Human African Trypanosomiasis Transmission, Kinshasa, Democratic Republic of Congo
Diabakana, Philemon Mansinsa; Mesu, Victor Kande Betu Ku; Manzambi, Emile Zola; Ollivier, Gaelle; Asonganyi, Tazoacha; Cuny, Gerard; Grébaut, Pascal
2006-01-01
To investigate the epidemiology of human African trypanosomiasis (sleeping sickness) in Kinshasa, Democratic Republic of Congo, 2 entomologic surveys were conducted in 2005. Trypanosoma brucei gambiense and human-blood meals were found in tsetse fly midguts, which suggested active disease transmission. Vector control should be used to improve human African trypanosomiasis control efforts. PMID:17326955
Cooper, Anneli; Ilboudo, Hamidou; Alibu, V Pius; Ravel, Sophie; Enyaru, John; Weir, William; Noyes, Harry; Capewell, Paul; Camara, Mamadou; Milet, Jacqueline; Jamonneau, Vincent; Camara, Oumou; Matovu, Enock; Bucheton, Bruno; MacLeod, Annette
2017-01-01
Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants. DOI: http://dx.doi.org/10.7554/eLife.25461.001 PMID:28537557
Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness).
Kennedy, Peter Ge
2013-02-01
Human African trypanosomiasis, or sleeping sickness, is caused by infection with parasites of the genus Trypanosoma, transmitted by the tsetse fly. The disease has two forms, Trypanosoma brucei (T b) rhodesiense and T b gambiense; and is almost always fatal if untreated. Despite a recent reduction in the number of reported cases, patients with African trypanosomiasis continue to present major challenges to clinicians. Because treatment for CNS-stage disease can be very toxic, diagnostic staging to distinguish early-stage from late-stage disease when the CNS in invaded is crucial but remains problematic. Melarsoprol is the only available treatment for late-stage T b rhodesiense infection, but can be lethal to 5% of patients owing to post-treatment reactive encephalopathy. Eflornithine combined with nifurtimox is the first-line treatment for late-stage T b gambiense. New drugs are in the pipeline for treatment of CNS human African trypanosomiasis, giving rise to cautious optimism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis
Tatipaka, Hari Babu; Gillespie, J. Robert; Chatterjee, Arnab K.; Norcross, Neil R.; Hulverson, Matthew A.; Ranade, Ranae M.; Nagendar, Pendem; Creason, Sharon A.; McQueen, Joshua; Duster, Nicole A.; Nagle, Advait; Supek, Frantisek; Molteni, Valentina; Wenzler, Tanja; Brun, Reto; Glynne, Richard; Buckner, Frederick S.; Gelb, Michael H.
2014-01-01
A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl) oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl) imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable drug-like properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent anti-parasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis. PMID:24354316
The continuing problem of human African trypanosomiasis (sleeping sickness).
Kennedy, Peter G E
2008-08-01
Human African trypanosomiasis, also known as sleeping sickness, is a neglected disease, and it continues to pose a major threat to 60 million people in 36 countries in sub-Saharan Africa. Transmitted by the bite of the tsetse fly, the disease is caused by protozoan parasites of the genus Trypanosoma and comes in two types: East African human African trypanosomiasis caused by Trypanosoma brucei rhodesiense and the West African form caused by Trypanosoma brucei gambiense. There is an early or hemolymphatic stage and a late or encephalitic stage, when the parasites cross the blood-brain barrier to invade the central nervous system. Two critical current issues are disease staging and drug therapy, especially for late-stage disease. Lumbar puncture to analyze cerebrospinal fluid will remain the only method of disease staging until reliable noninvasive methods are developed, but there is no widespread consensus as to what exactly defines biologically central nervous system disease or what specific cerebrospinal fluid findings should justify drug therapy for late-stage involvement. All four main drugs used for human African trypanosomiasis are toxic, and melarsoprol, the only drug that is effective for both types of central nervous system disease, is so toxic that it kills 5% of patients who receive it. Eflornithine, alone or combined with nifurtimox, is being used increasingly as first-line therapy for gambiense disease. There is a pressing need for an effective, safe oral drug for both stages of the disease, but this will require a significant increase in investment for new drug discovery from Western governments and the pharmaceutical industry.
Patrick, Donald A; Gillespie, J Robert; McQueen, Joshua; Hulverson, Matthew A; Ranade, Ranae M; Creason, Sharon A; Herbst, Zackary M; Gelb, Michael H; Buckner, Frederick S; Tidwell, Richard R
2017-02-09
A previous publication from this lab (Patrick, et al. Bioorg. Med. Chem. 2016, 24 , 2451 - 2465 ) explored the antitrypanosomal activities of novel derivatives of 2-(2-benzamido)ethyl-4-phenylthiazole (1), which had been identified as a hit against Trypanosoma brucei, the causative agent of human African trypanosomiasis. While a number of these compounds, particularly the urea analogues, were quite potent, these molecules as a whole exhibited poor metabolic stability. The present work describes the synthesis of 65 new analogues arising from medicinal chemistry optimization at different sites on the molecule. The most promising compounds were the urea derivatives of 2-aryl-benzothiazol-5-amines. One such analogue, (S)-2-(3,4-difluorophenyl)-5-(3-fluoro-N-pyrrolidylamido)benzothiazole (57) was chosen for in vivo efficacy studies based upon in vitro activity, metabolic stability, and brain penetration. This compound attained 5/5 cures in murine models of both early and late stage human African trypanosomiasis, representing a new lead for the development of drugs to combat this neglected disease.
N-myristoyltransferase inhibitors as new leads to treat sleeping sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frearson, Julie A.; Brand, Stephen; McElroy, Stuart P.
2010-11-05
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for {approx}30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target - T. brucei N-myristoyltransferase - leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis inmore » mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.« less
Tiberti, Natalia; Hainard, Alexandre; Lejon, Veerle; Robin, Xavier; Ngoyi, Dieudonné Mumba; Turck, Natacha; Matovu, Enock; Enyaru, John; Ndung'u, Joseph Mathu; Scherl, Alexander; Dayon, Loïc; Sanchez, Jean-Charles
2010-01-01
Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients. PMID:20724469
Neuberger, Ami; Meltzer, Eyal; Leshem, Eyal; Dickstein, Yaakov; Stienlauf, Shmuel; Schwartz, Eli
2014-01-01
Although human African trypanosomiasis (HAT) is uncommon among patients from non-endemic countries (NEC), there has been an increase in the number of cases reported in recent years. A systematic review of the literature was performed. The number of incoming tourists to HAT endemic countries was obtained from the United Nations World Tourism Organization. All HAT cases diagnosed in patients from NEC were included. Immigrants and refugees were excluded. We compared patients during and after the colonial period, and analyzed the relationship between the number of incoming travellers and the number of HAT cases. Between 1902 and 2012, HAT was reported in 244 patients. Most HAT cases were reported before 1920, and after the year 2000. In the colonial era the average age of patients was lower (32.5±7.8 vs. 43.0±16.1 years, P<0.001), the proportion of females was lower (10.0% vs. 23.9%, P<0.01], most cases were diagnosed in expatriates, missionaries and soldiers (74.3%), and Gambian trypanosomiasis accounted for 86/110, (78%) of cases. In the post-colonial era most patients 91/125 (72.8%) were short-term tourists to game parks in Eastern and South-Eastern Africa (mainly in Tanzania); Rhodesian trypanosomiasis accounted for 94/123 (76.4%) of cases. Between 1995 and 2010 there has been a constant linear increase in the number of incoming tourists to Tanzania, and HAT cases occurred in small outbreaks rather than following a similar linear pattern. In recent decades HAT patients from NEC are older, and more likely to be tourists who acquired the disease while visiting game-parks in Eastern and South-Eastern Africa. While Rhodesian trypanosomiasis is relatively uncommon among Africans, it now accounts for most cases reported among patients from NEC. Returning febrile travellers without an alternative diagnosis should be evaluated for HAT. Cases among travellers may serve as sentinels for Rhodesian trypanosomiasis "hot spots" in Africa.
Availability and affordability of treatment for Human African Trypanosomiasis.
Etchegorry, M G; Helenport, J P; Pecoul, B; Jannin, J; Legros, D
2001-11-01
Human African Trypanosomiasis (HAT) is a re-emerging disease whose usual treatments are becoming less efficient because of the increasing parasite resistance. Availability of HAT drugs is poor and their production in danger because of technical, ecological and economic constraints. In view of this dramatic situation, a network involving experts from NGOs, WHO and pharmaceutical producers was commissioned with updating estimates of need for each HAT drug for the coming years; negotiations with potential producers of new drugs such as eflornithine; securing sustainable manufacturing of existing drugs; clinical research into new combinations of these drugs for first and second-line treatments; centralizing drug purchases and their distribution through a unique non-profit entity; and addressing regulatory and legal issues concerning new drugs.
Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis.
Cestari, Igor; Stuart, Kenneth
2013-05-17
Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT.
Inhibition of Isoleucyl-tRNA Synthetase as a Potential Treatment for Human African Trypanosomiasis*
Cestari, Igor; Stuart, Kenneth
2013-01-01
Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT. PMID:23548908
Molecular epidemiological studies on animal trypanosomiases in Ghana
2012-01-01
Background African trypanosomes are extracellular protozoan parasites that are transmitted between mammalian hosts by the bite of an infected tsetse fly. Human African Trypanosomiasis (HAT) or sleeping sickness is caused by Trypanosoma brucei rhodesiense or T. brucei gambiense, while African Animal Trypanosomiasis (AAT) is caused mainly by T. vivax, T. congolense, T. simiae,T. evansi and T. brucei brucei. Trypanosomiasis is of public health importance in humans and is also the major constraint for livestock productivity in sub-Saharan African countries. Scanty information exists about the trypanosomiasis status in Ghana especially regarding molecular epidemiology. Therefore, this study intended to apply molecular tools to identify and characterize trypanosomes in Ghana. Methods A total of 219 tsetse flies, 248 pigs and 146 cattle blood samples were collected from Adidome and Koforidua regions in Ghana in 2010. Initial PCR assays were conducted using the internal transcribed spacer one (ITS1) of ribosomal DNA (rDNA) primers, which can detect most of the pathogenic trypanosome species and T. vivax-specific cathepsin L-like gene primers. In addition, species- or subgroup-specific PCRs were performed for T. b. rhodesiense, T. b. gambiense, T. evansi and three subgroups of T. congolense. Results The overall prevalence of trypanosomes were 17.4% (38/219), 57.5% (84/146) and 28.6% (71/248) in tsetse flies, cattle and pigs, respectively. T. congolense subgroup-specific PCR revealed that T. congolense Savannah (52.6%) and T. congolense Forest (66.0%) were the endemic subgroups in Ghana with 18.6% being mixed infections. T. evansi was detected in a single tsetse fly. Human infective trypanosomes were not detected in the tested samples. Conclusion Our results showed that there is a high prevalence of parasites in both tsetse flies and livestock in the study areas in Ghana. This enhances the need to strengthen control policies and institute measures that help prevent the spread of the parasites. PMID:23025330
Haller, L; Adams, H; Merouze, F; Dago, A
1986-01-01
Fourteen of 330 patients treated with melarsoprol (Mel B) for human African trypanosomiasis (HAT) developed a severe reactive arsenical encephalopathy (RAE). Six of these cases were fatal and postmortem examination was performed on 5 patients. Symptoms of "sleeping sickness" were compared with symptoms after treatment with arsenicals and the subsequent onset of RAE. There are 3 characteristic syndromes of RAE: convulsive status associated with acute cerebral edema, rapidly progressive coma without convulsions, and acute nonlethal mental disturbances without neurological signs. Three subjects revealed hypoxic brain damage with acute cerebral edema, and multiple hemorrhages of brain stem in those comatose. The pathology of the underlying HAT (chronic perivascular inflammation and plasma cytic infiltration of the brain) and the pathology of the RAE (characterized by acute vasculitis) are distinct. RAE occurs in the first as well as in the second stage (CNS involvement) of trypanosomiasis but the reason for this is unclear; an exclusive toxicity of the drug, or a Herxheimer reaction are possible but seem unlikely. Both clinical and laboratory findings point rather to a drug-related, delayed immune response.
NASA Astrophysics Data System (ADS)
Masand, Vijay H.; El-Sayed, Nahed N. E.; Mahajan, Devidas T.; Mercader, Andrew G.; Alafeefy, Ahmed M.; Shibi, I. G.
2017-02-01
In the present work, sixty substituted 2-Phenylimidazopyridines previously reported with potent anti-human African trypanosomiasis (HAT) activity were selected to build genetic algorithm (GA) based QSAR models to determine the structural features that have significant correlation with the activity. Multiple QSAR models were built using easily interpretable descriptors that are directly associated with the presence or the absence of a structural scaffold, or a specific atom. All the QSAR models have been thoroughly validated according to the OECD principles. All the QSAR models are statistically very robust (R2 = 0.80-0.87) with high external predictive ability (CCCex = 0.81-0.92). The QSAR analysis reveals that the HAT activity has good correlation with the presence of five membered rings in the molecule.
Muhanguzi, Dennis; Okello, Walter O; Kabasa, John D; Waiswa, Charles; Welburn, Susan C; Shaw, Alexandra P M
2015-07-22
Tsetse-transmitted African trypanosomes cause both nagana (African animal Trypanosomiasis-AAT) and sleeping sickness (human African Trypanosomiasis - HAT) across Sub-Saharan Africa. Vector control and chemotherapy are the contemporary methods of tsetse and trypanosomiasis control in this region. In most African countries, including Uganda, veterinary services have been decentralised and privatised. As a result, livestock keepers meet the costs of most of these services. To be sustainable, AAT control programs need to tailor tsetse control to the inelastic budgets of resource-poor small scale farmers. To guide the process of tsetse and AAT control toolkit selection, that now, more than ever before, needs to optimise resources, the costs of different tsetse and trypanosomiasis control options need to be determined. A detailed costing of the restricted application protocol (RAP) for African trypanosomiasis control in Tororo District was undertaken between June 2012 and December 2013. A full cost calculation approach was used; including all overheads, delivery costs, depreciation and netting out transfer payments to calculate the economic (societal) cost of the intervention. Calculations were undertaken in Microsoft Excel without incorporating probabilistic elements. The cost of delivering RAP to the project was US$ 6.89 per animal per year while that of 4 doses of a curative trypanocide per animal per year was US$ 5.69. However, effective tsetse control does not require the application of RAP to all animals. Protecting cattle from trypanosome infections by spraying 25%, 50% or 75% of all cattle in a village costs US$ 1.72, 3.45 and 5.17 per animal per year respectively. Alternatively, a year of a single dose of curative or prophylactic trypanocide treatment plus 50% RAP would cost US$ 4.87 and US$ 5.23 per animal per year. Pyrethroid insecticides and trypanocides cost 22.4 and 39.1% of the cost of RAP and chemotherapy respectively. Cost analyses of low cost tsetse control options should include full delivery costs since they constitute 77.6% of all project costs. The relatively low cost of RAP for AAT control and its collateral impact on tick control make it an attractive option for livestock management by smallholder livestock keepers.
Fexinidazole: A New Drug for African Sleeping Sickness on the Horizon.
Pollastri, Michael P
2018-03-01
Decades after the last new chemical entity was added to the pharmacopeia for human African trypanosomiasis (or sleeping sickness), orally dosed fexinidazole stands poised to replace the current treatment regimen for Trypanosoma brucei gambiense infections, following a positive Phase 2/3 clinical trial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis.
2012-01-01
This report provides a review and analysis of the research landscape for three diseases - Chagas disease, human African trypanosomiasis and leishmaniasis - that disproportionately afflict poor and remote populations with limited access to health services. It represents the work of the disease reference group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis (DRG3) which was established to identify key research priorities through review of research evidence and input from stakeholders' consultations. The diseases, which are caused by related protozoan parasites, are described in terms of their epidemiology and diseases burden, clinical forms and pathogenesis, HIV coinfection, diagnosis, drugs and drug resistance, vaccines, vector control, and health-care interventions. Priority areas for research are identified based on criteria such as public health relevance, benefit and impact on poor populations and equity, and feasibility. The priorities are found in the areas of diagnostics, drugs, vector control, asymptomatic infection, economic analysis of treatment and vector control methods, and in some specific issues such as surveillance methods or transmission-blocking vaccines for particular diseases. This report will be useful to researchers, policy and decision-makers, funding bodies, implementation organizations, and civil society. This is one of ten disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at: www.who.int/tdr/stewardship/global_report/en/index.html.
Identification of a Novel Prostaglandin F2α Synthase in Trypanosoma brucei
Kubata, Bruno Kilunga; Duszenko, Michael; Kabututu, Zakayi; Rawer, Marc; Szallies, Alexander; Fujimori, Ko; Inui, Takashi; Nozaki, Tomoyoshi; Yamashita, Kouwa; Horii, Toshihiro; Urade, Yoshihiro; Hayaishi, Osamu
2000-01-01
Members of the genus Trypanosoma cause African trypanosomiasis in humans and animals in Africa. Infection of mammals by African trypanosomes is characterized by an upregulation of prostaglandin (PG) production in the plasma and cerebrospinal fluid. These metabolites of arachidonic acid (AA) may, in part, be responsible for symptoms such as fever, headache, immunosuppression, deep muscle hyperaesthesia, miscarriage, ovarian dysfunction, sleepiness, and other symptoms observed in patients with chronic African trypanosomiasis. Here, we show that the protozoan parasite T. brucei is involved in PG production and that it produces PGs enzymatically from AA and its metabolite, PGH2. Among all PGs synthesized, PGF2α was the major prostanoid produced by trypanosome lysates. We have purified a novel T. brucei PGF2α synthase (TbPGFS) and cloned its cDNA. Phylogenetic analysis and molecular properties revealed that TbPGFS is completely distinct from mammalian PGF synthases. We also found that TbPGFS mRNA expression and TbPGFS activity were high in the early logarithmic growth phase and low during the stationary phase. The characterization of TbPGFS and its gene in T. brucei provides a basis for the molecular analysis of the role of parasite-derived PGF2α in the physiology of the parasite and the pathogenesis of African trypanosomiasis. PMID:11067881
Hasker, Epco; Lutumba, Pascal; Mumba, Dieudonné; Lejon, Veerle; Büscher, Phillipe; Kande, Victor; Muyembe, Jean Jacques; Menten, Joris; Robays, Jo; Boelaert, Marleen
2010-01-01
Control of human African trypanosomiasis (HAT) in the Democratic Republic of Congo is based on mass population screening by mobile teams; a costly and labor-intensive approach. We hypothesized that blood samples collected on filter paper by village health workers and processed in a central laboratory might be a cost-effective alternative. We estimated sensitivity and specificity of micro-card agglutination test for trypanosomiasis (micro-CATT) and enzyme-linked immunosorbent assay (ELISA)/T.b. gambiense on filter paper samples compared with parasitology-based case classification and used the results in a Monte Carlo simulation of a lot quality assurance sampling (LQAS) approach. Micro-CATT and ELISA/T.b. gambiense showed acceptable sensitivity (92.7% [95% CI 87.4–98.0%] and 82.2% [95% CI 75.3–90.4%]) and very high specificity (99.4% [95% CI 99.0–99.9%] and 99.8% [95% CI 99.5–100%]), respectively. Conditional on high sample size per lot (≥ 60%), both tests could reliably distinguish a 2% from a zero prevalence at village level. Alternatively, these tests could be used to identify individual HAT suspects for subsequent confirmation. PMID:20682885
Devine, William G; Diaz-Gonzalez, Rosario; Ceballos-Perez, Gloria; Rojas, Domingo; Satoh, Takashi; Tear, Westley; Ranade, Ranae M; Barros-Álvarez, Ximena; Hol, Wim G J; Buckner, Frederick S; Navarro, Miguel; Pollastri, Michael P
2017-03-10
Human African trypanosomiasis is a neglected tropical disease that is lethal if left untreated. Existing therapeutics have limited efficacy and severe associated toxicities. 2-(2-(((3-((1H-Benzo[d]imidazol-2-yl)amino)propyl)amino)methyl)-4,6-dichloro-1H-indol-1-yl)ethan-1-ol (NEU-1053) has recently been identified from a high-throughput screen of >42,000 compounds as a highly potent and fast-acting trypanocidal agent capable of curing a bloodstream infection of Trypanosoma brucei in mice. We have designed a library of analogues to probe the structure-activity relationship and improve the predicted central nervous system (CNS) exposure of NEU-1053. We report the activity of these inhibitors of T. brucei, the efficacy of NEU-1053 in a murine CNS model of infection, and identification of the target of NEU-1053 via X-ray crystallography.
