyclovir-resistant HSV; however, resistance to these drugs has been documented. Newer therapies such as the toll-like receptor agonist imiquimod and immunomodulating dipeptides offer promise for the treatment of HSV2 in HIV-infected individuals.

  17. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    PubMed Central

    Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon

    2009-01-01

    Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086

  18. Seroprevalence of herpes simplex virus 2 among Hispanics in the USA: National Health and Nutrition Examination Survey, 2007-2008.

    PubMed

    Molina, M; Romaguera, R A; Valentine, J; Tao, G

    2011-07-01

    To examine the seroprevalence of herpes simplex virus type 2 (HSV-2) among Hispanics in the USA, we used the cross-sectional, nationally representative National Health and Nutrition Examination Survey to compare the seroprevalence of HSV-2 between Hispanic persons of Mexican heritage and non-Mexican heritage aged 14-44 years, from survey years 2007-2008. The overall HSV-2 seroprevalence among Hispanics aged 14-44 years was 17.5% (95% confidence interval [CI], 15.2, 20.1) in the USA. HSV-2 seroprevalence was significantly lower among Mexican Americans than among other Hispanics (11.7% vs. 27.8%, P < 0.01). Prevalence of HSV-2 was also significantly associated with gender and age. The significant difference in HSV-2 seroprevalence between Hispanic persons of Mexican heritage and non-Mexican heritage suggested that targeting specific subgroups of Hispanics for preventive interventions may be a strategy to reduce the transmission of HSV-2 and HIV among Hispanics in the USA.

  19. Proposed anti-HSV compounds isolated from Simira species.

    PubMed

    Cavalcanti, Jessica F; de Araujo, Marcelo F; Gonçalves, Priscila B; Romeiro, Nelilma C; Villela Romanos, Maria T; Curcino Vieira, Ivo J; Braz-Filho, Raimundo; de Carvalho, Mário G; Sanches, Mirza N G

    2017-09-19

    Secondary metabolites isolated from Simira eleiezeriana and Simira glaziovii were evaluated against herpes simplex virus (HSV-1) and (HSV-2). The 50% effective concentrations values (EC 50 ) were calculated from the dose-response curve and the selectivity index (SI) against the virus. The physicochemical data LogP, (PSA), (NRB), (HBA) and (HBD) were obtained using Marvin Sketch. Among the tested compounds, conipheraldeyde, harman and simirane A showed better results with EC 50 6.39; 4.90; 4.61 µg/mL and SI 78.3; 11.8; 7.01, respectively, for HSV-1, and EC 50 41.2; 71.8; 3.73 µg/mL and SI 12.1; 24.7; 8.7, respectively, for HSV-2. The percentage of inhibition (PI) obtained for HSV-1 were higher than 60%, and for HSV-2 these compounds showed PI > 90%. The physical chemical data showed that the most active compounds satisfy the attributes for drugs with good oral bioavailability.

  20. High Efficiency Latency and Activation of Herpes Simplex Virus in Human Cells

    NASA Astrophysics Data System (ADS)

    Wigdahl, Brian L.; Scheck, Adrienne C.; de Clercq, Erik; Rapp, Fred

    1982-09-01

    Herpes simplex virus (HSV) exists in humans in a latent form that can be activated. To characterize the molecular basis of the cell-virus interactions and to analyze the state of the latent HSV genome, an in vitro model system was established. In this system a large fraction of the latently infected cells contain an HSV genome that can be activated. Cell survival was reduced minimally after repression of high multiplicity HSV type 1 (HSV-1) infection of human fibroblast cells with (E)-5-(2-bromovinyl)-2'-deoxyuridine in combination with human leukocyte interferon (IFN-α ). A minimum of 1 to 3 percent of the surviving cells contained an HSV genome that could be activated either by human cytomegalovirus superinfection or reduction in incubation temperature.

  1. Recurrent herpes simplex virus type 2 meningitis in elderly persons.

    PubMed

    Davis, Larry E; Guerre, Jenny; Gerstein, Wendy H

    2010-06-01

    To review the ages of patients with recurrent herpes simplex virus type 2 (HSV-2) meningitis. Case report and literature review back to 1970. Referral Veterans Affairs hospital. Our patient developed his first episode of recurrent HSV-2 meningitis at 78 years of age, 57 years after his only episode of genital herpes simplex infection. Of 223 patients in the literature with recurrent HSV-2 meningitis, 5% occurred in patients older than 60 years and 19% in patients older than 50 years. Although recurrent meningitis due to HSV is primarily seen in young, sexually active adults, a surprising number of episodes of HSV meningitis can develop in older age. Meningitis due to HSV-2 should be in the differential diagnosis of aseptic meningitis in older patients.

