Science.gov

Sample records for hubble heritage team

  1. HUBBLE HERITAGE PROJECT'S FIRST ANNIVERSARY(NGC 2261)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NGC 2346, in contrast to the first two young objects, is a so-called 'planetary nebula,' which is ejected from Sun-like stars which are near the ends of their lives. NGC 2346 is remarkable because its central star is known to be actually a very close pair of stars, orbiting each other every 16 days. It is believed that the binary star was originally more widely separated. However, when one component of the binary evolved, expanded in size, and became a red-giant star, it literally swallowed its companion star. The companion star then spiralled downwards inside the red giant, and in the process spewed out gas into a ring around the binary system. Later on, when the hot core of the red giant was exposed, it developed a faster stellar wind, which emerged perpendicularly to the ring and inflated two huge 'bubbles.' This two-stage process is believed to have resulted in the butterfly-like shape of the nebula. NGC 2346 lies about 2,000 light-years away from us, and is about one-third of a light-year in size. The Hubble Heritage team made this image from observations of NGC 2346 acquired by Massimo Stiavelli (STScI), Inge Heyer (STScI), and collaborators. Image Credit: NASA/The Hubble Heritage Team (AURA/STScI).

  2. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    than 5,000 Internet voters, who were asked last year to select an astronomical target for the Hubble telescope to observe. The voters included students, teachers, and professional and amateur astronomers. This 11th anniversary release image was composed by the Hubble Heritage Team, which superimposed Hubble data onto ground-based data (limited to small triangular regions around the outer edge of the image). Ground-based image courtesy of Nigel A. Sharp (NOAO/AURA/NSF) taken at the 0.9-meter telescope on Kitt Peak. Image Credit: NASA, NOAO, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: K. Noll (Hubble Heritage PI/STScI), C. Luginbuhl (USNO), F. Hamilton (Hubble Heritage/STScI)

  3. Hubble's Necklace

    NASA Image and Video Library

    2017-12-08

    Image released 11 Aug 2011. The "Necklace Nebula" is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red). The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles wide, dotted with dense, bright knots of gas that resemble diamonds in a necklace. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. BEAUTY IN THE EYE OF HUBBLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    or simply dissipate? This image is a composite of data taken by Hubble's Wide Field Planetary Camera 2 in June 2001 by Bob O'Dell (Vanderbilt University) and collaborators and in January 2002 by The Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C.R. O'Dell (Vanderbilt University)

  5. HUBBLE REVEALS THE HEART OF THE WHIRLPOOL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    wavelengths, the dusty clouds are more transparent and the true distribution of stars is more easily seen. In addition, regions of star formation that are obscured in the optical images are newly revealed in the near-infrared images. This image was composed by the Hubble Heritage Team from Hubble archival data of M51 and is superimposed onto ground-based data taken by Travis Rector (NOAO) at the 0.9-meter telescope at the National Science Foundation's Kitt Peak National Observatory (NOAO/AURA) in Tucson, AZ. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: N. Scoville (Caltech) and T. Rector (NOAO)

  6. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  7. Amateur and Professional Astronomers Team Up to Create a Cosmological Masterpiece

    NASA Image and Video Library

    2017-12-08

    To view a video of this story go to: www.flickr.com/photos/gsfc/8448332724 Working with astronomical image processors at the Space Telescope Science Institute in Baltimore, Md., renowned astro-photographer Robert Gendler has taken science data from the Hubble Space Telescope (HST) archive and combined it with his own ground-based observations to assemble a photo illustration of the magnificent spiral galaxy M106. Gendler retrieved archival Hubble images of M106 to assemble a mosaic of the center of the galaxy. He then used his own and fellow astro-photographer Jay GaBany's observations of M106 to combine with the Hubble data in areas where there was less coverage, and finally, to fill in the holes and gaps where no Hubble data existed. The center of the galaxy is composed almost entirely of HST data taken by the Advanced Camera for Surveys, Wide Field Camera 3, and Wide Field Planetary Camera 2 detectors. The outer spiral arms are predominantly HST data colorized with ground-based data taken by Gendler's and GaBany's 12.5-inch and 20-inch telescopes, located at very dark remote sites in New Mexico. The image also reveals the optical component of the "anomalous arms" of M106, seen here as red, glowing hydrogen emission. To read more go to: www.nasa.gov/mission_pages/hubble/science/m106.html Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), R. Gendler (for the Hubble Heritage Team), and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies

    NASA Image and Video Library

    2017-12-08

    NASA image release April 20, 2011 To see a video of this image go here: www.flickr.com/photos/gsfc/5637796622 To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) To read more about this image go here: www.nasa.gov/mission_pages/hubble/science/hubble-rose.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2000-07-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  10. Hubble Supernova Bubble Resembles Holiday Ornament

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: J. Hughes (Rutgers University) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  11. HUBBLE TRACKS 'PERFECT STORM' ON MARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap. When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades. Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun. Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2. Credit: NASA, James Bell (Cornell Univ.), Michael Wolff (Space Science Inst.), and the Hubble Heritage Team (STScI/AURA)

  12. Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  13. Hubble Space Telescope Celebrates 25 Years of Unveiling the Universe

    NASA Image and Video Library

    2015-04-23

    This visualization provides a three-dimensional perspective on Hubble's 25th anniversary image of the nebula Gum 29 with the star cluster Westerlund 2 at its core. The flight traverses the foreground stars and approaches the lower left rim of the nebula Gum 29. Passing through the wispy darker clouds on the near side, the journey reveals bright gas illuminated by the intense radiation of the newly formed stars of cluster Westerlund 2. Within the nebula, several pillars of dark, dense gas are being shaped by the energetic light and strong stellar winds from the brilliant cluster of thousands of stars. Note that the visualization is intended to be a scientifically reasonable interpretation and that distances within the model are significantly compressed. Download here: hubblesite.org/newscenter/archive/releases/2015/12/video/ Credit: NASA, ESA, G. Bacon, L. Frattare, Z. Levay, and F. Summers (Viz3D Team, STScI), and J. Anderson (STScI) Acknowledgment: The Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), the Westerlund 2 Science Team, and ESO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. A Dynamical Approach Toward Understanding Mechanisms of Team Science: Change, Kinship, Tension, and Heritage in a Transdisciplinary Team

    PubMed Central

    2013-01-01

    Abstract Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist‐grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health—funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis—change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. PMID:23919361

  15. A dynamical approach toward understanding mechanisms of team science: change, kinship, tension, and heritage in a transdisciplinary team.

    PubMed

    Lotrecchiano, Gaetano R

    2013-08-01

    Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist-grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health-funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis-change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. © 2013 Wiley Periodicals, Inc.

  16. http://www.nasa.gov/feature/goddard/2016/hubble-team-breaks-cosmic-distance-record

    NASA Image and Video Library

    2016-03-03

    By pushing NASA’s Hubble Space Telescope to its limits, an international team of astronomers has shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. This surprisingly bright infant galaxy, named GN-z11, is seen as it was 13.4 billion years in the past, just 400 million years after the Big Bang. GN-z11 is located in the direction of the constellation of Ursa Major. Read more: go.nasa.gov/1oSqHad

  17. Hubble Sees Pinwheel of Star Birth

    NASA Image and Video Library

    2017-12-08

    NASA image release October 19, 2010 Though the universe is chock full of spiral-shaped galaxies, no two look exactly the same. This face-on spiral galaxy, called NGC 3982, is striking for its rich tapestry of star birth, along with its winding arms. The arms are lined with pink star-forming regions of glowing hydrogen, newborn blue star clusters, and obscuring dust lanes that provide the raw material for future generations of stars. The bright nucleus is home to an older population of stars, which grow ever more densely packed toward the center. NGC 3982 is located about 68 million light-years away in the constellation Ursa Major. The galaxy spans about 30,000 light-years, one-third of the size of our Milky Way galaxy. This color image is composed of exposures taken by the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), the Advanced Camera for Surveys (ACS), and the Wide Field Camera 3 (WFC3). The observations were taken between March 2000 and August 2009. The rich color range comes from the fact that the galaxy was photographed invisible and near-infrared light. Also used was a filter that isolates hydrogen emission that emanates from bright star-forming regions dotting the spiral arms. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: A. Riess (STScI) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us

  18. Hubble Takes Mars Portrait Near Close Approach

    NASA Image and Video Library

    2017-12-08

    Mars is looking mighty fine in this portrait nabbed by the Hubble Space Telescope on a near close approach! Read more: go.nasa.gov/1rWYiBT The Hubble Space Telescope is more well known for its picturesque views of nebulae and galaxies, but it's also useful for studying our own planets, including Mars. Hubble imaged Mars on May 12, 2016 - ten days before Mars would be on the exact opposite side of the Earth from the Sun. Bright, frosty polar caps, and clouds above a vivid, rust-colored landscape reveal Mars as a dynamic seasonal planet in this NASA Hubble Space Telescope view taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across. The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth-century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view. A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact. The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute) #nasagoddard #mars #hubble #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics

  19. HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cloud, because its chemical composition is different from that of the Milky Way. All of the chemical elements, other than hydrogen and helium, have only about one-tenth the abundances seen in our own galaxy. The study of N81 thus provides an excellent template for studying the star formation that occurred long ago in very distant galaxies, before nuclear reactions inside stars had synthesized the elements heavier than helium. The Small Magellanic Cloud, named after the explorer Ferdinand Magellan, lies 200,000 light-years away, and is visible only from the Earth's southern hemisphere. N 81 is the 81st nebula cataloged in a survey of the SMC carried out in the 1950's by astronomer Karl Henize, who later became an astronomer-astronaut who flew into space aboard NASA's space shuttle. The Hubble Heritage image of N 81 is a color representation of data taken in September, 1997, with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by oxygen ([O III]) and hydrogen (H-alpha, H-beta). N 81 is the target of investigations by European astronomers Mohammad Heydari-Malayeri from the Paris Observatory in France; Michael Rosa from the Space Telescope-European Coordinating Facility in Munich, Germany; Hans Zinnecker of the Astrophysical Institute in Potsdam, Germany; Lise Deharveng of Marseille Observatory, France; and Vassilis Charmadaris of Cornell University, USA (formerly at Paris Observatory). Members of this team are interested in understanding the formation of hot, massive stars, especially under conditions different from those in the Milky Way. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgement: Mohammad Heydari-Malayeri (Paris Observatory, France) EDITOR'S

  20. Hubble Sees 'Island Universe' in the Coma Cluster

    NASA Image and Video Library

    2017-12-08

    Advanced Camera for Surveys, required 28 hours of exposure time. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: K. Cook (Lawrence Livermore National Laboratory) To learn more about Hubble go to: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  1. Hubble Captures Rare Triple-Moon Conjunction

    NASA Image and Video Library

    2015-02-06

    Three moons and their shadows parade across Jupiter near the end of the event at 07:10 UT on January 24, 2015. Europa has entered the frame at lower left. Slower-moving Callisto is above and to the right of Europa. Fastest-moving Io is approaching the eastern limb of the planet. Europa's shadow is toward the left side of the image and Callisto's shadow to the right. (The moons' orbital velocities are proportionally slower with increasing distance from the planet.) Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More info: Firing off a string of snapshots like a sports photographer at a NASCAR race, NASA's Hubble Space Telescope captured a rare look at three of Jupiter's largest moons zipping across the banded face of the gas-giant planet: Europa, Callisto, and Io. Jupiter's four largest moons can commonly be seen transiting the face of the giant planet and casting shadows onto its cloud tops. However, seeing three moons transiting the face of Jupiter at the same time is rare, occurring only once or twice a decade. Missing from the sequence, taken on January 24, 2015, is the moon Ganymede that was too far from Jupiter in angular separation to be part of the conjunction. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Hubble Solves Mystery on Source of Supernova in Nearby Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release January 11, 2012 Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts. Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit. To read more go to: www.nasa.gov/mission_pages/hubble/science/supernova-sourc... Image Credit: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Hubble Monitors Supernova In Nearby Galaxy M82

    NASA Image and Video Library

    2014-02-26

    This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  4. Hubble Sees Stars and a Stripe in Celestial Fireworks

    NASA Image and Video Library

    2017-12-08

    given time. Bright edges within the ribbon correspond to places where the shock wave is seen exactly edge on to our line of sight. Today we know that SN 1006 has a diameter of nearly 60 light-years, and it is still expanding at roughly 6 million miles per hour. Even at this tremendous speed, however, it takes observations typically separated by years to see significant outward motion of the shock wave against the grid of background stars. In the Hubble image as displayed, the supernova would have occurred far off the lower right corner of the image, and the motion would be toward the upper left. SN 1006 resides within our Milky Way Galaxy. Located more than 14 degrees off the plane of the galaxy's disk, there is relatively little confusion with other foreground and background objects in the field when trying to study this object. In the Hubble image, many background galaxies (orange extended objects) far off in the distant universe can be seen dotting the image. Most of the white dots are foreground or background stars in our Milky Way galaxy. This image is a composite of hydrogen-light observations taken with Hubble's Advanced Camera for Surveys in February 2006 and Wide Field Planetary Camera 2 observations in blue, yellow-green, and near-infrared light taken in April 2008. The supernova remnant, visible only in the hydrogen-light filter was assigned a red hue in the Heritage color image. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: W. Blair (Johns Hopkins University) To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook

  5. http://www.nasa.gov/feature/goddard/2016/hubble-team-breaks-cosmic-distance-record

    NASA Image and Video Library

    2016-03-03

    By pushing NASA’s Hubble Space Telescope to its limits, an international team of astronomers has shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. This surprisingly bright infant galaxy, named GN-z11, is seen as it was 13.4 billion years in the past, just 400 million years after the Big Bang. GN-z11 is located in the direction of the constellation of Ursa Major. Read more: go.nasa.gov/1oSqHad NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope

    NASA Image and Video Library

    2014-06-04

    Astronomers using NASA's Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope. Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble's Advanced Camera for Surveys and Wide Field Camera 3. Credit: NASA/ESA Read more: 1.usa.gov/1neD0se NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  8. Hubble Spies Big Bang Frontiers

    NASA Image and Video Library

    2017-12-08

    Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe. Some of these galaxies formed just 600 million years after the big bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined for the first time with some confidence that these small galaxies were vital to creating the universe that we see today. An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the big bang— one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young. Read more: www.nasa.gov/feature/goddard/hubble-spies-big-bang-frontiers Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and

  10. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  11. The Far-Field Hubble Constant

    NASA Astrophysics Data System (ADS)

    Lauer, Tod

    1995-07-01

    We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to <3,000 km s^-1. The high spatial resolution of HST allows precise measurement of the SBF signal at large distances, and allows easy recognition of globular clusters, background galaxies, and dust clouds in the BCG images that must be removed prior to SBF detection. The proposing team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.

  12. Hubble Sees a Star ‘Inflating’ a Giant Bubble

    NASA Image and Video Library

    2017-12-08

    light in the bubble near the star, while the cooler pillars are yellow from the combined light of hydrogen and nitrogen. The pillars are similar to the iconic columns in the “Pillars of Creation” Eagle Nebula. As seen with the structures in the Eagle Nebula, the Bubble Nebula pillars are being illuminated by the strong ultraviolet radiation from the brilliant star inside the bubble. The Bubble Nebula was discovered in 1787 by William Herschel, a prominent British astronomer. It is being formed by a proto-typical Wolf-Rayet star, BD +60º2522, an extremely bright, massive, and short-lived star that has lost most of its outer hydrogen and is now fusing helium into heavier elements. The star is about four million years old, and in 10 million to 20 million years, it will likely detonate as a supernova. Hubble’s Wide Field Camera-3 imaged the nebula in visible light with unprecedented clarity in February 2016. The colors correspond to blue for oxygen, green for hydrogen, and red for nitrogen. This information will help astronomers understand the geometry and dynamics of this complex system. The Bubble Nebula is one of only a handful of astronomical objects that have been observed with several different instruments onboard Hubble. Hubble also imaged it with the Wide Field Planetary Camera (WFPC) in September 1992, and with Wide Field Planetary Camera-2 (WFPC2) in April 1999. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

  13. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  14. Barred Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Barred Spiral Galaxy NGC 1300 Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  15. Hubble's Wide View of 'Mystic Mountain' in Infrared

    NASA Image and Video Library

    2010-04-23

    NASA image release April 22, 2010 This is a NASA Hubble Space Telescope near-infrared-light image of a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby stars in the tempestuous stellar nursery called the Carina Nebula, located 7,500 light-years away in the southern constellation Carina. The image marks the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. The image reveals a plethora of stars behind the gaseous veil of the nebula's wall of hydrogen, laced with dust. The foreground pillar becomes semi-transparent because infrared light from background stars penetrates through much of the dust. A few stars inside the pillar also become visible. The false colors are assigned to three different infrared wavelength ranges. Hubble's Wide Field Camera 3 observed the pillar in February and March 2010. Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. Delivering Hubble Discoveries to the Classroom

    NASA Astrophysics Data System (ADS)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  17. Chandra Independently Determines Hubble Constant

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  18. NASA's Hubble Universe in 3-D

    NASA Image and Video Library

    2017-12-08

    truly immersive experience," says Frank Summers, an STScI astronomer and science visualization specialist who led the team that developed the movie visualizations. The team labored for nine months, working on four visualization sequences that comprise about 12 minutes of the movie. "Seeing these Hubble images in 3-D, you feel like you are flying through space and not just looking at picture postcards," Summers continued. "The spacescapes are all based on Hubble images and data, though some artistic license is necessary to produce the full depth of field needed for 3-D." The most ambitious sequence is a four-minute voyage through the Orion Nebula's gas-and-dust canyon, about 15 light-years across. During the ride, viewers will see bright and dark, gaseous clouds; thousands of stars, including a grouping of bright, hefty stars called the Trapezium; and embryonic planetary systems. The tour ends with a detailed look at a young circumstellar disk, which is much like the structure from which our solar system formed 4.5 billion years ago. Based on a Hubble image of Orion released in 2006, the visualization was a collaborative effort between science visualization specialists at STScI, including Greg Bacon, who sculpted the Orion Nebula digital model, with input from STScI astronomer Massimo Roberto; the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; and the Spitzer Science Center at the California Institute of Technology in Pasadena. For some of the sequences, STScI imaging specialists developed new techniques for transforming the 2-D Hubble images into 3-D. STScI image processing specialists Lisa Frattare and Zolt Levay, for example, created methods of splitting a giant gaseous pillar in the Carina Nebula into multiple layers to produce a 3-D effect, giving the structure depth. The Carina Nebula is a nursery for baby stars. Frattare painstakingly removed the thousands of stars in the image so that Levay could separate the

  19. Hubble Goes High Def to Revisit the Iconic 'Pillars of Creation'

    NASA Image and Video Library

    2017-12-08

    This NASA Hubble Space Telescope image, taken in near-infrared light, transforms the pillars into eerie, wispy silhouettes, which are seen against a background of myriad stars. The near-infrared light can penetrate much of the gas and dust, revealing stars behind the nebula as well as hidden away inside the pillars. Some of the gas and dust clouds are so dense that even the near-infrared light cannot penetrate them. New stars embedded in the tops of the pillars, however, are apparent as bright sources that are unseen in the visible image. The ghostly bluish haze around the dense edges of the pillars is material getting heated up by the intense ultraviolet radiation from a cluster of young, massive stars and evaporating away into space. The stellar grouping is above the pillars and cannot be seen in the image. At the top edge of the left-hand pillar, a gaseous fragment has been heated up and is flying away from the structure, underscoring the violent nature of star-forming regions. Astronomers used filters that isolate the light from newly formed stars, which are invisible in the visible-light image. At these wavelengths, astronomers are seeing through the pillars and even through the back wall of the nebula cavity and can see the next generations of stars just as they're starting to emerge from their formative nursery. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Read more: 1.usa.gov/1HGfkqr NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. hs-2007-16-e-full_jpg

    NASA Image and Video Library

    2010-03-01

    Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  1. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    series of images taken by the Wide Field Planetary Camera 2, in planetary camera mode, when Jupiter was at a distance of 519 million miles (961 million kilometers) from Earth. These images are part of a set of data obtained by a Hubble Space Telescope (HST) team headed by Reta Beebe of New Mexico State University.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  2. HUBBLE FINDS MANY BRIGHT CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A recent Hubble Space Telescope view reveals Uranus surrounded by its four major rings and by 10 of its 17 known satellites. This false-color image was generated by Erich Karkoschka using data taken on August 8, 1998, with Hubble's Near Infrared Camera and Multi-Object Spectrometer. Hubble recently found about 20 clouds - nearly as many clouds on Uranus as the previous total in the history of modern observations. The orange-colored clouds near the prominent bright band circle the planet at more than 300 mph (500 km/h), according to team member Heidi Hammel (MIT). One of the clouds on the right-hand side is brighter than any other cloud ever seen on Uranus. The colors in the image indicate altitude. Team member Mark Marley (New Mexico State University) reports that green and blue regions show where the atmosphere is clear and sunlight can penetrate deep into Uranus. In yellow and grey regions the sunlight reflects from a higher haze or cloud layer. Orange and red colors indicate very high clouds, such as cirrus clouds on Earth. The Hubble image is one of the first images revealing the precession of the brightest ring with respect to a previous image [LINK to PRC97-36a]. Precession makes the fainter part of the ring (currently on the upper right-hand side) slide around Uranus once every nine months. The fading is caused by ring particles crowding and hiding each other on one side of their eight-hour orbit around Uranus. The blue, green and red components of this false-color image correspond to exposures taken at near-infrared wavelengths of 0.9, 1.1, and 1.7 micrometers. Thus, regions on Uranus appearing blue, for example, reflect more sunlight at 0.9 micrometer than at the longer wavelengths. Apparent colors on Uranus are caused by absorption of methane gas in its atmosphere, an effect comparable to absorption in our atmosphere which can make distant clouds appear red. Credit: Erich Karkoschka (University of Arizona) and NASA

  3. Heritage Gallery

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Marshall Space Flight Center's (MSFC's) building 4200 hosts a new spaceflight history museum referred to as the Heritage Gallery, allowing employees and visitors alike to have the opportunity to experience history first hand. On display are many models of launch vehicles and spacecraft that have made the center famous. It features a full-scale mockup of the lunar roving vehicle, three built-in multimedia displays, a large theater screen, and two glass cases that house memorabilia such as personal items belonging to Wernher von Braun, MSFC's first Center Director. The new Heritage Gallery features the accomplishments of several past and present members of the Marshall team. Attending the ribbon cutting ceremony are: (left to right) Gerhard Reisig; Cort Durocher, executive director of the American Institute of Aeronautics and Astronautics; Ernst Stuhlinger; Konrad Darnenburg; Werner Dahm; Walter Jacobi; and host of event, Center Director Art Stephenson.

  4. STS-125 Flight Control Team in BFCR - HST Orbit & Planning Teams

    NASA Image and Video Library

    2009-05-18

    JSC2009-E-120479 (18 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.

  5. STS-125 Flight Control Team in BFCR - HST Planning & Orbit Team

    NASA Image and Video Library

    2009-05-19

    JSC2009-E-120701 (19 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.

  6. Hubble 25

    NASA Image and Video Library

    2015-04-23

    If you love Hubble as much as we do you will LOVE this video. Sit back and enjoy 25 mesmerizing years of Hubble images! #Hubble25 You can view all of these images on Flickr here: www.flickr.com/photos/40523828@N07/sets/72157649692430461 Credit NASA Goddard

  7. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  8. Hubble sees the beautiful demises of dying star

    NASA Image and Video Library

    2017-12-08

    This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers called them the name because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of more than 360,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bowtie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen. Credit: NASA, ESA, and K. Noll (STScI), Acknowledgment: The Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  9. User Experience and Heritage Preservation

    ERIC Educational Resources Information Center

    Orfield, Steven J.; Chapman, J. Wesley; Davis, Nathan

    2011-01-01

    In considering the heritage preservation of higher education campus buildings, much of the attention gravitates toward issues of selection, cost, accuracy, and value, but the model for most preservation projects does not have a clear method of achieving the best solutions for meeting these targets. Instead, it simply relies on the design team and…

  10. Taiwan's underwater cultural heritage documentation management

    NASA Astrophysics Data System (ADS)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  11. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  12. Starry-Eyed Hubble Celebrates 20 Years of Awe and Discovery

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 This brand new Hubble photo is of a small portion of one of the largest seen star-birth regions in the galaxy, the Carina Nebula. Towers of cool hydrogen laced with dust rise from the wall of the nebula. The scene is reminiscent of Hubble's classic "Pillars of Creation" photo from 1995, but is even more striking in appearance. The image captures the top of a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby bright stars. The pillar is also being pushed apart from within, as infant stars buried inside it fire off jets of gas that can be seen streaming from towering peaks like arrows sailing through the air. Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Views a Cosmic Skyrocket

    NASA Image and Video Library

    2017-12-08

    and collide with slower blobs, new shocks arise along the jet's interior. The light emitted from excited gas in these hot blue ridges marks the boundaries of these interior collisions. By measuring the current velocity and positions of different blobs and hot ridges along the chain within the jet, astronomers can effectively "rewind" the outflow, extrapolating the blobs back to the moment when they were emitted. This technique can be used to gain insight into the source star's history of mass accretion. This image is a composite of data taken with Hubble's Advanced Camera for Surveys in 2004 and 2005 and the Wide Field Camera 3 in April 2011. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Mothers of Invention: Hubble Engineers Push Robotic 'Evolution' to Save Telescope, Enable New Exploration

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Robotic technology being developed out of necessity to keep the Hubble Space Telescope operating could also lead to new levels of man-machine team-work in deep-space exploration down the road-if it survives the near-term scramble for funding. Engineers here who have devoted their NASA careers to the concept of humans servicing the telescope in orbit are planning modifications to International Space Station (ISS) robots that would leave the humans on the ground. The work. forced by post-Columbia flight rules that killed a planned shuttle-servicing mission to Hubble, marks another step in the evolution of robot-partners for human space explorers. "Hubble has always been a pathfider for this agency," says Mike Weiss. Hubble deputy program manager technical. "When the space station was flown and assembled, Hubble was the pathfinder. not just for modularity, but for operations, for assembly techniques. Exploration is the next step. Things we're going to do on Hubble are going to be applied to exploration. It's not just putting a robot in space. It's operating a robot in space. It's adapting that robot to what needs to be done the next time you're up there."

  15. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  16. Live from the Hubble Space Telescope: a possibility of astronomical education using Internet.

    NASA Astrophysics Data System (ADS)

    Agata, H.; Miura, H.; Ito, S.; Koyama, H.; Turuoka, N.; Ebisuzaki, T.

    1996-12-01

    The authors have joined in "Live from the Hubble Space Telescope" which was operated by a Passport to Knowledge Project team. The authors are sure that collaboration between scientists and teachers using Internet have an effect on science education.

  17. NASA’s Hubble Sees a Cosmic Caterpillar

    NASA Image and Video Library

    2013-08-29

    This light-year-long knot of interstellar gas and dust resembles a caterpillar on its way to a feast. But the meat of the story is not only what this cosmic caterpillar eats for lunch, but also what's eating it. Harsh winds from extremely bright stars are blasting ultraviolet radiation at this "wanna-be" star and sculpting the gas and dust into its long shape. The culprits are 65 of the hottest, brightest known stars, classified as O-type stars, located 15 light-years away from the knot, towards the right edge of the image. These stars, along with 500 less bright, but still highly luminous B-type stars make up what is called the Cygnus OB2 association. Collectively, the association is thought to have a mass more than 30,000 times that of our sun. The caterpillar-shaped knot, called IRAS 20324+4057, is a protostar in a very early evolutionary stage. It is still in the process of collecting material from an envelope of gas surrounding it. However, that envelope is being eroded by the radiation from Cygnus OB2. Protostars in this region should eventually become young stars with final masses about one to ten times that of our sun, but if the eroding radiation from the nearby bright stars destroys the gas envelope before the protostars finish collecting mass, their final masses may be reduced. Spectroscopic observations of the central star within IRAS 20324+4057 show that it is still collecting material quite heavily from its outer envelope, hoping to bulk up in mass. Only time will tell if the formed star will be a "heavy-weight" or a "light-weight" with respect to its mass. This image of IRAS 20324+4057 is a composite of Hubble Advanced Camera for Surveys data taken in green and infrared light in 2006, and ground-based hydrogen data from the Isaac Newton Telescope in 2003. The object lies 4,500 light-years away in the constellation Cygnus. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA

  18. A GIANT STAR FACTORY IN NEIGHBORING GALAXY NGC 6822

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy) NOTE TO EDITORS: For additional information, please contact C. R. O'Dell, Vanderbilt University, Physics and Astronomy Dept., Box 1807 Station B, Nashville, TN 37235, (phone) 615-343-1779, (fax) 615-343-7263, (e-mail) cr.odell@vanderbilt.edu or Luciana Bianchi, Johns Hopkins

  19. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  20. NASA's Hubble Sees A Majestic Disk of Stars

    NASA Image and Video Library

    2011-02-17

    NASA image release Feb. 17, 2011 To see a hd vidoe of this sprial galaxy go to: www.flickr.com/photos/gsfc/5453173577/ The Hubble Space Telescope revealed this majestic disk of stars and dust lanes in this view of the spiral galaxy NGC 2841. A bright cusp of starlight marks the galaxy's center. Spiraling outward are dust lanes that are silhouetted against the population of whitish middle-aged stars. Much younger blue stars trace the spiral arms. Notably missing are pinkish emission nebulae indicative of new star birth. It is likely that the radiation and supersonic winds from fiery, super-hot, young blue stars cleared out the remaining gas (which glows pink), and hence shut down further star formation in the regions in which they were born. NGC 2841 currently has a relatively low star formation rate compared to other spirals that are ablaze with emission nebulae. NGC 2841 lies 46 million light-years away in the constellation of Ursa Major (The Great Bear). This image was taken in 2010 through four different filters on Hubble’s Wide Field Camera 3. Wavelengths range from ultraviolet light through visible light to near-infrared light. NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O’Connell (University of Virginia), B. Whitmore (STScI), and the WFC3 Scientific Oversight Committee NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. HUBBLE SPACE TELESCOPE ON TRACK FOR MEASURING THE EXPANSION RATE OF THE UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two international teams of astronomers, using NASA's Hubble Space Telescope, are reporting major progress in converging on an accurate measurement of the Universe's rate of expansion -- a value which has been debated for over half a century. These new results yield ranges for the age of the Universe from 9-12 billion years, and 11-14 billion years, respectively. The goal of the project is to measure the Hubble Constant to ten percent accuracy. The Hubble Space Telescope Key Project team, an international group of over 20 astronomers, is led by Wendy Freedman of Carnegie Observatories, Pasadena, CA, Robert Kennicutt, University of Arizona, Tucson, AZ, and Jeremy Mould, Mount Stromlo and Siding Springs Observatory, Australia. The group's interim results, announced at a meeting held at the Space Telescope Science Institute (STScI) in Baltimore, Maryland, are consistent with their preliminary result, announced in 1994, of 80 kilometers per second per megaparsec (km/sec/Mpc), based on observations of a galaxy in the Virgo cluster. 'We have five different ways of measuring the Hubble Constant with HST,' said Dr. Freedman. 'The results are coming in between 68 and 78 km/sec/Mpc.' (For example, at an expansion rate of 75 km/sec/Mpc, galaxies appear to be receding from us at a rate of 162,000 miles per hour for every 3.26 million light-years farther out we look). Two months ago, a second team, led by Allan Sandage, also of the Carnegie Observatories, Abhijit Saha, STScI, Gustav Tammann and Lukas Labhardt, Astronomical Institute, University of Basel, Duccio Macchetto and Nino Panagia, STScI/European Space Agency, reported a slower expansion rate of 57 km/sec/Mpc. The value of the Hubble Constant allows astronomers to calculate the expansion age of the Universe, the time elapsed since the Big Bang. Astronomers have been arguing recently whether the time since the Big Bang is consistent with the ages of the oldest stars. The ages are calculated from combining the expansion

  2. Hubble's diagram and cosmic expansion

    PubMed Central

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology. PMID:14695886

  3. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  4. Hubble Sees 'Ghost Light' From Dead Galaxies

    NASA Image and Video Library

    2014-10-30

    NASA’s Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened 4 billion light-years away, inside an immense collection of nearly 500 galaxies nicknamed “Pandora’s Cluster,” also known as Abell 2744. The scattered stars are no longer bound to any one galaxy, and drift freely between galaxies in the cluster. By observing the light from the orphaned stars, Hubble astronomers have assembled forensic evidence that suggests as many as six galaxies were torn to pieces inside the cluster over a stretch of 6 billion years. Read more: 1.usa.gov/1yK2Ucp Credit: NASA/ESA/IAC/HFF Team, STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    . The HST exposures of the winning target were then acquired in July 1999 by the Hubble Heritage Team and guest astronomers Sally Hunsberger (Lowell Observatory, Flagstaff, Arizona) and Jane Charlton (Pennsylvania State University). Image Credit: The Hubble Heritage Team (AURA/STScI/NASA).

  6. Hubble and Keck team up to find farthest known galaxy in the Universe

    NASA Astrophysics Data System (ADS)

    2004-02-01

    most distant source currently known. However, long exposures in the optical and infrared taken with spectrographs on the 10-meter Keck telescopes suggests that the object has a redshift towards the upper end of this range, around redshift 7. Redshift is a measure of how much the wavelengths of light are shifted to longer wavelengths. The greater the shift in wavelength toward the redder regions of the spectrum, the more distant the object is. "The galaxy we have discovered is extremely faint, and verifying its distance has been an extraordinarily challenging adventure," said Dr. Kneib. "Without the 25 x magnification afforded by the foreground cluster, this early object could simply not have been identified or studied in any detail at all with the present telescopes available. Even with aid of the cosmic lens, the discovery has only been possible by pushing our current observatories to the limits of their capabilities!" Using the combination of the high resolution of Hubble and the large magnification of the cosmic lens, the astronomers estimate that this object, although very small - only 2,000 light-years across - is forming stars extremely actively. However, two intriguing properties of the new source are the apparent lack of the typically bright hydrogen emission line and its intense ultraviolet light which is much stronger than that seen in star-forming galaxies closer by. "The properties of this distant source are very exciting because, if verified by further study, they could represent the hallmark of a truly young stellar system that ended the Dark Ages" added Dr. Richard Ellis, Steele Professor of Astronomy at Caltech, and a co-author in the article. The team is encouraged by the success of their technique and plans to continue the search for more examples by looking through other cosmic lenses in the sky. Hubble's exceptional resolution makes it ideally suited for such searches. "Estimating the abundance and characteristic properties of sources at early times

  7. Dismantling Hubble's Legacy?

    NASA Astrophysics Data System (ADS)

    Way, Michael J.

    2014-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and even the general public. The origins of three of the most well-known discoveries are examined: The distances to nearby spiral nebulae, the classification of extragalactic-nebulae and the Hubble constant. In the case of the first two a great deal of supporting evidence was already in place, but little credit was given. The Hubble Constant had already been estimated in 1927 by Georges Lemaitre with roughly the same value that Hubble obtained in 1929 using redshifts provided mostly by Vesto M. Slipher. These earlier estimates were not adopted or were forgotten by the astronomical community for complex scientific, sociological and psychological reasons.