[Human African trypanosomiasis in an urban area: an emerging problem?].
Louis, F J; Bilenge, C M; Simarro, P P; Meso, V Kande; Lucas, P; Jannin, J
2003-08-01
The human African trypanosomiasis is essentially a rural disease. The notification of cases in urban area has always been incidental; either a diagnosis made in town revealed a disease contracted in rural environment or it meant the preservation of a complete epidemiological cycle in a remaining urban micro-focus. In Kinshasa, in Democratic Republic of Congo, about forty cases have been notified each year. All of them came from the nearby foci of Bandundu, Lower Congo and Kasaï. In 1996 the number of cases reached suddenly 254 and today the average annual number comes up to 500 in spite of all the efforts undertaken to fight the disease. A study of cases in 1998 and 1999 shows that patients are essentially distributed in suburbs and that the most affected by the disease are the 15-49 year old ones whose job is related with agricultural or fishing activities. Two phenomena seem to explain this sudden increase: the massive inflow of refugees in outskirts of town coming from provinces where trypanosomiasis is endemic and a major economic crisis throwing out urban population in suburbs living on a subsistence micro-agriculture. These concomitant factors have contributed to the setting up of a trypanosomiasis belt around the capital. Today a strategy has to be reconsidered in order to fight against the disease in the capital itself and to make the medical staff aware of the diagnosis of a disease still unknown in their sanitary district.
Moore, Sean; Shrestha, Sourya; Tomlinson, Kyle W.; Vuong, Holly
2012-01-01
Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason, African trypanosomiasis (sleeping sickness), a vector-borne disease of humans and animals, was recently identified as one of the 12 infectious diseases likely to spread owing to climate change. We combine a variety of direct effects of temperature on vector ecology, vector biology and vector–parasite interactions via a disease transmission model and extrapolate the potential compounding effects of projected warming on the epidemiology of African trypanosomiasis. The model predicts that epidemics can occur when mean temperatures are between 20.7°C and 26.1°C. Our model does not predict a large-range expansion, but rather a large shift of up to 60 per cent in the geographical extent of the range. The model also predicts that 46–77 million additional people may be at risk of exposure by 2090. Future research could expand our analysis to include other environmental factors that influence tsetse populations and disease transmission such as humidity, as well as changes to human, livestock and wildlife distributions. The modelling approach presented here provides a framework for using the climate-sensitive aspects of vector and pathogen biology to predict changes in disease prevalence and risk owing to climate change. PMID:22072451
Batchelor, Nicola A; Atkinson, Peter M; Gething, Peter W; Picozzi, Kim; Fèvre, Eric M; Kakembo, Abbas S L; Welburn, Susan C
2009-12-15
The continued northwards spread of Rhodesian sleeping sickness or Human African Trypanosomiasis (HAT) within Uganda is raising concerns of overlap with the Gambian form of the disease. Disease convergence would result in compromised diagnosis and treatment for HAT. Spatial determinants for HAT are poorly understood across small areas. This study examines the relationships between Rhodesian HAT and several environmental, climatic and social factors in two newly affected districts, Kaberamaido and Dokolo. A one-step logistic regression analysis of HAT prevalence and a two-step logistic regression method permitted separate analysis of both HAT occurrence and HAT prevalence. Both the occurrence and prevalence of HAT were negatively correlated with distance to the closest livestock market in all models. The significance of distance to the closest livestock market strongly indicates that HAT may have been introduced to this previously unaffected area via the movement of infected, untreated livestock from endemic areas. This illustrates the importance of the animal reservoir in disease transmission, and highlights the need for trypanosomiasis control in livestock and the stringent implementation of regulations requiring the treatment of cattle prior to sale at livestock markets to prevent any further spread of Rhodesian HAT within Uganda.
Targeting cysteine proteases in trypanosomatid disease drug discovery.
Ferreira, Leonardo G; Andricopulo, Adriano D
2017-12-01
Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.
Yaro, M; Munyard, K A; Stear, M J; Groth, D M
2016-07-30
African Animal Trypanosomiasis (AAT) is endemic in at least 37 of the 54 countries in Africa. It is estimated to cause direct and indirect losses to the livestock production industry in excess of US$ 4.5 billion per annum. A century of intervention has yielded limited success, owing largely to the extraordinary complexity of the host-parasite interaction. Trypanotolerance, which refers to the inherent ability of some African livestock breeds, notably Djallonke sheep, N'Dama cattle and West African Dwarf goats, to withstand a trypanosomiasis challenge and still remain productive without any form of therapy, is an economically sustainable option for combatting this disease. Yet trypanotolerance has not been adequately exploited in the fight against AAT. In this review, we describe new insights into the genetic basis of trypanotolerance and discuss the potential of exploring this phenomenon as an integral part of the solution for AAT, particularly, in the context of African animal production systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiorgan dysfunction caused by travel-associated African trypanosomiasis.
Cottle, Lucy E; Peters, Joanna R; Hall, Alison; Bailey, J Wendi; Noyes, Harry A; Rimington, Jane E; Beeching, Nicholas J; Squire, S Bertel; Beadsworth, Mike B J
2012-02-01
We describe a case of multiorgan dysfunction secondary to Trypanosoma brucei rhodesiense infection acquired on safari in Zambia. This case was one of several recently reported to ProMED-mail in persons who had traveled to this region. Trypanosomiasis remains rare in travelers but should be considered in febrile patients who have returned from trypanosomiasis-endemic areas of Africa.
N-Myristoyltransferase inhibitors as new leads to treat sleeping sickness
Frearson, Julie A.; Brand, Stephen; McElroy, Stuart P.; Cleghorn, Laura A.T.; Smid, Ondrej; Stojanovski, Laste; Price, Helen P.; Guther, M. Lucia S.; Torrie, Leah S.; Robinson, David A.; Hallyburton, Irene; Mpamhanga, Chidochangu P.; Brannigan, James A.; Wilkinson, Anthony J.; Hodgkinson, Michael; Hui, Raymond; Qiu, Wei; Raimi, Olawale G.; van Aalten, Daan M. F.; Brenk, Ruth; Gilbert, Ian H.; Read, Kevin D.; Fairlamb, Alan H.; Ferguson, Michael A. J.; Smith, Deborah F.; Wyatt, Paul G.
2010-01-01
African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT. PMID:20360736
Anderson, Neil E; Bessell, Paul R; Mubanga, Joseph; Thomas, Robert; Eisler, Mark C; Fèvre, Eric M; Welburn, Susan C
2016-09-01
Classifying, describing and understanding the natural environment is an important element of studies of human, animal and ecosystem health, and baseline ecological data are commonly lacking in remote environments of the world. Human African trypanosomiasis is an important constraint on human well-being in sub-Saharan Africa, and spillover transmission occurs from the reservoir community of wild mammals. Here we use robust and repeatable methodology to generate baseline datasets on vegetation and mammal density to investigate the ecology of warthogs (Phacochoerus africanus) in the remote Luambe National Park in Zambia, in order to further our understanding of their interactions with tsetse (Glossina spp.) vectors of trypanosomiasis. Fuzzy set theory is used to produce an accurate landcover classification, and distance sampling techniques are applied to obtain species and habitat level density estimates for the most abundant wild mammals. The density of warthog burrows is also estimated and their spatial distribution mapped. The datasets generated provide an accurate baseline to further ecological and epidemiological understanding of disease systems such as trypanosomiasis. This study provides a reliable framework for ecological monitoring of wild mammal densities and vegetation composition in remote, relatively inaccessible environments.
Werbovetz, Karl A.; Riccio, Edward S.; Furimsky, Anna; Richard, Julian V.; He, Shanshan; Iyer, Lalitha; Mirsalis, Jon
2014-01-01
N 1-benzylated dihydroquinolin-6-ols and their corresponding esters display exceptional activity against African trypanosomes in vitro, and administration of members of this class of compounds to trypanosome-infected mice results in cures in a first stage African trypanosomiasis model. Since a quinone imine intermediate has been implicated in the antiparasitic mechanism of action of these compounds, evaluation of the hepatotoxic, mutagenic, and methemoglobin-promoting effects of these agents was performed. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride (OSU-36.HCl) and 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate (OSU-40) showed outstanding in vitro selectivity for T. brucei compared to the HepG2, Hep3B, Huh7 and PLC5 hepatocyte cell lines. OSU-36.HCl and 1-(2-methoxybenzyl)-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate (OSU-75) were not mutagenic when screened in the Ames assay, with or without metabolic activation. The latter two compounds promoted time- and dose-dependent formation of methemoglobin when incubated in whole human blood, but such levels were below those typically required to produce symptoms of methemoglobinemia in humans. While compounds capable of quinone imine formation require careful evaluation, these in vitro studies indicate that antitrypanosomal dihydroquinolines merit further study as drug candidates against the neglected tropical disease human African trypanosomiasis. PMID:24819520
Werbovetz, Karl A; Riccio, Edward S; Furimsky, Anna; Richard, Julian V; He, Shanshan; Iyer, Lalitha; Mirsalis, Jon
2014-07-01
N1-Benzylated dihydroquinolin-6-ols and their corresponding esters display exceptional activity against African trypanosomes in vitro, and administration of members of this class of compounds to trypanosome-infected mice results in cures in a first-stage African trypanosomiasis model. Since a quinone imine intermediate has been implicated in the antiparasitic mechanism of action of these compounds, evaluation of the hepatotoxic, mutagenic, and methemoglobin-promoting effects of these agents was performed. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate showed outstanding in vitro selectivity for Trypanosoma brucei compared to the HepG2, Hep3B, Huh7, and PLC5 hepatocyte cell lines. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-(2-methoxybenzyl)-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate were not mutagenic when screened in the Ames assay, with or without metabolic activation. The latter 2 compounds promoted time- and dose-dependent formation of methemoglobin when incubated in whole human blood, but such levels were below those typically required to produce symptoms of methemoglobinemia in humans. Although compounds capable of quinone imine formation require careful evaluation, these in vitro studies indicate that antitrypanosomal dihydroquinolines merit further study as drug candidates against the neglected tropical disease human African trypanosomiasis. © The Author(s) 2014.
Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe
2012-05-01
Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.
Trypanosome resistance to human innate immunity: targeting Achilles’ heel
Stephens, Natalie A.; Kieft, Rudo; MacLeod, Annette; Hajduk, Stephen L.
2015-01-01
Trypanosome lytic factors (TLFs) are powerful, naturally-occurring toxins in humans that provide sterile protection against infection by several African trypanosomes. These trypanocidal complexes predominantly enter the parasite by binding to the trypanosome haptoglobin/hemoglobin receptor (HpHbR), trafficking to the lysosome, causing membrane damage and ultimately, cell lysis. Despite TLF-mediated immunity, the parasites that cause human African Trypanosomiasis (HAT), Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have developed independent mechanisms of resistance to TLF killing. Here we describe the parasite defenses that allow trypanosome infections of humans and discuss how targeting these apparent strengths of the parasite may reveal their Achilles’ heel, leading to new approaches in the treatment of HAT. PMID:23059119
Uba, Belinda Vernyuy; Aliyu, Ahmad; Abubakar, Aisha; Uba, Sabo Ado; Gidado, Saheed; Edukugho, Aboyowa; Anagbogu, Ifeoma; Kalejaiye, John; Nguku, Patrick
2016-01-01
Introduction Human African Trypanosomiasis (HAT) is a vector borne parasitic disease transmitted to humans by infected tse-tse flies cause morbidity including delayed child mental development. Reports of nuisance and bites from tse-tse flies by residents of Kachia grazing led to the study to determine the knowledge, practices and prevalence of HAT among residents of the grazing reserve. Methods We conducted active case search in a cross-sectional study using multi-stage sampling with probability proportionate to size. We administered structured questionnaire on Knowledge, practices relating to HAT prevention and screened for HAT using card agglutination test for Trypanosomiasis (CATT). Knowledge of HAT was scored 0-5 and categorized good (3-5) and poor (0-2) based on score, predisposition to risk of HAT as exposure to ≥two risk factors and, a case of HAT as any respondent that tested positive on CATT. We analysed data using Epi-info and MS-excel. Results Of the 300 respondents, mean age 39(±17years) interviewed, 56.3% were males, 12.0% had good knowledge of HAT and 76.3% were exposed to HAT risk factors. Prevention practices included clearing of overgrown bushes around houses (99%), use of insecticidal treated nets (75.7%) and protective clothing (41.0%). Males {Odds Ratio [OR] 5.0; 95% Confidence Interval (CI) 1.8 - 13.6}, age above 40 years {OR 5.0; 95% CI 1.1 - 24.4} and family history of HAT {OR 8.7; 95% CI 2.4 - 32.1} were significantly associated with HAT knowledge. None tested positive on CATT. Conclusion Despite poor knowledge of HAT, residents practiced HAT preventive measures and zero HAT prevalence was recorded. PMID:27222686
Rutto, Jane Jemeli; Osano, Odipo; Thuranira, Elias Gitonga; Kurgat, Richard Kiptum; Odenyo, Victor Agab Omondi
2013-01-01
Background Kenya and Uganda have reported different Human African Trypanosomiasis incidences in the past more than three decades, with the latter recording more cases. This cross-sectional study assessed the demographic characteristics, tsetse and trypanosomiasis control practices, socio-economic and cultural risk factors influencing Trypanosoma brucei rhodesiense (T.b.r.) infection in Teso and Busia Districts, Western Kenya and Tororo and Busia Districts, Southeast Uganda. A conceptual framework was postulated to explain interactions of various socio-economic, cultural and tsetse control factors that predispose individuals and populations to HAT. Methods A cross-sectional household survey was conducted between April and October 2008. Four administrative districts reporting T.b.r and lying adjacent to each other at the international boundary of Kenya and Uganda were purposely selected. Household data collection was carried out in two villages that had experienced HAT and one other village that had no reported HAT case from 1977 to 2008 in each district. A structured questionnaire was administered to 384 randomly selected household heads or their representatives in each country. The percent of respondents giving a specific answer was reported. Secondary data was also obtained on socio-economic and political issues in both countries. Results Inadequate knowledge on the disease cycle and intervention measures contributed considerable barriers to HAT, and more so in Uganda than in Kenya. Gender-associated socio-cultural practices greatly predisposed individuals to HAT. Pesticides-based crop husbandry in the 1970's reportedly reduced vector population while vegetation of coffee and banana's and livestock husbandry directly increased occurrence of HAT. Livestock husbandry practices in the villages were strong predictors of HAT incidence. The residents in Kenya (6.7%) applied chemoprophylaxis and chemotherapeutic controls against trypanosomiasis to a larger extent than Uganda (2.1%). Conclusion Knowledge on tsetse and its control methods, culture, farming practice, demographic and socio-economic variables explained occurrence of HAT better than landscape features. PMID:23638206
Cox, F. E. G.
2002-01-01
Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis. PMID:12364371
History of human parasitology.
Cox, F E G
2002-10-01
Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis.
Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up.
Truc, P.; Jamonneau, V.; Cuny, G.; Frézil, J. L.
1999-01-01
Stage determination of human African trypanosomiasis is based on the detection of parasites and measurements of biological changes in the cerebrospinal fluid (CSF) (concentration of white blood cells > 5 cells per mm3 and increased total protein levels). The patient is treated accordingly. Demonstration of the absence or presence of trypanosomes by the double centrifugation technique is still the only test available to clinicians for assessing treatment success. In this study, however, we evaluate the polymerase chain reaction (PCR) as a tool for assessing the disease stage of trypanosomiasis and for determining whether treatment has been successful. All 15 study patients considered to be in the advanced stage of the disease were PCR positive; however, trypanosomes were demonstrated by double centrifugation in only 11 patients. Of the five remaining patients, who were considered to be in the early stage, PCR and double centrifugation were negative. Following treatment, 13 of the 15 second-stage patients were found to be negative for the disease in at least two samples by PCR and double centrifugation. Two others were still positive by PCR immediately and one month after the treatment. Trypanosome DNA detection using PCR suggested that the two positive patients were not cured but that their possible relapse could not be identified by a search for parasites using the double centrifugation technique. Further evaluation of the PCR method is required, in particular to determine whether PCR assays could be used in studies on patients who fail to respond to melarsoprol, as observed in several foci. PMID:10534898
[Human African trypanosomiasis: report of three cases].
Koko, J; Ategbo, S J; Gahouma, D; Engohan-Aloghe, E; Moussavou, A
2013-08-01
Prolonged fever is an important cause of morbidity in pediatric practice, especially in tropical areas. It is above all a problem of etiological diagnosis given the vast number of etiologies. In sub-Saharan Africa, practitioners more often focus on bacterial infections and malaria at the expense of other infectious diseases such as human African trypanosomiasis (HAT), most often leading to overuse of antibiotics and antimalarials. A dramatic resurgence of HAT, also called sleeping sickness, has been reported during the last few decades in large areas of Central Africa. Furthermore, with the development of air transport, cases of children infected during a trip to Africa can be exported outside endemic areas, making diagnosis even more difficult. This parasitic infection causes a protracted, often initially unrecognized, illness with episodes of fever, headache, and malaise, accompanied by progressive lymphadenopathy, before the development of a progressive meningoencephalitis. These three case reports aim to remind practitioners of clinical and biological signs suggestive of HAT diagnosis in children living in endemic areas or having stayed there during the months prior to visiting the doctor. The prognosis is largely dependent on the precocity of diagnosis and therapeutic support. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Maudlin, I
2006-12-01
Trypanosomiasis remains one of the most serious constraints to economic development in sub-Saharan Africa and, as a consequence, related research has been subject to strong social and political as well as scientific influences. The epidemics of sleeping sickness that occurred at the turn of the 20th Century focussed research efforts on what became known as 'the colonial disease'. This focus is thought to have produced 'vertical' health services aimed at this one disease, while neglecting other important health issues. Given the scale of these epidemics, and the fact that the disease is fatal if left untreated, it is unsurprising that sleeping sickness dominated colonial medicine. Indeed, recent evidence indicates that, if anything, the colonial authorities greatly under-estimated the mortality attributable to sleeping sickness. Differences in approach to disease control between Francophone and Anglophone Africa, which in the past have been considered ideological, on examination prove to be logical, reflecting the underlying epidemiological divergence of East and West Africa. These epidemiological differences are ancient in origin, pre-dating the colonial period, and continue to the present day. Recent research has produced control solutions, for the African trypanosomiases of humans and livestock, that are effective, affordable and sustainable by small-holder farmers. Whether these simple solutions are allowed to fulfil their promise and become fully integrated into agricultural practice remains to be seen. After more than 100 years of effort, trypanosomiasis control remains a controversial topic, subject to the tides of fashion and politics.
N’Djetchi, Martial Kassi; Ilboudo, Hamidou; Koffi, Mathurin; Kaboré, Jacques; Kaboré, Justin Windingoudi; Kaba, Dramane; Courtin, Fabrice; Coulibaly, Bamoro; Fauret, Pierre; Kouakou, Lingué; Ravel, Sophie; Deborggraeve, Stijn; Solano, Philippe; De Meeûs, Thierry; Bucheton, Bruno
2017-01-01
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. PMID:29045405
El-Bahnasawy, Mamdouh M M; Khater, Mai Kh A; Morsy, Tosson A
2014-12-01
Trypanosomes (including humans) are blood and sometimes tissue parasites of the order Kinetoplastida, family Trypanosomatidae, genus Trypanosoma, principally transmitted by biting insects where most of them undergo a biological cycle. They are divided into Stercoraria with the posterior station inoculation, including T. cruzi, both an extra- and intracellular parasite that causes Chagas disease, a major human disease affecting 15 million people and threatening 100 million people in Latin America, and the Salivaria with the anterior station inoculation, mainly African livestock pathogenic trypanosomes, including the agents of sleeping sickness, a major human disease affecting around half a million people and threatening 60 million people in Africa. Now, T. evansi was reported in man is it required to investigate its zoonotic potential?
Kappagoda, Shanthi; Singh, Upinder; Blackburn, Brian G.