  2. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Shaghasi, Tarana

    The present invention relates to hybrid polypeptides having cellobiohydrolase activity. The present invention also relates to polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-07-14

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system

    NASA Technical Reports Server (NTRS)

    Currier, S. F.; Powell, W. R.

    1986-01-01

    The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

  8. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits

    PubMed Central

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently infected with LAT-null mutant (i.e., LAT– TG). These findings suggest that the HSV-1 LAT locus interferes with the host cellular immune response by shaping a broader repertoire of exhausted HSV-specific CD8+ T cells within the latency/reactivation TG site. PMID:26842468

  9. Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence.

    PubMed

    Kouyoumjian, Silva P; Heijnen, Marieke; Chaabna, Karima; Mumtaz, Ghina R; Omori, Ryosuke; Vickerman, Peter; Abu-Raddad, Laith J

    2018-06-19

    Our objective was to assess the population-level association between herpes simplex virus 2 (HSV-2) and HIV prevalence. Reports of HSV-2 and HIV prevalence were systematically reviewed and synthesized following PRISMA guidelines. Spearman rank correlation ((Equation is included in full-text article.)) was used to assess correlations. Risk ratios (RRHSV-2/HIV) and odds ratios (ORHSV-2/HIV) were used to assess HSV-2/HIV epidemiologic overlap. DerSimonian-Laird random-effects meta-analyses were conducted. In total, 939 matched HSV-2/HIV prevalence measures were identified from 77 countries. HSV-2 prevalence was consistently higher than HIV prevalence. Strong HSV-2/HIV prevalence association was found for all data ((Equation is included in full-text article.) = 0.6, P < 0.001), all data excluding people who inject drugs (PWID) and children ((Equation is included in full-text article.) = 0.7, P < 0.001), female sex workers ((Equation is included in full-text article.) = 0.5, P < 0.001), and MSM ((Equation is included in full-text article.) = 0.7, P < 0.001). No association was found for PWID ((Equation is included in full-text article.) = 0.2, P = 0.222) and children ((Equation is included in full-text article.) = 0.3, P = 0.082). A threshold effect was apparent where HIV prevalence was limited at HSV-2 prevalence less than 20%, but grew steadily with HSV-2 prevalence for HSV-2 prevalence greater than 20%. The overall pooled mean RRHSV-2/HIV was 5.0 (95% CI 4.7-5.3) and ORHSV-2/HIV was 9.0 (95% CI 8.4-9.7). The RRHSV-2/HIV and ORHSV-2/HIV showed similar patterns that conveyed inferences about HSV-2 and HIV epidemiology. HSV-2 and HIV prevalence are strongly associated. HSV-2 prevalence can be used as a proxy 'biomarker' of HIV epidemic potential, acting as a 'temperature scale' of the intensity of sexual risk behavior that drive HIV transmission. HSV-2 prevalence can be used to identify populations and/or sexual networks at high-risk of future HIV expansion, and help prioritization, optimization, and resource allocation of cost-effective prevention interventions.

  10. The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle.

    PubMed

    Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L

    2015-10-01

    The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor, telomerase, is the cellular enzyme that synthesizes DNA repeats at the ends of chromosomes during replication to prevent DNA shortening. In this study, we investigate role of telomerase in HSV infection. The data demonstrate that the telomerase inhibitor MST-312 suppressed HSV replication at multiple steps of viral infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Genital Shedding of Herpes Simplex Virus Among Symptomatic and Asymptomatic Persons with HSV-2 Infection

    PubMed Central

    Tronstein, Elizabeth; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Warren, Terri; Corey, Lawrence; Wald, Anna