  8. Guidelines for Conducting an Ethnic Heritage Search.

    ERIC Educational Resources Information Center

    Williams, Maxine Patrick

    Based on the work of a 22-member research team in the San Diego Community College District, this booklet offers guidelines for developing cultural awareness and presents instruments for conducting an ethnic heritage search, i.e., a systematic examination of a culture to, for example, reveal reasons for customs or practices or clarify the modes of…

  9. Hubble Captures Spectacular "Landscape" in the Carina Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 NASA's Hubble Space Telescope captured this billowing cloud of cold interstellar gas and dust rising from a tempestuous stellar nursery located in the Carina Nebula, 7,500 light-years away in the southern constellation Carina. This pillar of dust and gas serves as an incubator for new stars and is teeming with new star-forming activity. Hot, young stars erode and sculpt the clouds into this fantasy landscape by sending out thick stellar winds and scorching ultraviolet radiation. The low-density regions of the nebula are shredded while the denser parts resist erosion and remain as thick pillars. In the dark, cold interiors of these columns new stars continue to form. In the process of star formation, a disk around the proto-star slowly accretes onto the star's surface. Part of the material is ejected along jets perpendicular to the accretion disk. The jets have speeds of several hundreds of miles per second. As these jets plow into the surround nebula, they create small, glowing patches of nebulosity, called Herbig-Haro (HH) objects. Long streamers of gas can be seen shooting in opposite directions off the pedestal on the upper right-hand side of the image. Another pair of jets is visible in a peak near the top-center of the image. These jets (known as HH 901 and HH 902, respectively) are common signatures of the births of new stars. This image celebrates the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. Hubble's Wide Field Camera 3 observed the pillar on Feb. 1-2, 2010. The colors in this composite image correspond to the glow of oxygen (blue), hydrogen and nitrogen (green), and sulfur (red). Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization

  10. Hubble reveals the Ring Nebula’s true shape

    NASA Image and Video Library

    2017-12-08

    Caption: In this composite image, visible-light observations by NASA’s Hubble Space Telescope are combined with infrared data from the ground-based Large Binocular Telescope in Arizona to assemble a dramatic view of the well-known Ring Nebula. Credit: NASA, ESA, C.R. Robert O’Dell (Vanderbilt University), G.J. Ferland (University of Kentucky), W.J. Henney and M. Peimbert (National Autonomous University of Mexico) Credit for Large Binocular Telescope data: David Thompson (University of Arizona) ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the

  11. Alien aurorae spotted on Uranus by Hubble

    NASA Image and Video Library

    2017-12-08

    This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. Ever since Voyager 2 beamed home spectacular images of the planets in the 1980s, planet-lovers have been hooked on auroras on other planets. Auroras are caused by streams of charged particles like electrons that come from various origins such as solar winds, the planetary ionosphere, and moon volcanism. They become caught in powerful magnetic fields and are channeled into the upper atmosphere, where their interactions with gas particles, such as oxygen or nitrogen, set off spectacular bursts of light. The auroras on Jupiter and Saturn are well-studied, but not much is known about the auroras of the giant ice planet Uranus. In 2011, the NASA/ESA Hubble Space Telescope became the first Earth-based telescope to snap an image of the auroras on Uranus. In 2012 and 2014 a team led by an astronomer from Paris Observatory took a second look at the auroras using the ultraviolet capabilities of the Space Telescope Imaging Spectrograph (STIS) installed on Hubble. They tracked the interplanetary shocks caused by two powerful bursts of solar wind traveling from the sun to Uranus, then used Hubble to capture their effect on Uranus’ auroras — and found themselves observing the most intense auroras ever seen on the planet. By watching the auroras over time, they collected the first direct evidence that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the featureless planet surface. Credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  12. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  13. Hubble Paints a Spattering of Blue

    NASA Image and Video Library

    2014-09-12

    Far beyond the stars in the constellation of Leo (The Lion) is irregular galaxy IC 559. IC 559 is not your everyday galaxy. With its irregular shape and bright blue spattering of stars, it is a fascinating galactic anomaly. It may look like sparse cloud, but it is in fact full of gas and dust which is spawning new stars. Discovered in 1893, IC 559 lacks the symmetrical spiral appearance of some of its galactic peers and not does not conform to a regular shape. It is actually classified as a “type Sm” galaxy — an irregular galaxy with some evidence for a spiral structure. Irregular galaxies make up about a quarter of all known galaxies and do not fall into any of the regular classes of the Hubble sequence. Most of these uniquely shaped galaxies were not always so — IC 559 may have once been a conventional spiral galaxy that was then distorted and twisted by the gravity of a nearby cosmic companion. This image, captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3, combines a wide range of wavelengths spanning the ultraviolet, optical, and infrared parts of the spectrum. Image credit: ESA/Hubble, NASA, D. Calzetti (UMass) and the LEGUS Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. European astronomers' successes with the Hubble Space Telescope*

    NASA Astrophysics Data System (ADS)

    1997-02-01

    [Figure: Laguna Nebula] Their work spans all aspects of astronomy, from the planets to the most distant galaxies and quasars, and the following examples are just a few European highlights from Hubble's second phase, 1994-96. A scarcity of midget stars Stars less massive and fainter than the Sun are much numerous in the Milky Way Galaxy than the big bright stars that catch the eye. Guido De Marchi and Francesco Paresce of the European Southern Observatory as Garching, Germany, have counted them. With the wide-field WFPC2 camera, they have taken sample censuses within six globular clusters, which are large gatherings of stars orbiting independently in the Galaxy. In every case they find that the commonest stars have an output of light that is only one-hundredth of the Sun's. They are ten times more numerous than stars like the Sun. More significant for theories of the Universe is a scarcity of very faint stars. Some astronomers have suggested that vast numbers of such stars could account for the mysterious dark matter, which makes stars and galaxies move about more rapidly than expected from the mass of visible matter. But that would require an ever-growing count of objects at low brightnesses, and De Marchi and Paresce find the opposite to be the case -- the numbers diminish. There may be a minimum size below which Nature finds starmaking difficult. The few examples of very small stars seen so far by astronomers may be, not the heralds of a multitude of dark-matter stars, but rareties. Unchanging habits in starmaking Confirmation that very small stars are scarce comes from Gerry Gilmore of the Institute of Astronomy in Cambridge (UK). He leads a European team that analyses long-exposure images in the WFPC2 camera, obtained as a by-product when another instrument is examining a selected object. The result is an almost random sample of well-observed stars and galaxies. The most remarkable general conclusion is that the make-up of stellar populations never seems to

  15. Light Echo

    NASA Image and Video Library

    2017-12-08

    "Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. HUBBLE SHOOTS THE MOON

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In a change of venue from peering at the distant universe, NASA's Hubble Space Telescope has taken a look at Earth's closest neighbor in space, the Moon. Hubble was aimed at one of the Moon's most dramatic and photogenic targets, the 58 mile-wide (93 km) impact crater Copernicus. The image was taken while the Space Telescope Imaging Spectrograph (STIS) was aimed at a different part of the moon to measure the colors of sunlight reflected off the Moon. Hubble cannot look at the Sun directly and so must use reflected light to make measurements of the Sun's spectrum. Once calibrated by measuring the Sun's spectrum, the STIS can be used to study how the planets both absorb and reflect sunlight. (upper left) The Moon is so close to Earth that Hubble would need to take a mosaic of 130 pictures to cover the entire disk. This ground-based picture from Lick Observatory shows the area covered in Hubble's photomosaic with the Wide Field Planetary Camera 2.. (center) Hubble's crisp bird's-eye view clearly shows the ray pattern of bright dust ejected out of the crater over one billion years ago, when an asteroid larger than a mile across slammed into the Moon. Hubble can resolve features as small as 600 feet across in the terraced walls of the crater, and the hummock-like blanket of material blasted out by the meteor impact. (lower right) A close-up view of Copernicus' terraced walls. Hubble can resolve features as small as 280 feet across. Credit: John Caldwell (York University, Ontario), Alex Storrs (STScI), and NASA

  17. Twentieth-century astronomical heritage: the case of the Brazilian National Observatory

    NASA Astrophysics Data System (ADS)

    Barboza, Christina Helena

    2016-10-01

    This paper aims at contributing to the UNESCO-IAU Astronomy and World Heritage Initiative's discussions by presenting the case study of a 20th-century observatory located in a South American country. In fact, the National Observatory of Brazil was created in the beginning of the 19th century, but its present facilities were inaugurated in 1921. Through this paper a brief description of the heritage associated with the Brazilian observatory is given, focused on its main historical instruments and the scientific and social roles it performed along its history. By way of conclusion, the paper suggests that the creation of the Museum of Astronomy and Related Sciences with its multidisciplinary team of academic specialists and technicians was decisive for the preservation of that expressive astronomical heritage.

  18. HUBBLE UNVEILS A GALAXY IN LIVING COLOR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this view of the center of the magnificent barred spiral galaxy NGC 1512, NASA Hubble Space Telescope's broad spectral vision reveals the galaxy at all wavelengths from ultraviolet to infrared. The colors (which indicate differences in light intensity) map where newly born star clusters exist in both 'dusty' and 'clean' regions of the galaxy. This color-composite image was created from seven images taken with three different Hubble cameras: the Faint Object Camera (FOC), the Wide Field and Planetary Camera 2 (WFPC2), and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). NGC 1512 is a barred spiral galaxy in the southern constellation of Horologium. Located 30 million light-years away, relatively 'nearby' as galaxies go, it is bright enough to be seen with amateur telescopes. The galaxy spans 70,000 light-years, nearly as much as our own Milky Way galaxy. The galaxy's core is unique for its stunning 2,400 light-year-wide circle of infant star clusters, called a 'circumnuclear' starburst ring. Starbursts are episodes of vigorous formation of new stars and are found in a variety of galaxy environments. Taking advantage of Hubble's sharp vision, as well as its unique wavelength coverage, a team of Israeli and American astronomers performed one of the broadest and most detailed studies ever of such star-forming regions. The results, which will be published in the June issue of the Astronomical Journal, show that in NGC 1512 newly born star clusters exist in both dusty and clean environments. The clean clusters are readily seen in ultraviolet and visible light, appearing as bright, blue clumps in the image. However, the dusty clusters are revealed only by the glow of the gas clouds in which they are hidden, as detected in red and infrared wavelengths by the Hubble cameras. This glow can be seen as red light permeating the dark, dusty lanes in the ring. 'The dust obscuration of clusters appears to be an on-off phenomenon,' says Dan Maoz, who headed the

  19. EVA 3 activity on Flight Day 6 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-16

    S82-E-5572 (16 Feb. 1997) --- Pausing near the foot-restraint of the Remote Manipulator System (RMS), astronauts Steven L. Smith (left) and Mark C. Lee communicate with and look toward their in-cabin team members during the third Extravehicular Activity (EVA) to perform servicing chores on the Hubble Space Telescope (HST). This view was taken with an Electronic Still Camera (ESC).

  20. Carina Nebula Detail

    NASA Image and Video Library

    2017-12-08

    Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  1. Hubble Against Earth Horizon 1997

    NASA Image and Video Library

    1997-10-10

    The Hubble Space Telescope hovers at the boundary of Earth and space in this picture, taken after Hubble second servicing mission in 1997. Hubble drifts 353 miles (569 km) above the Earth's surface, where it can avoid the atmosphere and clearly see objects in space. http://photojournal.jpl.nasa.gov/catalog/PIA18165

  2. Hubble's Last Look at Comet ISON Before Perihelion

    NASA Image and Video Library

    2013-11-22

    As of mid-November, ISON is officially upon us. Using Hubble, we've taken our closest look yet at the innermost region of the comet, where geysers of sublimating ice are fueling a spectacular tail. Made from observations on November 2nd, the image combines pictures of ISON taken through blue and red filters. As we expect, the round coma around ISON's nucleus is blue and the tail has a redder hue. Ice and gas in the coma reflect blue light from the Sun, while dust grains in the tail reflect more red light than blue light. This is the most color separation we've seen so far in ISON -- that's because the comet, nearer than ever to the Sun, is brighter and more structured than ever before. We've certainly come a long way since Hubble started observing Comet ISON, way back in April. Of course, our eight-month retrospective pales in comparison with ISON's own journey, which started some 10,000 years ago in the Oort cloud. ISON will come closest to the Sun on November 28, a point in its orbit known as perihelion. What's remarkable here is that the entire ISON, this awesome, shimmery space tadpole, is being produced from a dusty ball of ice estimated to be a few kilometers in diameter. Compared to ISON's full extent, Hubble's latest image is tiny. It only shows the very base of the tail. Yet even in this closest closeup we've ever had, a single pixel spans 24 km across the comet. Now that Comet ISON is close, amateur astromers rule the day. But Hubble observations, including this latest image, are still providing key insights into the science and spectacle of a comet we hope will continue to impress. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun

  3. Repairing Hubble Exhibit Reception

    NASA Image and Video Library

    2014-04-23

    Individuals in attendance who had a hand in the development or servicing of the Hubble Space Telescope pose for a group photo at an event unveiling a new exhibit featuring Hubble's Corrective Optics Space Telescope Axial Replacement (COSTAR) and the WFPC2 on Wednesday, April 23, 2014 at the Smithsonian National Air and Space Museum in Washington, DC. COSTAR and WFPC2 were installed in Hubble during the first space shuttle servicing mission in 1993 and returned to Earth on the fifth and final servicing mission in 2009. Photo Credit: (NASA/Joel Kowsky)

  4. ACHP | Heritage Tourism

    Science.gov Websites

    Search skip specific nav links Home arrow Heritage Tourism Heritage Tourism ACHP Reports Partnering to Promote Heritage Tourism in Local Communities: Guidance for Federal Agencies Federal Programs that Can Support Heritage Tourism Web-Available Studies of the Economic Impacts of Historic Preservation Heritage

  5. Hubble's Megamaser Galaxy

    NASA Image and Video Library

    2017-12-08

    Feast your eyes on Hubble's Megamaser galaxy! Phenomena across the Universe emit radiation spanning the entire electromagnetic spectrum — from high-energy gamma rays, which stream out from the most energetic events in the cosmos, to lower-energy microwaves and radio waves. Microwaves, the very same radiation that can heat up your dinner, are produced by a multitude of astrophysical sources, including strong emitters known as masers (microwave lasers), even stronger emitters with the somewhat villainous name of megamasers and the centers of some galaxies. Especially intense and luminous galactic centers are known as active galactic nuclei. They are in turn thought to be driven by the presence of supermassive black holes, which drag surrounding material inwards and spit out bright jets and radiation as they do so. The two galaxies shown here, imaged by the NASA/ESA Hubble Space Telescope, are named MCG+01-38-004 (the upper, red-tinted one) and MCG+01-38-005 (the lower, blue-tinted one). MCG+01-38-005 (also known as NGC 5765B) is a special kind of megamaser; the galaxy’s active galactic nucleus pumps out huge amounts of energy, which stimulates clouds of surrounding water. Water’s constituent atoms of hydrogen and oxygen are able to absorb some of this energy and re-emit it at specific wavelengths, one of which falls within the microwave regime, invisible to Hubble but detectable by microwave telescopes. MCG+01-38-005 is thus known as a water megamaser! Astronomers can use such objects to probe the fundamental properties of the Universe. The microwave emissions from MCG+01-38-005 were used to calculate a refined value for the Hubble constant, a measure of how fast the Universe is expanding. This constant is named after the astronomer whose observations were responsible for the discovery of the expanding Universe and after whom the Hubble Space Telescope was named, Edwin Hubble.

  6. Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2002-12-01

    A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.

  7. Evolving Techniques of Documentation of a World Heritage Site in Lahore

    NASA Astrophysics Data System (ADS)

    Arif, R.; Essa, K.

    2017-08-01

    Lahore is an ancient, culturally rich city amidst which are embedded two world heritage sites. The state of historic preservation in the country is impoverished with a dearth of training and poor documentation skills, thus these monuments are decaying and in dire need of attention. The Aga Khan Cultural Service - Pakistan is one of the first working in heritage conservation in the country. AKCSP is currently subjecting the UNESCO World Heritage site of the Mughal era Lahore Fort to an intensive and multi-faceted architectural documentation process. This is presented here as a case study to chart the evolution of documentation techniques and enunciate the spectrum of challenges faced in the documentation of an intricate Mughal heritage site for conservation in the Pakistani context. 3D - laser scanning is used for the purpose of heritage conservation for the first time, and since has been utilised on heritage buildings and urban fabric in ongoing projects. These include Lahore Fort, Walled city of Lahore as well as the Baltit Fort, a project restored in the past, assisting in the maintenance of conserved buildings. The documentation team is currently discovering the full potential of this technology especially its use in heritage conservation simultaneously overcoming challenges faced. Moreover negotiating solutions to auto-generate 2D architectural drawings from the 3D pointcloud output. The historic architecture is juxtaposed with contemporary technology in a region where such a combination is rarely found. The goal is to continually develop the documentation methodologies whilst investigating other technologies in the future.

  8. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2012_0003: SOFIA mid-infrared image of the planetary nebula Minkowski 2-9 (M2-9), also known as the Butterfly Nebula, compared with a visual-wavelength Hubble Space Telescope image at the same scale and orientation. The nebula is composed of two lobes of gas & dust expelled from a dying star with about the mass of our Sun that is seen at the center of the lobes. The HST image shows mostly ionized gas in the lobes whereas the SOFIA image shows mostly solid grains condensing in the gas. The SOFIA data were obtained during SOFIA's Early Science program in 2011 by a Guest Investigator team led by Michael Werner of Caltech/JPL using the FORCAST camera (P.I.Terry Herter, Cornell University). Credit: SOFIA image, RGB = 37, 24, 20 microns; NASA/DLR/USRA/DSI/FORCAST team/M. Werner et al./A. Helton, J. Rho; HST image: NASA/ESA/NSF/AURA/Hubble Heritage Team/STScI/B. Balick, V. Icke, G. Mellema

  9. The new European Hubble archive

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Arevalo, Maria; Merin, Bruno

    2016-01-01

    The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.

  10. Documentation, using GIS techniques in conservation of a World Heritage Site, a case study of "The Old City of Jerusalem"

    NASA Astrophysics Data System (ADS)

    Husseini, B.; Bali, Z.

    2015-08-01

    Architectural Heritage is a strong witness to a people's history that symbolizes their identity. The Old city of Jerusalem, and as a UNESCO world heritage site 1 is a living city especially with its great wealth of historic structures, including places of worships for the three monotheistic religions, significant monuments, and whole historical residential neighbourhoods, Figure 1. In spite of the prevailing political conditions, difficulties that Palestinians encounter in Jerusalem, and the demands of the modern life and ever-growing population, several attempts had been stimulated to protect this Heritage. A specialized program (Old City of Jerusalem Revitalization Program - OCJRP) has been working since 1994. The program was established by the Welfare Association2 to help protect Jerusalem's cultural heritage applying international conventions and the highest professional standards for the direct benefit of residents, building users and visitors to the Old City as well as for future generations. This paper aims to describe the various activities and main findings carried out by the Technical Office of OCJRP - in the last twenty years as well as stressing on problems encountered by the team. It will rely on the team experience accumulated during the implementation of the projects, the research, surveys and studies undertaken by the team who helped in the creation of the database and its ongoing process.

  11. Hubble Sees a Legion of Galaxies

    NASA Image and Video Library

    2017-12-08

    Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colorful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields program. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the universe looks in different directions. Image credit: NASA, ESA and the HST Frontier Fields team (STScI), NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Hubble Nabs Space Invaders?

    NASA Image and Video Library

    2017-12-08

    The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www

  13. Hubble Nabs Space Invaders?

    NASA Image and Video Library

    2017-12-08

    The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. To read more go to: 1.usa.gov/Z6uDUp Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www

  14. Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe

    NASA Image and Video Library

    2017-12-08

    NASA image release September 25, 2012 Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image is even more sensitive, and contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see. To read more go to:http://www.nasa.gov/mission_pages/hubble/science/xdf.html Credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Construction of Architectural Structures in Cultural Heritage Protection Zones

    NASA Astrophysics Data System (ADS)

    Zagroba, Marek; Gawryluk, Dorota

    2017-10-01

    The article raises issues of constructing contemporary architectural structures in cultural heritage protection zones, using the case study of a building located within the campus of the University of Warmia and Mazury in Olsztyn, Poland. Questions revolving around the construction of this building arise from the need to preserve the surrounding historic heritage, and deal with landscaping, architectural and construction solutions as well as interior design. All these problems grow in importance when dealing with such unique buildings like the discussed example of a laboratory building for the Civil Engineering Department, built on a site within a conservation zone of the university campus. The specific character of the building and the specialist equipment with which it was to be furnished (a resistance testing machine, a 17-meter-long wave flume) necessitated a series of analyses. In turn, the fact that the new building was to be erected in the conservation zone meant that collaboration with the Heritage Conservation Office had to be undertaken at the stage of making the plan and continued during the construction works. The Heritage Officer’s recommendations concerning the building’s shape, divisions, dimensions, materials used, etc., created a situation where the team of designers and architects had to become engaged in the process of landscape and spatial management. The above requirements concerned the functions of the building and its siting on a land parcel that was difficult to handle, also because of the protected trees growing there. Other constraints included the small size of this site, the developed surroundings, and the pre-defined programme of functions and use of the new building. All the above circumstances made the task difficult and demanded good coordination between individual teams of engineers and architects, both at the stage of making the plan and during the construction works. Many of the heritage protection zones are spoilt with

  16. Fixed-head star tracker attitude updates on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nadelman, Matthew S.; Karl, Jeffrey B.; Hallock, Lou

    1994-01-01

    The Hubble Space Telescope (HST) was launched in April 1990 to begin observing celestial space to the edge of the universe. National Aeronautics and Space Administration (NASA) standard fixed-head star trackers (FHST's) are used operationally onboard the HST to regularly adjust ('update') the spacecraft attitude before the acquisition of guide stars for science observations. During the first 3 months of the mission, the FHST's updated the spacecraft attitude successfully only 85 percent of the time. During the other periods, the trackers were unable to find the selected stars -- either they failed to find any star, or worse, they selected incorrect stars and produced erroneous attitude updates. In July 1990, the HST project office at Goddard Space Flight Center (GSFC) requested that Computer Sciences Corporation (CSC) form an investigative 'tiger' team to examine these FHST update failures. This paper discusses the work of the FHST tiger team, describes the investigations that led the team to identify the sources of the errors, and defines the solutions that were subsequently developed, which ultimately increased the success rate of FHST updates to approximately 98 percent.

  17. NASA's Hubble Sees A New Supernova Remnant Light Up

    NASA Image and Video Library

    2011-06-10

    NASA image release June 10, 2011 Astronomers using NASA's Hubble Space Telescope are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, the Large Magellanic Cloud, reached Earth in February 1987. Named Supernova 1987A, it was the closest supernova explosion witnessed in almost 400 years. The supernova's close proximity to Earth has allowed astronomers to study it in detail as it evolves. Now, the supernova debris, which has faded over the years, is brightening. This means that a different power source has begun to light the debris. The debris of SN 1987A is beginning to impact the surrounding ring, creating powerful shock waves that generate X-rays observed with NASA's Chandra X-ray Observatory. Those X-rays are illuminating the supernova debris and shock heating is making it glow in visible light. The results are being reported in the June 9, 2011, issue of the journal Nature by a team including Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics (CfA), who leads a long-term study of SN 1987A with Hubble. Since its launch in 1990, the Hubble telescope has provided a continuous record of the changes in SN 1987A. Credit: NASA, ESA, and P. Challis (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  18. Hubble's Cosmic Atlas

    NASA Image and Video Library

    2017-12-08

    Morphologies, masses, and structures - oh, my! This beautiful clump of glowing gas, dark dust and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). This image was produced by the NASA/ESA Hubble Space Telescope as it embarked upon compiling the first Hubble ultraviolet “atlas,” for which the telescope targeted 50 nearby star-forming galaxies. The collection spans all kinds of different morphologies, masses, and structures. Studying this sample can help us to piece together the star-formation history of the Universe. By exploring how massive stars form and evolve within such galaxies, astronomers can learn more about how, when, and where star formation occurs, how star clusters change over time, and how the process of forming new stars is related to the properties of both the host galaxy and the surrounding interstellar medium (the gas and dust that fills the space between individual stars). This galaxy was imaged with observations from Hubble’s Wide Field Camera 3. Image credit: ESA/Hubble & NASA

  19. Two ESA astronauts named to early Hubble Space Telescope servicing mission

    NASA Astrophysics Data System (ADS)

    1999-03-01

    Nicollier and three NASA astronauts, who had already been training for a Hubble servicing mission planned for June 2000, have been reassigned to this earlier mission (STS-103). Jean-Francois Clervoy and two other NASA astronauts will complete the STS-103 crew. The repairs and maintenance of the telescope will require many hours spent working outside the Shuttle and will make extensive use of the Shuttle's robotic arm Nicollier, of Swiss nationality and making his fourth flight, will be part of the team that will perform the "spacewalks". An astronomer by education, he took part in the first Hubble servicing mission (STS-61) in 1993, controlling the Shuttle's robotic arm while astronauts on the other end of the arm performed the delicate repairs to the telescope. He also served on STS-46 in 1992 using the robotic arm to deploy ESA's Eureca retrievable spacecraft from the Shuttle, and on STS-75 with the Italian Tethered Satellite System in 1996. Nicollier is currently the chief of the robotics branch in NASA's astronaut office and ESA's lead astronaut in Houston. Jean-Francois Clervoy, of French nationality and making his third flight, will have the lead role in the operation of the robotic arm for this mission. He previously served on STS-66 in 1994 using the robotic arm to deploy and later retrieve the German CRISTA-SPAS atmospheric research satellite, and on STS-84 in 1997, a Shuttle mission to the Russian Mir space station. The other STS-103 crewmembers are: Commander Curtis Brown, pilot Scott Kelly, and mission specialists Steven Smith, Michael Foale and John Grunsfeld. During the flight, the astronauts will replace Hubble's failing pointing system, which allows the telescope to aim at stars, planets and other targets, and install other equipment that will be ready for launch at that time. A second mission to complete the previously-scheduled Hubble refurbishment work is foreseen at a later date. The crew for that mission has not yet been assigned. The Hubble

  20. Hubble tracks down a galaxy cluster's dark matter

    NASA Astrophysics Data System (ADS)

    2003-07-01

    total, the image measures 27 arc-minutes across, slightly smaller than the diameter of the Moon. The observed warped shapes of more than 7000 faint background galaxies have been converted into a unique map of the dark matter in the cluster. The images were taken through a red filter and have been reduced a factor of two in size. Ground-based image of the galaxy cluster C10024+1654 hi-res Size hi-res: 4699 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Ground-based image of the galaxy cluster C10024+1654 This is a colour image of the galaxy cluster C10024+1654 obtained with the CFHT12k camera at the Canada France Hawaii Telescope on Mauna Kea (Hawaii). The cluster clearly appears as a concentration of yellow galaxies in the centre of this image although cluster galaxies actually extend at least to the edge of this image. This image measures 21 x 21 arc-minutes. Clusters of galaxies are the largest stable systems in the Universe. They are like laboratories for studying the relationship between the distributions of dark and visible matter. In 1937, Fritz Zwicky realised that the visible component of a cluster (the thousands of millions of stars in each of the thousands of galaxies) represents only a tiny fraction of the total mass. About 80-85% of the matter is invisible, the so-called 'dark matter'. Although astronomers have known about the presence of dark matter for many decades, finding a technique to view its distribution is a much more recent development. Led by Drs Jean-Paul Kneib (from the Observatoire Midi-Pyrénées, France/Caltech, United States), Richard Ellis and Tommaso Treu (both Caltech, United States), the team used the NASA/ESA Hubble Space Telescope to reconstruct a unique 'mass map' of the galaxy cluster CL0024+1654. It enabled them to see for the first time on such large scales how mysterious dark matter is distributed with respect to galaxies. This comparison gives new clues on how such

  1. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    David Leckrone, senior project scientist for Hubble at NASA's Goddard Space Flight Center in Greenbelt, Md. discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  2. Hubble Reveals Stellar Fireworks in ‘Skyrocket’ Galaxy

    NASA Image and Video Library

    2017-12-08

    Fireworks shows are not just confined to Earth’s skies. NASA’s Hubble Space Telescope has captured a spectacular fireworks display in a small, nearby galaxy, which resembles a July 4th skyrocket. A firestorm of star birth is lighting up one end of the diminutive galaxy Kiso 5639. The dwarf galaxy is shaped like a flattened pancake, but because it is tilted edge-on, it resembles a skyrocket, with a brilliant blazing head and a long, star-studded tail. Kiso 5639 is a rare, nearby example of elongated galaxies that occur in abundance at larger distances, where we observe the universe during earlier epochs. Astronomers suggest that the frenzied star birth is sparked by intergalactic gas raining on one end of the galaxy as it drifts through space. “I think Kiso 5639 is a beautiful, up-close example of what must have been common long ago,” said lead researcher Debra Elmegreen of Vassar College, in Poughkeepsie, New York. “The current thinking is that galaxies in the early universe grow from accreting gas from the surrounding neighborhood. It’s a stage that galaxies, including our Milky Way, must go through as they are growing up.” Observations of the early universe, such as Hubble’s Ultra-Deep Field, reveal that about 10 percent of all galaxies have these elongated shapes, and are collectively called “tadpoles.” But studies of the nearby universe have turned up only a few of these unusual galaxies, including Kiso 5639. The development of the nearby star-making tadpole galaxies, however, has lagged behind that of their peers, which have spent billions of years building themselves up into many of the spiral galaxies seen today. Elmegreen used Hubble’s Wide Field Camera 3 to conduct a detailed imaging study of Kiso 5639. The images in different filters reveal information about an object by dissecting its light into its component colors. Hubble’s crisp resolution helped Elmegreen and her team analyze the giant star-forming clumps in Kiso 5639 and

  3. Chinese Language Learning Motivation: A Comparative Study of Heritage and Non-Heritage Learners

    ERIC Educational Resources Information Center

    Wen, Xiaohong

    2011-01-01

    This study investigates attitudes and motivation that influence heritage and non-heritage students' learning of Chinese as a second language, examining the similarities and differences among three subgroups: bilingual, heritage motivated, and non-heritage learners. The study uses the socio-educational model by Gardner (1985), the internal…

  4. HUBBLE OBSERVES THE MOONS AND RINGS OF THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt. Credit: Kenneth Seidelmann, U.S. Naval Observatory, and NASA These observations were conducted by a team led by Dr. Ken Seidelmann of the U.S. Naval Observatory as Principal Investigator. These images have been processed by Professor Douglas Currie and Mr. Dan Dowling in the Department of Physics at the University of Maryland. Other team members are Dr. Ben Zellner at Georgia Southern University, Dr. Dan Pascu and Mr. Jim Rhode at the U.S. Naval Observatory, and Dr. Ed Wells, Mr. Charles Kowal (Computer Science Corporation) and Dr. Alex Storrs of the Space Telescope Science Institute.

  5. 'Hubble-bubble leads to trouble'--waterpipe smoking and oral health.

    PubMed

    Shah, Savan B; Chestnutt, Ivor G; Lewis, Michael A O

    2013-12-01

    Waterpipes are used to smoke tobacco by more than 100 million people worldwide. Use is not restricted to any single racial, ethnic, or cultural group, and dentists are almost certain to encounter waterpipe users amongst their patients. This article describes what the practice involves and seeks to inform members of the dental team of the significantly detrimental impacts of waterpipe smoking on both general and oral health and how'hubble-bubble really can lead to trouble'. Advising patients on ceasing waterpipe use is also discussed. This paper explains what smoking a waterpipe involves, the associated misconceptions of safety amongst users and the dangers to health.

  6. Health Heritage© a web-based tool for the collection and assessment of family health history: initial user experience and analytic validity.

    PubMed

    Cohn, W F; Ropka, M E; Pelletier, S L; Barrett, J R; Kinzie, M B; Harrison, M B; Liu, Z; Miesfeldt, S; Tucker, A L; Worrall, B B; Gibson, J; Mullins, I M; Elward, K S; Franko, J; Guterbock, T M; Knaus, W A

    2010-01-01

    A detailed family health history is currently the most potentially useful tool for diagnosis and risk assessment in clinical genetics. We developed and evaluated the usability and analytic validity of a patient-driven web-based family health history collection and analysis tool. Health Heritage(©) guides users through the collection of their family health history by relative, generates a pedigree, completes risk assessment, stratification, and recommendations for 89 conditions. We compared the performance of Health Heritage to that of Usual Care using a nonrandomized cohort trial of 109 volunteers. We contrasted the completeness and sensitivity of family health history collection and risk assessments derived from Health Heritage and Usual Care to those obtained by genetic counselors and genetic assessment teams. Nearly half (42%) of the Health Heritage participants reported discovery of health risks; 63% found the information easy to understand and 56% indicated it would change their health behavior. Health Heritage consistently outperformed Usual Care in the completeness and accuracy of family health history collection, identifying 60% of the elevated risk conditions specified by the genetic team versus 24% identified by Usual Care. Health Heritage also had greater sensitivity than Usual Care when comparing the identification of risks. These results suggest a strong role for automated family health history collection and risk assessment and underscore the potential of these data to serve as the foundation for comprehensive, cost-effective personalized genomic medicine. Copyright © 2010 S. Karger AG, Basel.

  7. Heritage Language Literacy Maintenance: A Study of Korean-American Heritage Learners

    ERIC Educational Resources Information Center

    Kim, Catherine E.; Pyun, Danielle O.

    2014-01-01

    How heritage learners successfully maintain their heritage language (HL) and literacy is a significant topic of discussion in the field of bilingual education. This study examines what factors are most closely associated with literacy competence by inspecting Korean heritage learners' language and literacy practice patterns and their literacy…

  8. Hubble-V

    NASA Image and Video Library

    1999-12-10

    Resembling curling flames from a campfire, a magnificent nebula in a nearby galaxy observed by NASA Hubble Space Telescope provides new insight into the fierce birth of stars as it may have occurred in the early universe.

  9. Hubble Probes Comet 103P/Hartley 2 in Preparation for DIXI flyby

    NASA Image and Video Library

    2017-12-08

    NASA image release October 5, 2010 Hubble Space Telescope observations of comet 103P/Hartley 2, taken on September 25, are helping in the planning for a November 4 flyby of the comet by NASA's Deep Impact eXtended Investigation (DIXI) spacecraft. Analysis of the new Hubble data shows that the nucleus has a diameter of approximately 0.93 miles (1.5 km), which is consistent with previous estimates. The comet is in a highly active state, as it approaches the Sun. The Hubble data show that the coma is remarkably uniform, with no evidence for the types of outgassing jets seen from most "Jupiter Family" comets, of which Hartley 2 is a member. Jets can be produced when the dust emanates from a few specific icy regions, while most of the surface is covered with relatively inert, meteoritic-like material. In stark contrast, the activity from Hartley 2's nucleus appears to be more uniformly distributed over its entire surface, perhaps indicating a relatively "young" surface that hasn't yet been crusted over. Hubble's spectrographs - the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS) -- are expected to provide unique information about the comet's chemical composition that might not be obtainable any other way, including measurements by DIXI. The Hubble team is specifically searching for emissions from carbon monoxide (CO) and diatomic sulfur (S2). These molecules have been seen in other comets but have not yet been detected in 103P/Hartley 2. 103P/Hartley has an orbital period of 6.46 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit in Siding Spring, Australia. The comet will pass within 11 million miles of Earth (about 45 times the distance to the Moon) on October 20. During that time the comet may be visible to the naked eye as a 5th magnitude "fuzzy star" in the constellation Auriga. Credit: NASA, ESA, and H. Weaver (The Johns Hopkins University/Applied Physics Lab) The Hubble Space Telescope is a

  10. The hubble constant.

    PubMed

    Huchra, J P

    1992-04-17

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.

  11. SAHRIS: using the South African Heritage Register to report, track and monitor heritage crime

    NASA Astrophysics Data System (ADS)

    Smuts, K.

    2015-08-01

    South Africa has experienced a recent increase in thefts of heritage objects from museums and galleries around the country. While the exact number of incidences is not known, the increase in thefts is nonetheless apparent, and has revealed the weaknesses of the systems currently in place to respond to these crimes. The South African Heritage Resources Information System (SAHRIS) is an integrated, online heritage resources management tool developed by the South African Heritage Resources Agency (SAHRA) in 2011 in terms of Section 39 of the National Heritage Resources Act (NHRA), No. 25 of 1999. The system's combined heritage resources and site and object management functionality has been expanded to provide an integrated, responsive tool for reporting heritage crimes and tracking the progress of the resultant cases. This paper reviews existing legislative frameworks and crime reporting and monitoring systems relevant to fighting heritage crime, and identifies current gaps in those responses. SAHRIS is presented as an innovative tool to combat heritage crime effectively in the South African context by offering a centralised, consolidated platform that provides the various stakeholders involved in reporting heritage crimes and locating and retrieving stolen objects with a means to coordinate their responses to such instances.