2011-01-01
Parasitic diseases affect more than 2 billion people globally and cause substantial morbidity and mortality, particularly among the world's poorest people. This overview focuses on the treatment of the major protozoan and helminth infections in humans. Recent developments in antiparasitic therapy include the expansion of artemisinin-based therapies for malaria, new drugs for soil-transmitted helminths and intestinal protozoa, expansion of the indications for antiparasitic drug treatment in patients with Chagas disease, and the use of combination therapy for leishmaniasis and human African trypanosomiasis. PMID:21628620
Studies of trypanosomiasis in the Luangwa valley, north-eastern Zambia.
Laohasinnarong, Dusit; Goto, Yasuyuki; Goto, Yasuhuki; Asada, Masahito; Nakao, Ryo; Hayashida, Kyoko; Kajino, Kiichi; Kawazu, Shin-ichiro; Sugimoto, Chihiro; Inoue, Noboru; Namangala, Boniface
2015-09-30
The present study, conducted in Zambia's Luangwa valley where both animal African trypanosomiasis (AAT) and human African trypanosomiasis (HAT) are endemic, combined the use of microscopy and molecular techniques to determine the presence of trypanosome species in cattle, goats and tsetse flies. This study was conducted between 2008 and 2010 in Petauke, Chama and Isoka districts, north-eastern Zambia. A total of 243 cattle, 36 goats and 546 tsetse flies, were examined for presence of trypanosome species using microscopy, PCR and loop-mediated isothermal amplification (LAMP). There was poor agreement among the test methods used for detection of trypanosomes species in animal blood and tsetse flies. Trypanosomes were observed in 6.1 % (95 % CI: 3.3-8.9 %) of the animals sampled by microscopy, 7.5 % (95 % CI: 4.4-10.6 %) by PCR and 18.6 % (95 % CI: 13.6-23.6 %) by PFR-LAMP. PFR-LAMP was more sensitive for detecting Trypanozoon than KIN-PCR. The highest occurrence of AAT was recorded in cattle from Petauke (58.7 %, 95 % CI: 44.7-72.7 %) while the lowest was from Isoka (5.4 %, 95 % CI: 0.8-10.0 %). Infection of both cattle and goats with Trypanosoma congolense and T. vivax was associated with clinical AAT. When selecting molecular techniques for AAT surveillance in endemic regions, the KIN-PCR and species-specific PCR may be recommended for screening animal or tsetse fly samples for T. congolense and T. vivax, respectively. On the other hand, species-specific PCR and/or LAMP might be of greater value in the screening of animal and human body fluids as well as tsetse fly samples for Trypanozoon.
Petrelli, Riccardo; Ranjbarian, Farahnaz; Dall'Acqua, Stefano; Papa, Fabrizio; Iannarelli, Romilde; Ngahang Kamte, Stephane L; Vittori, Sauro; Benelli, Giovanni; Maggi, Filippo; Hofer, Anders; Cappellacci, Loredana
2017-04-01
Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and β-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC 50 values of 1.9-4.0μg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC 50 of 0.6μg/ml, SI=30), with β-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT. Copyright © 2017 Elsevier B.V. All rights reserved.
Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis
Unciti-Broceta, Juan D.; Arias, José L.; Maceira, José; Soriano, Miguel; Ortiz-González, Matilde; Hernández-Quero, José; Muñóz-Torres, Manuel; de Koning, Harry P.; Magez, Stefan; Garcia-Salcedo, José A.
2015-01-01
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs. PMID:26110623
Coleman, Carl H; Ardiot, Chantal; Blesson, Séverine; Bonnin, Yves; Bompart, Francois; Colonna, Pierre; Dhai, Ames; Ecuru, Julius; Edielu, Andrew; Hervé, Christian; Hirsch, François; Kouyaté, Bocar; Mamzer-Bruneel, Marie-France; Maoundé, Dionko; Martinent, Eric; Ntsiba, Honoré; Pelé, Gérard; Quéva, Gilles; Reinmund, Marie-Christine; Sarr, Samba Cor; Sepou, Abdoulaye; Tarral, Antoine; Tetimian, Djetodjide; Valverde, Olaf; Van Nieuwenhove, Simon; Strub-Wourgaft, Nathalie
2015-12-01
Developing countries face numerous barriers to conducting effective and efficient ethics reviews of international collaborative research. In addition to potentially overlooking important scientific and ethical considerations, inadequate or insufficiently trained ethics committees may insist on unwarranted changes to protocols that can impair a study's scientific or ethical validity. Moreover, poorly functioning review systems can impose substantial delays on the commencement of research, which needlessly undermine the development of new interventions for urgent medical needs. In response to these concerns, the Drugs for Neglected Diseases Initiative (DNDi), an independent nonprofit organization founded by a coalition of public sector and international organizations, developed a mechanism to facilitate more effective and efficient host country ethics review for a study of the use of fexinidazole for the treatment of late stage African Trypanosomiasis (HAT). The project involved the implementation of a novel 'pre-review' process of ethical oversight, conducted by an ad hoc committee of ethics committee representatives from African and European countries, in collaboration with internationally recognized scientific experts. This article examines the process and outcomes of this collaborative process. © 2014 The Authors. Developing World Bioethics published by John Wiley & Sons Ltd.
Direct Blood Dry LAMP: A Rapid, Stable, and Easy Diagnostic Tool for Human African Trypanosomiasis
Hayashida, Kyoko; Kajino, Kiichi; Hachaambwa, Lottie; Namangala, Boniface; Sugimoto, Chihiro
2015-01-01
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive tool used for the diagnosis of a variety of infectious diseases. One of the advantages of this method over the polymerase chain reaction is that DNA amplification occurs at a constant temperature, usually between 60–65°C; therefore, expensive devices are unnecessary for this step. However, LAMP still requires complicated sample preparation steps and a well-equipped laboratory to produce reliable and reproducible results, which limits its use in resource-poor laboratories in most developing countries. In this study, we made several substantial modifications to the technique to carry out on-site diagnosis of Human African Trypanosomiasis (HAT) in remote areas using LAMP. The first essential improvement was that LAMP reagents were dried and stabilized in a single tube by incorporating trehalose as a cryoprotectant to prolong shelf life at ambient temperature. The second technical improvement was achieved by simplifying the sample preparation step so that DNA or RNA could be amplified directly from detergent-lysed blood samples. With these modifications, diagnosis of HAT in local clinics or villages in endemic areas becomes a reality, which could greatly impact on the application of diagnosis not only for HAT but also for other tropical diseases. PMID:25769046
Bilengue, C M; Meso, V K; Louis, F J; Lucas, P
2001-01-01
Human African trypanosomiasis is an essentially rural disease. Occurrence in urban areas is uncommon except in cities that reproduce rural conditions conducive to the survival of glossinidae, i.e., forest and water. This is the case in neighborhoods near the zoo in Brazzaville, People's Republic of the Congo and in the residual mangrove forest in Conakry, Guinea. In Kinshasa, Democratic Republic of the Congo, an average of 39 cases were reported annually from 1970 to 1995. This figure increased to 254 in 1996 and 226 in 1997. This sharp rise led authorities to organize screening operations in some neighborhoods of the capital city. Results documented 433 cases in 1998 and 912 cases in 1999. The highest prevalence was found in outlying areas. This finding was probably related to focus of screening in these locations and to the practice of market gardening on plots surrounding the city. Placement of 276 insect traps along the Ndjili River led to the capture of 42,231 glossinidae over a 4 month period. Taken together, these findings indicate that the conditions necessary for active disease transmission are now reunited and that priority should be given to intensifying screening operations and information campaigns to health care providers working in the city.
Mott, G. Adam; Wilson, Raymond; Fernando, Anuruddika; Robinson, Ailie; MacGregor, Paula; Kennedy, David; Schaap, Dick; Matthews, Jacqueline B.; Matthews, Keith R.
2011-01-01
Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis. PMID:22046137
Hasker, E; Mpanya, A; Makabuza, J; Mbo, F; Lumbala, C; Kumpel, J; Claeys, Y; Kande, V; Ravinetto, R; Menten, J; Lutumba, P; Boelaert, M
2012-09-01
To enable the human African trypanosomiasis (HAT) control program of the Democratic Republic of the Congo to generate data on treatment outcomes, an electronic database was developed. The database was piloted in two provinces, Bandundu and Kasai Oriental. In this study, we analysed routine data from the two provinces for the period 2006-2008. Data were extracted from case declaration cards and monthly reports available at national and provincial HAT coordination units and entered into the database. Data were retrieved for 15 086 of 15 741 cases reported in the two provinces for the period (96%). Compliance with post-treatment follow-up was very poor in both provinces; only 25% had undergone at least one post-treatment follow-up examination, <1% had undergone the required four follow-up examinations. Relapse rates among those presenting for follow-up were high in Kasai (18%) but low in Bandundu (0.3%). High relapse rates in Kasai and poor compliance with post-treatment follow-up in both provinces are important problems that the HAT control program urgently needs to address. Moreover, in analogy to tuberculosis control programs, HAT control programs need to adopt a recording and reporting routine that includes reporting on treatment outcomes. © 2012 Blackwell Publishing Ltd.
Holt, Hannah R.; Selby, Richard; Guitian, Javier
2016-01-01
Background Control operations targeting Animal African Trypanosomiasis and its primary vector, the tsetse, were covering approximately 128,000 km2 of Africa in 2001, which is a mere 1.3% of the tsetse infested area. Although extensive trypanosomiasis and tsetse (T&T) control operations have been running since the beginning of the 20th century, Animal African Trypanosomiasis is still a major constraint of livestock production in sub-Saharan Africa. Methodology/Principal Findings We performed a systematic review of the existing literature describing T&T control programmes conducted in a selection of five African countries, namely Burkina Faso, Cameroon, Ethiopia, Uganda and Zambia, between 1980 and 2015. Sixty-eight documents were eventually selected from those identified by the database search. This was supplemented with information gathered through semi-structured interviews conducted with twelve key informants recruited in the study countries and selected based on their experience and knowledge of T&T control. The combined information from these two sources was used to describe the inputs, processes and outcomes from 23 major T&T control programmes implemented in the study countries. Although there were some data gaps, involvement of the target communities and sustainability of the control activities were identified as the two main issues faced by these programmes. Further, there was a lack of evaluation of these control programmes, as well as a lack of a standardised methodology to conduct such evaluations. Conclusions/Significance Past experiences demonstrated that coordinated and sustained control activities require careful planning, and evidence of successes, failures and setbacks from past control programmes represent a mine of information. As there is a lack of evaluation of these programmes, these data have not been fully exploited for the design, analyses and justification of future control programmes. PMID:28027299
Lueong, Smiths; Leong, Smiths; Simo, Gustave; Camara, Mamadou; Jamonneau, Vincent; Kabore, Jacques; Ilboudo, Hamidou; Bucheton, Bruno; Hoheisel, Jörg D; Clayton, Christine
2013-01-01
Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II) and without (stage I) brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II), 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested) showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.
Anderson, Neil E; Mubanga, Joseph; Machila, Noreen; Atkinson, Peter M; Dzingirai, Vupenyu; Welburn, Susan C
2015-04-15
The Luangwa Valley has a long historical association with Human African Trypanosomiasis (HAT) and is a recognised geographical focus of this disease. It is also internationally acclaimed for its high biodiversity and contains many valuable habitats. Local inhabitants of the valley have developed sustainable land use systems in co-existence with wildlife over centuries, based on non-livestock keeping practices largely due to the threat from African Animal Trypanosomiasis. Historical epidemics of human sleeping sickness have influenced how and where communities have settled and have had a profound impact on development in the Valley. Historical attempts to control trypanosomiasis have also had a negative impact on conservation of biodiversity.Centralised control over wildlife utilisation has marginalised local communities from managing the wildlife resource. To some extent this has been reversed by the implementation of community based natural resource management programmes in the latter half of the 20(th) century and the Luangwa Valley provides some of the earliest examples of such programmes. More recently, there has been significant uncontrolled migration of people into the mid-Luangwa Valley driven by pressure on resources in the eastern plateau region, encouragement from local chiefs and economic development in the tourist centre of Mfuwe. This has brought changing land-use patterns, most notably agricultural development through livestock keeping and cotton production. These changes threaten to alter the endemically stable patterns of HAT transmission and could have significant impacts on ecosystem health and ecosystem services.In this paper we review the history of HAT in the context of conservation and development and consider the impacts current changes may have on this complex social-ecological system. We conclude that improved understanding is required to identify specific circumstances where win-win trade-offs can be achieved between the conservation of biodiversity and the reduction of disease in the human population.
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Mossalayi, M Djavad
2004-03-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide derivatives. In the present study, quercetin (3,3',4',5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-alpha and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis.
Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides.
Russell, Stephanie; Rahmani, Raphaël; Jones, Amy J; Newson, Harriet L; Neilde, Kevin; Cotillo, Ignacio; Rahmani Khajouei, Marzieh; Ferrins, Lori; Qureishi, Sana; Nguyen, Nghi; Martinez-Martinez, Maria S; Weaver, Donald F; Kaiser, Marcel; Riley, Jennifer; Thomas, John; De Rycker, Manu; Read, Kevin D; Flematti, Gavin R; Ryan, Eileen; Tanghe, Scott; Rodriguez, Ana; Charman, Susan A; Kessler, Albane; Avery, Vicky M; Baell, Jonathan B; Piggott, Matthew J
2016-11-10
The parasitic trypanosomes Trypanosoma brucei and T. cruzi are responsible for significant human suffering in the form of human African trypanosomiasis (HAT) and Chagas disease. Drugs currently available to treat these neglected diseases leave much to be desired. Herein we report optimization of a novel class of N-(2-(2-phenylthiazol-4-yl)ethyl)amides, carbamates, and ureas, which rapidly, selectively, and potently kill both species of trypanosome. The mode of action of these compounds is unknown but does not involve CYP51 inhibition. They do, however, exhibit clear structure-activity relationships, consistent across both trypanosome species. Favorable physicochemical parameters place the best compounds in CNS drug-like chemical space but, as a class, they exhibit poor metabolic stability. One of the best compounds (64a) cleared all signs of T. cruzi infection in mice when CYP metabolism was inhibited, with sterile cure achieved in one mouse. This family of compounds thus shows significant promise for trypanosomiasis drug discovery.
Gutierrez, Andrew Paul; Gilioli, Gianni; Baumgärtner, Johann
2009-08-04
International research and development efforts in Africa have brought ecological and social change, but analyzing the consequences of this change and developing policy to manage it for sustainable development has been difficult. This has been largely due to a lack of conceptual and analytical models to access the interacting dynamics of the different components of ecosocial systems. Here, we examine the ecological and social changes resulting from an ongoing suppression of trypanosomiasis disease in cattle in an agropastoral community in southwest Ethiopia to illustrate how such problems may be addressed. The analysis combines physiologically based demographic models of pasture, cattle, and pastoralists and a bioeconomic model that includes the demographic models as dynamic constraints in the economic objective function that maximizes the utility of individual consumption under different level of disease risk in cattle. Field data and model analysis show that suppression of trypanosomiasis leads to increased cattle and human populations and to increased agricultural development. However, in the absence of sound management, these changes will lead to a decline in pasture quality and increase the risk from tick-borne diseases in cattle and malaria in humans that would threaten system sustainability and resilience. The analysis of these conflicting outcomes of trypanosomiasis suppression is used to illustrate the need for and utility of conceptual bioeconomic models to serve as a basis for developing policy for sustainable agropastoral resource management in sub-Saharan Africa.
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Djavad Mossalayi, M.
2004-01-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-α and nitric oxide derivatives. In the present study, quercetin (3,3′,4′,5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-α and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis. PMID:14982785
2013-01-01
Human trypanosomiasis is a parasitic disease among poor people in Africa and Latin America. Therapy against African and American trypanosomiasis is based on a few drugs that often cause severe side-effects. Therefore, it is essential to develop drug discovery especially from natural origins. Sesquiterpenes, a diverse group of natural terpenoids, are found in essential oils of many plants and show a broad range of bioactivities. They act through multiple mechanisms in the chemotherapy of trypanosomiasis. Some of these active compounds contain hydroperoxides, aldehydes, alcohols, α,β-unsaturated γ-lactone and even halogenated moieties. Among the compounds reported, sesquiterpene lactones showed a potent anti-trypanosoma effect comparable with commercial trypanocidal drugs. Trypanocidal activity of sesquiterpene lactones mostly depends on the reaction between γ-lactone moieties and nucleophile groups of trypanithione, which is essential for Trypanosoma defense against the oxidative stresses. Elatol is a sesquiterpenoid from marine algae, with a different structure and considerable trypanocidal activity which could be an interesting candidate for further antiprotozoal investigations. To develop novel drugs with higher efficacy and lower toxicity from natural products, this review summarizes the more recent information on trypanocidal activities of various sesquiterpenes. PMID:23676125
75 FR 81625 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... the Treatment of Chagas Disease and African Trypanosomiasis Description of Technology: Parasitic... Trypanosoma brucei rhodesiensi. If left untreated, African sleeping sickness results in death. Chagas disease... America. Untreated, Chagas disease causes decreased life expectancy and can also result in death. The...
Giordani, Federica; Buschini, Annamaria; Baliani, Alessandro; Kaiser, Marcel; Brun, Reto; Barrett, Michael P.; Pellacani, Claudia; Poli, Paola
2014-01-01
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential. PMID:25022590
Simulating the elimination of sleeping sickness with an agent-based model.
Grébaut, Pascal; Girardin, Killian; Fédérico, Valentine; Bousquet, François
2016-01-01
Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas ® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci. © P. Grébaut et al., published by EDP Sciences, 2016.
Trypanosomiasis Control, Democratic Republic of Congo, 1993–2003
Lutumba, Pascal; Robays, Jo; Bilenge, Constantin Miaka mia; Mesu, Victor Kande Betu Ku; Molisho, Didier; Declercq, Johan; Van der Veken, Wim; Meheus, Filip; Jannin, Jean
2005-01-01
In the Democratic Republic of Congo (DRC), human African trypanosomiasis (HAT) reached unprecedented levels in the 1990s. To assess recent trends and evaluate control efforts, we analyzed epidemiologic and financial data collected by all agencies involved in HAT control in DRC from 1993 to 2003. Funds allocated to control populations, as well as to the population screened, doubled from 1993 to 1997 and from 1998 to 2003. The number of cases detected decreased from 26,000 new cases per year in 1998 to 11,000 in 2003. Our analysis shows that HAT control in DRC is almost completely dependent on international aid and that sudden withdrawal of such aid in 1990 had a long-lasting effect. Since 1998, control efforts intensified because of renewed donor interest, including a public-private partnership, and this effort led to a major reduction in HAT incidence. To avoid reemergence of this disease, such efforts should be sustained. PMID:16229766
Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina
2017-08-01
Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.
Njitchouang, G R; Njiokou, F; Nana-Djeunga, H; Asonganyi, T; Fewou-Moundipa, P; Cuny, G; Simo, G
2011-09-01
A new index for the risk for transmission of human African trypanosomiasis was developed from an earlier index by adding terms for the proportion of tsetse infected with Trypanosoma brucei gambiense group 1 and the contribution of animals to tsetse diet. The validity of the new index was then assessed in the Fontem focus of southwest Cameroon. Averages of 0.66 and 4.85 Glossina palpalis palpalis (Diptera: Glossinidae) were caught per trap/day at the end of one rainy season (November) and the start of the next (April), respectively. Of 1596 tsetse flies examined, 4.7% were positive for Trypanosoma brucei s.l. midgut infections and 0.6% for T. b. gambiense group 1. Among 184 bloodmeals identified, 55.1% were from pigs, 25.2% from humans, 17.6% from wild animals and 1.2% from goats. Of the meals taken from humans, 81.5% were taken at sites distant from pigsties. At the end of the rainy season, catches were low and similar between biotopes distant from and close to pigsties, but the risk for transmission was greatest at sites distant from the sties, suggesting that the presence of pigs reduced the risk to humans. At the beginning of the rainy season, catches of tsetse and risk for transmission were greatest close to the sties. In all seasons, there was a strong correlation between the old and new indices, suggesting that both can be used to estimate the level of transmission, but as the new index is the more comprehensive, it may be more accurate. © 2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.
Langley, Shaun A.; Messina, Joseph P.