    2011-01-01

    Context Since HSV-2 antibody tests have become commercially available, an increasing number of persons learn that they have genital herpes through serologic testing. The course of natural history of HSV-2 in asymptomatic, seropositive persons is uncertain. Objective To evaluate the virologic and clinical course of HSV genital shedding among participants with symptomatic and asymptomatic HSV-2 infection. Design, Setting and Participants Cohort of 498 immunocompetent HSV-2 seropositive persons enrolled in prospective studies of genital HSV shedding at the University of Washington Virology Research Clinic, Seattle, Washington, and Westover Heights Clinic in Portland, Oregon, between 1992 and 2008. Each participant obtained daily self-collected swabs of genital secretions for ≥ 30 days. Main Outcome Measurement The rate of viral shedding measured by quantitative real-time fluorescence polymerase chain reaction (PCR) for HSV DNA from genital swabs. Results HSV was detected on 4,753 of 23,683 days (20.1%; 95% CI, 18.3 to 22.0) in persons with symptomatic genital HSV-2 infection compared with 519 of 5,070 days (10.2%; 95% CI, 7.7 to 13.6) in persons with asymptomatic infection, p<0.001. Subclinical shedding rates were higher in persons with symptomatic infection compared with asymptomatic infection (2,708 of 20,735 days (13.1%; 95% CI, 11.5 to14.6) vs. 434 of 4,929 days (8.8%; 95% CI, 6.3 to 11.5), p<0.001. However, the amount of HSV detected during subclinical shedding episodes was similar (median 4.3 [IQR 3.1-5.6] log10 copies in the symptomatic infection group vs. 4.2 [IQR, 2.9-5.5], p=0.27 in the asymptomatic infection group). Days with lesions accounted for 2,045 of 4,753 days (43.0%; 95% CI, 39.8 to 46.5) with genital viral shedding among persons with symptomatic genital HSV-2 infection compared with 85 of 519 days (16.4%; 95% CI, 11.2 to 23.9) among persons with asymptomatic infection, p<0.001. Conclusions Persons with asymptomatic HSV-2 infection shed virus in the genital tract less frequently than persons with symptomatic infection, but much of the difference is attributable to less frequent genital lesions, as lesions are accompanied by frequent viral shedding. PMID:21486977

  12. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine.

    PubMed

    Samandary, Sarah; Kridane-Miledi, Hédia; Sandoval, Jacqueline S; Choudhury, Zareen; Langa-Vives, Francina; Spencer, Doran; Chentoufi, Aziz A; Lemonnier, François A; BenMohamed, Lbachir

    2014-08-01

    A significant portion of the world's population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) over a half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A(∗)24, HLA-B(∗)27, HLA-B(∗)53 and HLA-B(∗)58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B(∗)44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Associations of HLA-A, HLA-B and HLA-C Alleles Frequency with Prevalence of Herpes Simplex Virus Infections and Diseases Across Global Populations: Implication for the Development of an Universal CD8+ T-Cell Epitope-Based Vaccine

    PubMed Central

    Samandary, Sarah; Kridane-Miledi, Hédia; Sandoval, Jacqueline S.; Choudhury, Zareen; Langa-Vives, Francina; Spencer, Doran; Chentoufi, Aziz A.; Lemonnier, François A.; BenMohamed, Lbachir

    2014-01-01

    A significant portion of the world’s population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) Over half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A*24, HLA-B*27, HLA-B*53 and HLA-B*58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B*44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy. PMID:24798939

  14. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  15. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual-risk behavior in the Middle East and North Africa

    PubMed Central

    Abu-Raddad, Laith J.; Schiffer, Joshua T.; Ashley, Rhoda; Mumtaz, Ghina; Alsallaq, Ramzi A.; Akala, Francisca Ayodeji; Semini, Iris; Riedner, Gabriele; Wilson, David

    2013-01-01

    Background HIV prevalence is low in the Middle East and North Africa (MENA) region, though the risk or potential for further spread in the future is not well understood. Behavioral surveys are limited in this region and when available have serious limitations in assessing the risk of HIV acquisition. We demonstrate the potential use of herpes simplex virus-2 (HSV-2) seroprevalence as a marker for HIV risk within MENA. Methods We designed a mathematical model to assess whether HSV-2 prevalence can be predictive of future HIV spread. We also conducted a systematic literature review of HSV-2 seroprevalence studies within MENA. Results We found that HSV-2 prevalence data are rather limited in this region. Prevalence is typically low among the general population but high in established core groups prone to sexually transmitted infections such as men who have sex with men and female sex workers. Our model predicts that if HSV-2 prevalence is low and stable, then the risk of future HIV epidemics is low. However, expanding or high HSV-2 prevalence (greater than about 20%), implies a risk for a considerable HIV epidemic. Based on available HSV-2 prevalence data, it is not likely that the general population in MENA is experiencing or will experience such a considerable HIV epidemic. Nevertheless, the risk for concentrated HIV epidemics among several high-risk core groups is high. Conclusions HSV-2 prevalence surveys provide a useful mechanism for identifying and corroborating populations at risk for HIV within MENA. HSV-2 serology offers an effective tool for probing hidden risk behaviors in a region where quality behavioral data are limited. PMID:21352788

  16. Elaboration of a clinical and paraclinical score to estimate the probability of herpes simplex virus encephalitis in patients with febrile, acute neurologic impairment.