  12. Hubble 2007: Science Year in Review

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This book epitomizes Hubbles continuing years of glorious accomplishments, presenting a sample of the activities, operations and observations, and scientific findings from 2007. Here is our observatory. Here are a few of our talented people. Here is what we have done. NASA plans a final servicing mission to Hubble in 2008. Two powerful new instruments are to be installed, and repairs made. After the astronauts do their wonderful work, Hubble will be more capable than at any time since launch. The science community eagerly anticipates the new opportunities for research offered by a refurbished observatory. While we do not know exactly what new science stories will appear in future editions of this book, we are certain that the frontiers of science will continue to be pushed outward by the forces of human curiosity and cleverness, channeled by the Hubble Space Telescope.

  13. Virginia Natural Heritage Program

    Science.gov Websites

    Heritage About Natural Heritage Overview, Mission Natural Heritage Inventory Community Ecology Program ) | Strategic Plan (PDF) | Executive Progress Report (PDF) | Code of Ethics (PDF) Your browser does not support

  14. Venus Cloud Tops Viewed by Hubble

    NASA Image and Video Library

    1999-05-18

    Venus Cloud Tops Viewed by Hubble. This is a NASA Hubble Space Telescope ultraviolet-light image of the planet Venus, taken on January 24 1995, when Venus was at a distance of 70.6 million miles 113.6 million kilometers from Earth.

  15. Hubble gets revitalised in new Servicing Mission for more and better science!

    NASA Astrophysics Data System (ADS)

    2002-02-01

    As a unique collaboration between the European Space Agency (ESA), and NASA, Hubble has had a phenomenal scientific impact. The unsurpassed sharp images from this space observatory have penetrated into the hidden depths of space and revealed breathtaking phenomena. But Hubble's important contributions to science have only been possible through a carefully planned strategy to service and upgrade Hubble every two or three years. ESA, the European Space Agency has a particular role to play in this Servicing Mission. One of the most exciting events of this mission will come when the ESA-built solar panels are replaced by newer and more powerful ones. The new panels, developed in the US, are equipped with ESA developed drive mechanisms and were tested at the facilities at ESA's European Space Research and Technology Centre (ESTEC) in the Netherlands. This facility is the only place in the world where such tests can be performed. According to Ton Linssen, HST Project Manager at ESA, who supervised all ESA involvement in the new solar panels development including the test campaign at Estec - "a particularly tense moment occurs when the present solar panels have to be rolled up to fit into the Shuttle's cargo bay. The hard environment of space has taken its toll on the panels and it will be a very delicate operation to roll them up. Our team will be waiting and watching with bated breath. If the panels can't be rolled up they will possibly have to be left in space." "With this Servicing Mission Hubble is once again going to be brought back to the frontline of scientific technology", says Piero Benvenuti, Hubble Project Scientist at ESA. "New super-advanced instrumentation will revitalise the observatory. For example, Hubble's new digital camera - The new Advanced Camera for Surveys, or ACS - can take images of twice the area of the sky and with five times the sensitivity of Hubble's previous instruments, therefore increasing by ten times Hubble's discovery capability! The

  16. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 2 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 47 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. May 8 Hubble View of ISON

    NASA Image and Video Library

    2013-11-22

    Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour. Its swift motion is captured in this image taken May 8, 2013, by NASA's Hubble Space Telescope. At the time the image was taken, the comet was 403 million miles from Earth, between the orbits of Mars and Jupiter. Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus, which is surrounded by a bright, star-like-looking coma. The pressure of the solar wind sweeps the material into a tail, like a breeze blowing a windsock. As the comet warms as it moves closer to the Sun, its rate of sublimation will increase. The comet will get brighter and the tail grows longer. The comet is predicted to reach naked-eye visibility in November. The comet is named after the organization that discovered it, the Russia-based International Scientific Optical Network. This false-color, visible-light image was taken with Hubble's Wide Field Camera 3. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up

  19. Hubble 2006: Science Year in Review

    NASA Technical Reports Server (NTRS)

    Brown, R.

    2007-01-01

    The 10 science articles selected for this years annual science report exemplify the range of Hubble research from the Solar System, across our Milky Way, and on to distant galaxies. The objects of study include a new feature on Jupiter, binaries in the Kuiper Belt, Cepheid variable stars, the Orion Nebula, distant transiting planets, lensing galaxies, active galactic nuclei, red-and-dead galaxies, and galactic outflows and jets. Each narrative strives to construct the readers understanding of the topics and issues, and to place the latest research in historical, as well as scientific, context. These essays reveal trends in the practice of astronomy. More powerful computers are permitting astronomers to study ever larger data sets, enabling the discovery of subtle effects and rare objects. (Two investigations created mosaic images that are among the largest produced to date.) Multiwavelength data sets from ground-based telescopes, as well as other great observatories Spitzer and Chandraare increasingly important for holistic interpretations of Hubble results. This yearbook also presents profiles of 12 individuals who work with Hubble, or Hubble data, on a daily basis. They are representative of the many students, scientists, engineers, and other professions who are proudly associated with Hubble. Their stories collectively communicate the excitement and reward of careers related to space science and technology.

  20. The 1% concordance Hubble constant

    SciTech Connect

    Bennett, C. L.; Larson, D.; Weiland, J. L.

    2014-10-20

    The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. Amore » precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.« less

  1. New Hubble Space Telescope Multi-Wavelength Imaging of the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Levay, Zoltan G.; Christian, Carol A.; Mack, Jennifer; Frattare, Lisa M.; Livio, Mario; Meyett, Michele L.; Mutchler, Maximilian J.; Noll, Keith S.; Hubble Heritage

    2015-01-01

    One of the most iconic images from the Hubble Space Telescope has been the 1995 WFPC2 image of the Eagle Nebula (M16, sometimes known as the "Pillars of Creation"). Nineteen years after those original observations, new images have been obtained with HST's current instrumentation: a small mosaic in visible-light, narrow-band filters with WFC3/UVIS, infrared, broad-band filters with WFC3/IR, and parallel Hα imaging with ACS/WFC. The wider field of view, higher resolution, and broader wavelength coverage of the new images highlight the improved capabilities of HST over its long-lasting operation, made possible by the upgraded instrumentation installed during Space Shuttle servicing missions. Csite images from these datasets are presented to commemorate the 25th anniversary of HST's launch. Carefully combined, aligned and calibrated datasets from the primary WFC3 fields are available as High-Level Science Products in MAST (http://archive.stsci.edu/prepds/heritage/). Color composite images from these datasets are presented to commemorate the 25th anniversary of HST's launch.

  2. What Does the Employee Diversity Team Have in Store for Fall? | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer Fall Activities The Employee Diversity Team (EDT) is out and about this fall, making the NCI at Frederick community aware of various cultural traditions and events around Frederick County that employees can participate in. The team is working with staff members of Native American descent to feature a display case and movie selection celebrating Native American Heritage Month in November. The team will keep you informed about Frederick events taking place in November and December. Keep a look out for EDT e-mails.

  3. HUBBLE VIEWS OF THREE STELLAR JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the

  4. Hubble Captures Detailed Image of Uranus Atmosphere

    NASA Image and Video Library

    1998-08-02

    NASA Hubble Space Telescope peered deep into Uranus atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus atmosphere.

  5. The Hubble Catalog of Variables

    NASA Astrophysics Data System (ADS)

    Gavras, P.; Bonanos, A. Z.; Bellas-Velidis, I.; Charmandaris, V.; Georgantopoulos, I.; Hatzidimitriou, D.; Kakaletris, G.; Karampelas, A.; Laskaris, N.; Lennon, D. J.; Moretti, M. I.; Pouliasis, E.; Sokolovsky, K.; Spetsieri, Z. T.; Tsinganos, K.; Whitmore, B. C.; Yang, M.

    2017-06-01

    The Hubble Catalog of Variables (HCV) is a 3 year ESA funded project that aims to develop a set of algorithms to identify variables among the sources included in the Hubble Source Catalog (HSC) and produce the HCV. We will process all HSC sources with more than a predefined number of measurements in a single filter/instrument combination and compute a range of lightcurve features to determine the variability status of each source. At the end of the project, the first release of the Hubble Catalog of Variables will be made available at the Mikulski Archive for Space Telescopes (MAST) and the ESA Science Archives. The variability detection pipeline will be implemented at the Space Telescope Science Institute (STScI) so that updated versions of the HCV may be created following the future releases of the HSC.

  6. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  7. Hubble Servicing Mission Press Conference

    NASA Image and Video Library

    2009-04-22

    Ed Weiler, Associate Administrator, Science Mission Directorate at NASA Headquarters, seated second from left, speaks during a press conference on the upcoming Hubble Space Telescope servicing mission as David Leckrone, Hubble Project Scientist, Preston Burch and Mike Klenlen, seated right, look on, Thursday, April 23, 2009, at NASA Headquarters in Washington. J.D. Harrington, Public Affairs officer for the Science Mission Directorate looks on at left. Photo Credit: (NASA/Paul. E. Alers)

  8. WFC3 Anomalies Flagged by the Quicklook Team

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.

    2017-09-01

    Like all detectors, the UVIS and IR detectors of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope are subject to detector and optical anomalies. Many of them can be corrected for or avoided with careful planning. We summarize, with examples, the various WFC3 anomalies, which when found are flagged by the WFC3 "Quicklook" team of daily image inspectors and stored in an internal database. We also give examples of known detector features and defects, and some non-standard observing modes. The aim of this report is (1) to educate users of WFC3 to more easily assess the quality of science images and (2) to serve as a reference for the WFC3 Quicklook team members in their daily visual inspections. This report was produced by C.M. Gosmeyer and The Quicklook Team.

  9. Laryngeal findings and acoustic changes in hubble-bubble smokers.

    PubMed

    Hamdan, Abdul-latif; Sibai, Abla; Oubari, Dima; Ashkar, Jihad; Fuleihan, Nabil

    2010-10-01

    The purpose of our investigation was to evaluate the laryngeal findings and acoustic changes in hubble-bubble smokers. A total of 42 subjects with history of hubble-bubble smoking were recruited for this study. A corresponding group with a history of cigarette smoking and controls were matched. All subjects underwent laryngeal video-endostroboscopic evaluation and acoustic analysis. In the hubble-bubble smoking group, 61.9% were males. The average age was 30.02 +/- 9.48 years and the average number of years of smoking was 8.09 +/- 6.45 years. Three subjects had dysphonia at the time of examination. The incidence of benign lesions of the vocal folds in the hubble-bubble group was 21.5%, with edema being the most common at 16.7% followed by cyst at 4.8%. The incidence of laryngeal findings was significantly higher in the hubble-bubble group compared to controls. In the cigarette-smoking group, the most common finding was vocal fold cyst in 14.8% followed by polyps in 7.4%, and edema, sulcus vocalis and granuloma. These findings were not significantly different from the hubble-bubble group except for the thick mucus, which was significantly higher in the latter. There were no significant changes in any of the acoustic parameters between hubble-bubble smokers and controls except for the VTI and MPT, which were significantly lower in the hubble-bubble group. In comparison with the cigarette-smoking group, hubble-bubble smokers had significantly higher Fundamental frequency and habitual pitch (p value 0.042 and 0.008, respectively). The laryngeal findings in hubble-bubble smokers are comparable to cigarette smokers. These laryngeal findings are not translated acoustically, as all the acoustic parameters are within normal range compared to controls.

  10. Dark Energy and the Hubble Law

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  11. Multi-cooperation of Cultural Heritage Conservation: The Cangdong Project of Guangdong Province

    NASA Astrophysics Data System (ADS)

    Tan, J.

    2015-09-01

    In recent years, some workshops and research cases have arisen in China to seek for suitable ways for heritage conservation and development of historic villages. However, the issue of multi-cooperation has not been much mentioned in research works. The case of Cangdong Project in Guangdong Province is a social enterprise. It is a center focusing on heritage education. It organizes tailor-made workshops for interested people from all over China and Hong Kong, Macao and overseas, including university courses for credits, summer/winter camps for primary and middle school students, as well as common people who are interested in heritage conservation. The purpose of the education center is to enhance heritage/cultural interest of the younger generations and common people, and try to work with local villagers to build a wealthy community. Nowadays, more and more villagers moved out for work and the countryside population in China is decreasing, this project also aims to create work opportunities for villagers through heritage conservation projects, so that the villagers can be willing to stay. The project focuses more in a sustainable way for community development. It has been five years since the project was set up in Cangdong Village. The project team worked with villagers, city people, students, scholars, different levels of local governments, investors, Medias, charitable organizations, as well as the market of tourism. As such, a platform of multi-cooperation for the above parties has formed during the past five years. This paper takes the Project experience from 2010-2015 as the case to study multi-cooperation in the field of heritage conservation in China, as well as to discuss how to co-operate the subjective initiatives of different stokeholds.

  12. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  13. NASA's Hubble Zooms in on a Space Oddity

    NASA Image and Video Library

    2011-01-11

    NASA image release January 10, 2011 In this image by NASA's Hubble Space Telescope, an unusual, ghostly green blob of gas appears to float near a normal-looking spiral galaxy. The bizarre object, dubbed Hanny's Voorwerp (Hanny's Object in Dutch), is the only visible part of a 300,000-light-year-long streamer of gas stretching around the galaxy, called IC 2497. The greenish Voorwerp is visible because a searchlight beam of light from the galaxy's core illuminated it. This beam came from a quasar, a bright, energetic object that is powered by a black hole. The quasar may have turned off about 200,000 years ago. This Hubble view uncovers a pocket of star clusters, the yellowish-orange area at the tip of Hanny's Voorwerp. The star clusters are confined to an area that is a few thousand light-years wide. The youngest stars are a couple of million years old. The Voorwerp is the size of our Milky Way galaxy, and its bright green color is from glowing oxygen. Hubble also shows that gas flowing from IC 2497 may have instigated the star birth by compressing the gas in Hanny's Voorwerp. The galaxy is located about 650 million light-years from Earth. What appears to be a gaping hole in Hanny's Voorwerp actually may be a shadow cast by an object in the quasar's light path. The feature gives the illusion of a hole about 20,000 light-years wide. Hubble reveals sharp edges but no other changes in the gas around the apparent opening, suggesting that an object close to the quasar may have blocked some of the light and projected a shadow on the Voorwerp. This phenomenon is similar to a fly on a movie projector lens casting a shadow on a movie screen. An interaction between IC 2497 and another galaxy about a billion years ago may have created Hanny's Voorwerp and fueled the quasar. The Hubble image shows that IC 2497 has been disturbed, with complex dust patches, warped spiral arms, and regions of star formation around its core. These features suggest the aftermath of a galaxy merger

  14. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  15. Hubble's Slice of Sagittarius

    NASA Image and Video Library

    2017-12-08

    This stunning image, captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), shows part of the sky in the constellation of Sagittarius (The Archer). The region is rendered in exquisite detail — deep red and bright blue stars are scattered across the frame, set against a background of thousands of more distant stars and galaxies. Two features are particularly striking: the colors of the stars, and the dramatic crosses that burst from the centers of the brightest bodies. While some of the colors in this frame have been enhanced and tweaked during the process of creating the image from the observational data, different stars do indeed glow in different colors. Stars differ in color according to their surface temperature: very hot stars are blue or white, while cooler stars are redder. They may be cooler because they are smaller, or because they are very old and have entered the red giant phase, when an old star expands and cools dramatically as its core collapses. The crosses are nothing to do with the stars themselves, and, because Hubble orbits above Earth’s atmosphere, nor are they due to any kind of atmospheric disturbance. They are actually known as diffraction spikes, and are caused by the structure of the telescope itself. Like all big modern telescopes, Hubble uses mirrors to capture light and form images. Its secondary mirror is supported by struts, called telescope spiders, arranged in a cross formation, and they diffract the incoming light. Diffraction is the slight bending of light as it passes near the edge of an object. Every cross in this image is due to a single set of struts within Hubble itself! Whilst the spikes are technically an inaccuracy, many astrophotographers choose to emphasize and celebrate them as a beautiful feature of their images. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science

  16. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  17. Hubble Spies Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Spiral galaxy NGC 3274 is a relatively faint galaxy located over 20 million light-years away in the constellation of Leo (The Lion). This NASA/ESA Hubble Space Telescope image comes courtesy of Hubble's Wide Field Camera 3 (WFC3), whose multi-color vision allows astronomers to study a wide range of targets, from nearby star formation to galaxies in the most remote regions of the cosmos. This image combines observations gathered in five different filters, bringing together ultraviolet, visible and infrared light to show off NGC 3274 in all its glory. NGC 3274 was discovered by Wilhelm Herschel in 1783. The galaxy PGC 213714 is also visible on the upper right of the frame, located much farther away from Earth. Image Credit: ESA/Hubble & NASA, D. Calzetti NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  19. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 34 Bow Shock Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Initial clinical validation of Health Heritage, a patient-facing tool for personal and family history collection and cancer risk assessment.

    PubMed

    Baumgart, Leigh A; Postula, Kristen J Vogel; Knaus, William A

    2016-04-01

    Personal and family health histories remain important independent risk factors for cancer; however they are currently not being well collected or used effectively. Health Heritage was designed to address this need. The purpose of this study was to validate the ability of Health Heritage to identify patients appropriate for further genetic evaluation and to accurately stratify cancer risk. A retrospective chart review was conducted on 100 random patients seen at an adult genetics clinic presenting with concern for an inherited predisposition to cancer. Relevant personal and family history obtained from the patients' medical records was entered into Health Heritage. Recommendations by Health Heritage were compared to national guidelines of eligibility for genetic evaluation. Agreement between Health Heritage referral for genetic evaluation and guideline eligibility for genetic evaluation was 97% (sensitivity 98% and specificity 88%). Risk stratification for cancer was also compared between Health Heritage and those documented by a geneticist. For patients at increased risk for breast, ovarian, or colorectal cancer as determined by the geneticist, risk stratification by Health Heritage agreed 90, 93, and 75%, respectively. Discordances in risk stratification were attributed to both complex situations better handled by the geneticist and Health Heritage's adherence to incorporating all information into its algorithms. Health Heritage is a clinically valid tool to identify patients appropriate for further genetic evaluation and to encourage them to confirm the assessment and management recommendations with cancer genetic experts. Health Heritage also provides an estimate of cancer risk that is complementary to a genetics team.

  1. UNESCO Thematic Initiative ``Astronomy and World Heritage'': studies and research on technological heritage connected with space exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Anna

    The Convention concerning the protection of the World Cultural and Natural Heritage (1972) provides a unique opportunity to preserve exceptional properties world-wide and to raise awareness about the Outstanding Universal Value of these properties. The mission of UNESCO regarding World Heritage consists of assisting the States Parties to this Convention to safeguard properties inscribed on the World Heritage List, to support activities led by States Parties in the preservation of World Heritage, and to encourage international cooperation in heritage conservation. Considering that sites related to science and technology are among the most under-represented on the World Heritage List and recognizing the absence of an integrated thematic approach for such sites, the World Heritage Committee launched the Thematic Initiative “Astronomy and World Heritage”. Developed in close collaboration between the UNESCO World Heritage Centre, the International Astronomical Union (IAU) and the International Council on Monuments and Sites (ICOMOS), and implemented by the National Focal Points world-wide, the Thematic Initiative on Astronomy and World Heritage aims to establish a link between Science and Culture towards the recognition of scientific values of sites linked to astronomy. It provides an opportunity not only to identify the properties but also to keep their memory alive and preserve them from progressive deterioration. The implementation of this initiative has revealed numerous issues that need to be addressed, and in particular in the domain of technological heritage connected with space exploration. For this reason, the World Heritage Committee during its 36th session (Saint Petersburg, 2012) encouraged cooperation between the UNESCO World Heritage Centre, specialized agencies and relevant interdisciplinary scientific initiatives towards the elaboration of a Global Thematic Study on Heritage of Science and Technology, including studies and research on technological

  2. The Hubble Constant.

    PubMed

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  3. HUBBLE provides multiple views of how to feed a black hole

    NASA Astrophysics Data System (ADS)

    1998-05-01

    fuel from a devoured galaxy, it may be oblivious to the rest of the galaxy and the collision," said Ethan Schreier of the Space Telescope Science Institute, Baltimore, MD. Schreier and an international team of co-investigators used Hubble's Near Infrared Camera and Multi-Object Spectrometer to probe deeper into the galaxy's mysterious heart than anyone has before. The hot gas disk viewed by Hubble investigators is perpendicular to the galaxy's outer dust belt, while the black hole's own internal accretion disk of superhot gas falling into it is tilted approximately diagonally to these axes. "We have found a complicated situation of a disk within a disk within a disk, all pointing in different directions," Schreier said. It is not clear if the black hole was always present in the host galaxy or belonged to the spiral galaxy that fell into the core, or if it is the product of the merger of a pair of smaller black holes that lived in the two once-separate galaxies. Having an active galaxy just 10 million light-years away from Earth rather than hundreds of millions or billions of light-years distant offers astronomers a unique laboratory for understanding the elusive details of the behavior of supermassive black holes as fueled by galaxy collisions. "Though Hubble has seen hot gas disks around black holes in other galaxies, the infrared camera has for the first time allowed us to peer at this relatively nearby, very active, but obscured black hole region," Schreier added. The team of astronomers is awaiting further Hubble data to continue its study of the disk, as well as ground-based spectroscopic observations to measure the velocity of entrapped material around the black hole. This will allow the astronomers to better calculate the black hole's mass. The current results are scheduled to appear in the June 1, 1998 issue of Astrophysical Journal Letters. Images and further information related to these results are available on the Internet at the following URLs: http

  4. Hubble IMAX Premier

    NASA Image and Video Library

    2010-03-09

    Dr. Ed Weiler, left, is interviewed by Miles O'Brien prior to the World Premiere of "Hubble 3D", screened at the Smithsonian's Air and Space Museum Tuesday evening, March 9, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. Geospatial database for heritage building conservation

    NASA Astrophysics Data System (ADS)

    Basir, W. N. F. W. A.; Setan, H.; Majid, Z.; Chong, A.

    2014-02-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed.

  6. Version 1 of the Hubble Source Catalog

    DOE PAGES

    Whitmore, Bradley C.; Allam, Sahar S.; Budavari, Tamas; ...

    2016-05-11

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160 thousand HST exposures. Source lists from Data Release 8 of the Hubble Legacy Archive are matched using an algorithm developed by Budavari & Lubow (2012). The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (i.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better thanmore » $$\\sim$$0.1 arcsec for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. Here, we provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.« less

  7. Hubble Finds New Dark Spot on Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet.

    The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared.

    Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere.

    Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere.

    The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. HUBBLE FINDS NEW DARK SPOT ON NEPTUNE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA

  9. Hubble Camera Resumes Science Operation With Picture Of 'Butterfly' In Space.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    nitrogen atoms. Scientists are still testing and calibrating the newly installed instruments on Hubble , the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectrograph (STIS). These instruments will be ready to make observations in a few weeks. Credit: Massimo Stiavelli (STScI), and NASA other team member: Inge Heyer (STScI) Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  10. Heritage language and linguistic theory

    PubMed Central

    Scontras, Gregory; Fuchs, Zuzanna; Polinsky, Maria

    2015-01-01

    This paper discusses a common reality in many cases of multilingualism: heritage speakers, or unbalanced bilinguals, simultaneous or sequential, who shifted early in childhood from one language (their heritage language) to their dominant language (the language of their speech community). To demonstrate the relevance of heritage linguistics to the study of linguistic competence more broadly defined, we present a series of case studies on heritage linguistics, documenting some of the deficits and abilities typical of heritage speakers, together with the broader theoretical questions they inform. We consider the reorganization of morphosyntactic feature systems, the reanalysis of atypical argument structure, the attrition of the syntax of relativization, and the simplification of scope interpretations; these phenomena implicate diverging trajectories and outcomes in the development of heritage speakers. The case studies also have practical and methodological implications for the study of multilingualism. We conclude by discussing more general concepts central to linguistic inquiry, in particular, complexity and native speaker competence. PMID:26500595

  11. Hubble Reveals Stellar Fireworks in ‘Skyrocket’ Galaxy

    NASA Image and Video Library

    2016-06-29

    Fireworks shows are not just confined to Earth’s skies. NASA’s Hubble Space Telescope has captured a spectacular fireworks display in a small, nearby galaxy, which resembles a July 4th skyrocket. A firestorm of star birth is lighting up one end of the diminutive galaxy Kiso 5639. The dwarf galaxy is shaped like a flattened pancake, but because it is tilted edge-on, it resembles a skyrocket, with a brilliant blazing head and a long, star-studded tail. Kiso 5639 is a rare, nearby example of elongated galaxies that occur in abundance at larger distances, where we observe the universe during earlier epochs. Astronomers suggest that the frenzied star birth is sparked by intergalactic gas raining on one end of the galaxy as it drifts through space. “I think Kiso 5639 is a beautiful, up-close example of what must have been common long ago,” said lead researcher Debra Elmegreen of Vassar College, in Poughkeepsie, New York. “The current thinking is that galaxies in the early universe grow from accreting gas from the surrounding neighborhood. It’s a stage that galaxies, including our Milky Way, must go through as they are growing up.” Observations of the early universe, such as Hubble’s Ultra-Deep Field, reveal that about 10 percent of all galaxies have these elongated shapes, and are collectively called “tadpoles.” But studies of the nearby universe have turned up only a few of these unusual galaxies, including Kiso 5639. The development of the nearby star-making tadpole galaxies, however, has lagged behind that of their peers, which have spent billions of years building themselves up into many of the spiral galaxies seen today. Elmegreen used Hubble’s Wide Field Camera 3 to conduct a detailed imaging study of Kiso 5639. The images in different filters reveal information about an object by dissecting its light into its component colors. Hubble’s crisp resolution helped Elmegreen and her team analyze the giant star-forming clumps in Kiso 5639 and

  12. NASA’s Hubble Telescope Finds Potential Kuiper Belt Targets for New Horizons Pluto Mission

    NASA Image and Video Library

    2017-12-08

    This is an artist’s impression of a Kuiper Belt object (KBO), located on the outer rim of our solar system at a staggering distance of 4 billion miles from the Sun. A HST survey uncovered three KBOs that are potentially reachable by NASA’s New Horizons spacecraft after it passes by Pluto in mid-2015. Credit: NASA, ESA, and G. Bacon (STScI) --- Peering out to the dim, outer reaches of our solar system, NASA’s Hubble Space Telescope has uncovered three Kuiper Belt objects (KBOs) the agency’s New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. “This has been a very challenging search and it’s great that in the end Hubble could accomplish a detection – one NASA mission helping another,” said Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado, principal investigator of the New Horizons mission. The Kuiper Belt is a vast rim of primordial debris encircling our solar system. KBOs belong to a unique class of solar system objects that has never been visited by spacecraft and which contain clues to the origin of our solar system. The KBOs Hubble found are each about 10 times larger than typical comets, but only about 1-2 percent of the size of Pluto. Unlike asteroids, KBOs have not been heated by the sun and are thought to represent a pristine, well preserved deep-freeze sample of what the outer solar system was like following its birth 4.6 billion years ago. The KBOs found in the Hubble data are thought to be the building blocks of dwarf planets such as Pluto. Read more: 1.usa.gov/1vzUcyK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  13. Life Extension Activities for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Walyus, Keith D.; Pepe, Joyce A. K.; Prior, Michael

    2004-01-01

    With the cancellation of the Hubble Space Telescope (HST) Servicing Mission 4 (SM4), the HST Project will face numerous challenges to keep the Telescope operating during the remainder of the decade. As part of the SM4, the HST Project had planned to install various upgrades to the Telescope including the installation of new batteries and new rate integrating gyros. Without these upgrades, reliability analysis indicates that the spacecraft will lose the capability to conduct science operations later this decade. The HST team will be severely challenged to maximize the Telescope's remaining operational lifetime, while still trying to maximize - its science output and quality. Two of the biggest areas of concern are the age and condition of the batteries and gyros. Together they offer the largest potential extension in Telescope lifetime and present the biggest challenges to the HST team. The six Ni-H batteries on HST are the original batteries from launch. With fourteen years of operational life, these batteries have collectively lasted longer than any other comparable mission. Yet as with all batteries, their capacity has been declining. Engineers are examining various methods to prolong the life of these mission critical batteries, and retard the rate of degradation. This paper will focus on these and other efforts to prolong the life of the HST, thus enabling it to remain a world-class observatory for as long as possible.

  14. NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

    NASA Astrophysics Data System (ADS)

    2005-10-01

    creation of chemical elements such as oxygen through nuclear reactions in their cores. Such observations also help reveal how the interstellar medium (the gas that occupies the vast spaces between the stars) is enriched with chemical elements because of supernova explosions. Later on, these elements are incorporated into new generations of stars and their accompanying planets. Visible only from Earth's southern hemisphere, the LMC is an irregular galaxy lying about 160,000 light-years from the Milky Way. The supernova remnant appears to be about 3,000 years old, but since its light took 160,000 years to reach us, the explosion actually occurred some 163,000 years ago. This composite image of N132D was created by the Hubble Heritage team from visible-light data taken in January 2004 with Hubble's Advanced Camera for Surveys, and X-ray images obtained in July 2000 by Chandra's Advanced CCD Imaging Spectrometer. This marks the first Hubble Heritage image that combines pictures taken by two separate space observatories. The Hubble data include color filters that sample starlight in the blue, green, and red portions of the spectrum, as well as the pink emission from glowing hydrogen gas. The Chandra data are assigned blue in the color composite, in accordance with the much higher energy of the X-rays, emitted from extremely hot gas. This gas does not emit a significant amount of optical light, and was only detected by Chandra. Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: J.C. Green (Univ. of Colorado) and the Cosmic Origins Spectrograph (COS) GTO team; NASA/CXO/SAO Electronic image files, video, illustrations and additional information are available at: http://hubblesite.org/news/2005/30 http://heritage.stsci.edu/2005/30 The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-02

    What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).

  16. Hubble and ESO's VLT provide unique 3D views of remote galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope's acute eye, and the capacity of ESO's Very Large Telescope to probe the motions of gas in tiny objects. By looking at this unique "history book" of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past. ESO PR Photo 10a/09 A 3D view of remote galaxies ESO PR Photo 10b/09 Measuring motions in 3 distant galaxies ESO PR Video 10a/09 Galaxies in collision For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT's FLAMES/GIRAFFE spectrograph (ESO 13/02) -- which obtains simultaneous spectra from small areas of extended objects -- can now also resolve the motions of the gas in these distant galaxies (ESO 10/06). "This unique combination of Hubble and the VLT allows us to model distant galaxies almost as nicely as we can close ones," says François Hammer, who led the team. "In effect, FLAMES/GIRAFFE now allows us to measure the velocity of the gas at various locations in these objects. This means that we can see how the gas is moving, which provides us with a three-dimensional view of galaxies halfway across the Universe." The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with both Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies. In one galaxy, GIRAFFE revealed a region full of ionised gas, that is, hot gas composed of atoms that have been stripped of

  17. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  18. HUBBLE PROVIDES THE FIRST IMAGES OF SATURN'S AURORA (Top)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturn's auroral zones. The Saturn flybys of the Voyager 1 and 2 spacecraft, in the early 1980s, found auroral emissions confined to a circumpolar ring. (Bottom) - For comparison, this is a visible-light color composite image of Saturn as seen by Hubble on December 1, 1994. Unlike the ultraviolet image, Saturn's familiar atmospheric belts and zones are clearly seen. The lower cloud deck is not visible at UV wavelengths because sunlight is reflected from higher in the atmosphere. Credits: J.T. Trauger (JPL), J.T. Clarke (Univ. of Michigan), the WFPC2 science team, and NASA Image files in GIF and JPEG format may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  19. "digital Heritage" Theory and Innovative Practice

    NASA Astrophysics Data System (ADS)

    He, Y.; Ma, Y. H.; Zhang, X. R.

    2017-08-01

    "Digital heritage", as defined in this paper, is the integration of cultural heritage with digitization technology ("cultural heritage + digitization"), and of digital knowledge with research. It includes not only the three conventional aspects of cultural heritage digitization—digital collection and documentation, digital research and information management, digital presentation and interpretation—but also the creation and innovative use/application of the digital content (cultural heritage intellectual property/IP, experiential education, cultural tourism, film and media). Through analysis of two case studies, the Palazzo Valentini in Rome, Italy, and the Old Summer Palace (Yuanmingyuan) in Beijing, China, the paper assesses the concept of "digital heritage" and proposes a conceptual framework to capture recent developments and future prospects with regard to the industry.

  20. Hubble and the Language of Images

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.

    2005-12-01

    Images released from the Hubble Space Telescope have been very highly regarded by the astronomy-attentive public for at least a decade. Due in large part to these images, Hubble has become an iconic figure, even among the general public. This iconic status is both a boon and a burden for those who produce the stream of images fl owing from this telescope. While the benefits of attention are fairly obvious, the negative aspects are less visible. One of the most persistent challenges is the need to continue to deliver images that "top" those released before. In part this can be accomplished because of Hubble's upgraded instrumentation. But it can also be a source of pressure that could, if left unchecked, erode ethical boundaries in our communication with the public. These pressures are magnified in an atmosphere of uncertainty with regard to the future of the mission.

  1. Hubble Peers into the Heart of a Galactic Maelstrom

    NASA Image and Video Library

    2017-12-08

    This NASA/ESA Hubble Space Telescope image shows Messier 96, a spiral galaxy just over 35 million light-years away in the constellation of Leo (The Lion). It is of about the same mass and size as the Milky Way. It was first discovered by astronomer Pierre Méchain in 1781, and added to Charles Messier’s famous catalogue of astronomical objects just four days later. The galaxy resembles a giant maelstrom of glowing gas, rippled with dark dust that swirls inwards towards the nucleus. Messier 96 is a very asymmetric galaxy; its dust and gas are unevenly spread throughout its weak spiral arms, and its core is not exactly at the galactic center. Its arms are also asymmetrical, thought to have been influenced by the gravitational pull of other galaxies within the same group as Messier 96. This group, named the M96 Group, also includes the bright galaxies Messier 105 and Messier 95, as well as a number of smaller and fainter galaxies. It is the nearest group containing both bright spirals and a bright elliptical galaxy (Messier 105). Image credit: ESA/Hubble & NASA and the LEGUS Team, Acknowledgement: R. Gendler NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Hubble Legacy Archive And The Public

    NASA Astrophysics Data System (ADS)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  3. NASA Hubble Sees Comet ISON Intact

    NASA Image and Video Library

    2013-10-09

    This image from NASA Hubble Space Telescope of the sunward plunging comet ISON suggests that the comet is intact despite some predictions that the fragile icy nucleus might disintegrate as the sun warms it. In this NASA Hubble Space Telescope image taken on October 9, 2013 the comet's solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments. Moreover, the coma or head surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What's more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars' orbit and 177 million miles from Earth when photographed. Comet ISON is predicted to make its closest approach to Earth on 26 December, at a distance of 39.9 million miles. http://photojournal.jpl.nasa.gov/catalog/PIA18153

  4. Race in Conflict with Heritage: "Black" Heritage Language Speaker of Japanese

    ERIC Educational Resources Information Center

    Doerr, Neriko Musha; Kumagai, Yuri

    2014-01-01

    "Heritage language speaker" is a relatively new term to denote minority language speakers who grew up in a household where the language was used or those who have a family, ancestral, or racial connection to the minority language. In research on heritage language speakers, overlap between these 2 definitions is often assumed--that is,…

  5. Hubble Captures Cosmic Ice Sculptures

    NASA Image and Video Library

    2017-12-08

    NASA image release September 16, 2010 Enjoying a frozen treat on a hot summer day can leave a sticky mess as it melts in the Sun and deforms. In the cold vacuum of space, there is no edible ice cream, but there is radiation from massive stars that is carving away at cold molecular clouds, creating bizarre, fantasy-like structures. These one-light-year-tall pillars of cold hydrogen and dust, imaged by the Hubble Space Telescope, are located in the Carina Nebula. Violent stellar winds and powerful radiation from massive stars are sculpting the surrounding nebula. Inside the dense structures, new stars may be born. This image of dust pillars in the Carina Nebula is a composite of 2005 observations taken of the region in hydrogen light (light emitted by hydrogen atoms) along with 2010 observations taken in oxygen light (light emitted by oxygen atoms), both times with Hubble's Advanced Camera for Surveys. The immense Carina Nebula is an estimated 7,500 light-years away in the southern constellation Carina. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Hubble Helps Find Smallest Known Galaxy Containing a Supermassive Black Hole

    NASA Image and Video Library

    2017-12-08

    s team of astronomers used the Hubble Space Telescope and the Gemini North 8-meter optical and infrared telescope on Hawaii’s Mauna Kea to observe M60-UCD1 and measure the black hole’s mass. The sharp Hubble images provide information about the galaxy’s diameter and stellar density. Gemini measures the stellar motions as affected by the black hole’s pull. These data are used to calculate the mass of the black hole. Black holes are gravitationally collapsed, ultra-compact objects that have a gravitational pull so strong that even light cannot escape. Supermassive black holes -- those with the mass of at least one million stars like our sun -- are thought to be at the centers of many galaxies. The black hole at the center of our Milky Way galaxy has the mass of four million suns. As heavy as that is, it is less than 0.01 percent of the Milky Way’s total mass. By comparison, the supermassive black hole at the center of M60-UCD1, which has the mass of 21 million suns, is a stunning 15 percent of the small galaxy’s total mass. “That is pretty amazing, given that the Milky Way is 500 times larger and more than 1,000 times heavier than the dwarf galaxy M60-UCD1,” Seth said. One explanation is that M60-UCD1 was once a large galaxy containing 10 billion stars, but then it passed very close to the center of an even larger galaxy, M60, and in that process all the stars and dark matter in the outer part of the galaxy were torn away and became part of M60. The team believes that M60-UCD1 may eventually be pulled to fully merge with M60, which has its own monster black hole that weighs a whopping 4.5 billion solar masses, or more than 1,000 times bigger than the black hole in our galaxy. When that happens, the black holes in both galaxies also likely will merge. Both galaxies are 50 million light-years away. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt

  7. Geoheritage + dark cultural heritage= dark geo-cultural heritage. A platform for effective outreach and education?

    NASA Astrophysics Data System (ADS)

    Riede, Felix

    2017-04-01

    In cultural heritage studies the term 'dark heritage' - defined as the tangible remains of now unwanted, unsavoury, uncomfortable or unpleasant pasts - has attracted much attention. It has been noted that despite the problematic nature of 'dark heritage' sites (e.g. Auschwitz, Chernobyl, Robben Island), these attract large number of visitors and so serve as effective platforms of addressing the attendant issues. Consequently, many theoretical, conceptual and empirical studies of such 'dark heritage' sites have been conducted. In studies of geoheritage, however, most effort has so far been placed on unproblematic sites. In this paper, I suggest that previous work on dark cultural heritage could be wedded to the emerging notion of geoheritage to more directly address the dark side of geoheritage - or rather geo-cultural heritage - sites. This is particularly pertinent when it comes to sites of past natural hazards that have affected human communities, and to sites of environmentally destructive resource extraction. I draw on two examples (the Laacher See eruption 13ka BP in Germany and the former lignite mine of Søby in Denmark) to illustrate the approach and to make the argument that the insights of cultural heritage studies should be brought to bear on geoheritage matters. By bringing humans into the equation, education and outreach related to, for instance, natural hazards and the consequences of mining attain and increased degree of immediacy. Such an interdisciplinary coupling of geological and cultural heritage is particularly relevant in relation to the problems surrounding the Anthropocene and its associated proposition that humans are now an ecological and geological force in themselves.