2011-01-01
The past decade has seen an explosion in the availability of spatial data not only for researchers, but the public alike. As the quantity of data increases, the ability to effectively navigate and understand the data becomes more challenging. Here we detail a conceptual model for a spatially explicit database management system that addresses the issues raised with the growing data management problem. We demonstrate utility with a case study in disease ecology: to develop a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations and varying technical expertise necessitate a modular open-source software solution. Finally, we address three recurring problems with data management: scalability, reliability, and security. PMID:21686072
Langley, Shaun A; Messina, Joseph P
2011-01-01
The past decade has seen an explosion in the availability of spatial data not only for researchers, but the public alike. As the quantity of data increases, the ability to effectively navigate and understand the data becomes more challenging. Here we detail a conceptual model for a spatially explicit database management system that addresses the issues raised with the growing data management problem. We demonstrate utility with a case study in disease ecology: to develop a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations and varying technical expertise necessitate a modular open-source software solution. Finally, we address three recurring problems with data management: scalability, reliability, and security.
Evaluation of African medicinal plants for their in vitro trypanocidal activity.
Freiburghaus, F; Kaminsky, R; Nkunya, M H; Brun, R
1996-12-01
Petroleum ether, dichloromethane, methanol and water extracts from 24 plants, belonging to 19 families, which are reported in the literature as traditional remedies for sleeping sickness (human African trypanosomiasis) were screened for in vitro activity against Trypanosoma brucei rhodesiense, as well as fro cytotoxicity for a human fibroblast cell-line (WI-38). The trypanocidal activity of the natural compounds berberine and harmane, both documented as being trypanocidal, was also evaluated. Promising trypanocidal activity with IC50 values below 10 micrograms/ml was found in 32 extracts of 13 plant species. The most active extracts with IC50 below 1 microgram/ml were derived from Annona senegalensis, Bussea occidentalis and Physalis angulata. The plant extracts showed a modest selectivity index, in contrast to commercially available trypanocides which have a more distinct selective toxicity against trypanosomes.
Magez, S; Caljon, G
2011-08-01
African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection. © 2011 Blackwell Publishing Ltd.
Monitoring the elimination of human African trypanosomiasis: Update to 2014
Priotto, Gerardo; Paone, Massimo; Diarra, Abdoulaye; Grout, Lise; Mattioli, Raffaele C.; Argaw, Daniel
2017-01-01
Background The World Health Organization (WHO) has targeted the elimination of Human African trypanosomiasis (HAT) ‘as a public health problem’ by 2020. The selected indicators of elimination should be monitored every two years, and we provide here a comprehensive update to 2014. The monitoring system is underpinned by the Atlas of HAT. Results With 3,797 reported cases in 2014, the corresponding milestone (5,000 cases) was surpassed, and the 2020 global target of ‘fewer than 2,000 reported cases per year’ seems within reach. The areas where HAT is still a public health problem (i.e. > 1 HAT reported case per 10,000 people per year) have halved in less than a decade, and in 2014 they corresponded to 350 thousand km2. The number and potential coverage of fixed health facilities offering diagnosis and treatment for HAT has expanded, and approximately 1,000 are now operating in 23 endemic countries. The observed trends are supported by sustained surveillance and improved reporting. Discussion HAT elimination appears to be on track. For gambiense HAT, still accounting for the vast majority of reported cases, progress continues unabated in a context of sustained intensity of screening activities. For rhodesiense HAT, a slow-down was observed in the last few years. Looking beyond the 2020 target, innovative tools and approaches will be increasingly needed. Coordination, through the WHO network for HAT elimination, will remain crucial to overcome the foreseeable and unforeseeable challenges that an elimination process will inevitably pose. PMID:28531222
Njamnshi, Alfred K; Gettinby, George; Kennedy, Peter G E
2017-05-01
Human African trypanosomiasis (HAT), also known as sleeping sickness, puts millions of people at risk in sub-Saharan Africa and is a neglected parasitic disease that is almost always fatal if untreated or inadequately treated. HAT manifests itself in two stages that are difficult to distinguish clinically. The problem of staging in HAT is extremely important since treatment options, some of which are highly toxic, are directly linked to the disease stage. Several suggested investigations for disease staging have been problematic because of the lack of an existing gold standard with which to compare new clinical staging markers. The somewhat arbitrary current criteria based on the cerebrospinal fluid (CSF) white blood cell (WBC) count have been widely used, but the new potential biomarkers are generally compared with these, thereby making the problem somewhat circular in nature. We propose an alternative 'reverse' approach to address this problem, conceptualised as using appropriate statistical methods to test the performance of combinations of established laboratory variables as staging biomarkers to correlate with the CSF WBC/trypanosomes and clinical features of HAT. This approach could lead to the use of established laboratory staging markers, potentially leading to a gold standard for staging and clinical follow-up of HAT. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Simo, Gustave; Silatsa, Barberine; Flobert, Njiokou; Lutumba, Pascal; Mansinsa, Philemon; Madinga, Joule; Manzambi, Emile; De Deken, Reginald; Asonganyi, Tazoacha
2012-09-19
The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. About 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively. The presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined with the circulation of Trypanosoma brucei gambiense in this focus suggests a transmission cycle involving humans and domestic animals and could hamper eradication strategies. The various species of trypanosomes identified in the Malanga sleeping sickness focus indicates the coexistence of animal and human African Trypanosomiasis. The development of new strategies integrating control measures for human and animal trypanosomiasis may enable the reduction of the control costs in this locality.
Controlling and Coordinating Development in Vector-Transmitted Parasites
Matthews, Keith R.
2013-01-01
Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread. PMID:21385707
Sleeping sickness in travelers - do they really sleep?
Urech, Karin; Neumayr, Andreas; Blum, Johannes
2011-11-01
The number of imported Human African Trypanosomiasis (HAT) cases in non-endemic countries has increased over the last years. The objective of this analysis is to describe the clinical presentation of HAT in Caucasian travelers. Literature was screened (MEDLINE, Pubmed) using the terms "Human African Trypanosomiasis", "travelers" and "expatriates"; all European languages except Slavic ones were included. Publications without clinical description of patients were only included in the epidemiological analysis. Forty-five reports on Caucasians with T.b. rhodesiense and 15 with T.b. gambiense infections were included in the analysis of the clinical parameters. Both species have presented with fever (T.b. rhodesiense 97.8% and T.b. gambiense 93.3%), headache (50% each) and a trypanosomal chancre (T.b. rhodesiense 84.4%, T.b. gambiense 46.7%). While sleeping disorders dominate the clinical presentation of HAT in endemic regions, there have been only rare reports in travelers: insomnia (T.b. rhodesiense 7.1%, T.b. gambiense 21.4%), diurnal somnolence (T.b. rhodesiense 4.8%, T.b. gambiense none). Surprisingly, jaundice has been seen in 24.2% of the Caucasian T.b. rhodesiense patients, but has never been described in HAT patients in endemic regions. These results contrast to the clinical presentation of T.b. gambiense and T.b. rhodesiense HAT in Africans in endemic regions, where the presentation of chronic T.b. gambiense and acute T.b. rhodesiense HAT is different. The analysis of 14 reports on T.b. gambiense HAT in Africans living in a non-endemic country shows that neurological symptoms such as somnolence (46.2%), motor deficit (64.3%) and reflex anomalies (14.3%) as well as psychiatric symptoms such as hallucinations (21.4%) or depression (21.4%) may dominate the clinical picture. Often, the diagnosis has been missed initially: some patients have even been hospitalized in psychiatric clinics. In travelers T.b. rhodesiense and gambiense present as acute illnesses and chancres are frequently seen. The diagnosis of HAT in Africans living outside the endemic region is often missed or delayed, leading to presentation with advanced stages of the disease.
[Human African trypanosomiasis in children. A pediatrics service experience in Libreville, Gabon].
Koko, J; Dufillot, D; Gahouma, D; Amblard, J; Kani, F
1997-01-01
During a period of six years (1/1/89-12/31/94), seven children with trypanosomiasis were admitted to the Department of Pediatrics of Owendo Pediatric Hospital-Libreville, Gabon. They were 5 boys and 2 girls, aged 4-17 years, five of them under 15 years. The main reasons of hospitalization were somnolence (4 cases), psychical disorders (5 cases), neurological disorders (4 cases), asthenia (3 cases), loss of weight (3 cases) and fever (3 cases). Increased sedimentation rate (5 cases) and hypergammaglobulinemia (6 cases) were the most important biological disturbances. Serodiagnosis (CATT, indirect immunofluorescence test) was positive in all cases. The parasite was detected in blood seven times, and four times in cerebrospinal fluid (CSF). According to CSF status, six children have been classified in second stage of the disease. Six patients were treated by melarsoprol, and one by eflornithine. Tolerance and response to treatment were good in six cases. Three children presented sequels when leaving hospital. No patient was seen again after the study.
Jannin, J.; Moulia-Pelat, J. P.; Chanfreau, B.; Penchenier, L.; Louis, J. P.; Nzaba, P.; de La Baume, F. E.; Eozenou, P.; Cattand, P.
1993-01-01
A case-control study was carried out in the Congo to define a scoring system based on a number of clinical and epidemiological criteria of African trypanosomiasis due to Trypanosoma brucei gambiense which could be used by peripheral health services to establish a diagnosis. The survey comprised 163 cases and 326 controls. Clinical signs and symptoms were fever, headache, pruritus and skin lesions due to scratching, diarrhoea, oedema, cervical adenopathies, sleep rhythm disturbances, changes in appetite, amenorrhoea or impotence, mental confusion, neurological signs, and other minor clinical disturbances. Other criteria were a history of previous trypanosomiasis and the presence of domestic animals in the home environment. Analysis of the results showed that neither a single criterion nor a group of criteria is pathognomonic for the disease. The selected criteria do not allow discrimination of sleeping sickness patients among suspected individuals who present themselves. A scoring system is therefore of little use at the peripheral level of health services, particularly when considering the additional workload involved. The low diagnostic value of these clinical signs and symptoms and other indicators in African trypanosomiasis stresses the difficulty in developing an early warning tool for an integrated control strategy in primary health care. PMID:8490985
Selective delivery of 2-hydroxy APA to Trypanosoma brucei using the melamine motif
Klee, Nina; Wong, Pui Ee; Baragaña, Beatriz; Mazouni, Farah El; Phillips, Margaret A.; Barrett, Michael P.; Gilbert, Ian H.
2010-01-01
Trypanosoma brucei, the parasite that causes human African trypanosomiasis, is auxotrophic for purines and has specialist nucleoside transporters to import these metabolites. In particular, the P2 aminopurine transporter can also selectively accumulate melamine derivatives. In this Letter, we report the coupling of the melamine moiety to 2-hydroxy APA, a potent ornithine decarboxylase inhibitor, with the aim of selectively delivering this compound to the parasite. The best compound described here shows an increased in vitro trypanocidal activity compared with the parent. PMID:20615694
Neglected disease - african sleeping sickness: recent synthetic and modeling advances.
Paliwal, Sarvesh K; Verma, Ankita Narayan; Paliwal, Shailendra
2011-01-01
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Norton, J D; Yang, S P; Diffley, P
1986-01-01
Although it is well documented that severe protein deprivation inhibits the development of the immune response and exacerbates certain infections, little has been done to study the effects of native diets on endemic diseases or immunity. Therefore, protein-restricted diets were formulated for mice to mimic the sources and amounts measured in human diets of the Batouri region of Cameroon, endemic for African trypanosomiasis. Weanling C57BL/6 female mice were fed a diet that contained 73% of the recommended daily allowance (RDA) of protein. The sources of protein were all plant (cornmeal), all animal (casein), or a ratio that reflected the native diet (2.2 parts plant to 1 part animal protein). Diets were isocaloric on a weight basis, equal in lipids, and adequate in vitamins and minerals. Control mice were fed laboratory chow or two times the RDA of animal protein (casein). Mice fed only cornmeal or the native diets consumed as much food but did not gain as much weight as mice fed only animal protein, indicating the poorer quality of protein in their diets. Upon infection with Trypanosoma brucei gambiense, however, significantly higher numbers of these mice controlled the first peak of parasitemia and survived the infection as compared with mice fed the other three diets. Since all mice developed patent infections and the parasite growth rate was unaffected by diet, innate immune factors were ruled out as the cause for the higher level of resistance to the parasite. To determine whether diet affected the development of the immune system, weanling mice were maintained on diets for 30 days before immunization with sheep erythrocytes or trinitrophenylated Ficoll. Mice fed only plant protein or native diets elicited higher direct plaque-forming-cell responses to both the T-cell-dependent and T-cell-independent antigens. Since variant-specific immunity which controls levels of African trypanosomes in the blood is a T-cell-independent humoral immunoglobulin M response, this suggests that cornmeal, a protein of poor quality, was adequate for the development of humoral immunity and resistance to African trypanosomiasis while casein, an animal protein of high quality, was not. This provides more evidence that diet plays an important role in infection and immunity. PMID:3484725
Bland, Nicholas D; Wang, Cuihua; Tallman, Craig; Gustafson, Alden E; Wang, Zhouxi; Ashton, Trent D; Ochiana, Stefan O; McAllister, Gregory; Cotter, Kristina; Fang, Anna P; Gechijian, Lara; Garceau, Norman; Gangurde, Rajiv; Ortenberg, Ron; Ondrechen, Mary Jo; Campbell, Robert K; Pollastri, Michael P
2011-12-08
Neglected tropical disease drug discovery requires application of pragmatic and efficient methods for development of new therapeutic agents. In this report, we describe our target repurposing efforts for the essential phosphodiesterase (PDE) enzymes TbrPDEB1 and TbrPDEB2 of Trypanosoma brucei , the causative agent for human African trypanosomiasis (HAT). We describe protein expression and purification, assay development, and benchmark screening of a collection of 20 established human PDE inhibitors. We disclose that the human PDE4 inhibitor piclamilast, and some of its analogues, show modest inhibition of TbrPDEB1 and B2 and quickly kill the bloodstream form of the subspecies T. brucei brucei . We also report the development of a homology model of TbrPDEB1 that is useful for understanding the compound-enzyme interactions and for comparing the parasitic and human enzymes. Our profiling and early medicinal chemistry results strongly suggest that human PDE4 chemotypes represent a better starting point for optimization of TbrPDEB inhibitors than those that target any other human PDEs.
Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike
2018-05-25
Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Seke-Etet, Paul F.; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Bentivoglio, Marina
2017-01-01
Background Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis. PMID:28821016
One World-One Health and neglected zoonotic disease: elimination, emergence and emergency in Uganda.
Smith, James; Taylor, Emma Michelle; Kingsley, Pete
2015-03-01
This paper traces the emergence and tensions of an internationally constructed and framed One World-One Health (OWOH) approach to control and attempt to eliminate African Trypanosomiasis in Uganda. In many respects Trypanosomiasis is a disease that an OWOH approach is perfectly designed to treat, requiring an integrated approach built on effective surveillance in animals and humans, quick diagnosis and targeting of the vector. The reality appears to be that the translation of global notions of OWOH down to national and district levels generates problems, primarily due to interactions between: a) international, external actors not engaging with the Ugandan state; b) actors setting up structures and activities parallel to those of the state; c) actors deciding when emergencies begin and end without consultation; d) weak Ugandan state capacity to coordinate its own integrated response to disease; e) limited collaboration between core Ugandan planning activities and a weak, increasingly devolved district health system. These interrelated dynamics result in the global, international interventionalist mode of OWOH undermining the Coordinating Office for Control of Trypanosomiasis in Uganda (COCTU), the body within the Ugandan state mandated expressly with managing a sustainable One Health response to trypanosomiasis outbreaks in Uganda. This does two things, firstly it suggests we need a more grounded, national perspective of OWOH, where states and health systems are acknowledged and engaged with by international actors and initiatives. Secondly, it suggests that more support needs to be given to core coordinating capacity in resource-poor contexts. Supporting national coordinating bodies, focused around One Health, and ensuring that external actors engage with and through those bodies can help develop a sustained, effective OWOH presence in resource-poor countries, where after all most zoonotic disease burden remains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda
Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C
2015-01-01
Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201
McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P
2016-11-29
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.
McGettrick, Anne F.; Corcoran, Sarah E.; Barry, Paul J. G.; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M.; Franklin, Edward; Corr, Sinéad C.; Mok, K. Hun; Cummins, Eoin P.; Taylor, Cormac T.; O’Neill, Luke A. J.; Nolan, Derek P.
2016-01-01
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei. PMID:27856732
Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination?
Büscher, Philippe; Bart, Jean-Mathieu; Boelaert, Marleen; Bucheton, Bruno; Cecchi, Giuliano; Chitnis, Nakul; Courtin, David; Figueiredo, Luisa M; Franco, José-Ramon; Grébaut, Pascal; Hasker, Epco; Ilboudo, Hamidou; Jamonneau, Vincent; Koffi, Mathurin; Lejon, Veerle; MacLeod, Annette; Masumu, Justin; Matovu, Enock; Mattioli, Raffaele; Noyes, Harry; Picado, Albert; Rock, Kat S; Rotureau, Brice; Simo, Gustave; Thévenon, Sophie; Trindade, Sandra; Truc, Philippe; Van Reet, Nick
2018-03-01
Trypanosoma brucei gambiense causes human African trypanosomiasis (HAT). Between 1990 and 2015, almost 440000 cases were reported. Large-scale screening of populations at risk, drug donations, and efforts by national and international stakeholders have brought the epidemic under control with <2200 cases in 2016. The World Health Organization (WHO) has set the goals of gambiense-HAT elimination as a public health problem for 2020, and of interruption of transmission to humans for 2030. Latent human infections and possible animal reservoirs may challenge these goals. It remains largely unknown whether, and to what extend, they have an impact on gambiense-HAT transmission. We argue that a better understanding of the contribution of human and putative animal reservoirs to gambiense-HAT epidemiology is mandatory to inform elimination strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids
Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe
2016-01-01
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406
Optoelectronic tweezers for medical diagnostics
NASA Astrophysics Data System (ADS)
Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.
2012-01-01
Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.
Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis
Bentley, Stephen J.
2017-01-01
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly. PMID:28902917
Paratransgenesis applied for control of tsetse transmitted sleeping sickness.
Aksoy, Serap; Weiss, Brian; Attardo, Geoffrey
2008-01-01
African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.
The Silicon Trypanosome: a test case of iterative model extension in systems biology
Achcar, Fiona; Fadda, Abeer; Haanstra, Jurgen R.; Kerkhoven, Eduard J.; Kim, Dong-Hyun; Leroux, Alejandro E.; Papamarkou, Theodore; Rojas, Federico; Bakker, Barbara M.; Barrett, Michael P.; Clayton, Christine; Girolami, Mark; Luise Krauth-Siegel, R.; Matthews, Keith R.; Breitling, Rainer
2016-01-01
The African trypanosome, Trypanosoma brucei, is a unicellular parasite causing African Trypanosomiasis (sleeping sickness in humans and nagana in animals). Due to some of its unique properties, it has emerged as a popular model organism in systems biology. A predictive quantitative model of glycolysis in the bloodstream form of the parasite has been constructed and updated several times. The Silicon Trypanosome (SilicoTryp) is a project that brings together modellers and experimentalists to improve and extend this core model with new pathways and additional levels of regulation. These new extensions and analyses use computational methods that explicitly take different levels of uncertainty into account. During this project, numerous tools and techniques have been developed for this purpose, which can now be used for a wide range of different studies in systems biology. PMID:24797926
The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes
Capewell, Paul; Cren-Travaillé, Christelle; Marchesi, Francesco; Johnston, Pamela; Clucas, Caroline; Benson, Robert A; Gorman, Taylor-Anne; Calvo-Alvarez, Estefania; Crouzols, Aline; Jouvion, Grégory; Jamonneau, Vincent; Weir, William; Stevenson, M Lynn; O'Neill, Kerry; Cooper, Anneli; Swar, Nono-raymond Kuispond; Bucheton, Bruno; Ngoyi, Dieudonné Mumba; Garside, Paul
2016-01-01
The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI: http://dx.doi.org/10.7554/eLife.17716.001 PMID:27653219
Vodnala, Suman K.; Ferella, Marcela; Lundén-Miguel, Hilda; Betha, Evans; van Reet, Nick; Amin, Daniel Ndem; Öberg, Bo; Andersson, Björn; Kristensson, Krister; Wigzell, Hans; Rottenberg, Martin E.