    PubMed

    Gennai, S; Rallo, A; Keil, D; Seigneurin, A; Germi, R; Epaulard, O

    2016-06-01

    Herpes simplex virus (HSV) encephalitis is associated with a high risk of mortality and sequelae, and early diagnosis and treatment in the emergency department are necessary. However, most patients present with non-specific febrile, acute neurologic impairment; this may lead clinicians to overlook the diagnosis of HSV encephalitis. We aimed to identify which data collected in the first hours in a medical setting were associated with the diagnosis of HSV encephalitis. We conducted a multicenter retrospective case-control study in four French public hospitals from 2007 to 2013. The cases were the adult patients who received a confirmed diagnosis of HSV encephalitis. The controls were all the patients who attended the emergency department of Grenoble hospital with a febrile acute neurologic impairment, without HSV detection by polymerase chain reaction (PCR) in the cerebrospinal fluid (CSF), in 2012 and 2013. A multivariable logistic model was elaborated to estimate factors significantly associated with HSV encephalitis. Finally, an HSV probability score was derived from the logistic model. We identified 36 cases and 103 controls. Factors independently associated with HSV encephalitis were the absence of past neurological history (odds ratio [OR] 6.25 [95 % confidence interval (CI): 2.22-16.7]), the occurrence of seizure (OR 8.09 [95 % CI: 2.73-23.94]), a systolic blood pressure ≥140 mmHg (OR 5.11 [95 % CI: 1.77-14.77]), and a C-reactive protein <10 mg/L (OR 9.27 [95 % CI: 2.98-28.88]). An HSV probability score was calculated summing the value attributed to each independent factor. HSV encephalitis diagnosis may benefit from the use of this score based upon some easily accessible data. However, diagnostic evocation and probabilistic treatment must remain the rule.

  17. Preventive Strategies Against Cytomegalovirus and Incidence of α-Herpesvirus Infections in Solid Organ Transplant Recipients: A Nationwide Cohort Study.

    PubMed

    Martin-Gandul, C; Stampf, S; Héquet, D; Mueller, N J; Cusini, A; van Delden, C; Khanna, N; Boggian, K; Hirzel, C; Soccal, P; Hirsch, H H; Pascual, M; Meylan, P; Manuel, O

    2017-07-01

    We assessed the impact of antiviral preventive strategies on the incidence of herpes simplex virus (HSV) and varicella-zoster virus (VZV) infections in a nationwide cohort of transplant recipients. Risk factors for the development of HSV or VZV infection were assessed by Cox proportional hazards regression. We included 2781 patients (56% kidney, 20% liver, 10% lung, 7.3% heart, 6.7% others). Overall, 1264 (45%) patients received antiviral prophylaxis (ganciclovir or valganciclovir, n = 1145; acyclovir or valacyclovir, n = 138). Incidence of HSV and VZV infections was 28.9 and 12.1 cases, respectively, per 1000 person-years. Incidence of HSV and VZV infections at 1 year after transplant was 4.6% (95% confidence interval [CI] 3.5-5.8) in patients receiving antiviral prophylaxis versus 12.3% (95% CI 10.7-14) in patients without prophylaxis; this was observed particularly for HSV infections (3% [95% CI 2.2-4] versus 9.8% [95% CI 8.4-11.4], respectively). A lower rate of HSV and VZV infections was also seen in donor or recipient cytomegalovirus-positive patients receiving ganciclovir or valganciclovir prophylaxis compared with a preemptive approach. Female sex (hazard ratio [HR] 1.663, p = 0.001), HSV seropositivity (HR 5.198, p < 0.001), previous episodes of rejection (HR 1.95, p = 0.004), and use of a preemptive approach (HR 2.841, p = 0.017) were significantly associated with a higher risk of HSV infection. Although HSV and VZV infections were common after transplantation, antiviral prophylaxis significantly reduced symptomatic HSV infections. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Epidemiology of recurrent genital herpes simplex virus types 1 and 2