  8. The Hubble Constant from Supernovae

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Macri, Lucas M.

    The decades-long quest to obtain a precise and accurate measurement of the local expansion rate of the universe (the Hubble Constant or H0) has greatly benefited from the use of supernovae (SNe). Starting from humble beginnings (dispersions of ˜ 0.5 mag in the Hubble flow in the late 1960s/early 1970s), the increasingly more sophisticated understanding, classification, and analysis of these events turned type Ia SNe into the premiere choice for a secondary distance indicator by the early 1990s. While some systematic uncertainties specific to SNe and to Cepheid-based distances to the calibrating host galaxies still contribute to the H0 error budget, the major emphasis over the past two decades has been on reducing the statistical uncertainty by obtaining ever-larger samples of distances to SN hosts. Building on early efforts with the first-generation instruments on the Hubble Space Telescope, recent observations with the latest instruments on this facility have reduced the estimated total uncertainty on H0 to 2.4 % and shown a path to reach a 1 % measurement by the end of the decade, aided by Gaia and the James Webb Space Telescope.

  9. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  10. Digital Tools for Documenting and Conserving Bahrain's Built Heritage for Posterity

    NASA Astrophysics Data System (ADS)

    Mezzino, D.; Barazzetti, L.; Santana Quintero, M.; El-Habashi, A.

    2017-08-01

    Documenting the physical characteristics of historic structures is the first step for any preventive maintenance, monitoring, conservation, planning and promotion action. Metric documentation supports informative decision-making process for property owners, site managers, public officials, and conservators. This information serves also a broader purpose, over time, it becomes the primary means by which scholars, heritage professionals, and the general public understand a site that radically changed or disappeared. Further, documentation supports monitoring as well as the character-defining elements analysis, relevant to define the values of the building for the local and international community. The awareness of these concepts oriented the digital documentation and training activities, developed between 2016 and 2017, for the Bahrain Authority for Culture and Antiquities (BACA) in Bahrain. The developed activities had two main aims: a) support the local staff in using specific recording techniques to efficiently document and consequently preserve built heritage sites with appropriate accuracy and in a relatively short period; b) develop a pilot project in collaboration with BACA to validate the capacity of the team to accurately document and produce measured records for the conservation and management of Bahrain built heritage. The documentation project has been developed by a multidisciplinary team of experts from BACA, Carleton Immersive Media Studio (CIMS), Carleton University, Canada and a contracted researcher from the Gicarus Lab, Politecnico di Milano (POLIMI) in Italy. In the training activities, the participants have been exposed to a wide range of recording techniques, illustrating them the selection criteria for the most suitable one, according to requirements, site specifications, categories of values identified for the various built elements, and budget. The pilot project has been tested on three historical structures, both with strong connotations in

  11. The Hubble Space Telescope at 25: Lessons Learned for Future Missions

    NASA Astrophysics Data System (ADS)

    Wiseman, Jennifer

    2015-08-01

    This year we celebrate the 25th anniversary of the Hubble Space Telescope mission. Astronomy worldwide has been transformed by the discoveries made with Hubble. At this momentous milestone it is important to reflect on the unique successes of Hubble, and the components of that success, as the astronomical community develops facilities and a vision for future major international efforts in scientific space exploration. First, Hubble was envisioned by pioneering astronomers long before its launch, galvanizing support from astronomers, NASA, and governmental leaders for such an innovative and risky endeavor. Second, the interplay of the astronaut program with scientific exploration was paramount to the success of Hubble, not only with the initial dramatic repair mission, but also for the subsequent five servicing missions that kept the observatory perpetually refreshed. Cooperative missions involving astronauts, engineers, and scientists may be critical for constructing and operating large facilities in space in the future. Third, the scientific discoveries of Hubble involve both incredible successes that were planned from the outset as well as new discoveries and innovative uses of the observatory that could not have been planned in advance. Hubble has been used not only to gauge the expansion rate and age of the universe, but has also been a major player in the recent surprise detection of acceleration in that expansion. Hubble has also been key for studying star formation and now the atmospheres of exoplanets; even water has been detected in exoplanetary systems, something never envisioned for Hubble originally. And the incredible evolutionary picture of galaxies has been unveiled through Hubble observations, now enhanced by the revolutionary uses of gravitational lensing to study both dark matter in the lensing clusters, and extremely distant magnified galaxies. Finally, Hubble’s great success in public outreach has made the discoveries of astronomy easily

  12. HubbleSite: News

    Science.gov Websites

    HubbleSite Toggle navigation Home News Images Videos Blogs Explore Discoveries Astronomy Technology stars, and yet, star formation is still a vexing question in astronomy. To piece together a more with this form. Inbox Astronomy Subscribe Sign up to receive the latest news, images, and discoveries

  13. Large Hubble Survey Confirms Link between Mergers and Supermassive Black Holes with Relativistic Jets

    NASA Image and Video Library

    2015-05-28

    Tidal disruption event Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using NASA’s Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy. Certain galaxies have shining centers, illuminated by heated gas circling around a supermassive black hole. Matter escapes where it can, forming two jets of plasma moving near the speed of light. To learn more about the relationship between galaxies and the black holes at their cores, go to NASA’s Hubble Space Telescope: www.nasa.gov/mission_pages/hubble/main/ -------------------------------- Original caption: A team of astronomers using the Hubble Space Telescope found an unambiguous link between the presence of supermassive black holes that power high-speed, radio-signal-emitting jets and the merger history of their host galaxies. Almost all galaxies with the jets were found to be merging with another galaxy, or to have done so recently. Credit: NASA/ESA/STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  15. Hubble Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-05

    Lying at the southern edge of the rich Virgo cluster of galaxies, Messier 104, also called the Sombrero galaxy, is one of the most famous objects in the sky in this image from NASA Hubble Space Telescope.

  16. Hubble Space Telescope and James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced ground breaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  17. 8 ways to build collaborative teams.

    PubMed

    Gratton, Lynda; Erickson, Tamara J

    2007-11-01

    Executing complex initiatives like acquisitions or an IT overhaul requires a breadth of knowledge that can be provided only by teams that are large, diverse, virtual, and composed of highly educated specialists. The irony is, those same characteristics have an alarming tendency to decrease collaboration on a team. What's a company to do? Gratton, a London Business School professor, and Erickson, president of the Concours Institute, studied 55 large teams and identified those with strong collaboration despite their complexity. Examining the team dynamics and environment at firms ranging from Royal Bank of Scotland to Nokia to Marriott, the authors isolated eight success factors: (1) "Signature" relationship practices that build bonds among the staff, in memorable ways that are particularly suited to a company's business. (2) Role models of collaboration among executives, which help cooperation trickle down to the staff. (3) The establishment of a "gift culture," in which managers support employees by mentoring them daily, instead of a transactional "tit-for-tat culture", (4) Training in relationship skills, such as communication and conflict resolution. (5) A sense of community, which corporate HR can foster by sponsoring group activities. (6) Ambidextrous leadership, or leaders who are both task-oriented and relationship-oriented. (7) Good use of heritage relationships, by populating teams with members who know and trust one another. (8) Role clarity and task ambiguity, achieved by defining individual roles sharply but giving teams latitude on approach. As teams have grown from a standard of 20 members to comprise 100 or more, team practices that once worked well no longer apply. The new complexity of teams requires companies to increase their capacity for collaboration, by making long-term investments that build relationships and trust, and smart near-term decisions about how teams are formed and run.

  18. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  19. Bibliography of Ethnic Heritage Studies Program Materials.

    ERIC Educational Resources Information Center

    Kotler, Greta; And Others

    The Ethnic Heritage Studies Program was designed to teach students about the nature of their heritage and to study the contributions of the cultural heritage of other ethnic groups. This is a bibliography of materials developed by projects which received Federal Ethnic Heritage Studies Program grants during fiscal year 1974-75 and 1975-76.…

  20. Version 1 of the Hubble Source Catalog

    NASA Astrophysics Data System (ADS)

    Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.

    2016-06-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.

  1. spiral galaxy M83

    NASA Image and Video Library

    2017-12-08

    JANUARY 9, 2014: The vibrant magentas and blues in this Hubble image of the barred spiral galaxy M83 reveal that the galaxy is ablaze with star formation. The galactic panorama unveils a tapestry of the drama of stellar birth and death. The galaxy, also known as the Southern Pinwheel, lies 15 million light-years away in the constellation Hydra. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgement: W. Blair (STScI/Johns Hopkins University) and R. O'Connell (University of Virginia) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Fieldwork, Heritage and Engaging Landscape Texts

    ERIC Educational Resources Information Center

    Mains, Susan P.

    2014-01-01

    This paper outlines and analyses efforts to critically engage with "heritage" through the development and responses to a series of undergraduate residential fieldwork trips held in the North Coast of Jamaica. The ways in which we read heritage through varied "texts"--specifically, material landscapes, guided heritage tours,…

  3. [Heritage Education: Teaching a Preservation Ethic.

    ERIC Educational Resources Information Center

    Schell, Suzanne B., Ed.

    1988-01-01

    This issue focuses on heritage education, the goal of which is to introduce the historic built environment directly into elementary and secondary school curriculums. Kathlyn Hatch discusses how heritage education's linkage with historic preservation can help students relate to society. Earl Jones assesses the status of heritage education,…

  4. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.

    2003-01-01

    The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.

  5. A BIRD'S EYE VIEW OF A GALAXY COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What appears as a bird's head, leaning over to snatch up a tasty meal, is a striking example of a galaxy collision in NGC 6745. A large spiral galaxy, with its nucleus still intact, peers at the smaller passing galaxy (nearly out of the field of view at lower right), while a bright blue beak and bright whitish-blue top feathers show the distinct path taken during the smaller galaxy's journey. These galaxies did not merely interact gravitationally as they passed one another, they actually collided. When galaxies collide, the stars that normally comprise the major portion of the luminous mass of each of the two galaxies will almost never collide with each other, but will pass rather freely between each other with little damage. This occurs because the physical size of individual stars is tiny compared to their typical separations, making the chance of physical encounter relatively small. In our own Milky Way galaxy, the space between our Sun and our nearest stellar neighbor, Proxima Centauri (part of the Alpha Centauri triple system), is a vast 4.3 light-years. However, the situation is quite different for the interstellar media in the above two galaxies - material consisting largely of clouds of atomic and molecular gases and of tiny particles of matter and dust, strongly coupled to the gas. Wherever the interstellar clouds of the two galaxies collide, they do not freely move past each other without interruption but, rather, suffer a damaging collision. High relative velocities cause ram pressures at the surface of contact between the interacting interstellar clouds. This pressure, in turn, produces material densities sufficiently extreme as to trigger star formation through gravitational collapse. The hot blue stars in this image are evidence of this star formation. This image was created by the Hubble Heritage Team using NASA Hubble Space Telescope archive data taken with the Wide Field Planetary Camera 2 in March 1996. Members of the science team, which include

  6. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  7. HUBBLE SENDS SEASON'S GREETINGS FROM THE COSMOS TO EARTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Looking like a colorful holiday card, this image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth, where nature seems to have put on the traditional colors of the season. These colors, produced by the light emitted by oxygen and hydrogen, help astronomers investigate the star-forming processes in nebulas such as NGC 2080. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud that have attracted special attention. These regions have been studied in detail with Hubble and have long been identified as unique star-forming sites. 30 Doradus is the largest star-forming complex in the whole local group of galaxies. The light from the nebula captured in this image is emitted by two elements, hydrogen and oxygen. The red and the blue light are from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind (a stream of high-speed particles) coming from a massive star just outside the image. The white region in the center is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. The intense emission from these stars has carved a bowl-shaped cavity in the surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) - are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from a single massive star. A2 has a more complex appearance due to the presence of more dust, and it contains several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newly born stars. The research team noted that Hubble

  8. Teaching America's Maritime Heritage

    ERIC Educational Resources Information Center

    Heitzman, Ray

    1977-01-01

    The author recommends that social studies curricula include study of American maritime heritage. He describes aspects of the heritage, such as commercial trade and water sports; suggests topics for mini-units, such as marine careers; and presents an annotated bibliography of 56 resources for teaching about maritime activities. (AV)

  9. Hubble View of Neptune

    NASA Image and Video Library

    1998-08-02

    These NASA Hubble Space Telescope views of the blue-green planet Neptune provide three snapshots of changing weather conditions. The images were taken in 1994 on 3 separate days when Neptune was 2.8 billion miles 4.5 billion kilometers from Earth.

  10. Through the Learners' Eyes: Reconceptualizing the Heritage and Non-Heritage Learner of the Less Commonly Taught Languages

    ERIC Educational Resources Information Center

    Lee, Jin Sook

    2005-01-01

    This study investigates how learners of the less commonly taught languages (LCTLs) (i.e., Arabic, Chinese, Hebrew, Hindi, Hungarian, Japanese, Korean, Polish, Russian, Swahili, Yoruba) perceive their identities as heritage or non-heritage language learners. A survey of 530 college-level language learners reveals that heritage and non-heritage…

  11. Cultural Heritage in Smart City Environments

    NASA Astrophysics Data System (ADS)

    Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E.

    2017-08-01

    This paper investigates how the historical and cultural heritage of cities is and can be underpinned by means of smart city tools, solutions and applications. Smart cities stand for a conceptual technology-and-innovation driven urban development model. By becoming `smart', cities seek to achieve prosperity, effectiveness and competitiveness on multiple socio-economic levels. Although cultural heritage is one of the many issues addressed by existing smart city strategies, and despite the documented bilateral benefits, our research about the positioning of urban cultural heritage within three smart city strategies (Barcelona, Amsterdam, and London) reveals fragmented approaches. Our findings suggest that the objective of cultural heritage promotion is not substantially addressed in the investigated smart city strategies. Nevertheless, we observe that cultural heritage management can be incorporated in several different strategic areas of the smart city, reflecting different lines of thinking and serving an array of goals, depending on the case. We conclude that although potential applications and approaches abound, cultural heritage currently stands for a mostly unexploited asset, presenting multiple integration opportunities within smart city contexts. We prompt for further research into bridging the two disciplines and exploiting a variety of use cases with the purpose of enriching the current knowledge base at the intersection of cultural heritage and smart cities.

  12. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    NASA Technical Reports Server (NTRS)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  13. HUBBLE SPIES A REALLY COOL STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope picture of one of the least massive and coolest stars even seen (upper right). It is a diminutive companion to the K dwarf star called GL 105A (also known as HD 16160) seen at lower left. The binary pair is located 27 light-years away in the constellation Cetus. Based on the Hubble observation, astronomers calculate that the companion, called GL 105C, is 25,000 times fainter than GL 105A in visible light. If the dim companion were at the distance of our Sun, it would be only four times brighter than the full moon. The Hubble observations confirm the detection of GL 105C last year by David Golimowski and his collaborators at Palomar Observatory in California. Although GL 105C was identified before, the Hubble view allows a more precise measurement of the separation between the binary components. Future Hubble observations of the binary orbit will allow the masses of both stars to be determined accurately. The Palomar group estimates that the companion's mass is 8-9 percent of the Sun's mass, which places it near the theoretical lower limit for stable hydrogen burning. Objects below this limit, called brown dwarfs, still 'shine' -- not by thermonuclear energy, but by the energy released through gravitational contraction. Two pictures, taken with Hubble's Wide Field Planetary Camera 2 (in PC mode) through different filters (in visible and near-infrared light) show that GL 105C is redder, hence cooler than GL 105A. The surface temperature of GL 105C is not precisely known, but may be as low as 2,600 degrees Kelvin (4,200 degrees Fahrenheit). This image was taken in near-infrared light, on January 5, 1995. GL 105C is located 3.4 arc seconds to the west-northwest of the larger GL 105A. (One arc second equals 1/3600 of a degree.) The bright spikes are caused by diffraction of light within the telescope's optical system, and the brighter white bar is an artifact of the CCD camera, which bleeds along a CCD column when a relatively bright

  14. HUBBLE SEES A VAST 'CITY' OF STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  15. Heritage planning and rethinking the meaning and values of designating heritage sites in a post-disaster context: The case of Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Meutia, Z. D.; Akbar, R.; Zulkaidi, D.

    2018-05-01

    Heritage has become a driver of development as stated in the New Urban Agenda 2016 report. A starting premise of most recent studies of the concept of heritage suggests that its nature is not as a static inheritance with fixed and enduring values. Rather, the identification of sites as heritage requires a process of identification, or heritage creation. Heritage is a fluid phenomenon rather than a static set of objects or sites with fixed meanings. This paper uses theory from Smith [1] who argued that there is no such thing as a heritage; heritage is essentially a cultural custom and social process. Today, site-based heritage planning only considers the values of old towns and lacks clarity in terms of values that create criteria for the designation of cultural heritage sites in another context. Yet, this approach is needed as a way to maintain urban assets that significantly contribute to the establishment of values and quality parts of the city. Heritage planning is also the act of communicating and remembering the past for the present and the future in the public domain. This paper aims to formulate a conceptual heritage planning of designating heritage sites that challenges the traditional notion of heritage which considers age as a key element in heritage, the privileges monumentality and grand scale, with scientific/aesthetic expert judgment as a requirement of heritage designations. The limited idea of heritage based on exclusive values as something ancient, grand-scale, historical, and with other exclusive values has excluded many places as heritage in communities emerging from disasters. Debates within the critical heritage studies movement argue that heritage is a cultural product linked to activities of remembering and is an act of communication. The dominant hypothesis is that heritage values cannot remain to exist if the physical or material aspects of sites are destroyed and this hypothesis feels flawed. This paper asks us to acknowledge the

  16. Effective Communication with Cultural Heritage Using Virtual Technologies

    NASA Astrophysics Data System (ADS)

    Reffat, R. M.; Nofal, E. M.

    2013-07-01

    Cultural heritage is neither static nor stable. There is a need to explore ways for effectively communicating with cultural heritage to tourists and society at large, in an age of immediacy, a time of multiple realities and to multi-cultural tourists. It is vital to consider cultural heritage as a creative and relational process where places and communities are constantly remade through creative performance. The paper introduces virtual technologies as an approach to attain effective communication with cultural heritage. This approach emphasizes the importance of "user, content and context" in guiding the production of virtual heritage, as opposed to technology being the sole motivator. It addresses how these three issues in virtual heritage need to be transformed from merely representing quantitative data towards cultural information using the proposed effective communication triangle through representing meaningful relationships between cultural heritage elements, users and context. The paper offers a focused articulation of a proposed computational platform of "interactive, personalized and contextual-based navigation" with Egyptian heritage monuments as a one step forward towards achieving effective communication with Egyptian cultural heritage.

  17. Hubble On Its Way

    NASA Image and Video Library

    2009-05-21

    This still image of the Hubble Space Telescope was captured by an STS-125 crew member as the two spacecraft continue their relative separation. During the week five spacewalks were performed to complete the final servicing mission for the orbital observatory. Photo credit: NASA May 19, 2009

  18. Hubble Feathers the Peacock

    NASA Image and Video Library

    2014-09-19

    This picture, taken by the NASA/ESA Hubble Space Telescope WFPC2, shows a galaxy known as NGC 6872 in the constellation of Pavo The Peacock. Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872.

  19. Built Heritage Documentation and Management: AN Integrated Conservation Approach in Bagan

    NASA Astrophysics Data System (ADS)

    Mezzino, D.; Chan, L.; Santana Quintero, M.; Esponda, M.; Lee, S.; Min, A.; Pwint, M.

    2017-08-01

    Good practices in heritage conservation are based on accurate information about conditions, materials, and transformation of built heritage sites. Therefore, heritage site documentation and its analysis are essential parts for their conservation. In addition, the devastating effects of recent catastrophic events in different geographical areas have highly affected cultural heritage places. Such areas include and are not limited to South Europe, South East Asia, and Central America. Within this framework, appropriate acquisition of information can effectively provide tools for the decision-making process and management. Heritage documentation is growing in innovation, providing dynamic opportunities for effectively responding to the alarming rate of destruction by natural events, conflicts, and negligence. In line with these considerations, a multidisciplinary team - including students and faculty members from Carleton University and Yangon Technological University, as well as staff from the Department of Archaeology, National Museum and Library (DoA) and professionals from the CyArk foundation - developed a coordinated strategy to document four temples in the site of Bagan (Myanmar). On-field work included capacity-building activities to train local emerging professionals in the heritage field (graduate and undergraduate students from the Yangon Technological University) and to increase the technical knowledge of the local DoA staff in the digital documentation field. Due to the short time of the on-field activity and the need to record several monuments, a variety of documentation techniques, including image and non-image based ones, were used. Afterwards, the information acquired during the fieldwork was processed to develop a solid base for the conservation and monitoring of the four documented temples. The relevance of developing this kind of documentation in Bagan is related to the vulnerability of the site, often affected by natural seismic events and

  20. Hubble induced mass after inflation in spectator field models

    SciTech Connect

    Fujita, Tomohiro; Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp

    2016-12-01

    Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature andmore » the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.« less

  1. Short term effect of hubble-bubble smoking on voice.

    PubMed

    Hamdan, A-L; Sibai, A; Mahfoud, L; Oubari, D; Ashkar, J; Fuleihan, N

    2011-05-01

    To investigate the short term effect of hubble-bubble smoking on voice. Prospective study. Eighteen non-dysphonic subjects (seven men and 11 women) with a history of hubble-bubble smoking and no history of cigarette smoking underwent acoustic analysis and laryngeal video-stroboscopic examination before and 30 minutes after hubble-bubble smoking. On laryngeal video-stroboscopy, none of the subjects had vocal fold erythema either before or after smoking. Five patients had mild vocal fold oedema both before and after smoking. After smoking, there was a slight increase in the number of subjects with thick mucus between the vocal folds (six, vs four before smoking) and with vocal fold vessel dilation (two, vs one before smoking). Acoustic analysis indicated a drop in habitual pitch, fundamental frequency and voice turbulence index after smoking, and an increase in noise-to-harmonics ratio. Even 30 minutes of hubble-bubble smoking can cause a drop in vocal pitch and an increase in laryngeal secretions and vocal fold vasodilation.

  2. Hubble illuminates the universe

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1992-01-01

    Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.

  3. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. CREDITS: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  4. ASTRO-ENTOMOLOGY? ANT-LIKE SPACE STRUCTURE PREVIEWS DEATH OF OUR SUN

    NASA Technical Reports Server (NTRS)

    2002-01-01

    times denser, are able to follow the twisted field lines on their way out into space. These dense winds can be rendered visible by ultraviolet light from the hot central star or from highly supersonic collisions with the ambient gas that excites the material into florescence. No other planetary nebula observed by Hubble resembles Mz 3 very closely. M2-9 comes close, but the outflow speeds in Mz 3 are up to 10 times larger than those of M2-9. (See http://oposite.stsci.edu/pubinfo/PR/97/38/content/9738aw.jpg). Interestingly, the very massive, young star, Eta Carinae, shows a very similar outflow pattern (see http://oposite.stsci.edu/pubinfo/PR/96/23.html). Astronomers Bruce Balick (University of Washington) and Vincent Icke (Leiden University) used Hubble to observe this planetary nebula, Mz 3, in July 1997 with the Wide Field Planetary 2 camera. One year later, astronomers Raghvendra Sahai and John Trauger of the Jet Propulsion Lab in California snapped pictures of Mz 3 using slightly different filters. This intriguing image, which is a composite of several filters from each of the two datasets, was created by the Hubble Heritage Team. Image credit: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Sahai (Jet Propulsion Lab), B. Balick (University of Washington)

  5. Hubble Sees Galaxies Spiraling around Leo

    NASA Image and Video Library

    2014-04-18

    Shown here is a spiral galaxy known as NGC 3455, which lies some 65 million light-years away from us in the constellation of Leo (the Lion). Galaxies are classified into different types according to their structure and appearance. This classification system is known as the Hubble Sequence, named after its creator Edwin Hubble. In this image released 14, April, 2014, NGC 3455 is known as a type SB galaxy — a barred spiral. Barred spiral galaxies account for approximately two thirds of all spirals. Galaxies of this type appear to have a bar of stars slicing through the bulge of stars at their center. The SB classification is further sub-divided by the appearance of a galaxy's pinwheeling spiral arms; SBa types have more tightly wound arms, whereas SBc types have looser ones. SBb types, such as NGC 3455, lie in between. NGC 3455 is part of a pair of galaxies — its partner, NGC 3454, lies out of frame. This cosmic duo belong to a group known as the NGC 3370 group, which is in turn one of the Leo II groups, a large collection of galaxies scattered some 30 million light-years to the right of the Virgo cluster. This image is from Hubble's Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World Heritage...

  7. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World Heritage...

  8. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World Heritage...

  9. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World Heritage...

  10. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  11. 36 CFR 73.7 - World Heritage nomination process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... on the World Heritage List; (ii) The balance between cultural and natural properties already on the... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false World Heritage nomination... INTERIOR WORLD HERITAGE CONVENTION § 73.7 World Heritage nomination process. (a) What is the U.S. World...

  12. 36 CFR 73.7 - World Heritage nomination process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... on the World Heritage List; (ii) The balance between cultural and natural properties already on the... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false World Heritage nomination... INTERIOR WORLD HERITAGE CONVENTION § 73.7 World Heritage nomination process. (a) What is the U.S. World...

  13. 36 CFR 73.7 - World Heritage nomination process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on the World Heritage List; (ii) The balance between cultural and natural properties already on the... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false World Heritage nomination... INTERIOR WORLD HERITAGE CONVENTION § 73.7 World Heritage nomination process. (a) What is the U.S. World...

  14. 36 CFR 73.7 - World Heritage nomination process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on the World Heritage List; (ii) The balance between cultural and natural properties already on the... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false World Heritage nomination... INTERIOR WORLD HERITAGE CONVENTION § 73.7 World Heritage nomination process. (a) What is the U.S. World...

  15. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  16. A GLOWING POOL OF LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NGC 3132 is a striking example of a planetary nebula. This expanding cloud of gas, surrounding a dying star, is known to amateur astronomers in the southern hemisphere as the 'Eight-Burst' or the 'Southern Ring' Nebula. The name 'planetary nebula' refers only to the round shape that many of these objects show when examined through a small visual telescope. In reality, these nebulae have little or nothing to do with planets, but are instead huge shells of gas ejected by stars as they near the ends of their lifetimes. NGC 3132 is nearly half a light year in diameter, and at a distance of about 2000 light years is one of the nearer known planetary nebulae. The gases are expanding away from the central star at a speed of 9 miles per second. This image, captured by NASA's Hubble Space Telescope, clearly shows two stars near the center of the nebula, a bright white one, and an adjacent, fainter companion to its upper right. (A third, unrelated star lies near the edge of the nebula.) The faint partner is actually the star that has ejected the nebula. This star is now smaller than our own Sun, but extremely hot. The flood of ultraviolet radiation from its surface makes the surrounding gases glow through fluorescence. The brighter star is in an earlier stage of stellar evolution, but in the future it will probably eject its own planetary nebula. In the Heritage Team's rendition of the Hubble image, the colors were chosen to represent the temperature of the gases. Blue represents the hottest gas, which is confined to the inner region of the nebula. Red represents the coolest gas, at the outer edge. The Hubble image also reveals a host of filaments, including one long one that resembles a waistband, made out of dust particles which have condensed out of the expanding gases. The dust particles are rich in elements such as carbon. Eons from now, these particles may be incorporated into new stars and planets when they form from interstellar gas and dust. Our own Sun may eject a

  17. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  18. Dismantling Hubble's Legacy?

    NASA Technical Reports Server (NTRS)

    Way, Michael Joseph

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  19. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  20. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  1. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss the top 10 astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  2. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  3. 36 CFR 73.7 - World Heritage nomination process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false World Heritage nomination process. 73.7 Section 73.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR WORLD HERITAGE CONVENTION § 73.7 World Heritage nomination process. (a) What is the U.S. World Heritage nomination process? (1) The...

  4. Hubble Frontier Field Abell 2744

    NASA Image and Video Library

    2014-01-07

    This long-exposure image from NASA Hubble Space Telescope of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. Shown in the foreground is Abell 2744, located in the constellation Sculptor.

  5. Discussion and Reflection on Several Core Issues in the Grand Canal Heritage Conservation Planning Under the Background of Application for World Heritage

    NASA Astrophysics Data System (ADS)

    Yao, D.; Dai, D. S.; Tang, Y. Z.; Zhu, G. Y.; Chen, X.

    2015-08-01

    At the turn of the century, a series of new heritage concepts have appeared in the area of international cultural heritage protection, such as cultural landscape, cultural route, heritage corridor, heritage canal, which presents the development of people's recognition of cultural heritage. According to The Operational Guidelines for the Implementation of the World Heritage Convention, management planning must be contained in the material used to apply for world heritage. The State Administration of Cultural Heritage designed the mission and work schedule of China's Grand Canal conservation planning in 2008. This research will introduce the working system of China's Grand Canal conservation planning on three levels: city, province and nation. It will also summarize the characteristics of the core technologies in China's Grand Canal conservation planning, including key issues like the identification of the core characteristic of China's Grand Canal, value assessment and determination of the protection scope. Through reviewing, thinking and analyzing the previous accomplishments, the research will offer some advices for the similar world heritage conservation planning after.

  6. A new Heritage Impact Assessment matrix for sustainability and resilience to hazards- from water heritage point of view

    NASA Astrophysics Data System (ADS)

    Chen, Otto; Han, Dawei

    2017-04-01

    Understanding the significance of an historic asset and the possible impact of the proposed scheme on this significance is the key to good heritage conservation practice. In order to comply with the principle and advice set out in many statutory documents, from international charters to local regulations, the proposers are required to provide a description of the significance of the heritage. This needs to be presented in the form of a Heritage Impact Assessment (HIA). HIA is to protect the value of the heritage affected, by mitigating and minimizing the impact. The ignorance and inadequacy of HIA may lead to the development plan being made unapproved. Therefore, when dealing with changes on historic built environment, engineers and stakeholders without the participation of heritage profession are increasingly facing the relevant issues of HIA in recent decades, and are getting more aware of its importance and inevitable trend in the field, especially in the heritage-centred European environment. Although HIA has been globally recognized and applied as a well-developed tool, its merely focus on the 'value' aspect is rather limited. The lack of consideration on natural environment reflects the issue of sustainable environment development, hence merits further discussion. This study reviews HIA from the theory of international heritage conservation, to the statutory practice of the UK, then proposes a new matrix framework from the water heritage point of view, by integrating two aspects - sustainability and resilience to natural hazards (e.g., shocks and stressors) into the conventional framework, for the purpose of contributing to the dual protection of natural and historic environment.

  7. Hubble Sees a Galactic Sunflower

    NASA Image and Video Library

    2017-12-08

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in an image from the NASA/ESA Hubble Space Telescope, recall the pattern at the center of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars and clusters, readily seen in this Hubble image. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Hubble Catches Stellar Exodus in Action

    NASA Image and Video Library

    2015-05-14

    Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs. White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as "mass segregation." Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action. Astronomers used Hubble to watch the white-dwarf exodus in the globular star cluster 47 Tucanae, a dense swarm of hundreds of thousands of stars in our Milky Way galaxy. The cluster resides 16,700 light-years away in the southern constellation Tucana. Read more: www.nasa.gov/feature/goddard/hubble-catches-stellar-exodu... Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada); acknowledgement: J. Mack (STScI) and G. Piotto (University of Padova, Italy) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Hubble Portrait of the Double

    NASA Image and Video Library

    1998-03-28

    This is the clearest view yet of the distant planet Pluto and its moon, Charon, as revealed by NASA Hubble Space Telescope. The image was taken by the European Space Agency Faint Object Camera on February 21, 1994.

  10. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  11. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  12. [Finnish disease heritage].

    PubMed

    Kestilä, Marjo; Ikonen, Elina; Lehesjoki, Anna-Elina

    2010-01-01

    The Finnish disease heritage refers to rare hereditary diseases that occur in the Finnish population in a relatively larger proportion than in other populations. The genes underlying all of the 36 diseases of the disease heritage have been identified. Together with her group and collaborators, Leena Palotie identified 15 of these, and this review includes the description of some of these achievements. As a result of the so-called founder effect, one predominant mutation underlying these diseases occurs in our population, facilitating the diagnostics of these diseases in our country.

  13. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  14. Hubble the Rotation of Uranus

    NASA Image and Video Library

    1998-08-02

    These three NASA Hubble Space Telescope images of the planet Uranus reveal the motion of a pair of bright clouds in the planet southern hemisphere, and a high altitude haze that forms a cap above the planet south pole.