2009-01-01
Background There is an urgent need to substitute the highly toxic compounds still in use for treatment of the encephalitic stage of human African trypanosomiasis (HAT). We here assessed the treatment with the doublet cordycepin and the deaminase inhibitor deoxycoformycin for this stage of infection with Trypanosoma brucei (T.b.). Methodology/Principal Findings Cordycepin was selected as the most efficient drug from a direct parasite viability screening of a compound library of nucleoside analogues. The minimal number of doses and concentrations of the drugs effective for treatment of T.b. brucei infections in mice were determined. Oral, intraperitoneal or subcutaneous administrations of the compounds were successful for treatment. The doublet was effective for treatment of late stage experimental infections with human pathogenic T.b. rhodesiense and T.b. gambiense isolates. Late stage infection treatment diminished the levels of inflammatory cytokines in brains of infected mice. Incubation with cordycepin resulted in programmed cell death followed by secondary necrosis of the parasites. T.b. brucei strains developed resistance to cordycepin after culture with increasing concentrations of the compound. However, cordycepin-resistant parasites showed diminished virulence and were not cross-resistant to other drugs used for treatment of HAT, i.e. pentamidine, suramin and melarsoprol. Although resistant parasites were mutated in the gene coding for P2 nucleoside adenosine transporter, P2 knockout trypanosomes showed no altered resistance to cordycepin, indicating that absence of the P2 transporter is not sufficient to render the trypanosomes resistant to the drug. Conclusions/Significance Altogether, our data strongly support testing of treatment with a combination of cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT. PMID:19652702
Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina
2016-12-01
The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.
Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F.; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Bentivoglio, Marina
2016-01-01
Background The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Methodology Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Principal findings Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. Conclusion These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging. PMID:28002454
Jacob, Franck; Melachio, Trésor T.; Njitchouang, Guy R.; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne
2017-01-01
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status. PMID:28824591
Jacob, Franck; Melachio, Trésor T; Njitchouang, Guy R; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne
2017-01-01
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene . Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia , and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis . The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia , were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Gillet, Philippe; Mumba Ngoyi, Dieudonné; Lukuka, Albert; Kande, Viktor; Atua, Benjamin; van Griensven, Johan; Muyembe, Jean-Jacques; Jacobs, Jan; Lejon, Veerle
2013-01-01
Background In endemic settings, diagnosis of malaria increasingly relies on the use of rapid diagnostic tests (RDTs). False positivity of such RDTs is poorly documented, although it is especially relevant in those infections that resemble malaria, such as human African trypanosomiasis (HAT). We therefore examined specificity of malaria RDT products among patients infected with Trypanosoma brucei gambiense. Methodology/Principal Findings Blood samples of 117 HAT patients and 117 matched non-HAT controls were prospectively collected in the Democratic Republic of the Congo. Reference malaria diagnosis was based on real-time PCR. Ten commonly used malaria RDT products were assessed including three two-band and seven three-band products, targeting HRP-2, Pf-pLDH and/or pan-pLDH antigens. Rheumatoid factor was determined in PCR negative subjects. Specificity of the 10 malaria RDT products varied between 79.5 and 100% in HAT-negative controls and between 11.3 and 98.8% in HAT patients. For seven RDT products, specificity was significantly lower in HAT patients compared to controls. False positive reactions in HAT were mainly observed for pan-pLDH test lines (specificities between 13.8 and 97.5%), but also occurred frequently for the HRP-2 test line (specificities between 67.9 and 98.8%). The Pf-pLDH test line was not affected by false-positive lines in HAT patients (specificities between 97.5 and 100%). False positivity was not associated to rheumatoid factor, detected in 7.6% of controls and 1.2% of HAT patients. Conclusions/Significance Specificity of some malaria RDT products in HAT was surprisingly low, and constitutes a risk for misdiagnosis of a fatal but treatable infection. Our results show the importance to assess RDT specificity in non-targeted infections when evaluating diagnostic tests. PMID:23638201
Towards the Development of THz-Sensors for the Detection of African Trypanosomes
NASA Astrophysics Data System (ADS)
Knieß, Robert; Wagner, Carolin B.; Ulrich Göringer, H.; Mueh, Mario; Damm, Christian; Sawallich, Simon; Chmielak, Bartos; Plachetka, Ulrich; Lemme, Max
2018-03-01
Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) for which adequate therapeutic and diagnostic measures are still lacking. Causative agent of HAT is the African trypanosome, a single-cell parasite, which propagates in the blood and cerebrospinal fluid of infected patients. Although different testing methods for the pathogen exist, none is robust, reliable and cost-efficient enough to support large-scale screening and control programs. Here we propose the design of a new sensor-type for the detection of infective-stage trypanosomes. The sensor exploits the highly selective binding capacity of nucleic acid aptamers to the surface of the parasite in combination with passive sensor structures to allow an electromagnetic remote read-out using terahertz (THz)-radiation. The short wavelength provides a superior interaction with the parasite cells than longer wavelengths, which is essential for a high sensitivity. We present two different sensor structures using both, micro- and nano-scale elements, as well as different measurement principles.
The role of HLA-G in parasitic diseases.
Sabbagh, A; Sonon, P; Sadissou, I; Mendes-Junior, C T; Garcia, A; Donadi, E A; Courtin, D
2018-04-01
Little attention has been devoted to the role of HLA-G gene and molecule on parasitic disorders, and the available studies have focused on malaria, African and American trypanosomiasis, leishmaniosis, toxoplasmosis and echinococcosis. After reporting a brief description regarding the role of the cells of innate and adaptive immune system against parasites, we reviewed the major features of the HLA-G gene and molecule and the role of HLA-G on the major cells of immune system. Increased levels of soluble HLA-G (sHLA-G) have been observed in patients presenting toxoplasmosis and in the active phase of echinococcosis. In addition, increased sHLA-G has also been associated with increased susceptibility to malaria and increased susceptibility to develop human African trypanosomiasis (HAT). In contrast, decreased membrane-bound HLA-G has been reported in placenta of patients infected with Plasmodium falciparum and in heart and colon of patients presenting Chagas disease. The 3' untranslated region of the HLA-G gene has been the main focus of studies on malaria, HAT and Chagas disease, exhibiting distinct patterns of associations. Considering that HLA-G is an immune checkpoint molecule, inhibiting the activity of several cells of the immune system, the excessive neoexpression and the increased sHLA-G levels together with the decreased constitutive tissue expression of membrane-bound HLA-G may be detrimental to the host infected with parasite agents. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cell Cycle Inhibition To Treat Sleeping Sickness.
Epting, Conrad L; Emmer, Brian T; Du, Nga Y; Taylor, Joann M; Makanji, Ming Y; Olson, Cheryl L; Engman, David M
2017-09-19
African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens. IMPORTANCE The development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals. Copyright © 2017 Epting et al.
Epidemiology of human African trypanosomiasis
Franco, Jose R; Simarro, Pere P; Diarra, Abdoulaye; Jannin, Jean G
2014-01-01
Human African trypanosomiasis (HAT), or sleeping sickness, is caused by Trypanosoma brucei gambiense, which is a chronic form of the disease present in western and central Africa, and by Trypanosoma brucei rhodesiense, which is an acute disease located in eastern and southern Africa. The rhodesiense form is a zoonosis, with the occasional infection of humans, but in the gambiense form, the human being is regarded as the main reservoir that plays a key role in the transmission cycle of the disease. The gambiense form currently assumes that 98% of the cases are declared; the Democratic Republic of the Congo is the most affected country, with more than 75% of the gambiense cases declared. The epidemiology of the disease is mediated by the interaction of the parasite (trypanosome) with the vectors (tsetse flies), as well as with the human and animal hosts within a particular environment. Related to these interactions, the disease is confined in spatially limited areas called “foci”, which are located in Sub-Saharan Africa, mainly in remote rural areas. The risk of contracting HAT is, therefore, determined by the possibility of contact of a human being with an infected tsetse fly. Epidemics of HAT were described at the beginning of the 20th century; intensive activities have been set up to confront the disease, and it was under control in the 1960s, with fewer than 5,000 cases reported in the whole continent. The disease resurged at the end of the 1990s, but renewed efforts from endemic countries, cooperation agencies, and nongovernmental organizations led by the World Health Organization succeeded to raise awareness and resources, while reinforcing national programs, reversing the trend of the cases reported, and bringing the disease under control again. In this context, sustainable elimination of the gambiense HAT, defined as the interruption of the transmission of the disease, was considered as a feasible target for 2030. Since rhodesiense HAT is a zoonosis, where the animal reservoir plays a key role, the interruption of the disease’s transmission is not deemed feasible. PMID:25125985
Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects
Patterson, Stephen; Wyllie, Susan
2014-01-01
There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class. PMID:24776300
Sutherland, C Simone; Yukich, Joshua; Goeree, Ron; Tediosi, Fabrizio
2015-02-01
Human African trypanosomiasis (HAT) is a disease caused by infection with the parasite Trypanosoma brucei gambiense or T. b. rhodesiense. It is transmitted to humans via the tsetse fly. Approximately 70 million people worldwide were at risk of infection in 1995, and approximately 20,000 people across Africa are infected with HAT. The objective of this review was to identify existing economic evaluations in order to summarise cost-effective interventions to reduce, control, or eliminate the burden of HAT. The studies included in the review were compared and critically appraised in order to determine if there were existing standardised methods that could be used for economic evaluation of HAT interventions or if innovative methodological approaches are warranted. A search strategy was developed using keywords and was implemented in January 2014 in several databases. The search returned a total of 2,283 articles. After two levels of screening, a total of seven economic evaluations were included and underwent critical appraisal using the Scottish Intercollegiate Guidelines Network (SIGN) Methodology Checklist 6: Economic Evaluations. Results from the existing studies focused on the cost-effectiveness of interventions for the control and reduction of disease transmission. Modelling was a common method to forecast long-term results, and publications focused on interventions by category, such as case detection, diagnostics, drug treatments, and vector control. Most interventions were considered cost-effective based on the thresholds described; however, the current treatment, nifurtomix-eflornithine combination therapy (NECT), has not been evaluated for cost-effectiveness, and considerations for cost-effective strategies for elimination have yet to be completed. Overall, the current evidence highlights the main components that play a role in control; however, economic evaluations of HAT elimination strategies are needed to assist national decision makers, stakeholders, and key funders. These analyses would be of use, as HAT is currently being prioritized as a neglected tropical disease (NTD) to reach elimination by 2020.
1994-01-27
VALLEY AND CONGO-CRIMEAN HEMORRHAGIC FEVER IN KENYA PRINCIPAL INVESTIGATOR: J. K. Omuse CONTRACTING ORGANIZATION : Kenya Trypanosomiasis Research...J. K. Omuse 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION Kenya Trypanosomiasis Research Institute REPORT NUMBER P.O...these flagellated protozoan parasites "homes" to the microvasculature of the brain and skeletal muscles, and the frequent paucity of organisms in the
Rubio, Brent K.; Tenney, Karen; Ang, Kean-Hooi; Abdulla, Maha; Arkin, Michelle; McKerrow, James H.; Crews, Phillip
2009-01-01
Human African trypanosomiasis (HAT), also known as African sleeping sickness, is a neglected tropical disease with inadequate therapeutic options. We have launched a collaborative new lead discovery venture using our repository of extracts and natural product compounds as input into our growth inhibition primary screen against Trypanosoma brucei. Careful evaluation of the spectral data of the natural products and derivatives allowed for the elucidation of the absolute configuration (using the modified Mosher’s method) of two new peroxiterpenes: (+)-muqubilone B (1a) and (−)-ent-muqubilone (3a). Five known compounds were also isolated: (+)-sigmosceptrellin A (4a), (+)-sigmosceptrellin A methyl ester (4b), (−)-sigmosceptrellin B (5), (+)-epi-muqubillin A (6) and (−)-epi-nuapapuin B methyl ester (7). The isolated peroxiterpenes demonstrated activities in the range from IC50 = 0.2 – 2 μg/mL. PMID:19159277
Castillo-Acosta, Víctor M; Ruiz-Pérez, Luis M; Etxebarria, Juan; Reichardt, Niels C; Navarro, Miguel; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan; González-Pacanowska, Dolores
2016-09-01
Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.
Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Reichardt, Niels C.; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan
2016-01-01
Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT. PMID:27662652
1991-11-06
CONGO-CRIMEAN HEMORRHAGIC FEVER IN KENYA PRINCIPAL INVESTIGATOR: J. K. Omuse, Ph.D. CONTRACTING ORGANIZATION : Kenya Trypanosomiasis Research Institute P.O...Distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Go. NAME OF PERFORMING ORGANIZATION 6b...OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Kenya Trypanosomiasis (I akabe) Research Institute I 6r. ADDRESS (Cit,, State, and ZIP Cod#) 7b
Kappagoda, Shanthi
2014-01-01
Abstract Objective To analyse evidence from randomized controlled trials (RCTs) on the prevention and control of neglected tropical diseases (NTDs) and to identify areas where evidence is lacking. Methods The Cochrane Central Register of Controlled Trials and PubMed were searched for RCTs and the Cochrane Database of Systematic Reviews and PubMed were searched for meta-analyses and systematic reviews, both from inception to 31 December 2012. Findings Overall, 258 RCTs were found on American trypanosomiasis, Buruli ulcer, dengue, geohelminth infection, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, rabies, schistosomiasis or trachoma. No RCTs were found on cysticercosis, dracunculiasis, echinococcosis, foodborne trematodes, or human African trypanosomiasis. The most studied diseases were geohelminth infection (51 RCTs) and leishmaniasis (46 RCTs). Vaccines, chemoprophylaxis and interventions targeting insect vectors were evaluated in 113, 99 and 39 RCTs, respectively. Few addressed how best to deliver preventive chemotherapy, such as the choice of dosing interval (10) or target population (4), the population coverage needed to reduce transmission (2) or the method of drug distribution (1). Thirty-one publications containing 32 systematic reviews (16 with and 16 without meta-analyses) were found on American trypanosomiasis, dengue, geohelminths, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, schistosomiasis or trachoma. Together, they included only 79 of the 258 published RCTs (30.6%). Of 36 interventions assessed, 8 were judged effective in more than one review. Conclusion Few RCTs on the prevention or control of the principal NTDs were found. Trials on how best to deliver preventive chemotherapy were particularly rare. PMID:24839325
Ko, Wen-Ya; Rajan, Prianka; Gomez, Felicia; Scheinfeldt, Laura; An, Ping; Winkler, Cheryl A; Froment, Alain; Nyambo, Thomas B; Omar, Sabah A; Wambebe, Charles; Ranciaro, Alessia; Hirbo, Jibril B; Tishkoff, Sarah A
2013-07-11
Disease susceptibility can arise as a consequence of adaptation to infectious disease. Recent findings have suggested that higher rates of chronic kidney disease (CKD) in individuals with recent African ancestry might be attributed to two risk alleles (G1 and G2) at the serum-resistance-associated (SRA)-interacting-domain-encoding region of APOL1. These two alleles appear to have arisen adaptively, possibly as a result of their protective effects against human African trypanosomiasis (HAT), or African sleeping sickness. In order to explore the distribution of potential functional variation at APOL1, we studied nucleotide variation in 187 individuals across ten geographically and genetically diverse African ethnic groups with exposure to two Trypanosoma brucei subspecies that cause HAT. We observed unusually high levels of nonsynonymous polymorphism in the regions encoding the functional domains that are required for lysing parasites. Whereas allele frequencies of G2 were similar across all populations (3%-8%), the G1 allele was only common in the Yoruba (39%). Additionally, we identified a haplotype (termed G3) that contains a nonsynonymous change at the membrane-addressing-domain-encoding region of APOL1 and is present in all populations except for the Yoruba. Analyses of long-range patterns of linkage disequilibrium indicate evidence of recent selection acting on the G3 haplotype in Fulani from Cameroon. Our results indicate that the G1 and G2 variants in APOL1 are geographically restricted and that there might be other functional variants that could play a role in HAT resistance and CKD risk in African populations. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Antitrypanosomatid drug discovery: an ongoing challenge and a continuing need
Field, Mark C.; Horn, David; Fairlamb, Alan H.; Ferguson, Michael A. J.; Gray, David W.; Read, Kevin D.; De Rycker, Manu; Torrie, Leah S.; Wyatt, Paul G.; Wyllie, Susan; Gilbert, Ian H.
2017-01-01
The World Health Organization recognizes human African trypanosomiasis, Chagas’ disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the impact of these diseases in recent decades, but alone will not eliminate these diseases. Here we discuss why new drugs against trypanosomatids are needed, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. Additionally, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives are essential for the management and hopefully eventual elimination of trypanosomatid diseases from the human population. PMID:28239154
2010-01-01
Background Following World Health Assembly resolutions 50.36 in 1997 and 56.7 in 2003, the World Health Organization (WHO) committed itself to supporting human African trypanosomiasis (HAT)-endemic countries in their efforts to remove the disease as a public health problem. Mapping the distribution of HAT in time and space has a pivotal role to play if this objective is to be met. For this reason WHO launched the HAT Atlas initiative, jointly implemented with the Food and Agriculture Organization of the United Nations, in the framework of the Programme Against African Trypanosomosis. Results The distribution of HAT is presented for 23 out of 25 sub-Saharan countries having reported on the status of sleeping sickness in the period 2000 - 2009. For the two remaining countries, i.e. Angola and the Democratic Republic of the Congo, data processing is ongoing. Reports by National Sleeping Sickness Control Programmes (NSSCPs), Non-Governmental Organizations (NGOs) and Research Institutes were collated and the relevant epidemiological data were entered in a database, thus incorporating (i) the results of active screening of over 2.2 million people, and (ii) cases detected in health care facilities engaged in passive surveillance. A total of over 42 000 cases of HAT and 6 000 different localities were included in the database. Various sources of geographic coordinates were used to locate the villages of epidemiological interest. The resulting average mapping accuracy is estimated at 900 m. Conclusions Full involvement of NSSCPs, NGOs and Research Institutes in building the Atlas of HAT contributes to the efficiency of the mapping process and it assures both the quality of the collated information and the accuracy of the outputs. Although efforts are still needed to reduce the number of undetected and unreported cases, the comprehensive, village-level mapping of HAT control activities over a ten-year period ensures a detailed and reliable representation of the known geographic distribution of the disease. Not only does the Atlas serve research and advocacy, but, more importantly, it provides crucial evidence and a valuable tool for making informed decisions to plan and monitor the control of sleeping sickness. PMID:21040555
Outcome of acute East African trypanosomiasis in a Polish traveller treated with pentamidine
2014-01-01
Background African trypanosomiasis is a parasitic infection sporadically imported to Europe by tourists or immigrants returning from endemic areas. We present the first and an unusual case of East African trypanosomiasis imported to Poland by a patient returning from a tourist trip to Uganda and Rwanda, which was successfully treated with pentamidine. Case presentation A 61-year-old Polish man was admitted to the Department because of high-grade fever and multi-organ dysfunction after a tourist trip to East Africa. He experienced a single tsetse fly bite during a safari trip to the Queen Elizabeth National Park in Uganda. On admission, his clinical status was severe, with high fever of 41ºC, preceded by chills, bleeding from the gums and oral mucosa, haemorrhages at the sites of venipuncture, numerous ecchymoses, fine-spotted skin rash, tachycardia, hepatosplenomegaly, dehydration, jaundice, dyspnoea, hypoxaemia, generalised oedema and oliguria. There was a typical non-painful trypanosomal chancre with central necrosis and peripheral erythema on his left arm. Laboratory investigations showed leucopenia, thrombocytopenia, haemolytic anaemia, hyperbilirubinaemia, hypoglycaemia, elevated creatinine and urea, high activity of aminotransferases, elevated levels of inflammatory markers, hypoproteinaemia, proteinuria, abnormal clotting and bleeding times, low fibrinogen level, metabolic acidosis, and electrolyte disturbances. A peripheral blood smear showed numerous Trypanosoma brucei trypomastigotes with a massive parasitaemia of 100,000/μl. T. brucei rhodesiense subspecies was finally identified on the basis of the characteristic serum resistance-associated gene using a polymerase chain reaction, and a seroconversion of specific immunoglobulin M and G antibodies in the peripheral blood by enzyme-linked immunosorbent assay. Serological tests for T. brucei gambiense subspecies were negative. A severe clinical course of acute rhodesiense trypanosomiasis with renal failure, respiratory distress, disseminated intravascular coagulation syndrome, haemolysis, liver insufficiency and myocarditis was confirmed. Intensive anti-parasitic and symptomatic treatment was immediately instituted, including intravenous pentamidine, plasmaphereses, oxygen therapy, blood transfusion, catecholamine administration, and fluid infusions, as well as haemostatic, hepatoprotective, anti-inflammatory, antipyretic and diuretic drugs. The final outcome was a full recovery with no late sequelae. Conclusion Sleeping sickness should always be considered in the differential diagnosis of fever in people returning from safari trips to the national parks or nature reserves of sub-Saharan Africa. PMID:24571399
Ko, Wen-Ya; Rajan, Prianka; Gomez, Felicia; Scheinfeldt, Laura; An, Ping; Winkler, Cheryl A.; Froment, Alain; Nyambo, Thomas B.; Omar, Sabah A.; Wambebe, Charles; Ranciaro, Alessia; Hirbo, Jibril B.; Tishkoff, Sarah A.