    PubMed Central

    Solomon, L; Cannon, M; Reyes, M; Graber, J; Wetherall, N; Reeves, W

    2003-01-01

    Methods: Participants were enrolled at clinics across the United States. Adults suspected of having active genital herpes were eligible. Lesions were cultured for HSV and typed. Data from 940 participants with recurrent culture positive HSV lesions were analysed. Pearson's χ2 and Fisher's exact tests, multivariate logistic regression models, and a stratified Cox proportional hazards model were used to compare epidemiological characteristics and lesion duration of HSV-1 and HSV-2. Results: HSV-1 was present in 4.2% of the recurrent HSV culture positive lesions. HSV-1 was most prevalent among whites (6.5%) and individuals with 0–2 recurrences in the previous year (9.1%) and, among men, in those with rectal/perirectal lesions (13.2%). Longer lesion duration was not significantly associated with virus type (hazard ratio (HR) 0.95, 95% confidence interval (CI) 0.65 to 1.38, p = 0.79), but was associated with male sex (HR 0.85, 95% CI 0.74 to 0.99, p = 0.04), and HIV seropositivity (HR 0.62, 95% CI 0.48 to 0.81, p<0.01). Conclusions: The authors found that, in the United States, recurrent genital HSV-1 is relatively rare in the STD and HIV clinic setting, especially among black people. Among men, rectal/perirectal recurrent lesions are more likely to be caused by HSV-1 than are penile lesions. In addition, lesion duration depends on sex and HIV status but not virus type. These findings shed new light on the type specific epidemiology of recurrent genital HSV, and suggest that type specific testing can inform the prognosis and management of genital herpes. PMID:14663120

  19. Immunodominant epitopes in herpes simplex virus type 2 glycoprotein D are recognized by CD4 lymphocytes from both HSV-1 and HSV-2 seropositive subjects.

    PubMed

    Kim, Min; Taylor, Janette; Sidney, John; Mikloska, Zorka; Bodsworth, Neil; Lagios, Katerina; Dunckley, Heather; Byth-Wilson, Karen; Denis, Martine; Finlayson, Robert; Khanna, Rajiv; Sette, Alessandro; Cunningham, Anthony L

    2008-11-01

    In human recurrent cutaneous herpes simplex, there is a sequential infiltrate of CD4 and then CD8 lymphocytes into lesions. CD4 lymphocytes are the major producers of the key cytokine IFN-gamma in lesions. They recognize mainly structural proteins and especially glycoproteins D and B (gD and gB) when restimulated in vitro. Recent human vaccine trials using recombinant gD showed partial protection of HSV seronegative women against genital herpes disease and also, in placebo recipients, showed protection by prior HSV1 infection. In this study, we have defined immunodominant peptide epitopes recognized by 8 HSV1(+) and/or 16 HSV2(+) patients using (51)Cr-release cytotoxicity and IFN-gamma ELISPOT assays. Using a set of 39 overlapping 20-mer peptides, more than six immunodominant epitopes were defined in gD2 (two to six peptide epitopes were recognized for each subject). Further fine mapping of these responses for 4 of the 20-mers, using a panel of 9 internal 12-mers for each 20-mers, combined with MHC II typing and also direct in vitro binding assay of these peptides to individual DR molecules, showed more than one epitope per 20-mers and promiscuous binding of individual 20-mers and 12-mers to multiple DR types. All four 20-mer peptides were cross-recognized by both HSV1(+)/HSV2(-) and HSV1(-)/HSV2(+) subjects, but the sites of recognition differed within the 20-mers where their sequences were divergent. This work provides a basis for CD4 lymphocyte cross-recognition of gD2 and possibly cross-protection observed in previous clinical studies and in vaccine trials.

  20. Establishment of HSV1 Latency in Immunodeficient Mice Facilitates Efficient In Vivo Reactivation

    PubMed Central

    Ramakrishna, Chandran; Ferraioli, Adrianna; Calle, Aleth; Nguyen, Thanh K.; Openshaw, Harry; Lundberg, Patric S.; Lomonte, Patrick; Cantin, Edouard M.

    2015-01-01

    The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation. PMID:25760441

Top