  15. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  16. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2008-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2013, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  17. HUBBLE OPENS ITS EYE ON THE UNIVERSE AND CAPTURES A COSMIC MAGNIFYING GLASS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    multicolor image of the cluster will allow astronomers to probe in greater detail the internal structure of these early galaxies. The color picture already reveals several arc-shaped features that are embedded in the cluster and cannot be easily seen in the black-and-white image. The colors in this picture yield clues to the ages, distances, and temperatures of stars, the stuff of galaxies. Blue pinpoints hot young stars. The yellow-white color of several of the galaxies represents the combined light of many stars. Red identifies cool stars, old stars, and the glow of stars in distant galaxies. This view is only possible by combining Hubble's unique image quality with the rare lensing effect provided by the magnifying cluster. The picture was taken Jan. 11 to 13, 2000, with the Wide Field and Planetary Camera 2. Credits: NASA, Andrew Fruchter (STScI), and the ERO team (STScI, ST-ECF)

  18. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    International Astronomer Team Witnesses Very Ancient Stellar Explosion A few months ago, a violent stellar explosion -- a supernova -- was discovered in an extremely distant galaxy by an international team of astronomers [1]. This is the very promising first result of a recently initiated, dedicated search for such objects. Subsequent spectral observations have shown this to be the most distant supernova ever observed. Although it is very faint, it has been possible to classify it as a supernova of Type Ia, a kind that is particularly well suited for cosmological distance determinations. A Very Efficient Supernova Search Programme The present discovery was made during the team's first observations with the 4-metre telescope at the Cerro Tololo Inter-American Observatory in Chile. This telescope is equipped with a wide-field camera at its prime focus that enables the simultaneous recording of the images of even very faint objects in a 15-arcminute field. Hundreds of distant galaxies are located in a field of this size and this observational method is therefore very well suited for a search of faint and transient supernovae in such galaxies. With a carefully planned observing sequence, it is possible to image up to 55 sky fields per night. A comparison with earlier exposures makes it possible to detect suddenly appearing supernovae as faint points of light near the galaxy in which the exploding star is located (the parent galaxy). A crucial feature of the new programme is the possibility to perform follow-up spectroscopic observations, whenever a new supernova is discovered. For this, the team has obtained access to several other large telescopes, including the ESO 3.5-metre New Technology Telescope (NTT), the 3.9-metre Anglo-Australian Telescope (AAT) and the Multi-Mirror Telescope (MMT) in Arizona, U.S.A.. The Spectrum of the Supernova The present supernova was first detected at Tololo on March 30, 1995. It was given the official designation SN 1995K, and its

  19. Replacement vs. Renovation: The Reincarnation of Hubble Middle School

    ERIC Educational Resources Information Center

    Ogurek, Douglas J.

    2010-01-01

    At the original Hubble Middle School, neither the views (a congested Roosevelt Road and glimpses of downtown Wheaton) nor the century-old facility that offered them was very inspiring. Built at the start of the 20th century, the 250,000-square-foot building was converted from Wheaton Central High School to Hubble Middle School in the early 1980s.…

  20. Black History: African Heritage, American Heritage.

    ERIC Educational Resources Information Center

    Duea, Joan; And Others

    Providing elementary school teachers with materials to enhance student awareness of black heritage is the goal of this unit. Each of the 10 lessons includes objectives, materials, and procedures as well as supplementary materials that may be duplicated for student use. The land and people of Africa are studied in lessons one through three. Games,…

  1. Hubble Observes a New Saturn Storm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the ringed planet Saturn shows a rare storm that appears as a white arrowhead-shaped feature near the planet's equator. The storm is generated by an upwelling of warmer air, similar to a terrestrial thunderhead. The east-west extent of this storm is equal to the diameter of the Earth (about 7,900 miles). Hubble provides new details about the effects of Saturn's prevailing winds on the storm. The new image shows that the storm's motion and size have changed little since its discovery in September, 1994.

    The storm was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2) in the wide field mode on December 1, 1994, when Saturn was 904 million miles from the Earth. The picture is a composite of images taken through different color filters within a 6 minute interval to create a 'true-color' rendition of the planet. The blue fringe on the right limb of the planet is an artifact of image processing used to compensate for the rotation of the planet between exposures.

    The Hubble images are sharp enough to reveal that Saturn's prevailing winds shape a dark 'wedge' that eats into the western (left) side of the bright central cloud. The planet's strongest eastward winds (clocked at 1,000 miles per hour from analysis of Voyager spacecraft images taken in 1980-81) are at the latitude of the wedge.

    To the north of this arrowhead-shaped feature, the winds decrease so that the storm center is moving eastward relative to the local flow. The clouds expanding north of the storm are swept westward by the winds at higher latitudes. The strong winds near the latitude of the dark wedge blow over the northern part of the storm, creating a secondary disturbance that generates the faint white clouds to the east (right) of the storm center.

    The storm's white clouds are ammonia ice crystals that form when an upward flow of warmer gases shoves its way through Saturn's frigid cloud tops. This current storm is larger than the white clouds

  2. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 201 3, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  3. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  4. Hubble's new view of the cosmos

    PubMed

    Villard, R

    1996-05-01

    Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?

  5. A Contribution to the Built Heritage Environmental Impact Assessment

    NASA Astrophysics Data System (ADS)

    Žarnić, R.; Rajčić, V.; Skordaki, N.

    2015-08-01

    The understanding and assessment of environmental impact on heritage assets is of the highest importance for heritage preservation through well-organized maintenance based on proper decision-making. The effort towards development of protocol that would enable comparison of data on heritage assets in Europe and Mediterranean countries was done through EU Project European Cultural Heritage Identity Card. The special attention was paid to classification of environmental and man-induced risks to heritage. In the present paper the idea of EU CHIC is presented. Environmental risks are discussed in context of their influence on structure of heritage buildings that are exposed to sudden environmental impacts.

  6. Astronomers celebrate a year of new Hubble results

    NASA Astrophysics Data System (ADS)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  7. Hubble Spies Spooky Shadow on Jupiter's Giant Eye

    NASA Image and Video Library

    2014-10-28

    This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Connecting World Heritage Nominations and Monitoring with the Support of the Silk Roads Cultural Heritage Resource Information System

    NASA Astrophysics Data System (ADS)

    Vileikis, O.; Dumont, B.; Serruys, E.; Van Balen, K.; Tigny, V.; De Maeyer, P.

    2013-07-01

    Serial transnational World Heritage nominations are challenging the way cultural heritage has been managed and evaluated in the past. Serial transnational World Heritage nominations are unique in that they consist of multiple sites listed as one property, distributed in different countries, involving a large diversity of stakeholders in the process. As a result, there is a need for precise baseline information for monitoring, reporting and decision making. This type of nomination requires different methodologies and tools to improve the monitoring cycle from the beginning of the nomination towards the periodic reporting. The case study of the Silk Roads Cultural Heritage Resource Information System (CHRIS) illustrates the use of a Geographical Content Management System (Geo-CMS) supporting the serial transnational World Heritage nomination and the monitoring of the Silk Roads in the five Central Asian countries. The Silk Roads CHRIS is an initiative supported by UNESCO World Heritage Centre (WHC) and the Belgian Federal Science Policy Office (BELSPO), and developed by a consortium headed by the Raymond Lemaire International Centre for Conservation (RLICC) at the KULeuven. The Silk Roads CHRIS has been successfully assisting in the preparation of the nomination dossiers of the Republics of Kazakhstan, Tajikistan and Uzbekistan and will be used as a tool for monitoring tool in the Central Asian countries.

  9. Hubble's View of Comet Siding Spring

    NASA Image and Video Library

    2017-12-08

    MARCH 27, 2014: Comet Siding Spring is plunging toward the Sun along a roughly 1-million-year orbit. The comet, discovered in 2013, was within the radius of Jupiter's orbit when the Hubble Space Telescope photographed it on March 11, 2014. Hubble resolves two jets of dust coming from the solid icy nucleus. These persistent jets were first seen in Hubble pictures taken on Oct. 29, 2013. The feature should allow astronomers to measure the direction of the nucleus's pole, and hence, rotation axis. The comet will make its closest approach to our Sun on Oct. 25, 2014, at a distance of 130 million miles, well outside Earth's orbit. On its inbound leg, Comet Siding Spring will pass within 84,000 miles of Mars on Oct. 19, 2014, which is less than half the Moon's distance from Earth. The comet is not expected to become bright enough to be seen by the naked eye. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Hubble Images of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a series of Hubble Space Telescope observations of the region around the nucleus of Hale-Bopp, taken on eight different dates since September 1995. They chronicle changes in the evolution of the nucleus as it moves ever closer to, and is warmed by, the sun.

    The first picture in the sequence, seen at upper left shows a strong dust outburst on the comet that occurred when it was beyond the orbit of Jupiter. Images in the Fall of 1996 show multiple jets that are presumably connected to the activation of multiple vents on the surface of the nucleus.

    In these false color images, taken with the Wide Field and Planetary Camera 2, the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red. All images are processed at the same spatial scale of 280 miles per pixel (470 kilometers), so the solid nucleus, no larger than 25 miles across, is far below Hubble's resolution.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  11. 78 FR 57459 - National Hispanic Heritage Month, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Hispanic Heritage Month, 2013 Proclamation 9017--National Farm Safety and Health Week, 2013 Proclamation... Hispanic Heritage Month, 2013 By the President of the United States of America A Proclamation From the... breakthroughs. This month, America acknowledges these vital contributions and celebrates our Hispanic heritage...

  12. 76 FR 58373 - National Hispanic Heritage Month, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Hispanic Heritage Month, 2011 Proclamation 8713--National POW/MIA Recognition Day, 2011 #0; #0; #0..., 2011 National Hispanic Heritage Month, 2011 By the President of the United States of America A... country because of the contributions of Hispanics, and during National Hispanic Heritage Month, we...

  13. Hubble (HST) hardware is inspected in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103, is given a black light inspection. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a 'call-up' due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  14. Hubble confirms cosmic acceleration with weak lensing

    NASA Image and Video Library

    2017-12-08

    NASA/ESA Hubble Release Date: March 25, 2010 This image shows a smoothed reconstruction of the total (mostly dark) matter distribution in the COSMOS field, created from data taken by the NASA/ESA Hubble Space Telescope and ground-based telescopes. It was inferred from the weak gravitational lensing distortions that are imprinted onto the shapes of background galaxies. The colour coding indicates the distance of the foreground mass concentrations as gathered from the weak lensing effect. Structures shown in white, cyan, and green are typically closer to us than those indicated in orange and red. To improve the resolution of the map, data from galaxies both with and without redshift information were used. The new study presents the most comprehensive analysis of data from the COSMOS survey. The researchers have, for the first time ever, used Hubble and the natural "weak lenses" in space to characterise the accelerated expansion of the Universe. Credit: NASA, ESA, P. Simon (University of Bonn) and T. Schrabback (Leiden Observatory) To learn more abou this image go to: www.spacetelescope.org/news/html/heic1005.html For more information about Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

  15. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  16. Durand Neighbourhood Heritage Inventory: Toward a Digital Citywide Survey Approach to Heritage Planning in Hamilton

    NASA Astrophysics Data System (ADS)

    Angel, V.; Garvey, A.; Sydor, M.

    2017-08-01

    In the face of changing economies and patterns of development, the definition of heritage is diversifying, and the role of inventories in local heritage planning is coming to the fore. The Durand neighbourhood is a layered and complex area located in inner-city Hamilton, Ontario, Canada, and the second subject area in a set of pilot inventory studies to develop a new city-wide inventory strategy for the City of Hamilton,. This paper presents an innovative digital workflow developed to undertake the Durand Built Heritage Inventory project. An online database was developed to be at the centre of all processes, including digital documentation, record management, analysis and variable outputs. Digital tools were employed for survey work in the field and analytical work in the office, resulting in a GIS-based dataset that can be integrated into Hamilton's larger municipal planning system. Together with digital mapping and digitized historical resources, the Durand database has been leveraged to produce both digital and static outputs to shape recommendations for the protection of Hamilton's heritage resources.

  17. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.

    2017-04-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.

  18. The Carnegie Hubble Program

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  19. HUBBLE'S NEW IMPROVED OPTICS PROBE THE CORE OF A DISTANT GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This comparison image of the core of the galaxy M100 shows the dramatic improvement in Hubble Space Telescope's view of the universe. The new image was taken with the second generation Wide Field and Planetary Camera (WFPC-2) which was installed during the STS-61 Hubble Servicing Mission. The picture beautifully demonstrates that the corrective optics incorporated within the WFPC-2 compensate fully for optical aberration in Hubble's primary mirror. The new camera will allow Hubble to probe the universe with unprecedented clarity and sensitivity, and to fulfill many of the most important scientific objectives for which the telescope was originally built. [ Right ] The core of the grand design spiral galaxy M100, as imaged by Hubble Space Telescope's Wide Field Planetary Camera 2 in its high resolution channel. The WFPC-2 contains modified optics that correct for Hubble's previously blurry vision, allowing the telescope for the first time to cleanly resolve faint structure as small as 30 light-years across in a galaxy which is tens of millions of light years away. The image was taken on December 31, 1993. [Left ] For comparison, a picture taken with the WFPC-1 camera in wide field mode, on November 27, 1993, just a few days prior to the STS-61 servicing mission. The effects of optical aberration in HST's 2.4-meter primary mirror blur starlight, smear out fine detail, and limit the telescope's ability to see faint structure. Both Hubble images are 'raw;' they have not been subject to computer image reconstruction techniques commonly used in aberrated images made before the servicing mission. TARGET INFORMATION: M100 The galaxy M100 (100th object in the Messier Catalog of non-stellar objects) is one of the brightest members of the Virgo Cluster of galaxies. The galaxy is in the spring constellation Coma Berenices and can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-02-08

    This photo, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys, is Hubble's latest view of an expanding halo of light around the distant star V838 Monocerotis, or V Mon, caused by an unusual stellar outburst that occurred back in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". Located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn), the star brightened to more than 600,000 times our Sun's luminosity. The light echo gives the illusion of contracting, until it finally disappears by the end of the decade.

  1. The Hubble flow of plateau inflation

    SciTech Connect

    Coone, Dries; Roest, Diederik; Vennin, Vincent, E-mail: a.a.coone@rug.nl, E-mail: d.roest@rug.nl, E-mail: vincent.vennin@port.ac.uk

    2015-11-01

    In the absence of CMB precision measurements, a Taylor expansion has often been invoked to parametrize the Hubble flow function during inflation. The standard ''horizon flow'' procedure implicitly relies on this assumption. However, the recent Planck results indicate a strong preference for plateau inflation, which suggests the use of Padé approximants instead. We propose a novel method that provides analytic solutions of the flow equations for a given parametrization of the Hubble function. This method is illustrated in the Taylor and Padé cases, for low order expansions. We then present the results of a full numerical treatment scanning larger ordermore » expansions, and compare these parametrizations in terms of convergence, prior dependence, predictivity and compatibility with the data. Finally, we highlight the implications for potential reconstruction methods.« less

  2. 75 FR 25099 - Jewish American Heritage Month, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... 8513 of April 30, 2010 Jewish American Heritage Month, 2010 By the President of the United States of... also maintained their own unique identity. During Jewish American Heritage Month we celebrate this... Jewish American Heritage Month. I call upon all Americans to observe this month with appropriate programs...

  3. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colorado discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  4. Interpretation of the Hubble diagram in a nonhomogeneous universe

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre; Dupuy, Hélène; Uzan, Jean-Philippe

    2013-06-01

    In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the light from “point sources”—such as supernovae—probes the Universe on scales where the homogeneity principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological parameters. Though significant in general, the effects reduce drastically for a universe dominated by the cosmological constant.

  5. Hubble's Glittering Frisbee Galaxy

    NASA Image and Video Library

    2017-12-08

    This image from Hubble’s Wide Field Camera 3 (WFC3) shows a section of NGC 1448, a spiral galaxy located about 50 million light-years from Earth in the little-known constellation of Horologium (The Pendulum Clock). We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What’s going on? Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure — a great example from Hubble is the telescope’s view of Messier 51, otherwise known as the Whirlpool Galaxy. However, the NGC 1448 frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from NGC 1448’s dense core, can just about be seen. Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy’s core, with those on the inside making the orbit faster than those sitting further out. This makes the formation and continued existence of a spiral galaxy’s arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on — but this is not what we see. This is known as the winding problem. Credit: ESA/Hubble & NASA #nasagoddard #space #science #Hubble #star NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Hubble Finds Misbehaving Spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192, even though it is a spiral galaxy, to have intense radio jets spewing out from its center. The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos. Image credit: ESA/Hubble & NASA; acknowledgement, Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. 76 FR 11929 - Irish-American Heritage Month, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...-American Heritage Month, 2011 By the President of the United States of America A Proclamation Our diverse... future. During Irish-American Heritage Month, we honor the contributions Irish Americans have made, and...-American Heritage Month and St. Patrick's Day, our Nation pays tribute to the proud lineage passed down to...

  8. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  9. Learning Vietnamese as a Heritage Language in Taiwan

    ERIC Educational Resources Information Center

    Yeh, Yu-Ching; Ho, Hsiang-Ju; Chen, Ming-Chung

    2015-01-01

    In 2011, the Taiwanese Government began a campaign to encourage new immigrants to teach their native languages (heritage languages) to their children. However, these heritage languages are seldom used in cross-national families and the effectiveness of formal heritage language courses in Taiwan has yet to be explored. The present study examines…

  10. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false International World Heritage activities. 73.15 Section 73.15 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as...

  11. 77 FR 13183 - Irish-American Heritage Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ...-American Heritage Month, 2012 By the President of the United States of America A Proclamation For centuries... Heritage Month, we recall their legacy of hard work and perseverance, and we carry forward that singular... laws of the United States, do hereby proclaim March 2012 as Irish- American Heritage Month. I call upon...

  12. 78 FR 26215 - Jewish American Heritage Month, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... American Heritage Month, 2013 By the President of the United States of America A Proclamation In his second... American shores. We take this month to celebrate the progress that followed, and the bright future that... May 2013 as Jewish American Heritage Month. I call upon all Americans to visit www.JewishHeritageMonth...

  13. Hubble Captures Detailed Image of Uranus' Atmosphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.

    Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.

    The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.

    Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.

    This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  14. Building Information Modelling for Cultural Heritage: A review

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Delinasiou, A.; Stylianidis, E.

    2015-08-01

    We discuss the evolution and state-of-the-art of the use of Building Information Modelling (BIM) in the field of culture heritage documentation. BIM is a hot theme involving different characteristics including principles, technology, even privacy rights for the cultural heritage objects. Modern documentation needs identified the potential of BIM in the recent years. Many architects, archaeologists, conservationists, engineers regard BIM as a disruptive force, changing the way professionals can document and manage a cultural heritage structure. The latest years, there are many developments in the BIM field while the developed technology and methods challenged the cultural heritage community in the documentation framework. In this review article, following a brief historic background for the BIM, we review the recent developments focusing in the cultural heritage documentation perspective.

  15. Chandra and Hubble Composite Image of Spiral Galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  16. Hubble's Blue Bubble

    NASA Image and Video Library

    2017-12-08

    A large blue bubble with a bright star in the center on a black background filled with stars Sparkling at the center of this beautiful NASA/ESA Hubble Space Telescope image is a Wolf–Rayet star known as WR 31a, located about 30,000 light-years away in the constellation of Carina (The Keel). The distinctive blue bubble appearing to encircle WR 31a is a Wolf–Rayet nebula — an interstellar cloud of dust, hydrogen, helium and other gases. Created when speedy stellar winds interact with the outer layers of hydrogen ejected by Wolf–Rayet stars, these nebulae are frequently ring-shaped or spherical. The bubble — estimated to have formed around 20,000 years ago — is expanding at a rate of around 220,000 kilometers (136,700 miles) per hour! Unfortunately, the lifecycle of a Wolf–Rayet star is only a few hundred thousand years — the blink of an eye in cosmic terms. Despite beginning life with a mass at least 20 times that of the sun, Wolf–Rayet stars typically lose half their mass in less than 100,000 years. And WR 31a is no exception to this case. It will, therefore, eventually end its life as a spectacular supernova, and the stellar material expelled from its explosion will later nourish a new generation of stars and planets. Image credi: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  17. A Hubble Sky Full of Stars

    NASA Image and Video Library

    2017-12-08

    So Coldplay isn't the only one to see a sky full of stars, these are 22K light-years away Located approximately 22,000 light-years away in the constellation of Musca (The Fly), this tightly packed collection of stars — known as a globular cluster — goes by the name of NGC 4833. This NASA/ESA Hubble Space Telescope image shows the dazzling stellar group in all its glory. NGC 4833 is one of the over 150 globular clusters known to reside within the Milky Way. These objects are thought to contain some of the oldest stars in our galaxy. Studying these ancient cosmic clusters can help astronomers to unravel how a galaxy formed and evolved, and give an idea of the galaxy’s age. Globular clusters are responsible for some of the most striking sights in the cosmos, with hundreds of thousands of stars congregating in the same region of space. Hubble has observed many of these clusters during its time in orbit around our planet, each as breathtaking as the last. bit.ly/2b85p36 Image credit: ESA/Hubble and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Hubble Catches Stellar Exodus in Action

    NASA Image and Video Library

    2015-05-14

    Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs. White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as "mass segregation." Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action. Astronomers used Hubble to watch the white-dwarf exodus in the globular star cluster 47 Tucanae, a dense swarm of hundreds of thousands of stars in our Milky Way galaxy. The cluster resides 16,700 light-years away in the southern constellation Tucana. Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada); acknowledgement: J. Mack (STScI) and G. Piotto (University of Padova, Italy)

  19. Interpretation of clothing heritage for contemporary tourism

    NASA Astrophysics Data System (ADS)

    Vilman Proje, J.; Bizjak, M.

    2017-10-01

    In tourism is the first impression of essential meaning as tourists falling by what they see. In designing the clothing image, for commercial use in tourist sector, should be considered that clothes are consistent with the clothing habits of the region and that comply with the heritage story and style of the geographical area. Clothing image of the tourism representatives of the Bohinj region (Slovenia) has been developed. When designing, the inspiration was sought in historical and contemporary clothing image and heritage stories, in elements that representatives of the community recognize as their own cultural heritage. Affiliated clothes for tourism employees should have a useful function of comfortable workwear with heritage expression, meaning clothes are to be accepted as “everyday” clothes and not as a costume.

  20. Creation of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2009-08-01

    The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.

  1. Hubble Sees Recurring Plume Erupting From Europa

    NASA Image and Video Library

    2017-04-13

    These composite images show a suspected plume of material erupting two years apart from the same location on Jupiter's icy moon Europa. The images bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite. Both plumes, photographed in ultraviolet light by NASA's Hubble's Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. The newly imaged plume, shown at right, rises about 62 miles (100 kilometers) above Europa's frozen surface. The image was taken Feb. 22, 2016. The plume in the image at left, observed by Hubble on March 17, 2014, originates from the same location. It is estimated to be about 30 miles (50 kilometers) high. The snapshot of Europa, superimposed on the Hubble image, was assembled from data from NASA's Galileo mission to Jupiter. The plumes correspond to the location of an unusually warm spot on the moon's icy crust, seen in the late 1990s by the Galileo spacecraft (see PIA21444). Researchers speculate that this might be circumstantial evidence for water venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. https://photojournal.jpl.nasa.gov/catalog/PIA21443

  2. 36 CFR 73.11 - Federal Interagency Panel for World Heritage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... World Heritage. 73.11 Section 73.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR WORLD HERITAGE CONVENTION § 73.11 Federal Interagency Panel for World Heritage. (a) Responsibilities. The Federal Interagency Panel for World Heritage is established to advise the Department of the...

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  4. Hubble Captures View of Mystic Mountain

    NASA Image and Video Library

    2010-04-22

    NASA Hubble Space Telescope captures the chaotic activity atop a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby bright stars in a tempestuous stellar nursery called the Carina Nebula.

  5. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  6. Hubble Sees Spiral in Serpens

    NASA Image and Video Library

    2017-12-08

    This new NASA/ESA Hubble Space Telescope image shows a beautiful spiral galaxy known as PGC 54493, located in the constellation of Serpens (The Serpent). This galaxy is part of a galaxy cluster that has been studied by astronomers exploring an intriguing phenomenon known as weak gravitational lensing. This effect, caused by the uneven distribution of matter (including dark matter) throughout the Universe, has been explored via surveys such as the Hubble Medium Deep Survey. Dark matter is one of the great mysteries in cosmology. It behaves very differently from ordinary matter as it does not emit or absorb light or other forms of electromagnetic energy — hence the term "dark." Even though we cannot observe dark matter directly, we know it exists. One prominent piece of evidence for the existence of this mysterious matter is known as the "galaxy rotation problem." Galaxies rotate at such speeds and in such a way that ordinary matter alone — the stuff we see — would not be able to hold them together. The amount of mass that is "missing" visibly is dark matter, which is thought to make up some 27 percent of the total contents of the Universe, with dark energy and normal matter making up the rest. PGC 55493 has been studied in connection with an effect known as cosmic shearing. This is a weak gravitational lensing effect that creates tiny distortions in images of distant galaxies. European Space Agency ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Hubble Eyes Galactic Refurbishment

    NASA Image and Video Library

    2015-04-30

    The smudge of stars at the center of this NASA/ESA Hubble Space Telescope image is a galaxy known as UGC 5797. UGC 5797 is an emission line galaxy, meaning that it is currently undergoing active star formation. The result is a stellar population that is constantly being refurbished as massive bright blue stars form. Galaxies with prolific star formation are not only veiled in a blue tint, but are key to the continuation of a stellar cycle. In this image UGC 5797 appears in front of a background of spiral galaxies. Spiral galaxies have copious amounts of dust and gas — the main ingredient for stars — and therefore often also belong to the class of emission line galaxies. Spiral galaxies have disk-like shapes that drastically vary in appearance depending on the angle at which they are observed. The collection of spiral galaxies in this frame exhibits this attribute acutely: Some are viewed face-on, revealing the structure of the spiral arms, while the two in the bottom left are seen edge-on, appearing as plain streaks in the sky. There are many spiral galaxies, with varying colors and at different angles, sprinkled across this image — just take a look. Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola

  9. Hubble Views Two Galaxies Merging

    NASA Image and Video Library

    2017-12-08

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules. It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure. As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  10. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    NASA Astrophysics Data System (ADS)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  11. ACHP |Partnering to Promote Heritage Tourism in Local Communities: Guidance

    Science.gov Websites

    Publications Search skip specific nav links Home arrow Heritage Tourism arrow Partnering to Promote Heritage Tourism in Local Communities: Guidance for Federal Agencies Partnering to Promote Heritage Tourism in historic places. Such tourism - heritage tourism -can result in a variety of tangible and intangible

  12. Hubble Spies Spooky Shadow on Jupiter's Giant Eye (color)

    NASA Image and Video Library

    2014-10-28

    This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Gravitational-wave cosmography with LISA and the Hubble tension

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  14. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler listens to a reporters question during a press conference where NASA released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  15. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  16. Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in

  17. Intergroup contact and team functioning among nursing students: the mediation role of intergroup anxiety.

    PubMed

    Marletta, Giuseppe; Sarli, Leopoldo; Caricati, Luca; Mancini, Tiziana

    2017-07-18

    The improvement of team effectivity is one of the main concerns for healthcare organizations. Moreover, healthcare organizations must cope with increasing multicultural composition of both workforce and patients. The intergroup contact theory suggests that frequent and positive face-to-face contact among professionals or students with different cultural heritage can help to reach both increasing team effectiveness and adequate care in a multicultural setting. The aim was then to verify whether intergroup contact during practical training would decrease intergroup anxiety and then increase team functioning. A cross-sectional design was used in which a questionnaire was delivered to 83 nursing students. According to the intergroup contact theory, frequent and positive contact with non-native professionals decreased the intergroup anxiety which, in turn, increased prejudice and, more importantly, decreased team functioning. Moreover, intergroup anxiety showed a complete mediation effect on the relations between intergroup contact during practical training and both negative attitude toward immigrants and team functioning. Intergroup contact with non-native professionals or students during practical training is able to indirectly decrease prejudice and improve team functioning by lowering the anxiety that is aroused by encounter with non-native individuals.

  18. HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble

  19. Hubble peers inside a celestial geode

    NASA Astrophysics Data System (ADS)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour

  20. HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA

  1. Different Categories of Astronomical Heritage: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  2. Ethnic Heritage Studies: Ethnic Heritage Foods. Experimental Unit.

    ERIC Educational Resources Information Center

    Colbert, Theresia

    Designed to foster communication across intercultural/ethnic lines, this teaching guide focuses on ethnic foods and their influence on and contributions to America's eating habits. It is part of the Louisville Area Ethnic Heritage Project described in ED 150 043. The objective of this unit is to develop a knowledge and an appreciation of the food…

  3. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Fiight Center (MSFC), which is instrumented with individual cell voltage monitoring.

  4. A CHANGE OF SEASONS ON SATURN

    NASA Technical Reports Server (NTRS)

    2002-01-01

    long on Saturn. Strong winds account for the horizontal bands in the atmosphere of this giant gas planet. The delicate color variations in the clouds are due to smog in the upper atmosphere, produced when ultraviolet radiation from the Sun shines on methane gas. Deeper in the atmosphere, the visible clouds and gases merge gradually into hotter and denser gases, with no solid surface for visiting spacecraft to land on. The Cassini/Huygens spacecraft, launched from Earth in 1997, is well on its way to the Saturn system. It will arrive in 2004 to land a probe on Titan, Saturn's largest moon, and to orbit the planet for four years for a detailed study of the entire Saturn system. These images of Saturn, taken with the Wide Field Planetary Camera 2 onboard Hubble, were collected by Richard French (Wellesley College), Jeff Cuzzi (NASA/Ames), Luke Dones (SwRI), and Jack Lissauer (NASA/Ames), and have been prepared for presentation by the Hubble Heritage Team. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R.G. French (Wellesley College), J. Cuzzi (NASA/Ames), L. Dones (SwRI), and J. Lissauer (NASA/Ames) NOTE TO EDITORS: For additional information, please contact Dr. Richard G. French, Wellesley College, Dept. of Astronomy, Wellesley, MA 02481, (phone) 781-283-3747, (fax) 781-283-3667, (e-mail) rfrench@ahab.wellesley.edu or Dr. Keith Noll, Hubble Heritage Team, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, (phone) 410-338-1828, (fax) 410-338-4579, (e-mail) noll@stsci.edu. The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  5. A Hubble Cosmic Couple

    NASA Image and Video Library

    2017-12-08

    Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15,000 light-years away. The star Hen 2-427 shines brightly at the very center of this explosive image and around the hot clumps of surrounding gas that are being ejected into space at over 93,210 miles (150,000 km) per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterized by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10,000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Persistent Identifiers for Dutch cultural heritage institutions

    NASA Astrophysics Data System (ADS)

    Ras, Marcel; Kruithof, Gijsbert

    2016-04-01

    Over the past years, more and more collections belonging to archives, libraries, media, museums, and knowledge institutes are being digitised and made available online. These are exciting times for ALM institutions. They are realising that, in the information society, their collections are goldmines. Unfortunately most heritage institutions in the Netherlands do not yet meet the basic preconditions for long-term availability of their collections. The digital objects often have no long lasting fixed reference yet. URL's and web addresses change. Some digital objects that were referenced in Europeana and other portals can no longer be found. References in scientific articles have a very short life span, which is damaging for scholarly research. In 2015, the Dutch Digital Heritage Network (NDE) has started a two-year work program to co-ordinate existing initiatives in order to improve the (long-term) accessibility of the Dutch digital heritage for a wide range of users, anytime, anyplace. The Digital Heritage Network is a partnership established on the initiative of the Ministry of Education, Culture and Science. The members of the NDE are large, national institutions that strive to professionally preserve and manage digital data, e.g. the National Library, The Netherlands Institute for Sound and Vision, the Netherlands Cultural Heritage Agency, the Royal Netherlands Academy of Arts and Sciences, the National Archive of the Netherlands and the DEN Foundation, and a growing number of associations and individuals both within and outside the heritage sector. By means of three work programmes the goals of the Network should be accomplished and improve the visibility, the usability and the sustainability of digital heritage. Each programme contains of a set of projects. Within the sustainability program a project on creating a model for persistent identifiers is taking place. The main goals of the project are (1) raise awareness among cultural heritage institutions on the

  7. Hubble Peers into the Storm

    NASA Image and Video Library

    2017-12-08

    This shot from the NASA/ESA Hubble Space Telescope shows a maelstrom of glowing gas and dark dust within one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC). This stormy scene shows a stellar nursery known as N159, an HII region over 150 light-years across. N159 contains many hot young stars. These stars are emitting intense ultraviolet light, which causes nearby hydrogen gas to glow, and torrential stellar winds, which are carving out ridges, arcs, and filaments from the surrounding material. At the heart of this cosmic cloud lies the Papillon Nebula, a butterfly-shaped region of nebulosity. This small, dense object is classified as a High-Excitation Blob, and is thought to be tightly linked to the early stages of massive star formation. N159 is located over 160,000 light-years away. It resides just south of the Tarantula Nebula (heic1402), another massive star-forming complex within the LMC. This image comes from Hubble’s Advanced Camera for Surveys. The region was previously imaged by Hubble’s Wide Field Planetary Camera 2, which also resolved the Papillon Nebula for the first time. Credit: ESA/Hubble & NASA

  8. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a Rood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, Dr. Gardner will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope.

  9. Exploring empowerment within the Gullah Geechee cultural heritage corridor: implications for heritage tourism development in the Lowcountry

    Treesearch

    B. Bynum Boley; Cassandra Johnson Gaither

    2015-01-01

    While scholarship on the Gullah Geechee (GG) people has been extensive, little research has examined heritage tourism’s potential to empower or disempower the GG. In an attempt to shed light on this, the Gullah Geechee Cultural Heritage Corridor (GGCHC) was chosen as a case-study site because of its 2006 designation by Congress to protect and promote the unique...

  10. Hubble Sees Material Ejected From Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope pictures of comet Hale-Bopp show a remarkable 'pinwheel' pattern and a blob of free-flying debris near the nucleus. The bright clump of light along the spiral (above the nucleus, which is near the center of the frame) may be a piece of the comet's icy crust that was ejected into space by a combination of ice evaporation and the comet's rotation, and which then disintegrated into a bright cloud of particles.

    Although the 'blob' is about 3.5 times fainter than the brightest portion at the nucleus, the lump appears brighter because it covers a larger area. The debris follows a spiral pattern outward because the solid nucleus is rotating like a lawn sprinkler, completing a single rotation about once per week.

    Ground-based observations conducted over the past two months have documented at least two separate episodes of jet and pinwheel formation and fading. By coincidence, the first Hubble images of Hale-Bopp, taken on September 26, 1995, immediately followed one of these outbursts and allow researchers to examine it at unprecedented detail. For the first time they see a clear separation between the nucleus and some of the debris being shed. By putting together information from the Hubble images and those taken during the recent outburst using the 82 cm telescope of the Teide Observatory (Tenerife, Canary Islands, Spain), astronomers find that the debris is moving away from the nucleus at a speed (projected on the sky) of about 68 miles per hour (109 kilometers per hour).

    The Hubble observations will be used to determine if Hale-Bopp is really a giant comet or rather a more moderate-sized object whose current activity is driven by outgassing from a very volatile ice which will 'burn out' over the next year. Comet Hale-Bopp was discovered on July 23, 1995 by amateur astronomers Alan Hale and Thomas Bopp. Though this comet is still well outside the orbit of Jupiter (almost 600 million miles, or one billion kilometers from Earth

  11. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.

    1992-01-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  12. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Gordon R.