2013-01-01
Disease susceptibility can arise as a consequence of adaptation to infectious disease. Recent findings have suggested that higher rates of chronic kidney disease (CKD) in individuals with recent African ancestry might be attributed to two risk alleles (G1 and G2) at the serum-resistance-associated (SRA)-interacting-domain-encoding region of APOL1. These two alleles appear to have arisen adaptively, possibly as a result of their protective effects against human African trypanosomiasis (HAT), or African sleeping sickness. In order to explore the distribution of potential functional variation at APOL1, we studied nucleotide variation in 187 individuals across ten geographically and genetically diverse African ethnic groups with exposure to two Trypanosoma brucei subspecies that cause HAT. We observed unusually high levels of nonsynonymous polymorphism in the regions encoding the functional domains that are required for lysing parasites. Whereas allele frequencies of G2 were similar across all populations (3%–8%), the G1 allele was only common in the Yoruba (39%). Additionally, we identified a haplotype (termed G3) that contains a nonsynonymous change at the membrane-addressing-domain-encoding region of APOL1 and is present in all populations except for the Yoruba. Analyses of long-range patterns of linkage disequilibrium indicate evidence of recent selection acting on the G3 haplotype in Fulani from Cameroon. Our results indicate that the G1 and G2 variants in APOL1 are geographically restricted and that there might be other functional variants that could play a role in HAT resistance and CKD risk in African populations. PMID:23768513
Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches
2013-01-01
Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets. PMID:24015767
USDA-ARS?s Scientific Manuscript database
Canine leishmaniasis and American trypanosomiasis (AT) are caused by related hemoflagellated parasites, Leishmania spp. and Trypanosoma cruzi, which share several common host species. Dogs are reservoirs for human infections with both pathogens. We determined the prevalence of antibodies to Leishman...
Cording, Amy; Gormally, Michael; Bond, Peter J.; Carrington, Mark; Balasubramanian, Shankar; Miska, Eric A.; Thomas, Beth
2017-01-01
ABSTRACT Non-coding RNAs are crucial regulators for a vast array of cellular processes and have been implicated in human disease. These biological processes represent a hitherto untapped resource in our fight against disease. In this work we identify small molecule inhibitors of a non-coding RNA uridylylation pathway. The TUTase family of enzymes is important for modulating non-coding RNA pathways in both human cancer and pathogen systems. We demonstrate that this new class of drug target can be accessed with traditional drug discovery techniques. Using the Trypanosoma brucei TUTase, RET1, we identify TUTase inhibitors and lay the groundwork for the use of this new target class as a therapeutic opportunity for the under-served disease area of African Trypanosomiasis. In a broader sense this work demonstrates the therapeutic potential for targeting RNA post-transcriptional modifications with small molecules in human disease. PMID:26786754
Cording, Amy; Gormally, Michael; Bond, Peter J; Carrington, Mark; Balasubramanian, Shankar; Miska, Eric A; Thomas, Beth
2017-05-04
Non-coding RNAs are crucial regulators for a vast array of cellular processes and have been implicated in human disease. These biological processes represent a hitherto untapped resource in our fight against disease. In this work we identify small molecule inhibitors of a non-coding RNA uridylylation pathway. The TUTase family of enzymes is important for modulating non-coding RNA pathways in both human cancer and pathogen systems. We demonstrate that this new class of drug target can be accessed with traditional drug discovery techniques. Using the Trypanosoma brucei TUTase, RET1, we identify TUTase inhibitors and lay the groundwork for the use of this new target class as a therapeutic opportunity for the under-served disease area of African Trypanosomiasis. In a broader sense this work demonstrates the therapeutic potential for targeting RNA post-transcriptional modifications with small molecules in human disease.
Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood
NASA Astrophysics Data System (ADS)
Menachery, Anoop; Kremer, Clemens; Wong, Pui E.; Carlsson, Allan; Neale, Steven L.; Barrett, Michael P.; Cooper, Jonathan M.
2012-10-01
Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator.
Testing Experimental Compounds against Leishmaniasis in Laboratory Animal Model Systems
1988-04-01
Phase 1 clinical trials against African trypanosomiasis are already in place in Kenya (103). These data suggest that DFMO, or more powerful ornithine...and in mammalian cells (7,75,77,113). It is widely employed for the treatment of gout and other hyperuricemic conditions in man (13). The formation of
Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.
Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James
2017-07-19
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Thuita, John K.; Wolf, Kristina K.; Murilla, Grace A.; Liu, Qiang; Mutuku, James N.; Chen, Yao; Bridges, Arlene S.; Mdachi, Raymond E.; Ismail, Mohamed A.; Ching, Shelley; Boykin, David W.; Hall, James Edwin; Tidwell, Richard R.; Paine, Mary F.; Brun, Reto; Wang, Michael Zhuo
2013-01-01
There are no oral drugs for human African trypanosomiasis (HAT, sleeping sickness). A successful oral drug would have the potential to reduce or eliminate the need for patient hospitalization, thus reducing healthcare costs of HAT. The development of oral medications is a key objective of the Consortium for Parasitic Drug Development (CPDD). In this study, we investigated the safety, pharmacokinetics, and efficacy of a new orally administered CPDD diamidine prodrug, 2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868; CPD-007-10), in the vervet monkey model of first stage HAT. DB868 was well tolerated at a dose up to 30 mg/kg/day for 10 days, a cumulative dose of 300 mg/kg. Mean plasma levels of biomarkers indicative of liver injury (alanine aminotransferase, aspartate aminotransferase) were not significantly altered by drug administration. In addition, no kidney-mediated alterations in creatinine and urea concentrations were detected. Pharmacokinetic analysis of plasma confirmed that DB868 was orally available and was converted to the active compound DB829 in both uninfected and infected monkeys. Treatment of infected monkeys with DB868 began 7 days post-infection. In the infected monkeys, DB829 attained a median Cmax (dosing regimen) that was 12-fold (3 mg/kg/day for 7 days), 15-fold (10 mg/kg/day for 7 days), and 31-fold (20 mg/kg/day for 5 days) greater than the IC50 (14 nmol/L) against T. b. rhodesiense STIB900. DB868 cured all infected monkeys, even at the lowest dose tested. In conclusion, oral DB868 cured monkeys with first stage HAT at a cumulative dose 14-fold lower than the maximum tolerated dose and should be considered a lead preclinical candidate in efforts to develop a safe, short course (5–7 days), oral regimen for first stage HAT. PMID:23755309
Bessell, Paul Richard; Ndung’u, Joseph Mathu
2017-01-01
Introduction The incidence of gambiense human African trypanosomiasis (gHAT) in Uganda has been declining, from 198 cases in 2008, to only 20 in 2012. Interruption of transmission of the disease by early diagnosis and treatment is core to the control and eventual elimination of gHAT. Until recently, the format of available screening tests had restricted screening and diagnosis to central health facilities (passive screening). We describe a novel strategy that is contributing to elimination of gHAT in Uganda through expansion of passive screening to the entire population at risk. Methodology / Principal findings In this strategy, patients who are clinically suspected of having gHAT at primary health facilities are screened using a rapid diagnostic test (RDT), followed by parasitological confirmation at strategically located microscopy centres. For patients who are positive with the RDT and negative by microscopy, blood samples undergo further testing using loop-mediated isothermal amplification (LAMP), a molecular test that detects parasite DNA. LAMP positive patients are considered strong suspects, and are re-evaluated by microscopy. Location and upgrading of facilities to perform microscopy and LAMP was informed by results of georeferencing and characterization of all public healthcare facilities in the 7 gHAT endemic districts in Uganda. Three facilities were upgraded to perform RDTs, microscopy and LAMP, 9 to perform RDTs and microscopy, and 200 to screen patients with RDTs. This reduced the distance that a sick person must travel to be screened for gHAT to a median distance of 2.5km compared to 23km previously. In this strategy, 9 gHAT cases were diagnosed in 2014, and 4 in 2015. Conclusions This enhanced passive screening strategy for gHAT has enabled full coverage of the population at risk, and is being replicated in other gHAT endemic countries. The improvement in case detection is making elimination of the disease in Uganda an imminent possibility. PMID:29023573
Bukachi, Salome A; Wandibba, Simiyu; Nyamongo, Isaac K
2017-10-01
Human African Trypanosomiasis (HAT), a disease caused by protozoan parasites transmitted by tsetse flies, is an important neglected tropical disease endemic in remote regions of sub-Saharan Africa. Although the determination of the burden of HAT has been based on incidence, mortality and morbidity rates, the true burden of HAT goes beyond these metrics. This study sought to establish the socio-economic burden that households with HAT faced and the coping strategies they employed to deal with the increased burden. A mixed methods approach was used and data were obtained through: review of hospital records; structured interviews (152); key informant interviews (11); case narratives (12) and focus group discussions (15) with participants drawn from sleeping sickness patients in the south western HAT foci in Kenya. Quantitative data were analysed using descriptive statistics while qualitative data was analysed based on emerging themes. Socio-economic impacts included, disruption of daily activities, food insecurity, neglect of homestead, poor academic performance/school drop-outs and death. Delayed diagnosis of HAT caused 93% of the affected households to experience an increase in financial expenditure (ranging from US$ 60-170) in seeking treatment. Out of these, 81.5% experienced difficulties in raising money for treatment resorting to various ways of raising it. The coping strategies employed to deal with the increased financial expenditure included: sale of agricultural produce (64%); seeking assistance from family and friends (54%); sale/lease of family assets (22%); seeking credit (22%) and use of personal savings (17%). Coping strategies outlined in this study impacted negatively on the affected households leading to further food insecurity and impoverishment. Calculation of the true burden of disease needs to go beyond incidence, mortality and morbidity rates to capture socio-economic variables entailed in seeking treatment and coping strategies of HAT affected households.
Mugasa, Claire M; Adams, Emily R; Boer, Kimberly R; Dyserinck, Heleen C; Büscher, Philippe; Schallig, Henk D H F; Leeflang, Mariska M G
2012-01-01
A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and direct resources appropriately.
Syndromic Algorithms for Detection of Gambiense Human African Trypanosomiasis in South Sudan
Palmer, Jennifer J.; Surur, Elizeous I.; Goch, Garang W.; Mayen, Mangar A.; Lindner, Andreas K.; Pittet, Anne; Kasparian, Serena; Checchi, Francesco; Whitty, Christopher J. M.
2013-01-01
Background Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. Methodology/Principal Findings Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9–92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4–8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. Conclusions/Significance In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere. PMID:23350005
Njamnshi, Alfred K.; Seke Etet, Paul F.; Perrig, Stephen; Acho, Alphonse; Funsah, Julius Y.; Mumba, Dieudonné; Muyembe, Jean-Jacques; Kristensson, Krister; Bentivoglio, Marina
2012-01-01
Background Human African trypanosomiasis (HAT) or sleeping sickness leads to a complex neuropsychiatric syndrome with characteristic sleep alterations. Current division into a first, hemolymphatic stage and second, meningoencephalitic stage is primarily based on the detection of white blood cells and/or trypanosomes in the cerebrospinal fluid. The validity of this criterion is, however, debated, and novel laboratory biomarkers are under study. Objective clinical HAT evaluation and monitoring is therefore needed. Polysomnography has effectively documented sleep-wake disturbances during HAT, but could be difficult to apply as routine technology in field work. The non-invasive, cost-effective technique of actigraphy has been widely validated as a tool for the ambulatory evaluation of sleep disturbances. In this pilot study, actigraphy was applied to the clinical assessment of HAT patients. Methods/Principal Findings Actigraphy was recorded in patients infected by Trypanosoma brucei gambiense, and age- and sex-matched control subjects. Simultaneous nocturnal polysomnography was also performed in the patients. Nine patients, including one child, were analyzed at admission and two of them also during specific treatment. Parameters, analyzed with user-friendly software, included sleep time evaluated from rest-activity signals, rest-activity rhythm waveform and characteristics. The findings showed sleep-wake alterations of various degrees of severity, which in some patients did not parallel white blood cell counts in the cerebrospinal fluid. Actigraphic recording also showed improvement of the analyzed parameters after treatment initiation. Nocturnal polysomnography showed alterations of sleep time closely corresponding to those derived from actigraphy. Conclusions/Significance The data indicate that actigraphy can be an interesting tool for HAT evaluation, providing valuable clinical information through simple technology, well suited also for long-term follow-up. Actigraphy could therefore objectively contribute to the clinical assessment of HAT patients. This method could be incorporated into a clinical scoring system adapted to HAT to be used in the evaluation of novel treatments and laboratory biomarkers. PMID:22348168
Thuita, John K.; Wolf, Kristina K.; Murilla, Grace A.; Bridges, Arlene S.; Boykin, David W.; Mutuku, James N.; Liu, Qiang; Jones, Susan K.; Gem, Charles O.; Ching, Shelley; Tidwell, Richard R.; Wang, Michael Z.; Paine, Mary F.; Brun, Reto
2015-01-01
Human African trypanosomiasis (HAT, sleeping sickness) ranks among the most neglected tropical diseases based on limited availability of drugs that are safe and efficacious, particularly against the second stage (central nervous system [CNS]) of infection. In response to this largely unmet need for new treatments, the Consortium for Parasitic Drug Development developed novel parenteral diamidines and corresponding oral prodrugs that have shown cure of a murine model of second stage HAT. As a rationale for selection of one of these compounds for further development, the pharmacokinetics and efficacy of intramuscular (IM) active diamidine 2,5-bis(5-amidino-2-pyridyl)furan (DB829; CPD-0802) and oral prodrug2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868) were compared in the vervet monkey model of second stage HAT. Treatment was initiated 28 days post-infection of monkeys with T. b. rhodesiense KETRI 2537. Results showed that IM DB829 at 5 mg/kg/day for 5 consecutive days, 5 mg/kg/day every other day for 5 doses, or 2.5 mg/kg/day for 5 consecutive days cured all monkeys (5/5). Oral DB868 was less successful, with no cures (0/2) at 3 mg/kg/day for 10 days and cure rates of 1/4 at 10 mg/kg/day for 10 days and 20 mg/kg/day for 10 days; in total, only 2/10 monkeys were cured with DB868 dose regimens. The geometric mean plasma Cmax of IM DB829 at 5 mg/kg following the last of 5 doses was 25-fold greater than that after 10 daily oral doses of DB868 at 20 mg/kg. These data suggest that the active diamidine DB829, administered IM, should be considered for further development as a potential new treatment for second stage HAT. PMID:25654243
Evaluation of substituted ebselen derivatives as potential trypanocidal agents.
Gordhan, Heeren M; Patrick, Stephen L; Swasy, Maria I; Hackler, Amber L; Anayee, Mark; Golden, Jennifer E; Morris, James C; Whitehead, Daniel C
2017-02-01
Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC 50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaboré, Justin Windingoudi; Ilboudo, Hamidou; Noyes, Harry; Camara, Oumou; Kaboré, Jacques; Camara, Mamadou; Koffi, Mathurin; Lejon, Veerle; Jamonneau, Vincent; MacLeod, Annette; Hertz-Fowler, Christiane; Belem, Adrien Marie Gaston; Matovu, Enock; Bucheton, Bruno; Sidibe, Issa
2017-08-01
Human African trypanosomiasis (HAT), a lethal disease induced by Trypanosoma brucei gambiense, has a range of clinical outcomes in its human host in West Africa: an acute form progressing rapidly to second stage, spontaneous self-cure and individuals able to regulate parasitaemia at very low levels, have all been reported from endemic foci. In order to test if this clinical diversity is influenced by host genetic determinants, the association between candidate gene polymorphisms and HAT outcome was investigated in populations from HAT active foci in Guinea. Samples were collected from 425 individuals; comprising of 232 HAT cases, 79 subjects with long lasting positive and specific serology but negative parasitology and 114 endemic controls. Genotypes of 28 SNPs in eight genes passed quality control and were used for an association analysis. IL6 rs1818879 allele A (p = 0.0001, OR = 0.39, CI95 = [0.24-0.63], BONF = 0.0034) was associated with a lower risk of progressing from latent infection to active disease. MIF rs36086171 allele G seemed to be associated with an increased risk (p = 0.0239, OR = 1.65, CI95 = [1.07-2.53], BONF = 0.6697) but did not remain significant after Bonferroni correction. Similarly MIF rs12483859 C allele seems be associated with latent infections (p = 0.0077, OR = 1.86, CI95 = [1.18-2.95], BONF = 0.2157). We confirmed earlier observations that APOL1 G2 allele (DEL) (p = 0.0011, OR = 2.70, CI95 = [1.49-4.91], BONF = 0.0301) is associated with a higher risk and APOL1 G1 polymorphism (p = 0.0005, OR = 0.45, CI95 = [0.29-0.70], BONF = 0.0129) with a lower risk of developing HAT. No associations were found with other candidate genes. Our data show that host genes are involved in modulating Trypanosoma brucei gambiense infection outcome in infected individuals from Guinea with IL6 rs1818879 being associated with a lower risk of progressing to active HAT. These results enhance our understanding of host-parasite interactions and, ultimately, may lead to the development of new control tools.
Apolipoprotein L1 Variant Associated with Increased Susceptibility to Trypanosome Infection
Cuypers, Bart; Lecordier, Laurence; Meehan, Conor J.; Van den Broeck, Frederik; Imamura, Hideo; Büscher, Philippe; Dujardin, Jean-Claude; Laukens, Kris; Schnaufer, Achim; Dewar, Caroline; Lewis, Michael; Balmer, Oliver; Azurago, Thomas; Kyei-Faried, Sardick; Ohene, Sally-Ann; Duah, Boateng; Homiah, Prince; Mensah, Ebenezer Kofi; Anleah, Francis; Franco, Jose Ramon; Pays, Etienne
2016-01-01
ABSTRACT African trypanosomes, except Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause human African trypanosomiasis, are lysed by the human serum protein apolipoprotein L1 (ApoL1). These two subspecies can resist human ApoL1 because they express the serum resistance proteins T. b. gambiense glycoprotein (TgsGP) and serum resistance-associated protein (SRA), respectively. Whereas in T. b. rhodesiense, SRA is necessary and sufficient to inhibit ApoL1, in T. b. gambiense, TgsGP cannot protect against high ApoL1 uptake, so different additional mechanisms contribute to limit this uptake. Here we report a complex interplay between trypanosomes and an ApoL1 variant, revealing important insights into innate human immunity against these parasites. Using whole-genome sequencing, we characterized an atypical T. b. gambiense infection in a patient in Ghana. We show that the infecting trypanosome has diverged from the classical T. b. gambiense strains and lacks the TgsGP defense mechanism against human serum. By sequencing the ApoL1 gene of the patient and subsequent in vitro mutagenesis experiments, we demonstrate that a homozygous missense substitution (N264K) in the membrane-addressing domain of this ApoL1 variant knocks down the trypanolytic activity, allowing the trypanosome to avoid ApoL1-mediated immunity. PMID:27073096
Conventional Therapy and Promising Plant-Derived Compounds Against Trypanosomatid Parasites
Alviano, Daniela Sales; Barreto, Anna Léa Silva; Dias, Felipe de Almeida; Rodrigues, Igor de Almeida; Rosa, Maria do Socorro dos Santos; Alviano, Celuta Sales; Soares, Rosangela Maria de Araújo
2012-01-01
Leishmaniasis and trypanosomiasis are two neglected and potentially lethal diseases that affect mostly the poor and marginal populations of developing countries around the world and consequently have an important impact on public health. Clinical manifestations such as cutaneous, mucocutaneous, and visceral disorders are the most frequent forms of leishmaniasis, a group of diseases caused by several Leishmania spp. American trypanosomiasis, or Chagas disease, is caused by Trypanosoma cruzi, a parasite that causes progressive damage to different organs, particularly the heart, esophagus, and lower intestine. African trypanosomiasis, or sleeping sickness, is caused by Trypanosoma brucei and is characterized by first presenting as an acute form that affects blood clotting and then becoming a chronic meningoencephalitis. The limited number, low efficacy, and side effects of conventional anti-leishmania and anti-trypanosomal drugs and the resistance developed by parasites are the major factors responsible for the growth in mortality rates. Recent research focused on plants has shown an ingenious way to obtain a solid and potentially rich source of drug candidates against various infectious diseases. Bioactive phytocompounds present in the crude extracts and essential oils of medicinal plants are components of an important strategy linked to the discovery of new medicines. These compounds have proven to be a good source of therapeutic agents for the treatment of leishmaniasis and trypanosomiasis. This work highlights some chemotherapeutic agents while emphasizing the importance of plants as a source of new and powerful drugs against these widespread diseases. PMID:22888328
Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa
Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James
2017-01-01
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171
Chowdhury, S F; Villamor, V B; Guerrero, R H; Leal, I; Brun, R; Croft, S L; Goodman, J M; Maes, L; Ruiz-Perez, L M; Pacanowska, D G; Gilbert, I H
1999-10-21
This paper concerns the design, synthesis, and evaluation of inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Initially study was made of the structures of the leishmanial and human enzyme active sites to see if there were significant differences which could be exploited for selective drug design. Then a series of compounds were synthesized based on 5-benzyl-2, 4-diaminopyrimidines. These compounds were assayed against the protozoan and human enzymes and showed selectivity for the protozoan enzymes. The structural data was then used to rationalize the enzyme assay data. Compounds were also tested against the clinically relevant forms of the intact parasite. Activity was seen against the trypanosomes for a number of compounds. The compounds were in general less active against Leishmania. This latter result may be due to uptake problems. Two of the compounds also showed some in vivo activity in a model of African trypanosomiasis.