    1992-12-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  13. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-05-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Read more: www.nasa.gov/feature/hubble-observes-one-of-a-kind-star-n... Credits: NASA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Hubble Source Catalog

    NASA Astrophysics Data System (ADS)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  15. Hubble's Little Sombrero

    NASA Image and Video Library

    2015-02-06

    Galaxies can take many shapes and be oriented any way relative to us in the sky. This can make it hard to figure out their actual morphology, as a galaxy can look very different from different viewpoints. A special case is when we are lucky enough to observe a spiral galaxy directly from its edge, providing us with a spectacular view like the one seen in this picture of the week. This is NGC 7814, also known as the “Little Sombrero.” Its larger namesake, the Sombrero Galaxy, is another stunning example of an edge-on galaxy — in fact, the “Little Sombrero” is about the same size as its bright namesake at about 60,000 light-years across, but as it lies farther away, and so appears smaller in the sky. NGC 7814 has a bright central bulge and a bright halo of glowing gas extending outwards into space. The dusty spiral arms appear as dark streaks. They consist of dusty material that absorbs and blocks light from the galactic center behind it. The field of view of this NASA/ESA Hubble Space Telescope image would be very impressive even without NGC 7814 in front; nearly all the objects seen in this image are galaxies as well. Credit: ESA/Hubble & NASA Acknowledgement: Josh Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler speaks at the podium as Sen. Barbara A. Mikulski, D-Md., left, listens during a press conference where NASA unveiled new images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  17. Astronomical Heritage in the National Culture

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  18. Planetary Nebula

    NASA Image and Video Library

    2017-12-08

    This planetary nebula's simple, graceful appearance is thought to be due to perspective: our view from Earth looking straight into what is actually a barrel-shaped cloud of gas shrugged off by a dying central star. Hot blue gas near the energizing central star gives way to progressively cooler green and yellow gas at greater distances with the coolest red gas along the outer boundary. Credit: NASA/Hubble Heritage Team ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Hubble Spotlights a Celestial Sidekick

    NASA Image and Video Library

    2017-12-08

    This image was captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), a highly efficient wide-field camera covering the optical and near-infrared parts of the spectrum. While this lovely image contains hundreds of distant stars and galaxies, one vital thing is missing — the object Hubble was actually studying at the time! This is not because the target has disappeared. The ACS actually uses two detectors: the first captures the object being studied — in this case an open star cluster known as NGC 299 — while the other detector images the patch of space just ‘beneath’ it. This is what can be seen here. Technically, this picture is merely a sidekick of the actual object of interest — but space is bursting with activity, and this field of bright celestial bodies offers plenty of interest on its own. It may initially seem to show just stars, but a closer look reveals many of these tiny objects to be galaxies. The spiral galaxies have arms curving out from a bright center. The fuzzier, less clearly shaped galaxies might be ellipticals. Some of these galaxies contain millions or even billions of stars, but are so distant that all of their starry residents are contained within just a small pinprick of light that appears to be the same size as a single star! The bright blue dots are very hot stars, sometimes distorted into crosses by the struts supporting Hubble’s secondary mirror. The redder dots are cooler stars, possibly in the red giant phase when a dying star cools and expands. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Hubble Views a Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood. NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing star birth, NGC 5477 looks much like an typical dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white. The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars. In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars. This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes. ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Hubble (HST) hardware is unwrapped in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a worker begins to open the protective covering over a part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  3. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  4. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  5. Improvements to the Hubble Space Telescope COS/FUV Wavelength Calibration at Lifetime Position 4

    NASA Astrophysics Data System (ADS)

    Plesha, Rachel; Ake, Thomas B.; De Rosa, Gisella; Oliveira, Cristina M.; Penton, Steven V.; Snyder, Elaine M.

    2018-06-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in 2009, and the FUV detector is currently operating at the 4th lifetime position (LP4). The COS team at the Space Telescope Science Institute has been improving the wavelength calibration of the FUV channel at each lifetime position. For the LP4 solution we obtained special calibration data as well as new lamp spectra to update the lamp template used at LP4 with the goal of achieving a wavelength calibration accuracy of ± 3 pixels. Additionally, we derived a new solution for the G130M/1222 cenwave which we expect to be more frequently used at this lifetime position due to the COS2025 policy in place on the other G130M settings. Here we present the results and methodology behind the wavelength calibration solutions at LP4.

  6. Hubble Frontier Fields view of MACSJ0717.5+3745

    NASA Image and Video Library

    2015-10-22

    This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky.

  7. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  8. Open Source Hbim for Cultural Heritage: a Project Proposal

    NASA Astrophysics Data System (ADS)

    Diara, F.; Rinaudo, F.

    2018-05-01

    Actual technologies are changing Cultural Heritage research, analysis, conservation and development ways, allowing new innovative approaches. The possibility of integrating Cultural Heritage data, like archaeological information, inside a three-dimensional environment system (like a Building Information Modelling) involve huge benefits for its management, monitoring and valorisation. Nowadays there are many commercial BIM solutions. However, these tools are thought and developed mostly for architecture design or technical installations. An example of better solution could be a dynamic and open platform that might consider Cultural Heritage needs as priority. Suitable solution for better and complete data usability and accessibility could be guaranteed by open source protocols. This choice would allow adapting software to Cultural Heritage needs and not the opposite, thus avoiding methodological stretches. This work will focus exactly on analysis and experimentations about specific characteristics of these kind of open source software (DBMS, CAD, Servers) applied to a Cultural Heritage example, in order to verifying their flexibility, reliability and then creating a dynamic HBIM open source prototype. Indeed, it might be a starting point for a future creation of a complete HBIM open source solution that we could adapt to others Cultural Heritage researches and analysis.

  9. Revelation of `Hidden' Balinese Geospatial Heritage on A Map

    NASA Astrophysics Data System (ADS)

    Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.

    2018-05-01

    Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.

  10. Hubble Space Telescope approaches Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-93-031 (4 Dec 1993) --- Part of the vast Indian Ocean forms the backdrop for this scene of the Hubble Space Telescope (HST) as it approaches the Space Shuttle Endeavour. Denham Sound and Shark Bay, on Australia's west coast, are just below the waiting mechanical arm at lower right corner.

  11. NASA’s Hubble Sees Martian Moon Orbiting the Red Planet

    NASA Image and Video Library

    2017-12-08

    While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash onto the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. Credit: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards

  13. Hubble Finds New Dark Spot on Neptune

    NASA Image and Video Library

    1998-08-02

    In 1995, NASA Hubble Space Telescope discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet northern hemisphere was tilted away from Earth, the new feature appeared near the limb of the planet.

  14. Hubble Provides Clear Images of Saturn's Aurora

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope in October 1997, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than ten times the sensitivity of previous Hubble instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles and rise more than a thousand miles above the cloud tops.

    Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earths aurora that is occasionally seen in the nighttime sky and similar to the phenomenon that causes fluorescent lamps to glow. But unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earths surface, hence the aurora can only be observed from space. New Hubble images reveal ripples and overall patterns that evolve slowly, appearing generally fixed in our view and independent of planet rotation. At the same time, the curtains show local brightening that often follow the rotation of the planet and exhibit rapid variations on time scales of minutes. These variations and regularities indicate that the aurora is primarily shaped and powered by a continual tug-of-war between Saturn's magnetic field and the flow of charged particles from the Sun.

    Study of the aurora on Saturn had its beginnings just seventeen years ago. The Pioneer 11 spacecraft observed a far-ultraviolet brightening on Saturn's poles in 1979. The Saturn flybys of the Voyager 1 and 2 spacecraft in the early 1980s provided a basic description of the aurora and mapped for the first time planets enormous magnetic field that guides energetic electrons into the atmosphere near the north and south poles.

    The first images of Saturn's aurora were provided in 1994-5 by the

  15. Study on Spatial Cultural Heritage Integrated into the Core Curriculum

    NASA Astrophysics Data System (ADS)

    Hsu, W. H.; Lai, Y. P.

    2015-08-01

    These Many countries have put a lot of efforts, promoting education of cultural heritage, to raise the conservation awareness and increase people's participation. However, the development of Taiwan's higher education about cultural heritage has not shown a significant growth, so it didn't train talents with enough cultural heritage awareness. In the workplace, these professionals will inevitably lack of comprehensions and the appropriate professional assessments for cultural heritage. Hence, the main objective of this paper is to study and combine these concepts into the core curriculum of Department of Construction and Spatial Design at Tungnan University. It takes the local "Shenkeng historic cultural district" as a case study, and will gradually develop an proper interdisciplinary course in order to help local residents implement projects of conserving cultural heritage. This plan not only can increase schools' engagements toward communities, with an ability of social civilization, but also it can encourage the conservation and maintenance of cultural heritages.

  16. Heritage Science: A Future-Oriented Cross-Disciplinary Field.

    PubMed

    Strlič, Matija

    2018-06-18

    "Heritage science is the study of interpretation and management of the material evidence of the humankind. It enables both society and individuals to exercise their right to cultural heritage and contributes to our understanding of who we are and our sense of place. Heritage science demonstrates its relevance to, as well as its deep roots in chemistry, and in other physical and engineering sciences …" Read more in the Guest Editorial by Matija Strlič. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hubble Observes the Moons and Rings of Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes.

    Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise).

    Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin.

    One of

  18. Hubble Spies a UFO

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope has spotted a UFO — well, the UFO Galaxy, to be precise. NGC 2683 is a spiral galaxy seen almost edge-on, giving it the shape of a classic science fiction spaceship. This is why the astronomers at the Astronaut Memorial Planetarium and Observatory gave it this attention-grabbing nickname. While a bird’s eye view lets us see the detailed structure of a galaxy (such as this Hubble image of a barred spiral), a side-on view has its own perks. In particular, it gives astronomers a great opportunity to see the delicate dusty lanes of the spiral arms silhouetted against the golden haze of the galaxy’s core. In addition, brilliant clusters of young blue stars shine scattered throughout the disc, mapping the galaxy’s star-forming regions. Perhaps surprisingly, side-on views of galaxies like this one do not prevent astronomers from deducing their structures. Studies of the properties of the light coming from NGC 2683 suggest that this is a barred spiral galaxy, even though the angle we see it at does not let us see this directly. NGC 2683, discovered on 5 February 1788 by the famous astronomer William Herschel, lies in the Northern constellation of Lynx. A constellation named not because of its resemblance to the feline animal, but because it is fairly faint, requiring the “sensitive eyes of a cat” to discern it. And when you manage to get a look at it, you’ll find treasures like this, making it well worth the effort. This image is produced from two adjacent fields observed in visible and infrared light by Hubble’s Advanced Camera for Surveys. A narrow strip which appears slightly blurred and crosses most the image horizontally is a result of a gap between Hubble’s detectors. This strip has been patched using images from observations of the galaxy made by ground-based telescopes, which show significantly less detail. The field of view is approximately 6.5 by 3.3 arcminutes. Credit: ESA/Hubble & NASA NASA image use policy. NASA

  19. Hubble's makes a double galaxy gaze

    NASA Image and Video Library

    2017-12-08

    Some astronomical objects have endearing or quirky nicknames, inspired by mythology or their own appearance. Take, for example, the constellation of Orion (The Hunter), the Sombrero Galaxy, the Horsehead Nebula, or even the Milky Way. However, the vast majority of cosmic objects appear in astronomical catalogs and are given rather less poetic names based on the order of their discovery. Two galaxies are clearly visible in this Hubble image, the larger of which is NGC 4424. This galaxy is cataloged in the New General Catalog of Nebulae and Clusters of Stars (NGC), which was compiled in 1888. The NGC is one of the largest astronomical catalogs, which is why so many Hubble Pictures of the Week feature NGC objects. In total there are 7,840 entries in the catalog and they are also generally the larger, brighter, and more eye-catching objects in the night sky, and hence the ones more easily spotted by early stargazers. The smaller, flatter, bright galaxy sitting just below NGC 4424 is named LEDA 213994. The Lyon-Meudon Extragalactic Database (LEDA) is far more modern than the NGC and contains millions of objects. Many NGC objects still go by their initial names simply because they were christened within the NGC first. However, since astronomers can't resist a good acronym and “Leda” is more appealing than “the LMED,” the smaller galaxy is called "Leda." Leda was a princess in Ancient Greek mythology. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Calibration of the Hubble Space Telescope polarimetric modes

    NASA Technical Reports Server (NTRS)

    Lupie, O. L.; Stockman, H. S.

    1988-01-01

    Stellar and galactic polarimetry from space is an unexplored observational regime and one which holds exciting promise for answering many fundamental astrophysical questions. The Hubble Space Telescope will be the first space observatory to provide a variety of polarimetric modes to astronomers including spectral, imaging, and single-aperture UV polarimetry. As part of the calibration program for these modes, the Space Telescope Science Institute has initiated a ground-based program to define faint standard fields and solicited community support to establish a temporal baseline for these potential standard targets. In this paper, the polarimetric capabilities of the Hubble Space Telescope, the philosophy and complications of in-flight calibration, and the status and direction of the standard targets program are discussed.

  1. Learning about Sensitive History: "Heritage" of Slavery as a Resource

    ERIC Educational Resources Information Center

    Savenije, Geerte M.; van Boxtel, Carla; Grever, Maria

    2014-01-01

    The history and heritage of slavery and the trans-Atlantic slave trade are sensitive topics in The Netherlands. Little is known about the ways in which students attribute significance to what is presented as heritage, particularly sensitive heritage. Using theories on historical significance, we explored how students attributed significance to the…

  2. Online Cultural Heritage Exhibitions: A Survey of Information Retrieval Features

    ERIC Educational Resources Information Center

    Liew, Chern Li

    2005-01-01

    Purpose: What kinds of online cultural heritage exhibitions are now available on the internet? How far have these cultural heritage institutions voyaged in terms of harnessing the power of information and communication technology and the interactivity of multimedia systems to exhibit cultural heritage resources? This study aims to highlight the…

  3. ACHP | Heritage Tourism and the Federal Government: Summit II Proceedings

    Science.gov Websites

    Search skip specific nav links Home arrow Publications arrow Intro: Heritage Tourism and the Federal Government: Summit II—Report of Proceedings Heritage Tourism and the Federal Government: Summit II—Report Heritage tourism promotes the preservation of communities' historic resources, educates tourists and local

  4. ACHP | Heritage Tourism and the Federal Government: Northern New Mexico

    Science.gov Websites

    Publications Search skip specific nav links Home arrow Publications arrow Intro: Heritage Tourism and the Federal Government: Northern New Mexico Perspectives Heritage Tourism and the Federal Government: Northern information Heritage tourism offers a triple benefit to communities—it promotes the preservation of their

  5. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 23, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 10, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host massmore » is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.« less

  8. Heritage contribution in sustainable city

    NASA Astrophysics Data System (ADS)

    Rostami, R.; Khoshnava, S. M.; Lamit, H.

    2014-02-01

    The concept of sustainability has been an integral part of development work since the late 1970s. Sustainability is no longer a buzzword but a reality that must be addressed by cities all over the world. Increasing empirical evidence indicates that city sustainability is not just related to technical issues, such as carbon emissions, energy consumption and waste management, or on the economic aspects of urban regeneration and growth, but also it covers social well-being of different groups living within increasingly cosmopolitan towns and cities. Heritage is seen as a major component of quality of life, features that give a city its unique character and provide the sense of belonging that lies at the core of cultural identity. In other words, heritage by providing important social and psychological benefits enrich human life with meanings and emotions, and raise quality of life as a key component of sustainability. The purpose of this paper, therefore, is to examine the role that built cultural heritage can play within sustainable urban development.

  9. D Photographs in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kiel, St.

    2013-07-01

    This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpretation, the preservation and the restoration of architectural and archaeological objects. This also includes samples for excavation documentation, 3D coordinate calculation, 3D photographs applied for virtual museum purposes and as educational tools. In addition 3D photography is used for virtual museum purposes, as well as an educational tool and for spatial structure enhancement, which in particular holds for inscriptions and in rock arts. This paper is also an invitation to participate in a systematic survey on existing international archives of 3D photographs. In this respect it is also reported on first results, to define an optimum digitization rate for analog stereo views. It is more than overdue, in addition to the access to international archives for 3D photography, the available 3D photography data should appear in a global GIS(cloud)-system, like on, e.g., google earth. This contribution also deals with exposing new 3D photographs to document monuments of importance for Cultural Heritage, including the use of 3D and single lense cameras from a 10m telescope staff, to be used for extremely low earth based airborne 3D photography, as well as for "underwater staff photography". In addition it is reported on the use of captive balloon and drone platforms for 3D photography in Cultural Heritage. It is liked to emphasize, the still underestimated 3D effect on real objects even allows, e.g., the spatial perception of extremely small scratches as well as of nuances in color differences

  10. Hubble Friday - Heavy Metal Stars

    NASA Image and Video Library

    2017-12-08

    Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW

  11. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-03-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Credits: NASA/Hubble

  12. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    , NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team

  13. Hubble Space Telescope nears Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-73-040 (4 Dec 1993) --- Backdropped against the blackness of space, the Hubble Space Telescope (HST) nears the Space Shuttle Endeavour. With the aid of the Remote Manipulator System (RMS), the STS-61 crew members later grappled the spacecraft and berthed it in the cargo bay for five-days of servicing chores by four space walkers.

  14. Imagining Technology-Enhanced Learning with Heritage Artefacts: Teacher-Perceived Potential of 2D and 3D Heritage Site Visualisations

    ERIC Educational Resources Information Center

    Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle

    2015-01-01

    Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…

  15. Levels of maximum end-expiratory carbon monoxide and certain cardiovascular parameters following hubble-bubble smoking.

    PubMed

    Shafagoj, Yanal A; Mohammed, Faisal I

    2002-08-01

    The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, P<.05). Acute short-term active hubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.

  16. BLOWING COSMIC BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  17. Hubble (HST) hardware is uncrated in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container to move it to a workstand. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  18. Hubble (HST) hardware is uncrated in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  19. The Hubble Legacy Archive: Data Processing in the Era of AstroDrizzle

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Hubble Legacy Archive Team, The Hubble Source Catalog Team

    2015-01-01

    The Hubble Legacy Archive (HLA) expands the utility of Hubble Space Telescope wide-field imaging data by providing high-level composite images and source lists, perusable and immediately available online. The latest HLA data release (DR8.0) marks a fundamental change in how these image combinations are produced, using DrizzlePac tools and Astrodrizzle to reduce geometric distortion and provide improved source catalogs for all publicly available data. We detail the HLA data processing and source list schemas, what products are newly updated and available for WFC3 and ACS, and how these data products are further utilized in the production of the Hubble Source Catalog. We also discuss plans for future development, including updates to WFPC2 products and field mosaics.

  20. Campus Heritage Planning: Understanding the Economics "and" Managing the Financing

    ERIC Educational Resources Information Center

    McGirr, Dale; Kull, Ronald

    2011-01-01

    For many it's a dollars and cents issue; for others, it's a heritage or spiritual issue. In reality campus heritage is both a spiritual and a monetary/economic issue. Some say that heritage should reflect institutional values, tradition, academic stature, and the role graduates have played in society, and others cast aside tradition and pay…

  1. 36 CFR 73.11 - Federal Interagency Panel for World Heritage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Federal Interagency Panel for World Heritage. 73.11 Section 73.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR WORLD HERITAGE CONVENTION § 73.11 Federal Interagency Panel for World Heritage. (a) Responsibilities. The Federal Interagency...

  2. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  3. Cultural Mapping of the Heritage Districts in Medan, North Sumatra

    NASA Astrophysics Data System (ADS)

    Fitri, I.; Ratna; Sitorus, R.; Affan, M.

    2017-03-01

    Medan as one of the historical towns in Indonesia is rich with architectural and urban heritages; however, there still has no integrated plan to safeguard them. This paper discusses the cultural mapping of the seven heritage conservation districts in the city of Medan. It focuses on exploring the process and challenges of the study from the initial step of data collections to the building of the cultural maps with web based GIS. Multi-method of data collection tactics or triangulation such as field survey, interviews was done to cover the cultural data resources including both tangible (or quantitative) and intangible (or qualitative). Participation of the local community is essential to identify mainly the intangibles one. Based on the preliminary analysis of the seven heritage districts in Medan city, Merdeka-Kesawan area had whole categories of the cultural assets and resources compared to other six heritage areas. Consequently, it influences the enhancement its cultural heritage significance. By using our methods, we emphasized the importance of the cultural mapping in preparing the conservation policies and strategies of the seven heritage districts in Medan.

  4. Starlight: a common heritage

    NASA Astrophysics Data System (ADS)

    Marin, Cipriano

    2011-06-01

    The Starlight Initiative brings a new view of the night sky and of its value enhancement, claiming the access to starlight as a scientific, environmental, and cultural right of humankind. Night sky quality has been seriously damaged in the last years because of light and atmospheric pollution, and an international action in favour of intelligent outdoor lighting is urgently needed. After the promulgation of the Starlight Declaration, we are jointly working with UNESCO, the World Heritage Centre, the MaB Programme, and other international institutions in the development of Starlight Reserves as exemplary areas that would act as models for the recovery of the heritage associated to star observation. The possibility arises to design and launch new tourist products and destinations based on astronomy and starry sceneries.

  5. Visual impact of wind farms on cultural heritage: A Norwegian case study

    SciTech Connect

    Jerpasen, Gro B., E-mail: gro.jerpasen@niku.no; Larsen, Kari C., E-mail: kari.larsen@niku.n

    2011-04-15

    This paper discusses different approaches of how visual impact on cultural heritage can be methodologically improved within Environmental Impact Assessment (EIA). During the recent decade, visual impact on cultural heritage and heritage sites has become a more frequent but contentious issue in public and academic discussions. Yet, within EIA issues relating to heritage sites and visual impact are rarely debated or critically reflected upon. Today most methods and theories on visual impact and cultural heritage within EIA are transferred from disciplines such as landscape architecture, architecture and geography. The article suggests how working with the concepts and definitions of sitemore » and setting can be a methodological tool for delimiting and clarifying visual impact on cultural heritage sites. The article also presents ways of how public participation can be a tool to start exploring the field of what the visual impact on cultural heritage implies and how it effects upon our understanding and appreciation of heritage sites. Examples from a Norwegian case are taken as illustrations to highlight these issues.« less

  6. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  7. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  8. Astronomy from Space: The Hubble, Herschel and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.

  9. HUBBLE SPIES BROWN DWARFS IN NEARBY STELLAR NURSERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Probing deep within a neighborhood stellar nursery, NASA's Hubble Space Telescope uncovered a swarm of newborn brown dwarfs. The orbiting observatory's near-infrared camera revealed about 50 of these objects throughout the Orion Nebula's Trapezium cluster [image at right], about 1,500 light-years from Earth. Appearing like glistening precious stones surrounding a setting of sparkling diamonds, more than 300 fledgling stars and brown dwarfs surround the brightest, most massive stars [center of picture] in Hubble's view of the Trapezium cluster's central region. All of the celestial objects in the Trapezium were born together in this hotbed of star formation. The cluster is named for the trapezoidal alignment of those central massive stars. Brown dwarfs are gaseous objects with masses so low that their cores never become hot enough to fuse hydrogen, the thermonuclear fuel stars like the Sun need to shine steadily. Instead, these gaseous objects fade and cool as they grow older. Brown dwarfs around the age of the Sun (5 billion years old) are very cool and dim, and therefore are difficult for telescopes to find. The brown dwarfs discovered in the Trapezium, however, are youngsters (1 million years old). So they're still hot and bright, and easier to see. This finding, along with observations from ground-based telescopes, is further evidence that brown dwarfs, once considered exotic objects, are nearly as abundant as stars. The image and results appear in the Sept. 20 issue of the Astrophysical Journal. The brown dwarfs are too dim to be seen in a visible-light image taken by the Hubble telescope's Wide Field and Planetary Camera 2 [picture at left]. This view also doesn't show the assemblage of infant stars seen in the near-infrared image. That's because the young stars are embedded in dense clouds of dust and gas. The Hubble telescope's near-infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, penetrated those clouds to capture a view of those

  10. Documentation of Heritage Structures Through Geo-Crowdsourcing and Web-Mapping

    NASA Astrophysics Data System (ADS)

    Dhonju, H. K.; Xiao, W.; Shakya, B.; Mills, J. P.; Sarhosis, V.

    2017-09-01

    Heritage documentation has become increasingly urgent due to both natural impacts and human influences. The documentation of countless heritage sites around the globe is a massive project that requires significant amounts of financial and labour resources. With the concepts of volunteered geographic information (VGI) and citizen science, heritage data such as digital photographs can be collected through online crowd participation. Whilst photographs are not strictly geographic data, they can be geo-tagged by the participants. They can also be automatically geo-referenced into a global coordinate system if collected via mobile phones which are now ubiquitous. With the assistance of web-mapping, an online geo-crowdsourcing platform has been developed to collect and display heritage structure photographs. Details of platform development are presented in this paper. The prototype is demonstrated with several heritage examples. Potential applications and advancements are discussed.

  11. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md., left foreground, NASA Administrator Charles F. Bolden, center, and NASA Deputy Administrator Lori Garver, right, along with members of the STS-125 and STS-31 space shuttle crews listen during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  12. Local gravitational physics of the Hubble expansion. Einstein's equivalence principle in cosmology

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2015-01-01

    We study physical consequences of the Hubble expansion of Friedmann-Lemaıtre-Robertson-Walker (FLRW) manifold on measurement of space, time and light propagation in the local inertial frame. We use the results of this study to analyse the Solar System radar ranging and Doppler tracking experiments and time synchronization. FLRW manifold is covered by the coordinates ( t, y i ), where t is the cosmic time coinciding with the proper time of the Hubble observers and identified with the barycentric coordinate time (TCB) used in ephemeris astronomy. We introduce the local inertial coordinates x α = ( x 0, x i ) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation that respects the local equivalence between the tangent and FLRW manifold. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x i . The static observers are equipped with the ideal clocks measuring their own proper time which is synchronized with the cosmic time t measured by the Hubble observer. We consider the geodesic motion of test particles and notice that the local coordinate time x 0 = x 0( t) taken as a parameter along the world line of the particle, is a function of Hubble's observer time t. This function changes smoothly from x 0 = t for a particle at rest (observer's clock), to x 0 = t + (1/2) Ht 2 for photons, where H is the Hubble constant. Thus, the motion of a test particle is non-uniform when its world line is parametrized by the cosmic time t. NASA JPL Orbit Determination Program operates under the assumption that the spacetime is asymptotically flat which presumes that the motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the Solar System

  13. Challenges that Preventive Conservation poses to the Cultural Heritage documentation field

    NASA Astrophysics Data System (ADS)

    Van Balen, K.

    2017-08-01

    This contribution examines the challenges posed to the cultural heritage documentation community (the CIPA community and others) in implementing a preventive conservation approach of the built heritage in today's society. The "DNA" of Preventive Conservation. Various authors so far support the argument that preventive conservation is an effective way to respond to the challenges society faces with the preservation of its Cultural Heritage (Van Balen, 2013). A few decades of experiences with the application of preventive conservation in the field of immovable heritage in the form of Monumentenwacht in The Netherland and in Flanders have shown that a good monitoring of the state of preservation with a strong push for maintenance activities contributes to more preservation of authenticity, to more cost-effective preservation and to empowering society in dealing with heritage preservation. (Cebron, 2008) An analysis of these and similar experiences demonstrates that these "Monumentenwacht" activities represent only a part of what could be named a preventive conservation system. Other fields in which prevention is advocated for its higher efficiency, show the importance of system thinking in the development of improved strategies. Applying this approach to the field of the immovable heritage, referring to the initial results shown by the Monumentenwacht practices, it becomes clear that different dimension are at stake simultaneously: the preservation of authenticity or integrity, the management of resources and the connection with society. It shows that the analysis of challenges in heritage preservation and the development of strategies is à priori multifaceted and therefor has a certain level of complexity. The sustainability of the preservation of cultural heritage buildings and sites can be measured according to its multiple economic, social, environmental and cultural support. The Cultural Heritage Counts for Europe report shows that the more diverse the

  14. Michigan's agricultural heritage: using historical data to develop authentic heritage attractions

    Treesearch

    Craig Wiles; Terry Shaffer; Gail Vander Stoep

    2003-01-01

    The Michigan Agricultural Heritage Project, a multi-disciplinary research effort at Michigan State University sponsored by the Michigan Department of Transportation, is currently completing a rural agricultural context document. While the main purpose of this project is to provide information, tools and resources for historic preservation consultants...

  15. Heritage Education and Heritagization Processes: SHEO Methodology for Educational Programs Evaluation

    ERIC Educational Resources Information Center

    Fontal, Olaia; Gómez-Redondo, Carmen

    2016-01-01

    The cultural approach that is developed at the beginning of this article about "heritagization" processes, allows profiling three different agencies involved in these processes, therefore, an institutional agency, an individual agency, and a community agency are drawn; the last three agencies also determine the characteristics of their…

  16. Built urban heritage conservation in Islamic societies: Study case in Banda Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Meutia, Z. D.

    2017-06-01

    This paper aims to find the concept of the built heritage related to Islamic societies with a case study in the city of Banda Aceh through study literature review, with the context of the planning in the era of uncertainty. In this paper will be elaborated and described what it was about heritage and urban heritage and conservation Islamic values in heritage, as well as explain the concept of the built heritage conservation in Islamic societies. Discussion and analysis will be done through its study literature. Literature reviews about built urban heritage conservation and perspective of the Islamic societies in Banda aceh was done using systematic methodology literature review. This methodology summarizes research results earlier that presents the fact that a more comprehensive and balanced. The synthesis of the results conducted using narrative techniques or technique of qualitative. The discovery paper in this paper is to understand the relationship the built heritage conservation of Islamic societies perspective that consider shari’a aspect and local tradition in built urban heritage that can affect to heritage planning.

  17. A nuclear data approach for the Hubble constant measurements

    SciTech Connect

    Pritychenko, B.

    2015-06-09

    An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP) codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.00(770) (km/sec)/Mpc. This recommended value is based on the last 25 years of experimental research and includes contributions from different types of measurements. The present result implies (14.6±1.7) x 10 9 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possiblemore » implications are discussed.« less

  18. Subtractive Bilingualism and the Survival of the Inuit Language: Heritage-versus Second-Language Education.

    ERIC Educational Resources Information Center

    Wright, Stephen C.; Taylor, Donald M.; Macarthur, Judy

    2000-01-01

    Examines the impact of early heritage-language education and second-language education on heritage-language and second-language development among Inuit, White, and mixed-heritage kindergarten children. Inuit children in second-language classes showed heritage language skills equal to or better than mixed-heritage children and Whites educated in…

  19. MHC variability in heritage breeds of chickens.

    PubMed

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. © 2016 Poultry Science Association Inc.

  20. 77 FR 26905 - Jewish American Heritage Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Heritage Month, 2012 Proclamation 8814--National Foster Care Month, 2012 #0; #0; #0; Presidential Documents... Heritage Month, 2012 By the President of the United States of America A Proclamation Three hundred and... imagine. Our country is stronger for their contributions, and this month, we commemorate the myriad ways...

  1. a Mobile Application for Virtual Heritage and UGC Public Sharing

    NASA Astrophysics Data System (ADS)

    Gongli, L.; Jin, S.; Huilian, C.

    2013-07-01

    Heritage documentation and representation is now a growing concern in the contemporary world, with unprecedentedly rapid technological development that pushes the frontier further every day. This ever growing means benefits both professionals and the general public, and the two can now be connected by this virtual bridge that channels heritage information from one end of the spectrum to the other, thus facilitating a dialogue never considered before. 4D virtual heritage with visualized tempo-spatial information can be easily shared across the continents and the story of heritage is told by a simple move of the thumb. Mobile LBS (Location-Based Service) enhances visitors' on-site experience and is readily available on the popular iOS platform. UGC (User Generated Content) on the internet provides interaction among users and managers, and brings the heritage site and the public into a live conversation. Although the above technological exploration is promising in itself, the question still remains as how it may be best implemented. The Re-yuangmingyuan program for the reconstruction and representation of an imperial garden in Beijing has made several attempts that deserve discussion, and contributes to heritage documentation and conservation in general.

  2. Heritage House Maintenance Using 3d City Model Application Domain Extension Approach

    NASA Astrophysics Data System (ADS)

    Mohd, Z. H.; Ujang, U.; Liat Choon, T.

    2017-11-01

    Heritage house is part of the architectural heritage of Malaysia that highly valued. Many efforts by the Department of Heritage to preserve this heritage house such as monitoring the damage problems of heritage house. The damage problems of heritage house might be caused by wooden decay, roof leakage and exfoliation of wall. One of the initiatives for maintaining and documenting this heritage house is through Three-dimensional (3D) of technology. 3D city models are widely used now and much used by researchers for management and analysis. CityGML is a standard tool that usually used by researchers to exchange, storing and managing virtual 3D city models either geometric and semantic information. Moreover, it also represent multi-scale of 3D model in five level of details (LoDs) whereby each of level give a distinctive functions. The extension of CityGML was recently introduced and can be used for problems monitoring and the number of habitants of a house.

  3. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The NGC 1023 galaxy group: An anti-hubble flow?

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    2010-10-01

    We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner, virialized, quasi-stationary component together with an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are immersed. Self-gravity dominates in the inner component of the Local Group, while the anti-gravity created by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. NGC 1023 as a whole is apparently in an ongoing state of formation and virialization. We expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4-3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.

  5. The Hubble Constant.

    PubMed

    Jackson, Neal

    2007-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s -1 Mpc -1 , with most now between 70 and 75 km s -1 Mpc -1 , a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  6. Hubble Peers Through the Elliptical Haze

    NASA Image and Video Library

    2017-12-08

    Like a lighthouse in the fog, the luminous core of NGC 2768 slowly fades outwards to a dull white haze in this image taken by the NASA/ESA Hubble Space Telescope. NGC 2768 is an elliptical galaxy in the constellation of Ursa Major (The Great Bear). It is a huge bundle of stars, dominated by a bright central region, where a supermassive black hole feasts on a constant stream of gas and dust being fed to it by its galactic host. The galaxy is also marked by a prominent plume of dust reaching out from the center and lying perpendicular to the galaxy’s plane. This dust conceals a symmetrical, S-shaped pair of jets that are being produced by the supermassive black hole as it feeds. Credit: ESA/Hubble, NASA and S. Smartt (Queen's University Belfast) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Total Dose Survivability of Hubble Electronic Components

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  8. Hubble Watches the Red Planet as Mars Global Surveyor Begins Aerobraking

    NASA Technical Reports Server (NTRS)

    1997-01-01

    [RIGHT] This NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere).

    This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations.

    Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking.

    Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds.

    Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view.

    The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this

  9. HUBBLE'S DEEPEST VIEW OF THE UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Left] A NASA Hubble Space Telescope view of the faintest galaxies ever seen in the universe, taken in infrared light with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The picture contains over 300 galaxies having spiral, elliptical and irregular shapes. Though most of these galaxies were first seen in 1995 when Hubble was used to take a visible-light deep exposure of the same field, NICMOS uncovers many new objects. Most of these objects are too small and faint to be apparent in the full field NICMOS view. Some of the reddest and faintest of the newly detected objects may be over 12 billion light-years away, as derived from a standard model of the universe. However, a powerful new generation of telescopes will be needed to confirm the suspected distances of these objects. The field of view is 2 million light-years across, at its maximum. Yet, on a cosmic scale, it represents only a thin pencil beam look across the universe. The area of sky is merely 1/100th the apparent diameter on the full moon. [Right] Two close-up NICMOS views of candidate objects which may be over 12 billion light-years away. Each candidate is centered in the frame. The reddish color may mean all of the starlight has been stretched to infrared wavelengths by the universe's expansion. Alternative explanations are that the objects are closer to us, but the light has been reddened by dust scattering. A new generation of telescopes will be needed to make follow-up observations capable of establishing true distance. The image was taken in January 1998 and required an exposure time of 36 hours to detect objects down to 30th magnitude. Hubble was aimed in the direction of the constellation Ursa Major, in a region just above the handle of the Big Dipper. The color corresponds to blue (0.45 microns), green (1.1 microns) and red (1.6 microns). Credit: Rodger I. Thompson (University of Arizona), and NASA

  10. The Full and True Value of Campus Heritage

    ERIC Educational Resources Information Center

    Elefante, Carl

    2011-01-01

    To gain a full and true understanding of the value of campus heritage requires shifting perspective. On many campuses, heritage resources are perceived to have no relevance whatsoever to the challenges of sustainability. This results largely from a profound misconception about what may constitute a sustainable future and what steps may be needed…

  11. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  12. Research on Heritage Spanish Phonetics and Phonology: Pedagogical and Curricular Implications

    ERIC Educational Resources Information Center

    Rao, Rajiv; Kuder, Emily

    2016-01-01

    This paper creates a novel link between research on linguistics and education by discussing what we know about the sound system of heritage language users of Spanish and how these findings can inform practices implemented in heritage Spanish courses in the USA. First, we provide an overview of terminology associated with heritage language…

  13. Measurement of Hubble constant: non-Gaussian errors in HST Key Project data

    SciTech Connect

    Singh, Meghendra; Gupta, Shashikant; Pandey, Ashwini

    2016-08-01

    Assuming the Central Limit Theorem, experimental uncertainties in any data set are expected to follow the Gaussian distribution with zero mean. We propose an elegant method based on Kolmogorov-Smirnov statistic to test the above; and apply it on the measurement of Hubble constant which determines the expansion rate of the Universe. The measurements were made using Hubble Space Telescope. Our analysis shows that the uncertainties in the above measurement are non-Gaussian.