Discovery of trypanosomatid parasites in globally distributed Drosophila species.
Chandler, James Angus; James, Pamela M
2013-01-01
Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts.
2011-06-01
trypanosomes in the blood of a patient with Gambia fever and named the organisms T. gambiense. Two years later, Castellani found identical organisms...trypanosomes, and that Gambia fever and sleeping sickness were 2 stages of the same disease.5 In 1910, Stephens and Fantham identified trypanosomes in the...which parasites disseminate through the lymph nodes, lymphatic system, and bloodstream. Symptoms include fever , malaise, generalized rash, headache
Study of African Trypanosomiasis.
1979-09-30
received foot and mouth vaccine (Wellcome-Kenya). In general, the experimental animals were kept out- side and supplemental food was provided during... vaccinant dans le plasma de souris experimentalement infectees par Trypanosoma gaibiense et par Trypanosoma concolense. Bullitin de la Society...Medicine and Hyciene, 35: 165-176. Jchnson, P., Neal, R.A. and Gall, D., 1963. Protective effect of killed trypanosome vaccines with incorporated
Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang
2018-04-26
Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.
Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning
Kaiser, Marcel; Mäser, Pascal; Tadoori, Leela Pavan; Ioset, Jean-Robert; Brun, Reto
2015-01-01
Neglected tropical diseases cause significant morbidity and mortality and are a source of poverty in endemic countries. Only a few drugs are available to treat diseases such as leishmaniasis, Chagas’ disease, human African trypanosomiasis and malaria. Since drug development is lengthy and expensive, a drug repurposing strategy offers an attractive fast-track approach to speed up the process. A set of 100 registered drugs with drug repositioning potential for neglected diseases was assembled and tested in vitro against four protozoan parasites associated with the aforementioned diseases. Several drugs and drug classes showed in vitro activity in those screening assays. The results are critically reviewed and discussed in the perspective of a follow-up drug repositioning strategy where R&D has to be addressed with limited resources. PMID:26270335
Njiru, Zablon K; Mbae, Cecilia K; Mburugu, Gitonga N
2017-01-01
The World Health Organization has targeted Human African Trypanosomiasis (HAT) for elimination by 2020 with zero incidence by 2030. To achieve and sustain this goal, accurate and easy-to-deploy diagnostic tests for Gambian trypanosomiasis which accounts for over 98% of reported cases will play a crucial role. Most needed will be tools for surveillance of pathogen in vectors (xenomonitoring) since population screening tests are readily available. The development of new tests is expensive and takes a long time while incremental improvement of existing technologies that have potential for xenomonitoring may offer a shorter pathway to tools for HAT surveillance. We have investigated the effect of including a second set of reaction accelerating primers (stem primers) to the standard T. brucei gambiense LAMP test format. The new test format was analyzed with and without outer primers. Amplification was carried out using Rotorgene 6000 and the portable ESE Quant amplification unit capable of real-time data output. The stem LAMP formats indicated shorter time to results (~8 min), were 10-100-fold more sensitive, and indicated higher diagnostic sensitivity and accuracy compared to the standard LAMP test. It was possible to confirm the predicted product using ESE melt curves demonstrating the potential of combining LAMP and real-time technologies as possible tool for HAT molecular xenomonitoring.
Castillo-Garit, Juan Alberto; Abad, Concepción; Rodríguez-Borges, J Enrique; Marrero-Ponce, Yovani; Torrens, Francisco
2012-01-01
The neglected tropical diseases (NTDs) affect more than one billion people (one-sixth of the world's population) and occur primarily in undeveloped countries in sub-Saharan Africa, Asia, and Latin America. Available drugs for these diseases are decades old and present an important number of limitations, especially high toxicity and, more recently, the emergence of drug resistance. In the last decade several Quantitative Structure-Activity Relationship (QSAR) studies have been developed in order to identify new organic compounds with activity against the parasites responsible for these diseases, which are reviewed in this paper. The topics summarized in this work are: 1) QSAR studies to identify new organic compounds actives against Chaga's disease; 2) Development of QSAR studies to discover new antileishmanial drusg; 3) Computational studies to identify new drug-like compounds against human African trypanosomiasis. Each topic include the general characteristics, epidemiology and chemotherapy of the disease as well as the main QSAR approaches to discovery/identification of new actives compounds for the corresponding neglected disease. The last section is devoted to a new approach know as multi-target QSAR models developed for antiparasitic drugs specifically those actives against trypanosomatid parasites. At present, as a result of these QSAR studies several promising compounds, active against these parasites, are been indentify. However, more efforts will be required in the future to develop more selective (specific) useful drugs.
Reiche, E M; Morimoto, H K; Farias, G N; Hisatsugu, K R; Geller, L; Gomes, A C; Inoue, H Y; Rodrigues, G; Matsuo, T
2000-01-01
In order to evaluate the seroprevalence of the american trypanosomiasis, syphilis, toxoplasmosis, rubella, hepatitis B infection, hepatitis C infection and human immunodeficiency virus infection among pregnant women attended at the Hospital Universitário Regional Norte do Paraná, Londrina State University, Paraná, a retrospective study of the serologic results performed in the prenatal routine during the period of June 1996 to June 1998 was carried out. The rates of seropositivity were as follows: american trypanosomiasis = 0.9%, syphilis = 1.6%, toxoplasmosis = 67% (IgG) and 1.8% (IgM), rubella = 89% (IgG) and 1.2% (IgM), hepatitis B surface antigen = 0.8%, hepatitis C virus = 0.8% and human immunodeficiency virus infection = 0.6%. An association between the increase in the seroprevalence of Chagas' disease and patient age was detected (p=0.006). The results underscore the importance of the serological tests in perinatal care, to prevent both the congenital and perinatally transmitted forms of theses infectious diseases.
Patent landscape of neglected tropical diseases: an analysis of worldwide patent families.
Akinsolu, Folahanmi Tomiwa; de Paiva, Vitor Nobre; Souza, Samuel Santos; Varga, Orsolya
2017-11-14
"Neglected Tropical Diseases" (NTDs) affect millions of people in Africa, Asia and South America. The two primary ways of strategic interventions are "preventive chemotherapy and transmission control" (PCT), and "innovative and intensified disease management" (IDM). In the last 5 years, phenomenal progress has been achieved. However, it is crucial to intensify research effort into NTDs, because of the emerging drug resistance. According to the World Health Organization (WHO), the term NTDs covers 17 diseases, namely buruli ulcer, Chagas disease, dengue, dracunculiasis, echinococcosis, trematodiasis, human African trypanosomiasis, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, rabies, schistosomiasis, soil-transmitted helminthes, taeniasis, trachoma, and yaws. The aim of this study is to map out research and development (R&D) landscape through patent analysis of these identified NTDs. To achieve this, analysis and evaluation have been conducted on patenting trends, current legal status of patent families, priority countries by earliest priority years and their assignee types, technological fields of patent families over time, and original and current patent assignees. Patent families were extracted from Patseer, an international database of patents from over 100 patent issuing authorities worldwide. Evaluation of the patents was carried out using the combination of different search terms related to each identified NTD. In this paper, a total number of 12,350 patent families were analyzed. The main countries with sources of inventions were identified to be the United States (US) and China. The main technological fields covered by NTDs patent landscape are pharmaceuticals, biotechnology, organic fine chemistry, analysis of biological materials, basic materials chemistry, and medical technology. Governmental institutions and universities are the primary original assignees. Among the NTDs, leishmaniasis, dengue, and rabies received the highest number of patent families, while human African trypanosomiasis (sleeping sickness), taeniasis, and dracunciliasis received the least. The overall trend of patent families shows an increase between 1985 and 2008, and followed by at least 6 years of stagnation. The filing pattern of patent families analyzed undoubtedly reveals slow progress on research and development of NTDs. Involving new players, such as non-governmental organizations may help to mitigate and reduce the burden of NTDs.
Studies on African Trypanosomiasis and Leishmaniasis. Volume 2.
1984-07-01
8217 flies with heavy infections in their anterior midguts transmit parasites when they feed is not known, but the biting behavior of such insects is not the...of cutaneous leishmaniasis by contaminated mouthparts of the 4 hamsters developed a culture-positive nose lesion of both biting and nonbiting insects ...the cibarium, an experiment predicated on the hypothesis that such infections interfer with cibarial blood meal-sensing receptors , thereby changing
Kwofie, Kofi D.; Tung, Nguyen Huu; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M.; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K.; Anyan, William K.; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A.; Yamaoka, Shoji; Boakye, Daniel A.; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene
2016-01-01
Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals. PMID:26953191
Vectorborne diseases in West Africa: geographic distribution and geospatial characteristics.
Ratmanov, Pavel; Mediannikov, Oleg; Raoult, Didier
2013-05-01
This paper provides an overview of the methods in which geographic information systems (GIS) and remote sensing (RS) technology have been used to visualise and analyse data related to vectorborne diseases (VBD) in West Africa and to discuss the potential for these approaches to be routinely included in future studies of VBDs. GIS/RS studies of diseases that are associated with a specific geographic landscape were reviewed, including malaria, human African trypanosomiasis, leishmaniasis, lymphatic filariasis, Loa loa filariasis, onchocerciasis, Rift Valley fever, dengue, yellow fever, borreliosis, rickettsioses, Buruli ulcer and Q fever. RS data and powerful spatial modelling methods improve our understanding of how environmental factors affect the vectors and transmission of VBDs. There is great potential for the use of GIS/RS technologies in the surveillance, prevention and control of vectorborne and other infectious diseases in West Africa.
Kato, Charles D; Matovu, Enock; Mugasa, Claire M; Nanteza, Ann; Alibu, Vincent P
2016-01-01
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
De Gasparo, Raoul; Brodbeck-Persch, Elke; Bryson, Steve; Hentzen, Nina B; Kaiser, Marcel; Pai, Emil F; Krauth-Siegel, R Luise; Diederich, François
2018-05-08
The tropical diseases human African trypanosomiasis, Chagas disease, and the various forms of leishmaniasis are caused by parasites of the family of trypanosomatids. These protozoa possess a unique redox metabolism based on trypanothione and trypanothione reductase (TR), making TR a promising drug target. We report the optimization of properties and potency of cyclohexylpyrrolidine inhibitors of TR by structure-based design. The best inhibitors were freely soluble and showed competitive inhibition constants (K i ) against Trypanosoma (T.) brucei TR and T. cruzi TR and in vitro activities (half-maximal inhibitory concentration, IC 50 ) against these parasites in the low micromolar range, with high selectivity against human glutathione reductase. X-ray co-crystal structures confirmed the binding of the ligands to the hydrophobic wall of the "mepacrine binding site" with the new, solubility-providing vectors oriented toward the surface of the large active site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.
Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard
2017-06-01
Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.
MacLean, Lorna; Reiber, Hansotto; Kennedy, Peter G E; Sternberg, Jeremy M
2012-01-01
Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value.
Giroud, Maude; Kuhn, Bernd; Saint-Auret, Sarah; Kuratli, Christoph; Martin, Rainer E; Schuler, Franz; Diederich, François; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Haap, Wolfgang
2018-04-26
Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8 ). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition ( K i values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (IC 50 values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1 H-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and in vivo half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites.
Myburgh, Elmarie; Coles, Jonathan A.; Ritchie, Ryan; Kennedy, Peter G. E.; McLatchie, Alex P.; Rodgers, Jean; Taylor, Martin C.; Barrett, Michael P.; Brewer, James M.; Mottram, Jeremy C.
2013-01-01
Human African trypanosomiasis (HAT) manifests in two stages of disease: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain. PMID:23991236
Acup, Christine; Bardosh, Kevin Louis; Picozzi, Kim; Waiswa, Charles; Welburn, Susan Christina
2017-01-01
Sleeping sickness or Human African Trypanosomiasis (HAT) is a neglected tropical disease of public health importance across much of Sub-Saharan Africa. In Uganda, chronic T. b. gambiense HAT (gHAT) and acute T. b. rhodesiense HAT (rHAT) occur in two large but discrete geographical foci. Both forms are difficult to diagnose, expensive to treat and ultimately fatal in the absence of treatment. The area affected by zoonotic rHAT has been steadily expanding, placing a high burden on local health systems. HAT is a disease of neglected populations and is notorious for being under-reported. Here we examine the factors that influence passive rHAT surveillance within the district health system in four Ugandan districts into which the disease had recently been introduced, focusing on staff knowledge, infrastructure and data management. A mixed methods study was undertaken between 2011 and 2013 in Dokolo, Kaberamaido, Soroti and Serere districts to explore health facility capacity and clinical service provision, diagnostic capacity, HAT knowledge and case reporting. Structured interviews were undertaken with 86 medical personnel, including clinicians, nurses, midwives and technicians across 65 HC-II and HC-III medical facilities, where the health infrastructure was also directly observed. Eleven semi-structured interviews were undertaken with medical staff in each of the three designated HAT treatment facilities (Dokolo, Lwala and Serere HC-IV) in the area. HAT treatment centre case records, collected between 2009 and 2012, were analyzed. Most medical staff in HC-II and HC-III facilities had been made aware of HAT from radio broadcasts, newspapers and by word of mouth, suggestive of a lack of formal training. Key knowledge as regards the causative agent, clinical signs and that HAT drugs are provided free of charge was lower amongst HC-II than HC-III staff. Many respondents did not know whether HAT was endemic in their district. In rHAT specialist treatment centres, staff were knowledgeable of HAT and were confident in their ability to diagnose and manage cases. Between 2009-2012, 342 people were diagnosed in the area, 54% in the late stage of the disease. Over the period of this study the proportion of rHAT cases identified in early stage fell and by 2012 the majority of cases identified were diagnosed in the late stage. This study illustrates the critical role of the district health system in HAT management. The increasing proportion of cases identified at a late stage in this study indicates a major gap in lower tier levels in patient referral, diagnosis and reporting that urgently needs to be addressed. Integrating HAT diagnosis into national primary healthcare programs and providing training to medical workers at all levels is central to the new 2030 WHO HAT elimination goal. Given the zoonotic nature of rHAT, joined up active surveillance in human and animal populations in Uganda is also needed. The role of the Coordinating Office for Control of Trypanosomiasis in Uganda in implementing a One Health approach will be key to sustainable management of zoonotic HAT. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Quinol derivatives as potential trypanocidal agents
Capes, Amy; Patterson, Stephen; Wyllie, Susan; Hallyburton, Irene; Collie, Iain T.; McCarroll, Andrew J.; Stevens, Malcolm F.G.; Frearson, Julie A.; Wyatt, Paul G.; Fairlamb, Alan H.; Gilbert, Ian H.
2012-01-01
Quinols have been developed as a class of potential anti-cancer compounds. They are thought to act as double Michael acceptors, forming two covalent bonds to their target protein(s). Quinols have also been shown to have activity against the parasite Trypanosoma brucei, the causative organism of human African trypanosomiasis, but they demonstrated little selectivity over mammalian MRC5 cells in a counter-screen. In this paper, we report screening of further examples of quinols against T. brucei. We were able to derive an SAR, but the compounds demonstrated little selectivity over MRC5 cells. In an approach to increase selectivity, we attached melamine and benzamidine motifs to the quinols, because these moieties are known to be selectively concentrated in the parasite by transporter proteins. In general these transporter motif-containing analogues showed increased selectivity; however they also showed reduced levels of potency against T. brucei. PMID:22264753
Structure-guided design of novel Trypanosoma brucei Methionyl-tRNA synthetase inhibitors.
Huang, Wenlin; Zhang, Zhongsheng; Barros-Álvarez, Ximena; Koh, Cho Yeow; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Buckner, Frederick S; Fan, Erkang
2016-11-29
A screening hit 1 against Trypanosoma brucei methionyl-tRNA synthetase was optimized using a structure-guided approach. The optimization led to the identification of two novel series of potent inhibitors, the cyclic linker and linear linker series. Compounds of both series were potent in a T. brucei growth inhibition assay while showing low toxicity to mammalian cells. The best compound of each series, 16 and 31, exhibited EC 50 s of 39 and 22 nM, respectively. Compounds 16 and 31 also exhibited promising PK properties after oral dosing in mice. Moreover, compound 31 had moderately good brain permeability, with a brain/plasma ratio of 0.27 at 60 min after IP injection. This study provides new lead compounds for arriving at new treatments of human African trypanosomiasis (HAT). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sleeping Sickness in the 'Omics Era.
Tiberti, Natalia; Sanchez, Jean-Charles
2018-03-08
Sleeping sickness is a neglected tropical disease caused by Trypanosoma brucei parasites, affecting the poorest communities in sub-Saharan Africa. The great efforts done by the scientific community, local governments, and non-governmental organizations (NGOs) via active patients' screening, vector control, and introduction of improved treatment regimens have significantly contributed to the reduction of human African trypanosomiasis (HAT) incidence during the last 15 years. Consequently, the WHO has announced the objective of HAT elimination as a public health problem by 2020. Studies at both parasite and host levels have improved our understanding of the parasite biology and the mechanisms of parasite interaction with its mammalian host. In this review, the impact that 'omics studies have had on sleeping sickness by revealing novel properties of parasite's subcellular organelles are summarized, by highlighting changes induced in the host during the infection and by proposing potential disease markers and therapeutic targets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew
2012-08-01
During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. © 2012 John Wiley & Sons A/S.
State of the Art in African Trypanosome Drug Discovery
Jacobs, Robert T.; Nare, Bakela; Phillips, Margaret A.
2011-01-01
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT. PMID:21401507
Gene fusion analysis in the battle against the African endemic sleeping sickness.
Trimpalis, Philip; Koumandou, Vassiliki Lila; Pliakou, Evangelia; Anagnou, Nicholas P; Kossida, Sophia
2013-01-01
The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs), vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method) was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a) statistical significance (BLAST e-value, domain length etc.), (b) their involvement in crucial metabolic pathways, and (c) their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns.
von Wissmann, Beatrix; Machila, Noreen; Picozzi, Kim; Fèvre, Eric M.; deC. Bronsvoort, Barend M.; Handel, Ian G.; Welburn, Susan C.