  14. PEERING INTO THE CORE OF A GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    . What happens when stars collide? These Hubble images were taken to help answer that question. When stars collide head-on, they probably just merge together and make one bigger star. But if the collision is a near miss, they may go into orbit around each other, forming a close binary star system. Searching for a needle in a haystack, scientists have found two binary star systems in these Hubble images that may have had such an origin. Both of them are close pairs in which once component is a white dwarf that pulls gas off of its companion. When the gas falls onto the surface of the white dwarf, it is heated to the point that it emits ultraviolet light. These unusual emissions enabled scientists to pinpoint these two faint stars among the myriad of other faint stars in the cluster. Omega Centauri is the most luminous and massive globular star cluster in the Milky Way. It is one of the few globular clusters that can be seen with the unaided eye. Named by Johann Bayer in 1603 as the 24th brightest object in the constellation Centaurus, it resembles a small cloud in the southern sky and might easily be mistaken for a comet. This Hubble WFPC2 image was taken on June 11, 1997 in ultraviolet, red, and H-alpha filters. The science team, led by Dr. Adrienne Cool of San Francisco State University includes Jennifer Carson, a former SFSU student who is now at UCLA, Charles Bailyn at Yale and Jonathan Grindlay at Harvard. These data are currently being used by Jeff Carlin and Daryl Haggard, two SFSU students, to look for optical counterparts of X-ray sources recently discovered with the Chandra Observatory. This image was produced by the Hubble Heritage Team (STScI/AURA). Credits: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: A. Cool (SFSU)

  15. Building the Pipeline for Hubble Legacy Archive Grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.

    2008-10-01

    The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.

  16. Ethnic Heritage Studies: Southern European Foods. Experimental Unit.

    ERIC Educational Resources Information Center

    Freepartner, Susan

    This teaching guide focuses on the Southern European food heritage. It is part of the Louisville Area Ethnic Heritage Studies Project described in ED 150 043. The project materials are designed to foster communication across intercultural/ethnic lines. The objective of this unit is to gain familiarity with and appreciate foods from Spain, France,…

  17. How Students Navigate the Construction of Heritage Narratives

    ERIC Educational Resources Information Center

    Levy, Sara A.

    2017-01-01

    Using a multiple case study design, I examine how public high school students (n = 17) make sense of narratives about defining events with which they have specific heritage connections. Focusing on 3 groups of students (Hmong, Chinese, and Jewish) studying 3 heritage events (respectively, the Vietnam War, Modern China, and the Holocaust), this…

  18. A Galaxy at the Center of the Hubble Tuning Fork

    NASA Image and Video Library

    2017-12-08

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is a good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. Credit: ESA/Hubble & NASA and N. Gorin (STScI), Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Milky J “Hubble Gotchu" of Late Night with Jimmy Fallon visits Goddard

    NASA Image and Video Library

    2017-12-08

    Fans of 'Late Night with Jimmy Fallon' know the setup: A guy in a Yankees jacket shows off Hubble images and shouts to the audience that, 'Hubble gotchu!' Monday night's episode showcased footage shot right here at Goddard Space Flight Center. Left to Right: Phil Driggers, Katie Lilly, Milky J “Hubble Gotchu”, Mike Menzel, Amber Straughn, Ray Lundquist. Read more about Milky J's visit here: geeked.gsfc.nasa.gov/?p=2066 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center/Chris Gun

  20. Shuttle to Space Station. Heart Assist Implant. Hubble Update. X-30 Mock-Up

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Shuttle to Space Station, Heart Assist Implant, Hubble Update, and X-30 Mockup are the four parts that are discussed in this video. The first part, Shuttle to Space Station, is focussed on the construction and function of the Space Station Freedom. While part two, Heart Assist Implant, discusses a newly developed electromechanical device that helps to reduce heart attack by using electric shocks. Interviews with the co-inventor and patients are also included. Brief introduction to Hubble Telescope, problem behind its poor image quality (mirror aberration), and the plan to correct this problem are the three issues that are discussed in part three, Hubble Update. The last part, part four, reviews the X-30 Mockup designed by the staff and students of Mississippi State University.

  1. 36 CFR 73.13 - Protection of U.S. World Heritage properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Protection of U.S. World..., DEPARTMENT OF THE INTERIOR WORLD HERITAGE CONVENTION § 73.13 Protection of U.S. World Heritage properties. (a... nominated to the World Heritage List unless its owner concurs in writing to such nomination. The nomination...

  2. A Guided Inquiry on Hubble Plots and the Big Bang

    NASA Astrophysics Data System (ADS)

    Forringer, Ted

    2014-04-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the first time. The first challenge is in understanding and interpreting Hubble plots. The second is that some of our students have religious or cultural objections to the concept of a "Big Bang" or a universe that is billions of years old. This paper presents a guided inquiry exercise that was created with the goal of introducing students to Hubble plots and giving them the opportunity to discover for themselves why we believe our universe started with an explosion billions of years ago. The exercise is designed to be completed before the topics are discussed in the classroom. We did the exercise during a one hour and 45 minute "lab" time and it was done in groups of three or four students, but it would also work as an individual take-home assignment.

  3. Hubble Spies a Rebel

    NASA Image and Video Library

    2017-12-08

    Most galaxies possess a majestic spiral or elliptical structure. About a quarter of galaxies, though, defy such conventional, rounded aesthetics, instead sporting a messy, indefinable shape. Known as irregular galaxies, this group includes NGC 5408, the galaxy that has been snapped here by the NASA/ESA Hubble Space Telescope. John Herschel recorded the existence of NGC 5408 in June 1834. Astronomers had long mistaken NGC 5408 for a planetary nebula, an expelled cloud of material from an aging star. Instead, bucking labels, NGC 5408 turned out to be an entire galaxy, located about 16 million light-years from Earth in the constellation of Centaurus (The Centaur). In yet another sign of NGC 5408 breaking convention, the galaxy is associated with an object known as an ultraluminous X-ray source, dubbed NGC 5408 X-1, one of the best studied of its class. These rare objects beam out prodigious amounts of energetic X-rays. Astrophysicists believe these sources to be strong candidates for intermediate-mass black holes. This hypothetical type of black hole has significantly less mass than the supermassive black holes found in galactic centers, which can have billions of times the mass of the sun, but have a good deal more mass than the black holes formed when giant stars collapse. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Innovative and applied research on big data platforms of smart heritage

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Li, J.; Sun, H.

    2015-08-01

    Big data has huge commercial value and potential. Under the background of big data, a heritage site is faced with a number of questions and challenges such as, how to accelerate industrial innovation, benign competition and the creation of new business value. Based on the analysis of service data from the national archaeological site and park, Yuan Ming Yuan, this paper investigates the common problems of site management operations such as, inappropriate cultural interpretation, insufficient consumer demand and so on. In order to solve these operational problems, a new service system called the "one platform - three systems" was put forward. This system includes the smart heritage platform and three management systems: the smart heritage management system, the 3-O (Online-Offline-Onsite) service system and the digital explanation system. Combined with the 3-O marketing operation, the platform can realize bidirectional interaction between heritage site management units and tourists, which can also benefit visitors to the heritage site by explaining the culture and history of the heritage site, bring about more demand for cultural information and expand the social and economic benefits.

  5. Hubble Space Telescope observations of the optical counterpart to a ultra-compact high-velocity cloud

    NASA Astrophysics Data System (ADS)

    Sand, David J.

    2017-01-01

    As part of a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs), our team has uncovered five Local Volume dwarf galaxies, two of which were not previously known. Among these was AGC 226067, also known as ALFALFA-Dw1, which appeared to be made up of several HI and blue optical clumps based on ground-based data, with at least one HII region. Here we present Hubble Space Telescope Advanced Camera for Surveys data of AGC 226067. The data show that AGC 226067 is made up of a ~7-30 Myr old stellar population with a [Fe/H]~-0.6. Further, there is no evidence for an old stellar population associated with the system, down to a limit of MV>-8. Based on this and the position of AGC 226067 in the outskirts of the M86 subgroup of the Virgo cluster we present various arguments for the origin of this strange stellar system.

  6. Hubble Watches Super Star Create Holiday Light Show

    NASA Image and Video Library

    2017-12-08

    This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than our sun and 200 times larger. RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than our sun’s luminosity. The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula. By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Acknowledgment: H. Bond (STScI and Pennsylvania State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  7. Hubble Admires a Youthful Globular Star Cluster

    NASA Image and Video Library

    2017-12-08

    Hubble sees an unusal global cluster that is enriching the interstellar medium with metals Globular clusters offer some of the most spectacular sights in the night sky. These ornate spheres contain hundreds of thousands of stars, and reside in the outskirts of galaxies. The Milky Way contains over 150 such clusters — and the one shown in this NASA/ESA Hubble Space Telescope image, named NGC 362, is one of the more unusual ones. As stars make their way through life they fuse elements together in their cores, creating heavier and heavier elements — known in astronomy as metals — in the process. When these stars die, they flood their surroundings with the material they have formed during their lifetimes, enriching the interstellar medium with metals. Stars that form later therefore contain higher proportions of metals than their older relatives. By studying the different elements present within individual stars in NGC 362, astronomers discovered that the cluster boasts a surprisingly high metal content, indicating that it is younger than expected. Although most globular clusters are much older than the majority of stars in their host galaxy, NGC 362 bucks the trend, with an age lying between 10 and 11 billion years old. For reference, the age of the Milky Way is estimated to be above 13 billion years. This image, in which you can view NGC 362’s individual stars, was taken by Hubble’s Advanced Camera for Surveys (ACS). Credit: ESA/Hubble& NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. A Decade of Hubble Space Telescope Science

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Noll, Keith; Stiavelli, Massimo

    2003-06-01

    1. HST studies of Mars J. F. Bell; 2. HST images of Jupiter's UV aurora J. T. Clarke; 3. Star formation J. Bally; 4. SN1987A: the birth of a supernova remnant R. McCray; 5. Globular clusters: the view from HST W. E. Harris; 6. Ultraviolet absorption line studies of the Galactic interstellar medium with the Goddard High Resolution Spectrograph B. D. Savage; 7. HST's view of the center of the Milky Way galaxy M. J. Rieke; 8. Stellar populations in dwarf galaxies: a review of the contribution of HST to our understanding of the nearby universe E. Tolstoy; 9. The formation of star clusters B. C. Whitmore; 10. Starburst galaxies observed with the Hubble Space Telescope C. Leitherer; 11. Supermassive black holes F. D. Macchetto; 12. The HST Key Project to measure the Hubble Constant W. L. Freedman, R. C. Kennicutt, J. R. Mould and B. F. Madore; 13. Ho from Type Ia Supernovae G. A. Tammann, A. Sandage and A. Saha; 14. Strong gravitational lensing: cosmology from angels and redshifts A. Tyson.

  9. Hubble Hones In on a Hypergiant's Home

    NASA Image and Video Library

    2017-12-08

    This beautiful Hubble image reveals a young super star cluster known as Westerlund 1, only 15,000 light-years away in our Milky Way neighborhood, yet home to one of the largest stars ever discovered. Stars are classified according to their spectral type, surface temperature, and luminosity. While studying and classifying the cluster’s constituent stars, astronomers discovered that Westerlund 1 is home to an enormous star. Originally named Westerlund 1-26, this monster star is a red supergiant (although sometimes classified as a hypergiant) with a radius over 1,500 times that of our sun. If Westerlund 1-26 were placed where our sun is in our solar system, it would extend out beyond the orbit of Jupiter. Most of Westerlund 1’s stars are thought to have formed in the same burst of activity, meaning that they have similar ages and compositions. The cluster is relatively young in astronomical terms —at around three million years old it is a baby compared to our own sun, which is some 4.6 billion years old. Credit: ESA/Hubble & NASA

  10. Galaxy Group Stephan's Quintet Video File HubbleMinute: Battle Royale in Stephan's Quintet

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Hubble Space Telescope's closeup view of Stephan's Quintet, a group of five galaxies, reveals a string of brighter star clusters that separate like a diamond necklace. Astronomers studying the compact galaxy group Stephan's Quintet have seen creative destruction in the many collisions taking place among its galaxies. This HubbleMinute discusses what astronomers are learning and hope to learn from exploring the quintet.

  11. Hubble Watches Star Clusters on a Collision Course

    NASA Image and Video Library

    2012-08-16

    Image release August 16, 2012 Astronomers using data from NASA's Hubble Space Telescope have caught two clusters full of massive stars that may be in the early stages of merging. The 30 Doradus Nebula is 170,000 light-years from Earth. What at first was thought to be only one cluster in the core of the massive star-forming region 30 Doradus has been found to be a composite of two clusters that differ in age by about one million years. The entire 30 Doradus complex has been an active star-forming region for 25 million years, and it is currently unknown how much longer this region can continue creating new stars. Smaller systems that merge into larger ones could help to explain the origin of some of the largest known star clusters. The Hubble observations, made with the Wide Field Camera 3, were taken Oct. 20-27, 2009. The blue color is light from the hottest, most massive stars; the green from the glow of oxygen; and the red from fluorescing hydrogen. To read more about this image go to: www.nasa.gov/mission_pages/hubble/science/cluster-collisi... Image Credit: NASA, ESA, and E. Sabbi (ESA/STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Star from the Lizard Constellation Photobombs Hubble Observation

    NASA Image and Video Library

    2017-12-08

    In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right — it has bright bursts of star formation and recorded supernova explosions— it blends into the background somewhat thanks to the gloriously bright star hogging the limelight next to it. The bright object seen in this Hubble image is a single and little-studied star named TYC 3203-450-1, located in the constellation of Lacerta (The Lizard). The star is much closer than the much more distant galaxy. Only this way can a normal star outshine an entire galaxy, consisting of billions of stars. Astronomers studying distant objects call these stars “foreground stars” and they are often not very happy about them, as their bright light is contaminating the faint light from the more distant and interesting objects they actually want to study. In this case, TYC 3203-450-1 is million times closer than NGC 7250, which lies more than 45 million light-years away from us. If the star were the same distance from us as NGC 7250, it would hardly be visible in this image. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Views the Whirling Disk of NGC 4526

    NASA Image and Video Library

    2014-10-24

    This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space Telescope. Although this image paints a picture of serenity, the galaxy is anything but. It is one of the brightest lenticular galaxies known, a category that lies somewhere between spirals and ellipticals. It has hosted two known supernova explosions, one in 1969 and another in 1994, and is known to have a colossal supermassive black hole at its center that has the mass of 450 million suns. NGC 4526 is part of the Virgo cluster of galaxies. Ground-based observations of galaxies in this cluster have revealed that a quarter of these galaxies seem to have rapidly rotating disks of gas at their centers. The most spectacular of these is this galaxy, NGC 4526, and its spinning disk of gas, dust, and stars reaches out uniquely far from its heart, spanning some seven percent of the galaxy's entire radius. This disk is moving incredibly fast, spinning at more than 250 kilometers per second. The dynamics of this quickly whirling region were actually used to infer the mass of NGC 4526’s central black hole — a technique that had not been used before to constrain a galaxy’s central black hole. This image was taken with Hubble's Wide Field and Planetary Camera 2 and the Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  14. Hubble and a Stellar Fingerprint

    NASA Image and Video Library

    2016-03-04

    Showcased at the center of this NASA/ESA Hubble Space Telescope image is an emission-line star known as IRAS 12196-6300. Located just under 2,300 light-years from Earth, this star displays prominent emission lines, meaning that the star’s light, dispersed into a spectrum, shows up as a rainbow of colors marked with a characteristic pattern of dark and bright lines. The characteristics of these lines, when compared to the “fingerprints” left by particular atoms and molecules, can be used to reveal IRAS 12196-6300’s chemical composition. Under 10 million years old and not yet burning hydrogen at its core, unlike the sun, this star is still in its infancy. Further evidence of IRAS 12196-6300’s youth is provided by the presence of reflection nebulae. These hazy clouds, pictured floating above and below IRAS 12196-6300, are created when light from a star reflects off a high concentration of nearby dust, such as the dusty material still remaining from IRAS 12196-6300’s formation. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.

    2005-01-01

    During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.

  16. Hubble Witnesses an Asteroid Mysteriously Disintegrating

    NASA Image and Video Library

    2014-03-06

    Though fragile comet nuclei have been seen falling apart as they near the Sun, nothing like the slow breakup of an asteroid has ever before been observed in the asteroid belt. A series of Hubble Space Telescope images shows that the fragments are drifting away from each other at a leisurely one mile per hour. This makes it unlikely that the asteroid is disintegrating because of a collision with another asteroid. A plausible explanation is that the asteroid is crumbling due to a subtle effect of sunlight. This causes the rotation rate to slowly increase until centrifugal force pulls the asteroid apart. The asteroid's remnant debris, weighing in at 200,000 tons, will in the future provide a rich source of meteoroids. Hubble Observation of P/2013 R3 - November 15, 2013 Credit: NASA, ESA, and D. Jewitt (University of California, Los Angeles) Read more: 1.usa.gov/1ig2E0x NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. A Cosmic Holiday Ornament, Hubble-Style

    NASA Image and Video Library

    2017-12-08

    'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined. Planetary nebulae represent the final brief stage in the life of a medium-sized star like our sun. While consuming the last of the fuel in its core, the dying star expels a large portion of its outer envelope. This material then becomes heated by the radiation from the stellar remnant and radiates, producing glowing clouds of gas that can show complex structures, as the ejection of mass from the star is uneven in both time and direction. To read more go to: www.nasa.gov/mission_pages/hubble/science/ngc5189.html Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Hubble Witnesses an Asteroid Mysteriously Disintegrating

    NASA Image and Video Library

    2014-03-06

    This series of images shows the asteroid P/2013 R3 breaking apart, as viewed by the NASA/ESA Hubble Space Telescope in 2013. This is the first time that such a body has been seen to undergo this kind of break-up. The Hubble observations showed that there are ten distinct objects, each with comet-like dust tails, embedded within the asteroid's dusty envelope. The four largest rocky fragments are up to 200 metres in radius, about twice the length of a football pitch. The date increases from left to right, with frames from 29 October 2013, 15 November 2013, 13 December 2013, and 14 January 2014 respectively, showing how the clumps of debris material move around. The 14 January 2014 frame was not included in the science paper and is additional data. Credit: NASA, ESA, D. Jewitt (UCLA) Read more: 1.usa.gov/1ig2E0x NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  20. Beyond Deficit-filling and Developmental Stakes: Cross-disciplinary Perspectives on Parental Heritage.

    ERIC Educational Resources Information Center

    Moss, Nancy E.; Abramowitz, Stephen I.

    1982-01-01

    Proposes an interdisciplinary conceptual foundation for studying parental heritage. Defines parental heritage as the intentional transmission of valued psychological and material assets from parent to child. Suggests advances in the realm of parental heritage are dependent on clarification of the complex interactions among such sociohistorical,…

  1. V838 Monocerotis revisited: Space phenomenon imitates art

    NASA Astrophysics Data System (ADS)

    2004-03-01

    V838 Monocerotis revisited: Space phenomenon imitates art hi-res Size hi-res: 558 Kb Credits: NASA, the Hubble Heritage Team (AURA/STScI) and ESA V838 Monocerotis revisited: Space phenomenon imitates art "Starry Night", Vincent van Gogh's famous painting, is renowned for its bold whorls of light sweeping across a raging night sky. Although this image of the heavens came only from the artist's restless imagination, a new picture from the NASA/ESA Hubble Space Telescope bears remarkable similarities to the van Gogh work, complete with never-before-seen spirals of dust swirling across trillions of kilometres of interstellar space. This image, obtained with the Advanced Camera for Surveys on February 8, 2004, is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a flashbulb-like pulse of light two years ago. V838 Mon is located about 20,000 light-years away from Earth in the direction of the constellation Monoceros, placing the star at the outer edge of our Milky Way galaxy V838 Monocerotis revisited: Space phenomenon imitates art hi-res Size hi-res: 1989 kb Credits: NASA, the Hubble Heritage Team (AURA/STScI) and ESA V838 Monocerotis revisited: Space phenomenon imitates art "Starry Night", Vincent van Gogh's famous painting, is renowned for its bold whorls of light sweeping across a raging night sky. Although this image of the heavens came only from the artist's restless imagination, a new picture from the NASA/ESA Hubble Space Telescope bears remarkable similarities to the van Gogh work, complete with never-before-seen spirals of dust swirling across trillions of kilometres of interstellar space. This image, obtained with the Advanced Camera for Surveys on February 8, 2004, is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). The

  2. A gravitational-wave standard siren measurement of the Hubble constant

    DOE PAGES

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...

    2017-10-16

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identificationof an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observationsmore » enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. Furthermore, this value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.« less

  3. A gravitational-wave standard siren measurement of the Hubble constant

    SciTech Connect

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identificationof an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observationsmore » enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. Furthermore, this value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.« less

  4. A gravitational-wave standard siren measurement of the Hubble constant.

    PubMed

    2017-11-02

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

  5. A gravitational-wave standard siren measurement of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.; Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos, M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen, D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.; Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.; Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.; Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner, J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen, B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi, E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.; Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.; Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.; Rebolo, R.; Serra-Ricart, M.

    2017-11-01

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

  6. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  7. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  8. How Long Can the Hubble Space Telescope Operate Reliably?

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  9. Feasibility Study of Low-Cost Image-Based Heritage Documentation in Nepal

    NASA Astrophysics Data System (ADS)

    Dhonju, H. K.; Xiao, W.; Sarhosis, V.; Mills, J. P.; Wilkinson, S.; Wang, Z.; Thapa, L.; Panday, U. S.

    2017-02-01

    Cultural heritage structural documentation is of great importance in terms of historical preservation, tourism, educational and spiritual values. Cultural heritage across the world, and in Nepal in particular, is at risk from various natural hazards (e.g. earthquakes, flooding, rainfall etc), poor maintenance and preservation, and even human destruction. This paper evaluates the feasibility of low-cost photogrammetric modelling cultural heritage sites, and explores the practicality of using photogrammetry in Nepal. The full pipeline of 3D modelling for heritage documentation and conservation, including visualisation, reconstruction, and structure analysis, is proposed. In addition, crowdsourcing is discussed as a method of data collection of growing prominence.

  10. Differentiating Heritage and Foreign Language Learners of Spanish: Needs, Perceptions, and Expectations

    ERIC Educational Resources Information Center

    Hedgcock, John S.; Lefkowitz, Natalie

    2016-01-01

    Research on heritage language (HL) development and education has characterized the unique linguistic, sociocultural, and affective profiles of heritage-language (HL) students, yet foreign-language (FL) education has only begun to understand HL students in relation to non-heritage students (Carreira & Kagan, 2011; Felix, 2008). To deepen our…

  11. Exploring Goals and Motivations of Maori Heritage Language Learners

    ERIC Educational Resources Information Center

    Te Huia, Awanui

    2015-01-01

    Motivations of Maori heritage language learners are explored within this qualitative study. "Te reo" Maori (the Maori language) is currently classed as endangered (Reedy et al., 2011), which calls for the exploration of the motivational experiences of Maori heritage language learners. A total of 19 interviews with beginner, intermediate…

  12. Hubble Feathers the Peacock

    NASA Image and Video Library

    2014-09-19

    This picture, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500,000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100,000 and 120,000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm — although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms of free hydrogen, which is the basis material for new stars, meaning that if it weren’t for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation. Credit: Image credit: ESA/Hubble & NASA / Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Unveils a Tapestry of Dazzling Diamond-Like Stars

    NASA Image and Video Library

    2016-01-21

    Resembling an opulent diamond tapestry, this image from NASA Hubble Space Telescope shows a glittering star cluster that contains a collection of some of the brightest stars seen in our Milky Way galaxy called Trumpler 14.

  14. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  15. Protecting Unesco World Heritage PROPERTIES'S Integrity: the Role of Recording and Documentation in Risk Management for PETRA

    NASA Astrophysics Data System (ADS)

    Santana Quintero, M.; Cesaro, G.; Ishakat, F.; Vandesande, A.; Vileikis, O.; Vadafari, A.; Paolini, A.; Van Balen, K.; Fakhoury, L.

    2012-07-01

    Risk management - as it has been defined - involves the decision-making process following a risk assessment (Ball, Watt, 2003). It is the process that involves managing to minimize losses and impacts on the significant of historic structures and to reach the balance between gaining and losing opportunities. This contribution explains the "heritage information" platform developed using low-cost recording, documentation and information management tools to serve as container for assessments resulting from the application of a risk methodology at a pilot area of the Petra Archaeological Park, in particular those that permit digitally and cost effective to prepare an adequate baseline record to identify disturbances and threats. Furthermore, this paper will reflect on the issue of mapping the World Heritage property's boundaries by illustrating a methodology developed during the project and further research to overcome the lack of boundaries and buffer zone for the protection of the Petra World Heritage site, as identified in this project. This paper is based on on-going field project from a multidisciplinary team of experts from the Raymond Lemaire International Centre for Conservation (University of Leuven), UNESCO Amman, Petra Development Tourism and Region Authority (PDTRA), and Jordan's Department of Antiquities (DoA), as well as, experts from Jordan. The recording and documentation approach included in this contribution is part of an on-going effort to develop a methodology for mitigating (active and preventive) risks on the Petra Archaeological Park (Jordan). The risk assessment has been performed using non-intrusive techniques, which involve simple global navigation satellite system (GNSS), photography, and structured visual inspection, as well as, a heritage information framework based on Geographic Information Systems. The approach takes into consideration the comparison of vulnerability to sites with the value assessment to prioritize monuments at risk based

  16. Urban geomorphological heritage - A new field of research

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel; Pica, Alessia; Coratza, Paola

    2017-04-01

    Urbanization is one of the major challenges that the world faces. In 2015, 54% of the world population was living in urban areas and in some countries this percentage is close to 100% (Singapore 100%; Qatar 99%; Belgium 98%). In several parts of the world annual urbanization rates exceed 5% (e.g. Oman 8.54%; Rwanda 6.43%; Burkina Faso 5.87%), which means that urban sprawl is a widespread phenomenon. Urbanization and correlated infrastructure building highly impact and sometimes completely destroy natural landforms. Geomorphological heritage research has traditionally focused on rural or natural regions, in particular protected areas (nature parks, geoparks). We consider that urban areas, which have been poorly investigated until now, are particularly interesting in a geomorphological heritage point of view for almost three reasons: (i) The geomorphological context (site) of some cities is part of their "image" and their fame (e.g. the sugarloaf of Rio de Janeiro); (ii) Urban sprawl often interacts with landforms, which addresses the challenge of geoheritage protection in fast urbanizing areas; (iii) Cities are often tourist destinations, which creates a potential for a geotourist promotion of their geomorphological heritage. This study addresses the main challenges research on geomorphological heritage is facing in urban contexts: (i) the complex interrelationships between natural landforms and urban forms; (ii) the partial or total invisibility of landforms and sediments that are covered or destroyed by urban infrastructures; (iii) man-made landforms as part of urban geomorphological heritage; (iv) the suitability of some landforms (valleys, gullies, mounts) for specific urban uses; (v) the geomorphic constraints of landforms on urban development; and (vi) the importance of some landforms for the urban landscape and the image of the cities. To address these challenges a methodological framework is proposed, which combines: (i) the geomorphological analysis of the

  17. HUBBLE VIEWS A STARRY RING WORLD BORN IN A HEAD-ON COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Right] - A rare and spectacular head-on collision between two galaxies appears in this NASA Hubble Space Telescope true-color image of the Cartwheel Galaxy, located 500 million light-years away in the constellation Sculptor. The new details of star birth resolved by Hubble provide an opportunity to study how extremely massive stars are born in large fragmented gas clouds. The striking ring-like feature is a direct result of a smaller intruder galaxy -- possibly one of two objects to the right of the ring -- that careened through the core of the host galaxy. Like a rock tossed into a lake, the collision sent a ripple of energy into space, plowing gas and dust in front of it. Expanding at 200,000 miles per hour, this cosmic tsunami leaves in its wake a firestorm of new star creation. Hubble resolves bright blue knots that are gigantic clusters of newborn stars and immense loops and bubbles blown into space by exploding stars (supernovae) going off like a string of firecrackers. The Cartwheel Galaxy presumably was a normal spiral galaxy like our Milky Way before the collision. This spiral structure is beginning to re-emerge, as seen in the faint arms or spokes between the outer ring and bulls-eye shaped nucleus. The ring contains at least several billion new stars that would not normally have been created in such a short time span and is so large (150,000 light-years across) our entire Milky Way Galaxy would fit inside. Hubble's new view does not solve the mystery as to which of the two small galaxies might have been the intruder. The blue galaxy is disrupted and has new star formation which strongly suggests it is the interloper. However, the smoother-looking companion has no gas, which is consistent with the idea that gas was stripped out of it during passage through the Cartwheel Galaxy. [Top Left] - Hubble's detailed view shows the knot-like structure of the ring, produced by large clusters of new star formation. Hubble also resolves the effects of thousands of

  18. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    winner among more than 5,000 Internet voters, who were asked last year to select an astronomical target for the Hubble telescope to observe. The voters included students, teachers, and professional and amateur astronomers.

    This 11th anniversary release image was composed by the Hubble Heritage Team, which superimposed Hubble data onto ground-based data (limited to small triangular regions around the outer edge of the image). Ground-based image courtesy of Nigel A. Sharp (NOAO/AURA/NSF) taken at the 0.9-meter telescope on Kitt Peak.

  19. Hubble Sees the Force Awakening in a Newborn Star

    NASA Image and Video Library

    2015-12-17

    In the center of this image from the Hubble Space Telescope, partially obscured by a dark cloud of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe.

  20. Hubble Space Telescope: Battery Capacity Trend Studies

    NASA Technical Reports Server (NTRS)

    Rao, M. Gopalakrishna; Hollandsworth, Roger; Armantrout, Jon

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. Capacity trend data is presented which suggests HST battery replacement is required in 2005-2007 or sooner.

  1. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  2. Hubble Space Telescope. Update: 18 months in orbit

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1990, Space Shuttle Discovery launched the Hubble Space Telescope (HST). An 18 month in-orbit update of the operations and performance of the HST is presented. Numerous color photographs are shown of objects already observed, and mission plans are presented for future observations by the HST.

  3. Documenting Architectural Heritage in Bahia, Brazil, Using Spherical Photogrammetry

    NASA Astrophysics Data System (ADS)

    De Amorim, A. L.; Fangi, G.; Malinverni, E. S.

    2013-07-01

    The Cultural Heritage disappears at a rate higher than we are able, not only, to restore but also to document: human and natural factors, negligence or worst, deliberate demolitions put in danger the collective Architectural Heritage (AH). According to CIPA statements, the recording is important and has to follow some guidelines. The Architectural and Urban Heritage data have to be historically related, critically assessed and analyzed, before to be organized according to a thematic structure and become available for further uses. This paper shows the experiences developed by the Laboratory of Computer Graphics applied to Architecture and Design (LCAD), at the Architecture School of the Federal University of Bahia (FAUFBA), Brazil, in cooperation with the Università Politecnica delle Marche (UNIVPM, DICEA Department), Italy, in documenting architectural heritage. The research set up now has been carried out in the historical sites of Bahia, as Pelourinho neighborhood, a World Heritage by UNESCO. Other historical sites are in the plan of this survey, like the cities of Lençóis and Mucugê in Chapada Diamantina region. The aim is to build a technological platform based on low cost digital technologies and open source tools, such as Panoramic Spherical Photogrammetry, Spatial Database, Geographic Information Systems, Three-dimensional Geometric Modeling, CAD technology, for the collection, validation and dissemination of AH.

  4. The inventory of the Portuguese geological heritage: a good example of scientific cooperation between universities

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Brilha, J.; Pereira, D.

    2012-04-01

    Initiatives of identification, protection, and valuation of the Portuguese abiotic natural heritage have been carried out mainly by the scientific community, and particularly by the academic community. The official institutions responsible for nature conservation have focused their policies primarily on biodiversity issues and the relevance of geoconservation in the Portuguese geological survey was always minor, compared with homologous institutions from countries like Spain, for example. In this context, the academic community has led geoconservation research and activities in Portugal, especially since the late 1990s, following the development of this theme in the European continent. The first systematic inventory of the Portuguese geological heritage is a clear example of the academic collaboration that characterizes the geoconservation in Portugal. Three hundred and twenty six geosites with international or national relevance have been inventoried under the scope of the scientific research project "Identification, characterisation and conservation of geological heritage: a geoconservation strategy for Portugal", financed by the Portuguese Foundation for Science and Technology between 2007 and 2010 (PTDC/CTE-GEX/64966/2006). The inventory (one of the project's outputs) was coordinated by the University of Minho team with the participation of the universities of Algarve, Aveiro, Azores, Coimbra, Évora, Lisboa, Madeira, Nova de Lisboa, Porto, and Trás-os-Montes e Alto Douro. The inventory procedures were based on the ProGEO methodology, i.e., definition of geological frameworks followed by the identification of representative geosites with national and international relevance for each framework. The geosites were selected exclusively based on their scientific value and support twenty-seven frameworks. For each geological framework a leading geoscientist from a university was responsible for the scientific characterization of the framework, to invite

  5. Mobile NMR: An essential tool for protecting our cultural heritage.

    PubMed

    Baias, Maria

    2017-01-01

    What is 'cultural heritage'? Is it simply our legacy of physical artifacts - or is it our collective legacy as human societies - how we want to be remembered by future generations? With time, negligence, and even military conflict working to erase the past, we must ask: Can a better understanding of our shared heritage assists us in addressing cultural differences in the present day? And how can science both help us understand the historic record and work to preserve it? In this perspective article, we examine an emerging scientific method, mobile nuclear magnetic resonance (NMR), which can help us examine in a non-invasive way important objects and sites of our cultural heritage. Following these investigations, one can envisage ways for protecting our global heritage for future generations. For this purpose, we examine how this method can be used to non-destructively explore historical artifacts, which can lead to understanding the science behind the creation of these treasured items - paintings, frescoes, parchments, historical buildings, musical instruments, ancient mummies, and other artifacts. This perspective article follows few relevant examples from the scientific literature where mobile NMR has been applied in a non-invasive way to analyze objects of cultural heritage. One can envision possible future advancements of this technique and further applications where portable NMR can be used for conservation of cultural heritage. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. NASA's Hubble Takes Close-up Portrait of Jupiter

    NASA Image and Video Library

    2017-12-08

    On April 3, 2017, as Jupiter made its nearest approach to Earth in a year, NASA’s Hubble Space Telescope viewed the solar system’s largest planet in all of its up-close glory. At a distance of 415 million miles (668 million kilometers) from Earth, Jupiter offered spectacular views of its colorful, roiling atmosphere, the legendary Great Red Spot, and it smaller companion at farther southern latitudes dubbed “Red Spot Jr.” Read more: go.nasa.gov/2o7tOhH Photo details: This dazzling Hubble Space Telescope photo of #Jupiter was taken when it was comparatively close to Earth, at a distance of 415 million miles. Hubble reveals the intricate, detailed beauty of Jupiter's clouds as arranged into bands of different latitudes, known as tropical regions. These bands are produced by air flowing in different directions at various latitudes. Lighter colored areas, called zones, are high-pressure where the atmosphere rises. Darker low-pressure regions where air falls are called belts. The planet's trademark, the Great Red Spot, is a long-lived storm roughly the diameter of Earth. Much smaller storms appear as white or brown-colored ovals. Such storms can last as little as a few hours or stretch on for centuries. Credit: NASA, ESA, and A. Simon (NASA Goddard) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Differential cosmic expansion and the Hubble flow anisotropy

    SciTech Connect

    Bolejko, Krzysztof; Nazer, M. Ahsan; Wiltshire, David L., E-mail: bolejko@physics.usyd.edu.au, E-mail: ahsan.nazer@canterbury.ac.nz, E-mail: david.wiltshire@canterbury.ac.nz

    2016-06-01

    The Universe on scales 10–100 h {sup −1}Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Groupmore » in the Friedmann-Lemaitre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions, which match the standard FLRW model on ∼> 100 h {sup −1}Mpc scales but exhibit nonkinematic relativistic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the 'Great Attractor'. While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the relativistic differential expansion of the background geometry; a natural feature of solutions to Einstein's equations not included in the current standard model of cosmology.« less

  8. Identifying Chinese Heritage Learners' Motivations, Learning Needs and Learning Goals: A Case Study of a Cohort of Heritage Learners in an Australian University

    ERIC Educational Resources Information Center

    Xu, Hui Ling; Moloney, Robyn

    2014-01-01

    There is increasing enrolment of Chinese heritage language learners in tertiary Chinese language classrooms across Australia. Educated in English, Chinese heritage learners are of diverse national origins and the Chinese language varieties to which they have been exposed through family or community are also diverse. Recent research in this field…

  9. Hubble Space Telescope: Cycle 1 calibration plan. Version 1.0

    NASA Technical Reports Server (NTRS)

    Stanley, Peggy (Editor); Blades, Chris (Editor)

    1990-01-01

    The framework for quantitative scientific analysis with the Hubble Space Telescope (HST) will be established from a detailed calibration program, and a major responsibility of staff in the Telescope & Instruments Branch (TIB) is the development and maintenance of this calibration for the instruments and the telescope. The first in-orbit calibration will be performed by the SI Investigation Definition Teams (IDTs) during the Science Verification (SV) period in Cycle 0 (expected to start 3 months after launch and last for 5 months). Subsequently, instrument scientists in the TIB become responsible for all aspects of the calibration program. Because of the long lead times involved, TIB scientists have already formulated a calibration plan for the next observing period, Cycle 1 (expected to last a year after the end of SV), which has been reviewed and approved by the STScI Director. The purpose here is to describe the contents of this plan. Our primary aim has been to maintain through Cycle 1 the level of calibration that is anticipated by the end of SV. Anticipated accuracies are given here in tabular form - of course, these accuracies can only be best guesses because we do not know how each instrument will actually perform on-orbit. The calibration accuracies are expected to satisfy the normal needs of both the General Observers (GOs) and the Guaranteed Time Observers (GTOs).

  10. The Impacts of Heritage Tourism on Gadara, Northern Jordan

    ERIC Educational Resources Information Center

    Alobiedat, Ammar Abdelkarim

    2014-01-01

    As the tourism industry continues to grow and the desire to visit heritage sites becomes a popular pursuit, heritage has turn into a commodity in the marketplace. This dissertation analyzes the economic, sociocultural and environmental implications of tourism in Gadara, northwest Jordan. It also elaborates on the changing force of tourism and its…

  11. Digital Historic Urban Landscape Methodology for Heritage Impact Assessment of Singapore

    NASA Astrophysics Data System (ADS)

    Widodo, J.; Wong, Y. C.; Ismail, F.

    2017-08-01

    Using the case study of Singapore's existing heritage websites, this research will probe the circumstances of the emerging technology and practice of consuming heritage architecture on a digital platform. Despite the diverse objectives, technology is assumed to help deliver greater interpretation through the use of new and high technology emphasising experience and provide visual fidelity. However, the success is limited as technology is insufficient to provide the past from multiple perspectives. Currently, existing projects provide linear narratives developed through a top-down approach that assumes the end-users as an individual entity and limits heritage as a consumable product. Through this research, we hope to uncover for better experience of digital heritage architecture where interpretation is an evolving `process' that is participatory and contributory that allows public participation, together with effective presentation, cultural learning and embodiment, to enhance the end-users' interpretation of digital heritage architecture. Additionally, this research seeks to establish an inventory in the form of a digital platform that adopts the Historic Urban Landscape (HUL) into the Singapore context to better and deepen the understandings of the public towards architectural as well as cultural heritage through an intercultural and intergenerational dialogue. Through HUL, this research hopes that it will better shape conservation strategies and urban planning.

  12. Palaeogeographical type of the geological heritage of Egypt: A new evidence

    NASA Astrophysics Data System (ADS)

    Sallam, Emad S.; Ruban, Dmitry A.

    2017-05-01

    The geoconservation and geotourism potential of Northeast Africa and, particularly, Egypt is big, but the knowledge of geosites of this territory remains limited. Another urgent task is establishment of the geological heritage of different types. The literature review and the personal field experience permit to propose several geosites that reflect the geological history of Egypt. These include El-Goza El-Hamra, Gebel Qatrani and Birqash, Khashm El-Galala, Wadi El-Hitan, Kom El-Shelul, Wadi Araba, Gebel Umm Bisilla, Maadi Petrified Forest, Dababiya Quarry, and Atud. The noted geosites represent all six main subtypes (facies, palaeoecological, ichnological, taphonomic, event, and geoarchaeological) of the palaeogeographical type of the geological heritage. Their rank varies between local and global. The entire palaeogeographical heritage of Egypt is of international importance. It is argued that three kinds of geodiversity are linked to this heritage. These are determined by the number of subtypes in the country, the co-occurrence of subtypes in the geosites, and the combination of the palaeogeographical and other geological heritage types. The proposed palaeogeographical geosites can be employed successfully for the purposes of geoconservation and geotourism. Presumably, the importance of archaeological objects for tourism activities in Egypt may facilitate attractiveness of the palaeogeographical heritage.

  13. Hubble Sees A Smiling Lens

    NASA Image and Video Library

    2015-02-10

    In the center of this image, taken with the NASA/ESA Hubble Space Telescope, is the galaxy cluster SDSS J1038+4849 — and it seems to be smiling. You can make out its two orange eyes and white button nose. In the case of this “happy face”, the two eyes are very bright galaxies and the misleading smile lines are actually arcs caused by an effect known as strong gravitational lensing. Galaxy clusters are the most massive structures in the Universe and exert such a powerful gravitational pull that they warp the spacetime around them and act as cosmic lenses which can magnify, distort and bend the light behind them. This phenomenon, crucial to many of Hubble’s discoveries, can be explained by Einstein’s theory of general relativity. In this special case of gravitational lensing, a ring — known as an Einstein Ring — is produced from this bending of light, a consequence of the exact and symmetrical alignment of the source, lens and observer and resulting in the ring-like structure we see here. Hubble has provided astronomers with the tools to probe these massive galaxies and model their lensing effects, allowing us to peer further into the early Universe than ever before. This object was studied by Hubble’s Wide Field and Planetary Camera 2 (WFPC2) and Wide Field Camera 3 (WFC3) as part of a survey of strong lenses. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt. Image Credit: NASA/ESA

  14. Hubble Nets a Subtle Swarm

    NASA Image and Video Library

    2017-12-08

    This Hubble image shows NGC 4789A, a dwarf irregular galaxy in the constellation of Coma Berenices. It certainly lives up to its name — the stars that call this galaxy home are smeared out across the sky in an apparently disorderly and irregular jumble, giving NGC 4789A a far more subtle and abstract appearance than its glitzy spiral and elliptical cousins. These stars may look as if they have been randomly sprinkled on the sky, but they are all held together by gravity. The colors in this image have been deliberately exaggerated to emphasize the mix of blue and red stars. The blue stars are bright, hot and massive stars that have formed relatively recently, whereas the red stars are much older. The presence of both tells us that stars have been forming in this galaxy throughout its history. At a distance of just over 14 million light-years away NGC 4789A is relatively close to us, allowing us to see many of the individual stars within its bounds. This image also reveals numerous other galaxies, far more distant, that appear as fuzzy shapes spread across the image. Image Credit: ESA/Hubble & NASA, Acknowledgements: Judy Schmidt (Geckzilla) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  16. 77 FR 59223 - Notice of Niagara Falls National Heritage Area Commission Meeting Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Falls National Heritage Area Commission Meeting Closure AGENCY: National Park Service, Interior. ACTION..., 2012, meeting of the Niagara Falls National Heritage Area Commission. The federally appointed Commission serves as the guiding body for Niagara Falls National Heritage Area. DATES: The Commission will...

  17. The Hubble Space Telescope servicing missions: Past, present, and future operational challenges

    NASA Technical Reports Server (NTRS)

    Ochs, William R.; Barbehenn, George M.; Crabb, William G.

    1996-01-01

    The Hubble Space Telescope was designed to be serviced by the Space Shuttle to upgrade systems, replace failed components and boost the telescope into higher orbits. There exists many operational challenges that must be addressed in preparation for the execution of a servicing mission, including technical and managerial issues. The operational challenges faced by the Hubble operations and ground system project for the support of the first servicing mission and future servicing missions, are considered. The emphasis is on those areas that helped ensure the success of the mission, including training, testing and contingency planning.

  18. Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.

    1994-06-01

    There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the

  19. Protection of European Cultural Heritage from geo - hazards: the PROTHEGO project.

    NASA Astrophysics Data System (ADS)

    Margottini, Claudio; Spizzichino, Daniele; Cigna, Francesca; Crosta, Giovanni B.; Frattini, Paolo; Themistocleous, Kyriacos; Fernandez Merodo, José Antonio

    2016-04-01

    Tangible cultural heritage includes various categories of monuments and sites, from cultural landscapes and sacred sites to archaeological complexes, individual architectural or artistic monuments and historic urban centers. Such places are continuously impacted and weathered by several internal and external factors, both natural and human-induced, with rapid and/or slow onset, including natural hazards, such as earthquakes or extreme meteorological events, cumulative processes as well as the effects of humans, especially in conflict situations. A clear picture of endangered sites is not available. In particular, the list of List of World Heritage in danger mainly focuses on sites threaten by armed conflicts. New space technology based on radar interferometry (InSAR) is now capable to monitor, since 1992 and with mm precision, surface deformation for reflective targets named persistent scatterers, which consistently return stable signals to the radar satellites. Led by the Italian Institute for Environmental Protection and Research, and in collaboration with NERC British Geological Survey, Geological and Mining Institute of Spain, University of Milano-Bicocca and Cyprus University of Technology, the project PROTHEGO, co-funded in the framework of JPI on Cultural Heritage EU programme (2015-2018), will make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage in Europe. The project will apply novel InSAR techniques to monitor monuments and sites that are potentially unstable due to landslides, sinkholes, settlement, subsidence, active tectonics as well as structural deformation, all of which could be effected of climate change and human interaction. To magnify the impact of the project, the approach will be implemented in more than 400 sites on the UNESCO World Heritage List in geographical Europe. After the remote sensing investigation, detailed geological interpretation, hazard analysis, local-scale monitoring, advanced

  20. Hubble Sees Stars and a Stripe in Celestial Fireworks

    NASA Image and Video Library

    2008-07-01

    A delicate ribbon of gas floats eerily in our galaxy. This image, taken by NASA Hubble Space Telescope, is a very thin section of a supernova remnant caused by a stellar explosion that occurred more than 1,000 years ago.

  1. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  2. Hubble Space Telescope Deep Field Lesson Package. Teacher's Guide, Grades 6-8. Amazing Space: Education On-Line from the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This lesson guide accompanies the Hubble Deep Field set of 10 lithographs and introduces 4 astronomy lesson plans for middle school students. Lessons include: (1) "How Many Objects Are There?"; (2) "Classifying and Identifying"; (3) "Estimating Distances in Space"; and (4) "Review and Assessment." Appendices…

  3. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  4. Using SAHRIS a web-based application for creating heritage cases and permit applications

    NASA Astrophysics Data System (ADS)

    Mlungwana, N.

    2015-08-01

    Since the inception of the South African Heritage Resources Information System (SAHRIS) in 2012, creating heritage cases and permit applications has been streamlined, and interaction with South African Heritage Authorities has been simplified. SAHRIS facilitates applications for development cases and mining applications that trigger the South African National Heritage Resources Act (Act 25 of 1999) and is able to differentiate between cases that require comment only, where the heritage process is subsidiary to environmental or mining law (Section 38(8)), and those where the heritage authority is the deciding authority (Section 38(1)). The system further facilitates cases related to site and object management, as well as permit applications for excavation, invasive research techniques and export of materials for research abroad in the case of archaeological or palaeontological specimens, or for sale or exhibition in the case of heritage objects. The integrated, easy to use, online system has removed the need for applicants to print out forms, take documents from one government department to the next for approval and other time-consuming processes that accompany paper-based systems. SAHRIS is a user friendly application that makes it easy for applicants to make their submissions, but also allows applicants to track the progress of their cases with the relevant heritage authority, which allows for better response rates and turnaround times from the authorities, while also ensuring transparency and good governance practice.

  5. HUBBLE: ON THE ASTEROID TRAIL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers Karl Stapelfeldt and Robin Evans have tracked down about 100 small asteroids by hunting through more than 28,000 archival images taken by the Hubble Space Telescope's Wide Field and Planetary Camera 2. Here is a sample of what they have found: four archival images that show the curved trails left by asteroids. [Top left]: Hubble captured a bright asteroid, with a visual magnitude of 18.7, roaming in the constellation Centaurus. Background stars are shown in white, while the asteroid trail is depicted in blue at top center. The trail has a length of 19 arc seconds. This asteroid has a diameter of one and one-quarter miles (2 kilometers), and was located 87 million miles from Earth and 156 million miles from the sun. Numerous orange and blue specks in this image and the following two images were created by cosmic rays, energetic subatomic particles that struck the camera's detector. [Top right]: Here is an asteroid with a visual magnitude of 21.8 passing a galaxy in the constellation Leo. The trail is seen in two consecutive exposures, the first shown in blue and the second in red. This asteroid has a diameter of half a mile (0.8 kilometers), and was located 188 million miles from Earth and 233 million miles from the sun. [Lower left]: This asteroid in the constellation Taurus has a visual magnitude of 23, and is one of the faintest seen so far in the Hubble archive. It moves from upper right to lower left in two consecutive exposures; the first trail is shown in blue and the second in red. Because of the asteroid's relatively straight trail, astronomers could not accurately determine its distance. The estimated diameter is half a mile (0.8 kilometers) at an Earth distance of 205 million miles and a sun distance of 298 million miles. [Lower right]: This is a broken asteroid trail crossing the outer regions of galaxy NGC 4548 in Coma Berenices. Five trail segments (shown in white) were extracted from individual exposures and added to a cleaned color image

  6. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  7. The European Research Infrastructure for Heritage Science (erihs)

    NASA Astrophysics Data System (ADS)

    Striova, J.; Pezzati, L.

    2017-08-01

    The European Research Infrastructure for Heritage Science (E-RIHS) entered the European strategic roadmap for research infrastructures (ESFRI Roadmap [1]) in 2016, as one of its six new projects. E-RIHS supports research on heritage interpretation, preservation, documentation and management. Both cultural and natural heritage are addressed: collections, artworks, buildings, monuments and archaeological sites. E-RIHS aims to become a distributed research infrastructure with a multi-level star-structure: facilities from single Countries will be organized in national nodes, coordinated by National Hubs. The E-RIHS Central Hub will provide the unique access point to all E-RIHS services through coordination of National Hubs. E-RIHS activities already started in some of its national nodes. In Italy the access to some E-RIHS services started in 2015. A case study concerning the diagnostic of a hypogea cave is presented.

  8. European Master-Doctorate Course on "Vulnerability of Cultural Heritage to Climate Change"

    NASA Astrophysics Data System (ADS)

    Lefèvre, R.-A.

    2009-04-01

    « Vulnerability of Cultural Heritage to Climate Change », European Master-Doctorate Course, Council of Europe, Strasbourg 7-11 September 2009 The character of Cultural Heritage is closely related to the climate, and the urban landscape and the built heritage have been designed with the local climate in mind. The stability of Cultural Heritage is, therefore, closely tied to its interactions with the ground and the atmosphere. Climate Change is thus expected to have either catastrophic or subtle effects on Cultural Heritage materials and Cultural Landscapes. The major aim of the 2009 Strasbourg Course is to ensure that young European students are informed on these important problems and will be able in the future to undertake rigorous ongoing scientific monitoring of changes in conditions of Cultural Heritage. The Programme of the Course will cover the following topics: • Heritage Climatology • Principles of Mitigation and Adaptation of Cultural Heritage to Climate Change • Impact of Climate Change on building structures • Dose-Response and Damage Functions for materials in a Changing Climate • Modelling sea salts transport and deposition • Modelling wetting and drying of historic buildings • Impact of Climate Change on building materials: stone, mortar, modern glass, stained glass windows • Impact of Climate Change on organic materials • Biological impact of Climate Change on Cultural Heritage • Sea level rise models and possible application to Cultural Heritage • Past, present and future for Venice • The policies and action plans of International Organisations (Council of Europe, UNESCO, ICCROM) The Course is addressed to young people with scientific background: physicists, chemists, geologists, biologists, engineers, because of the high scientific level of the background required to follow the lectures. Teaching will be delivered in English without any simultaneous translation. The teachers belong to European Universities, National

  9. Horsehead Nebula

    NASA Image and Video Library

    2017-12-08

    Image released April 19, 2013. Astronomers have used NASA's Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory's launch aboard the space shuttle Discovery on April 24, 1990. Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More on this image. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Teaching the Heritage of Technology. Past, Present, and Future.

    ERIC Educational Resources Information Center

    Maley, Donald

    A rationale for teaching the heritage of technology points out that technology has been used to alter the environment, social institutions, and civilizations, and has a profound effect on human living. An outline for a curriculum in technical heritage shows that it should be taught with respect to three periods--the past, the present, and the…

  11. Hubble Revisits a Globular Cluster’s Age

    NASA Image and Video Library

    2014-08-13

    This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behavior is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data have been obtained and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the

  12. Hubble Space Telescope,Spitzer Space Telescope

    NASA Image and Video Library

    2018-01-11

    This image showcases both the visible and infrared visualizations of the Orion Nebula. This view from a movie sequence looks down the 'valley' leading to the star cluster at the far end. The left side of the image shows the visible-light visualization, which fades to the infrared-light visualization on the right. These two contrasting models derive from observations by the Hubble and Spitzer space telescopes. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22089

  13. Hubble Sees Turquoise-Tinted Plumes in Large Magellanic Cloud

    NASA Image and Video Library

    2017-12-08

    The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/European Space Agency (ESA) Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the color is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1,000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. Image Credit: ESA/Hubble & NASA: acknowledgement: Josh Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science

  14. Team Learning in Teacher Teams: Team Entitativity as a Bridge between Teams-in-Theory and Teams-in-Practice

    ERIC Educational Resources Information Center

    Vangrieken, Katrien; Dochy, Filip; Raes, Elisabeth

    2016-01-01

    This study aimed to investigate team learning in the context of teacher teams in higher vocational education. As teacher teams often do not meet all criteria included in theoretical team definitions, the construct "team entitativity" was introduced. Defined as the degree to which a group of individuals possesses the quality of being a…

  15. Hubble Finds an Hourglass Nebula around a Dying Star

    NASA Image and Video Library

    1996-01-16

    This Hubble telescope snapshot of MyCn18, a young planetary nebula, reveals that the object has an hourglass shape with an intricate pattern of etchings in its walls. A planetary nebula is the glowing relic of a dying, Sun-like star.

  16. Discarded solar array panel removed from Hubble Space telescope

    NASA Image and Video Library

    1993-12-06

    STS061-95-031 (6 Dec 1993) --- The damaged solar array panel removed from the Hubble Space Telescope (HST) is backdropped over northern Sudan. Astronaut Kathryn C. Thornton, just out of frame at top right, watched the panel after releasing it moments earlier.

  17. Safeguarding Cultural Heritage against Climate Change and Natural Hazards through Stakeholder Involvement

    NASA Astrophysics Data System (ADS)

    de Wit, Rosmarie; Zuvela-Aloise, Maja; Hollosi, Brigitta; Anders, Ivonne; Höfler, Angelika; Boi, Silvia; Resta, Vanni; Patrikakis, Charalampos

    2017-04-01

    Europe's cultural heritage is among the richest in the world, and draws millions of visitors to archeological sites, museums, monuments, castles, and other sites each year. The protection and conservation of European heritage is of utmost importance for our society, not only in order to preserve the European cultural identity, but also because cultural heritage is a wealth creator bringing tourism-related business opportunities on which many communities depend. However, Europe's heritage assets are extremely exposed to climate change and natural hazards, which threatens their integrity and may compromise their value. The goal of the STORM (Safeguarding Cultural Heritage through Technical and Organisational Management) project is to provide critical decision-making tools to European cultural heritage stakeholders affected by climate change and natural hazards. Here, the STORM project will be presented with a focus on climate change and natural hazard risk communication to the involved stakeholders. However, climate change communication is not a one-way process, and discussions with stakeholders are necessary to identify their specific needs. Hence, the STORM concept is tested through pilot site studies in five different countries: the Diocletian Baths in Rome, Italy; the Mellor Heritage site, Manchester, UK; the Roman Ruins of Tróia, Portugal; the Historical Centre of Rethymno on Crete, Greece and Ephesus, Izmir, Turkey. Furthermore, the past and future climatic conditions at the project's pilot sites are analysed in terms of mean state and extreme events (for example temperature and precipitation changes evident from observations and climate scenarios), which will be discussed with regard to their relevance for the local cultural heritage protection based on discussions with the stakeholders.

  18. The variance of the locally measured Hubble parameter explained with different estimators

    SciTech Connect

    Odderskov, Io; Hannestad, Steen; Brandbyge, Jacob, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: jacobb@phys.au.dk

    We study the expected variance of measurements of the Hubble constant, H {sub 0}, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N -body simulations. We compare the variance with that obtained by carrying out mock observations in the N-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend to obtain a smaller variancemore » than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H {sub 0} from CMB measurements and the value measured in the local universe, these considerations are important in light of the percent determination of the Hubble constant in the local universe.« less

  19. First aid to Cultural Heritage. Training initiatives on rapid documentation

    NASA Astrophysics Data System (ADS)

    Almagro Vidal, A.; Tandon, A.; Eppich, R.

    2015-08-01

    Recent dramatic events have brought to the forefront the debate on how to protect, safeguard and document Cultural Heritage in conflict areas. Heritage places have become battlefields, sources of illicit trafficking and even deliberate targets of destruction because of the politicisation to further conflict ideologies as well as misinterpretation of the values they represent. Is it possible to protect Cultural Heritage under such circumstances? If yes, when is the right time to intervene and who can help in this task? How can documentation and training assist? The International Course on First Aid to Cultural Heritage in Times of Crisis promoted by ICCROM (The International Centre for the Study of the Preservation and Restoration of Cultural Property) in collaboration with various partners focuses specifically on ways to help in such difficult and stressful situations. This paper explores the methodological approach and highlights the special circumstances that surround rapid documentation and preliminary condition assessment in conflict areas, and in cases of complex emergencies such as an earthquake striking a conflict area. The paper identifies international actors that might play a special and crucial role in the first steps of such a situation and recognizes the need for training activities to strengthen capacities for disaster response to cultural heritage at national and regional levels.

  20. Building resilience in heritage district: lesson learned from Kotagede Yogyakarta Indonesia

    NASA Astrophysics Data System (ADS)

    Hadi Rahmi, Dwita

    2017-12-01

    Kotagede, a heritage district in Yogyakarta and famous as a silver town and a destination for heritage tourism, is one of the vulnerable heritage resources in Indonesia. Its history, dates back to the Old Mataram Kingdom in 16th Century, has inherited many heritage properties, including traditional settlement patterns and Javanese traditional architecture of houses. As a vulnerable heritage area, Kotagede experienced several disaster attackks; with the last one was the Java biggest earthquake in 2006 that destroyed more than 200,000 houses in Yogyakarta and dozens of traditional houses in Kotagede collapsed. Ten years after the big disaster, Kotagede has significantly developed with some former earthquake impact can still be found. This paper aims to document and examine the way Kotagede built its resilience, particularly after the last earthquake, and how the reconstruction process relates to the broader concept of resilience. Descriptive and qualitative approaches are used based on historical data and field observation. This paper notes that although not as fast as other non-heritage areas, the reconstruction process in Kotagede has finally done. It is also argues that several factors contribute to the building resilience of Kotagede, and the most important factor is the collaborative actions among stakeholders in coping the disaster impact. Such collaboration can be effectively done when the local community have strong commitment and willingness to solve their problem and have a resilient Kotagede.

  1. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.

    PubMed

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-04-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.

  2. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams

    PubMed Central

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-01-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856

  3. Hubble Captures Vivid Auroras in Jupiter’s Atmosphere

    NASA Image and Video Library

    2017-12-08

    Astronomers are using the NASA/ESA Hubble Space Telescope to study auroras — stunning light shows in a planet’s atmosphere — on the poles of the largest planet in the solar system, Jupiter. This observation program is supported by measurements made by NASA’s Juno spacecraft, currently on its way to Jupiter. Jupiter, the largest planet in the solar system, is best known for its colorful storms, the most famous being the Great Red Spot. Now astronomers have focused on another beautiful feature of the planet, using Hubble's ultraviolet capabilities. The extraordinary vivid glows shown in the new observations are known as auroras. They are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms of gas. As well as producing beautiful images, this program aims to determine how various components of Jupiter’s auroras respond to different conditions in the solar wind, a stream of charged particles ejected from the sun. This observation program is perfectly timed as NASA’s Juno spacecraft is currently in the solar wind near Jupiter and will enter the orbit of the planet in early July 2016. While Hubble is observing and measuring the auroras on Jupiter, Juno is measuring the properties of the solar wind itself; a perfect collaboration between a telescope and a space probe. “These auroras are very dramatic and among the most active I have ever seen”, said Jonathan Nichols from the University of Leicester, U.K., and principal investigator of the study. “It almost seems as if Jupiter is throwing a firework party for the imminent arrival of Juno.” Read more: go.nasa.gov/294QswK Credits: NASA, ESA, and J. Nichols (University of Leicester)

  4. Hubble Captures Vivid Auroras in Jupiter’s Atmosphere

    NASA Image and Video Library

    2016-06-30

    Astronomers are using the NASA/ESA Hubble Space Telescope to study auroras — stunning light shows in a planet’s atmosphere — on the poles of the largest planet in the solar system, Jupiter. This observation program is supported by measurements made by NASA’s Juno spacecraft, currently on its way to Jupiter. Jupiter, the largest planet in the solar system, is best known for its colorful storms, the most famous being the Great Red Spot. Now astronomers have focused on another beautiful feature of the planet, using Hubble's ultraviolet capabilities. The extraordinary vivid glows shown in the new observations are known as auroras. They are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms of gas. As well as producing beautiful images, this program aims to determine how various components of Jupiter’s auroras respond to different conditions in the solar wind, a stream of charged particles ejected from the sun. This observation program is perfectly timed as NASA’s Juno spacecraft is currently in the solar wind near Jupiter and will enter the orbit of the planet in early July 2016. While Hubble is observing and measuring the auroras on Jupiter, Juno is measuring the properties of the solar wind itself; a perfect collaboration between a telescope and a space probe. “These auroras are very dramatic and among the most active I have ever seen”, said Jonathan Nichols from the University of Leicester, U.K., and principal investigator of the study. “It almost seems as if Jupiter is throwing a firework party for the imminent arrival of Juno.” Credits: NASA, ESA, and J. Nichols (University of Leicester)

  5. Hubble Catches a Galaxy Duo by the "Hare"

    NASA Image and Video Library

    2017-12-08

    This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. This particular object stands out from the crowd by actually being composed of two separate galaxies rushing past each other at about 2 million kilometers (1,243,000 miles) per hour. This speed is most likely too fast for them to merge and form a single galaxy. However, because of their small separation of only about 20,000 light-years, the galaxies will distort one another through the force of gravity while passing each other, changing their structures on a grand scale. Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers. The intriguing behaviors of interacting galaxies take many forms; galactic cannibalism, galaxy harassment and even galaxy collisions. The Milky Way itself will eventually fall victim to the latter, merging with the Andromeda Galaxy in about 4.5 billion years. The fate of our galaxy shouldn’t be alarming though: while galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Hubble Space Telescope Metallized Teflon(registered trademark) FEP Thermal Control Materials: On-Orbit Degradation and Post-Retrieval Analysis

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, J. A.; deGroh, K. K.; Banks, B.; Wang, L.; He, C.

    1988-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multilayer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(Registered Trademark) FEP sample evaluation and additional testing of pristine Teflon(Registered Trademark) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations , and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the retrieved Teflon(Registered Trademark) FEP.

  7. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  8. SeaWiFS technical report series. Volume 21: The heritage of SeaWiFS. A retrospective on the CZCS NIMBUS Experiment Team (NET) program

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Hooker, Stanford B.; Firestone, Elaine R.

    1994-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission is based on the scientific heritage of the Coastal Zone Color Scanner (CZCS), a proof-of-concept instrument carried on the National Aeronautics and Space Administration (NASA) NIMBUS-7 environmental satellite for the purpose of measuring upwelling radiance from the ocean surface. The CZCS mission provided the first observations of ocean color from space, and over the mission lifetime of 1978-1986, allowed oceanographers an initial opportunity to observe the variable patterns of global biological productivity. One of the key elements of the CZCS mission was the formation of the CZCS NIMBUS Experiment Team (NET), a group of optical physicists and biological oceanographers. The CZCS NET was designated to validate the accuracy of the CZCS radiometric measurements and to connect the instrument's measurements to standard measures of oceanic biological productivity and optical seawater clarity. In the period following the cessation of CZCS observations, some of the insight and experience gained by the CZCS NET activity has dissipated as several proposed follow-on sensors failed to achieve active status. The Sea WiFS mission will be the first dedicated orbital successor to CZCS it in turn precedes observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Earth Observing System (EOS). Since the CZCS NET experience is an important model for Sea WiFS and MODIS surface truth efforts, this document is intended to provide a comprehensive review of the validation of oceanographic data for the first orbital ocean color sensor mission. This document also summarizes the history of the CZCS NET activities. The references listed in the Bibliography are a listing of published scientific research which relied upon the CZCS BET algorithms, or research which was conducted on the basis of CZCS mission elements.

  9. Hubble Space Telescope Deploy, Eastern Cuba, Haiti

    NASA Image and Video Library

    1990-04-29

    A close up deploy view of the Hubble Space Telescope on the end of the space shuttle remote manipulator system (RMS) with Eastern Cuba, (20.0N, 74.0W) seen on the left side of the telescope and northern Haiti seen on the right side of the telescope. The light colored blue feature in the water north of Haiti is the shallow waters of the Caicos Bank.

  10. Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side'

    NASA Image and Video Library

    2017-12-08

    Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side' HST/WFPC2 Image of Jupiter and Ganymede Taken April 9, 2007 NASA's Hubble Space Telescope has caught Jupiter's moon Ganymede playing a game of "peek-a-boo." In this crisp Hubble image, Ganymede is shown just before it ducks behind the giant planet. Ganymede completes an orbit around Jupiter every seven days. Because Ganymede's orbit is tilted nearly edge-on to Earth, it routinely can be seen passing in front of and disappearing behind its giant host, only to reemerge later. Composed of rock and ice, Ganymede is the largest moon in our solar system. It is even larger than the planet Mercury. But Ganymede looks like a dirty snowball next to Jupiter, the largest planet in our solar system. Jupiter is so big that only part of its Southern Hemisphere can be seen in this image. Hubble's view is so sharp that astronomers can see features on Ganymede's surface, most notably the white impact crater, Tros, and its system of rays, bright streaks of material blasted from the crater. Tros and its ray system are roughly the width of Arizona. The image also shows Jupiter's Great Red Spot, the large eye-shaped feature at upper left. A storm the size of two Earths, the Great Red Spot has been raging for more than 300 years. Hubble's sharp view of the gas giant planet also reveals the texture of the clouds in the Jovian atmosphere as well as various other storms and vortices. Astronomers use these images to study Jupiter's upper atmosphere. As Ganymede passes behind the giant planet, it reflects sunlight, which then passes through Jupiter's atmosphere. Imprinted on that light is information about the gas giant's atmosphere, which yields clues about the properties of Jupiter's high-altitude haze above the cloud tops. This color image was made from three images taken on April 9, 2007, with the Wide Field Planetary Camera 2 in red, green, and blue filters. The image shows Jupiter and Ganymede in close to natural colors. For

  11. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  12. A new estimate of the Hubble constant using the Virgo cluster distance

    NASA Astrophysics Data System (ADS)

    Visvanathan, N.

    The Hubble constant, which defines the size and age of the universe, remains substantially uncertain. Attention is presently given to an improved distance to the Virgo Cluster obtained by means of the 1.05-micron luminosity-H I width relation of spirals. In order to improve the absolute calibration of the relation, accurate distances to the nearby SMC, LMC, N6822, SEX A and N300 galaxies have also been obtained, on the basis of the near-IR P-L relation of the Cepheids. A value for the global Hubble constant of 67 + or 4 km/sec per Mpc is obtained.

  13. Ethnic Heritage: Supplemental Readings.

    ERIC Educational Resources Information Center

    Powell, Roberta

    These supplemental readings are part of a total packet of learning materials on the heritage of Southern agrarians. The readings are prefaced by a story of Southern life told in pictures. The primary source readings cover the following topics: (1) Farmers Unions, (2) Farm Tenancy, (3) Recovery Programs of the Roosevelt Administration, (4) Cotton…

  14. 36 CFR 73.11 - Federal Interagency Panel for World Heritage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Federal Interagency Panel for World Heritage. 73.11 Section 73.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Interior on implementation of the World Heritage Convention. Among other things, the panel assists in the...

  15. 36 CFR 73.11 - Federal Interagency Panel for World Heritage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Federal Interagency Panel for World Heritage. 73.11 Section 73.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Interior on implementation of the World Heritage Convention. Among other things, the panel assists in the...

  16. 36 CFR 73.11 - Federal Interagency Panel for World Heritage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Federal Interagency Panel for World Heritage. 73.11 Section 73.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Interior on implementation of the World Heritage Convention. Among other things, the panel assists in the...

  17. Profiles of an Acquisition Generation: Nontraditional Heritage Speakers of Spanish

    ERIC Educational Resources Information Center

    DeFeo, Dayna Jean

    2018-01-01

    Though definitions vary, the literature on heritage speakers of Spanish identifies two primary attributes: a linguistic and cultural connection to the language. This article profiles four Anglo college students who grew up in bilingual or Spanish-dominant communities in the Southwest who self-identified as Spanish heritage speakers, citing…

  18. Hubble's Cosmology: From a Finite Expanding Universe to a Static Endless Universe

    NASA Astrophysics Data System (ADS)

    Assis, A. K. T.; Neves, M. C. D.; Soares, D. S. L.

    2009-12-01

    We analyze the views of Edwin Hubble (1889-1953) as regards the large scale structure of the universe. In 1929 he initially accepted a finite expanding universe in order to explain the redshifts of distant galaxies. Later on he turned to an infinite stationary universe and a new principle of nature in order to explain the same phenomena. Initially, he was impressed by the agreement of his redshift-distance relation with one of the predictions of de Sitter's cosmological model, namely, the so-called "de Sitter effect'', the phenomenon of the scattering of material particles, leading to an expanding universe. A number of observational evidences, though, made him highly skeptical with such a scenario. They were better accounted for by an infinite static universe. The evidences he found were: (i) the huge values he was getting for the "recession'' velocities of the nebulae (1,800 km s-1 in 1929 up to 42,000 km s-1 in 1942, leading to v/c = 1/7), with the redshifts interpreted as velocity-shifts. All other known real velocities of large astronomical bodies are much smaller than these. (ii) The "number effect'' test, which is the running of nebulae luminosity with redshift. Hubble found that a static universe is, within the observational uncertainties, slightly favored. The test is equivalent to the modern "Tolman effect,'' for galaxy surface brightnesses, whose results are still a matter of dispute. (iii) The smallness of the size and the age of the curved expanding universe, implied by the expansion rate that he had determined, and, (iv) the fact that a uniform distribution of galaxies on large scales is more easily obtained from galaxy counts, when a static and flat model is considered. In an expanding and closed universe, Hubble found that homogeneity was only obtained at the cost of a large curvature. We show, by quoting his works, that Hubble remained cautiously against the big bang until the end of his life, contrary to the statements of many modern authors. In

  19. Hubble Space Telescope On-orbit Transfer Function Test

    NASA Technical Reports Server (NTRS)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  20. TeamXchange: A Team Project Experience Involving Virtual Teams and Fluid Team Membership

    ERIC Educational Resources Information Center

    Dineen, Brian R.

    2005-01-01

    TeamXchange, an online team-based exercise, is described. TeamXchange is consistent with the collaborative model of learning and provides a means of fostering enhanced student learning and engagement through collaboration in virtual teams experiencing periodic membership changes. It was administered in an undergraduate Organizational Behavior…