2011-01-01
Background Trypanosomiasis is regarded as a constraint on livestock production in Western Kenya where the responsibility for tsetse and trypanosomiasis control has increasingly shifted from the state to the individual livestock owner. To assess the sustainability of these localised control efforts, this study investigates biological and management risk factors associated with trypanosome infections detected by polymerase chain reaction (PCR), in a range of domestic livestock at the local scale in Busia, Kenya. Busia District also remains endemic for human sleeping sickness with sporadic cases of sleeping sickness reported. Results In total, trypanosome infections were detected in 11.9% (329) out of the 2773 livestock sampled in Busia District. Multivariable logistic regression revealed that host species and cattle age affected overall trypanosome infection, with significantly increased odds of infection for cattle older than 18 months, and significantly lower odds of infection in pigs and small ruminants. Different grazing and watering management practices did not affect the odds of trypanosome infection, adjusted by host species. Neither anaemia nor condition score significantly affected the odds of trypanosome infection in cattle. Human infective Trypanosoma brucei rhodesiense were detected in 21.5% of animals infected with T. brucei s.l. (29/135) amounting to 1% (29/2773) of all sampled livestock, with significantly higher odds of T. brucei rhodesiense infections in T. brucei s.l. infected pigs (OR = 4.3, 95%CI 1.5-12.0) than in T. brucei s.l. infected cattle or small ruminants. Conclusions Although cattle are the dominant reservoir of trypanosome infection it is unlikely that targeted treatment of only visibly diseased cattle will achieve sustainable interruption of transmission for either animal infective or zoonotic human infective trypanosomiasis, since most infections were detected in cattle that did not exhibit classical clinical signs of trypanosomiasis. Pigs were also found to be reservoirs of infection for T. b. rhodesiense and present a risk to local communities. PMID:21311575
Lenk, Edeltraud J; Redekop, William K; Luyendijk, Marianne; Fitzpatrick, Christopher; Niessen, Louis; Stolk, Wilma A; Tediosi, Fabrizio; Rijnsburger, Adriana J; Bakker, Roel; Hontelez, Jan A C; Richardus, Jan H; Jacobson, Julie; Le Rutte, Epke A; de Vlas, Sake J; Severens, Johan L
2018-03-01
The control or elimination of neglected tropical diseases (NTDs) has targets defined by the WHO for 2020, reinforced by the 2012 London Declaration. We estimated the economic impact to individuals of meeting these targets for human African trypanosomiasis, leprosy, visceral leishmaniasis and Chagas disease, NTDs controlled or eliminated by innovative and intensified disease management (IDM). A systematic literature review identified information on productivity loss and out-of-pocket payments (OPPs) related to these NTDs, which were combined with projections of the number of people suffering from each NTD, country and year for 2011-2020 and 2021-2030. The ideal scenario in which the WHO's 2020 targets are met was compared with a counterfactual scenario that assumed the situation of 1990 stayed unaltered. Economic benefit equaled the difference between the two scenarios. Values are reported in 2005 US$, purchasing power parity-adjusted, discounted at 3% per annum from 2010. Probabilistic sensitivity analyses were used to quantify the degree of uncertainty around the base-case impact estimate. The total global productivity gained for the four IDM-NTDs was I$ 23.1 (I$ 15.9 -I$ 34.0) billion in 2011-2020 and I$ 35.9 (I$ 25.0 -I$ 51.9) billion in 2021-2030 (2.5th and 97.5th percentiles in brackets), corresponding to US$ 10.7 billion (US$ 7.4 -US$ 15.7) and US$ 16.6 billion (US$ 11.6 -US$ 24.0). Reduction in OPPs was I$ 14 billion (US$ 6.7 billion) and I$ 18 billion (US$ 10.4 billion) for the same periods. We faced important limitations to our work, such as finding no OPPs for leprosy. We had to combine limited data from various sources, heterogeneous background, and of variable quality. Nevertheless, based on conservative assumptions and subsequent uncertainty analyses, we estimate that the benefits of achieving the targets are considerable. Under plausible scenarios, the economic benefits far exceed the necessary investments by endemic country governments and their development partners. Given the higher frequency of NTDs among the poorest households, these investments represent good value for money in the effort to improve well-being, distribute the world's prosperity more equitably and reduce inequity.
Luyendijk, Marianne; Fitzpatrick, Christopher; Niessen, Louis; Stolk, Wilma A.; Tediosi, Fabrizio; Rijnsburger, Adriana J.; Bakker, Roel; Hontelez, Jan A. C.; Richardus, Jan H.; Jacobson, Julie; Le Rutte, Epke A.; de Vlas, Sake J.; Severens, Johan L.
2018-01-01
Background The control or elimination of neglected tropical diseases (NTDs) has targets defined by the WHO for 2020, reinforced by the 2012 London Declaration. We estimated the economic impact to individuals of meeting these targets for human African trypanosomiasis, leprosy, visceral leishmaniasis and Chagas disease, NTDs controlled or eliminated by innovative and intensified disease management (IDM). Methods A systematic literature review identified information on productivity loss and out-of-pocket payments (OPPs) related to these NTDs, which were combined with projections of the number of people suffering from each NTD, country and year for 2011–2020 and 2021–2030. The ideal scenario in which the WHO’s 2020 targets are met was compared with a counterfactual scenario that assumed the situation of 1990 stayed unaltered. Economic benefit equaled the difference between the two scenarios. Values are reported in 2005 US$, purchasing power parity-adjusted, discounted at 3% per annum from 2010. Probabilistic sensitivity analyses were used to quantify the degree of uncertainty around the base-case impact estimate. Results The total global productivity gained for the four IDM-NTDs was I$ 23.1 (I$ 15.9 –I$ 34.0) billion in 2011–2020 and I$ 35.9 (I$ 25.0 –I$ 51.9) billion in 2021–2030 (2.5th and 97.5th percentiles in brackets), corresponding to US$ 10.7 billion (US$ 7.4 –US$ 15.7) and US$ 16.6 billion (US$ 11.6 –US$ 24.0). Reduction in OPPs was I$ 14 billion (US$ 6.7 billion) and I$ 18 billion (US$ 10.4 billion) for the same periods. Conclusions We faced important limitations to our work, such as finding no OPPs for leprosy. We had to combine limited data from various sources, heterogeneous background, and of variable quality. Nevertheless, based on conservative assumptions and subsequent uncertainty analyses, we estimate that the benefits of achieving the targets are considerable. Under plausible scenarios, the economic benefits far exceed the necessary investments by endemic country governments and their development partners. Given the higher frequency of NTDs among the poorest households, these investments represent good value for money in the effort to improve well-being, distribute the world’s prosperity more equitably and reduce inequity. PMID:29534061
Laveissière, C.; Meda, A. H.; Doua, F.; Sane, B.
1998-01-01
The solution to the problem of human African trypanosomiasis (HAT) first of all requires improved case detection. Effective tests have been available for a number of years but the results of medical surveys are still mediocre, mainly because the populations are poorly mobilized. Those few mobile teams still visiting villages obtain very low presentation rates. In spite of major information campaigns among villagers, in Côte d'Ivoire the Institut Pierre Richet (IPR) and Trypanosomiasis Clinical Research Project (PRCT) teams examined only 42% (9311) of the 22,300 inhabitants of a disease focus during a conventional ten-day survey. In the same focus, community health workers specially trained in sleeping sickness and in the collection of blood samples on filter-paper examined 73% of the population (15,000 individuals) in less than two months. Implementation of a sleeping sickness control strategy is restricted to two types of intervention: either conventional mobile teams which are on hand, competent and rapidly operational but which fail to carry out exhaustive case detection, or integration of case detection into primary health care by entrusting surveillance to the community health workers. This approach requires a minimum of training but ensures that sentinels are permanently present in the village communities. By using the community health workers rather than mobile teams it should be possible to achieve comprehensive monitoring. In operational terms, the cost of surveillance per person is US$ 0.55 for the mobile teams as against US$ 0.10 for the community health workers. Integration of HAT case detection into primary health care is therefore an effective and economical solution, provided the community health workers are properly supervised and above all motivated. PMID:10191551
Sleep structure: a new diagnostic tool for stage determination in sleeping sickness.
Buguet, Alain; Bisser, Sylvie; Josenando, Théophile; Chapotot, Florian; Cespuglio, Raymond
2005-01-01
Human African trypanosomiasis (HAT), due to the transmission of Trypanosoma brucei (T. b.) gambiense and T. b. rhodesiense by tsetse flies, is re-emerging in inter-tropical Africa. It evolves from the hemolymphatic Stage I to the meningo-encephalitic Stage II. The latter is generally treated with melarsoprol, an arseniate provoking often a deadly encephalopathy. A precise determination of the HAT evolution stage is therefore crucial. Stage II patients show: (i) a deregulation of the 24-h distribution of the sleep-wake alternation; (ii) an alteration of the sleep structure, with frequent sleep onset rapid eye movement (REM) periods (SOREMPs). Gambian HAT was diagnosed in eight patients (four, Stage II; three, Stage I; one, "intermediate" case) at the trypanosomiasis clinic at Viana (Angola). Continuous 48-h polysomnography was recorded on Oxford Medilog 9000-II portable systems before and after treatment with melarsoprol (Stage II) or pentamidine (Stage I and "intermediate" stage). Sleep traces were visually analyzed in 20-s epochs using the PRANA software. Stage II patients showed the complete sleep-wake syndrome, partly reversed by melarsoprol 1 month later. Two Stage I patients did not experience any of these alterations. However, the "intermediate" and one Stage I patients exhibited sleep disruptions and/or SOREMPs, persistent after pentamidine treatment. Polysomnography may represent a diagnostic tool to distinguish the two stages of HAT. Especially, SOREMPs appear shortly after the central nervous system invasion by trypanosomes. The reversibility of the sleep-wake cycle and sleep structure alterations after appropriate treatment constitutes the basis of an evaluation of the healing process.
Jansen, Chimed; Wang, Huanchen; Kooistra, Albert J.; de Graaf, Chris; Orrling, Kristina; Tenor, Hermann; Seebeck, Thomas; Bailey, David; de Esch, Iwan J.P.; Ke, Hengming; Leurs, Rob
2013-01-01
Trypanosoma brucei cyclic nucleotide phosphodiesterase B1 (TbrPDEB1) and TbrPDEB2 have recently been validated as new therapeutic targets for human African Trypanosomiasis by both genetic and pharmacological means. In this study we report the crystal structure of the catalytic domain of the unliganded TbrPDEB1 and its use for the in silico screening for new TbrPDEB1 inhibitors with novel scaffolds. The TbrPDEB1 crystal structure shows the characteristic folds of human PDE enzymes, but also contains the parasite-specific P-pocket found in the structures of Leishmania major PDEB1 and Trypanosoma cruzi PDEC. The unliganded TbrPDEB1 X-ray structure was subjected to a structure-based in silico screening approach that combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. This approach identified, six novel TbrPDEB1 inhibitors with IC50 values of 10–80 μM, which may be further optimized as potential selective TbrPDEB inhibitors. PMID:23409953
Analysis of a model of gambiense sleeping sickness in humans and cattle.
Ndondo, A M; Munganga, J M W; Mwambakana, J N; Saad-Roy, C M; van den Driessche, P; Walo, R O
2016-01-01
Human African Trypanosomiasis (HAT) and Nagana in cattle, commonly called sleeping sickness, is caused by trypanosome protozoa transmitted by bites of infected tsetse flies. We present a deterministic model for the transmission of HAT caused by Trypanosoma brucei gambiense between human hosts, cattle hosts and tsetse flies. The model takes into account the growth of the tsetse fly, from its larval stage to the adult stage. Disease in the tsetse fly population is modeled by three compartments, and both the human and cattle populations are modeled by four compartments incorporating the two stages of HAT. We provide a rigorous derivation of the basic reproduction number R0. For R0 < 1, the disease free equilibrium is globally asymptotically stable, thus HAT dies out; whereas (assuming no return to susceptibility) for R0 >1, HAT persists. Elasticity indices for R0 with respect to different parameters are calculated with baseline parameter values appropriate for HAT in West Africa; indicating parameters that are important for control strategies to bring R0 below 1. Numerical simulations with R0 > 1 show values for the infected populations at the endemic equilibrium, and indicate that with certain parameter values, HAT could not persist in the human population in the absence of cattle.
Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.
Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob
2015-01-01
Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.
Molecular epidemiology of African sleeping sickness.
Hide, G; Tait, A
2009-10-01
Human sleeping sickness in Africa, caused by Trypanosoma brucei spp. raises a number of questions. Despite the widespread distribution of the tsetse vectors and animal trypanosomiasis, human disease is only found in discrete foci which periodically give rise to epidemics followed by periods of endemicity A key to unravelling this puzzle is a detailed knowledge of the aetiological agents responsible for different patterns of disease--knowledge that is difficult to achieve using traditional microscopy. The science of molecular epidemiology has developed a range of tools which have enabled us to accurately identify taxonomic groups at all levels (species, subspecies, populations, strains and isolates). Using these tools, we can now investigate the genetic interactions within and between populations of Trypanosoma brucei and gain an understanding of the distinction between human- and nonhuman-infective subspecies. In this review, we discuss the development of these tools, their advantages and disadvantages and describe how they have been used to understand parasite genetic diversity, the origin of epidemics, the role of reservoir hosts and the population structure. Using the specific case of T.b. rhodesiense in Uganda, we illustrate how molecular epidemiology has enabled us to construct a more detailed understanding of the origins, generation and dynamics of sleeping sickness epidemics.
Holt, H R; Selby, R; Mumba, C; Napier, G B; Guitian, J
2016-01-30
Animal African trypanosomiasis (AAT) is one of the biggest constraints to livestock production and a threat to food security in sub-Saharan Africa. In order to optimise the allocation of resources for AAT control, decision makers need to target geographic areas where control programmes are most likely to be successful and sustainable and select control methods that will maximise the benefits obtained from resources invested. The overall approach to classifying cattle-owning communities in terms of AAT vulnerability was based on the selection of key variables collected through field surveys in five sub-Saharan Africa countries followed by a formal Multiple Correspondence Analysis (MCA) to identify factors explaining the variations between areas. To categorise the communities in terms of AAT vulnerability profiles, Hierarchical Cluster Analysis (HCA) was performed. Three clusters of community vulnerability profiles were identified based on farmers' beliefs with respect to trypanosomiasis control within the five countries studied. Cluster 1 communities, mainly identified in Cameroon, reported constant AAT burden, had large trypanosensitive (average herd size = 57) communal grazing cattle herds. Livestock (cattle and small ruminants) were reportedly the primary source of income in the majority of these cattle-owning households (87.0%). Cluster 2 communities identified mainly in Burkina Faso and Zambia, with some Ethiopian communities had moderate herd sizes (average = 16) and some trypanotolerant breeds (31.7%) practicing communal grazing. In these communities there were some concerns regarding the development of trypanocide resistance. Crops were the primary income source while communities in this cluster incurred some financial losses due to diminished draft power. The third cluster contained mainly Ugandan and Ethiopian communities which were mixed farmers with smaller herd sizes (average = 8). The costs spent diagnosing and treating AAT were moderate here. Understanding how cattle-owners are affected by AAT and their efforts to manage the disease is critical to the design of suitable locally-adapted control programmes. It is expected that the results could inform priority setting and the development of tailored recommendations for AAT control strategies.
Bisser, Sylvie; Lumbala, Crispin; Nguertoum, Etienne; Kande, Victor; Flevaud, Laurence; Vatunga, Gedeao; Boelaert, Marleen; Büscher, Philippe; Josenando, Theophile; Bessell, Paul R; Biéler, Sylvain; Ndung'u, Joseph M
2016-04-01
A major challenge in the control of human African trypanosomiasis (HAT) is lack of reliable diagnostic tests that are rapid and easy to use in remote areas where the disease occurs. In Trypanosoma brucei gambiense HAT, the Card Agglutination Test for Trypanosomiasis (CATT) has been the reference screening test since 1978, usually on whole blood, but also in a 1/8 dilution (CATT 1/8) to enhance specificity. However, the CATT is not available in a single format, requires a cold chain for storage, and uses equipment that requires electricity. A solution to these challenges has been provided by rapid diagnostic tests (RDT), which have recently become available. A prototype immunochromatographic test, the SD BIOLINE HAT, based on two native trypanosomal antigens (VSG LiTat 1.3 and VSG LiTat 1.5) has been developed. We carried out a non-inferiority study comparing this prototype to the CATT 1/8 in field settings. The prototype SD BIOLINE HAT, the CATT Whole Blood and CATT 1/8 were systematically applied on fresh blood samples obtained from 14,818 subjects, who were prospectively enrolled through active and passive screening in clinical studies in three endemic countries of central Africa: Angola, the Democratic Republic of the Congo and the Central African Republic. One hundred and forty nine HAT cases were confirmed by parasitology. The sensitivity and specificity of the prototype SD BIOLINE HAT was 89.26% (95% confidence interval (CI) = 83.27-93.28) and 94.58% (95% CI = 94.20-94.94) respectively. The sensitivity and specificity of the CATT on whole blood were 93.96% (95% CI = 88.92-96.79) and 95.91% (95% CI = 95.58-96.22), and of the CATT 1/8 were 89.26% (95% CI = 83.27-93.28) and 98.88% (95% CI = 98.70-99.04) respectively. After further optimization, the prototype SD BIOLINE HAT could become an alternative to current screening methods in primary healthcare settings in remote, resource-limited regions where HAT typically occurs.
Burri, Christian; Yeramian, Patrick D.; Merolle, Ada; Serge, Kazadi Kyanza; Mpanya, Alain; Lutumba, Pascal; Mesu, Victor Kande Betu Ku; Lubaki, Jean-Pierre Fina; Mpoto, Alfred Mpoo; Thompson, Mark; Munungu, Blaise Fungula; Josenando, Théophilo; Bernhard, Sonja C.; Olson, Carol A.; Blum, Johannes; Tidwell, Richard R.; Pohlig, Gabriele
2016-01-01
Background Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT. Methods The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent. Findings/Conclusion Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3. PMID:26881924
Burri, Christian; Yeramian, Patrick D; Allen, James L; Merolle, Ada; Serge, Kazadi Kyanza; Mpanya, Alain; Lutumba, Pascal; Mesu, Victor Kande Betu Ku; Bilenge, Constantin Miaka Mia; Lubaki, Jean-Pierre Fina; Mpoto, Alfred Mpoo; Thompson, Mark; Munungu, Blaise Fungula; Manuel, Francisco; Josenando, Théophilo; Bernhard, Sonja C; Olson, Carol A; Blum, Johannes; Tidwell, Richard R; Pohlig, Gabriele
2016-02-01
Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT. The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent. Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3.
Effects of Epidemic Diseases on the Distribution of Bonobos
Inogwabini, Bila-Isia; Leader-Williams, Nigel
2012-01-01
This study examined how outbreaks and the occurrence of Anthrax, Ebola, Monkeypox and Trypanosomiasis may differentially affect the distribution of bonobos (Pan paniscus). Using a combination of mapping, Jaccard overlapping coefficients and binary regressions, the study determined how each disease correlated with the extent of occurrence of, and the areas occupied by, bonobos. Anthrax has only been reported to occur outside the range of bonobos and so was not considered further. Ebola, Monkeypox and Trypanosomiasis were each reported within the area of occupancy of bonobos. Their respective overlap coefficients were: J = 0.10; Qα = 0.05 = 2.00 (odds ratios = 0.0001, 95% CI = 0.0057; Z = −19.41, significant) for Ebola; J = 1.00; Qα = 0.05 = 24.0 (odds ratios = 1.504, 95% CI = 0.5066–2.6122) for Monkeypox; and, J = 0.33; Qα = 0.05 = 11.5 (Z = 1.14, significant) for Trypanosomiasis. There were significant relationships for the presence and absence of Monkeypox and Trypanosomiasis and the known extent of occurrence of bonobos, based on the equations y = 0.2368Ln(x)+0.8006 (R2 = 0.9772) and y = −0.2942Ln(x)+0.7155 (R2 = 0.698), respectively. The positive relationship suggested that bonobos tolerated the presence of Monkeypox. In contrast, the significant negative coefficient suggested that bonobos were absent in areas where Trypanosomiasis is endemic. Our results suggest that large rivers may have prevented Ebola from spreading into the range of bonobos. Meanwhile, Trypanosomiasis has been recorded among humans within the area of occurrence of bonobos, and appears the most important disease in shaping the area of occupancy of bonobos within their overall extent of occupancy. PMID:23251431
Mbelesso, P; Mbadingaï, S; Laghoe Nguembe, G L S
2011-12-01
Sleeping sickness is more prevalent in three historical regions of Central African Republic. Control measures were organized by the colonial authorities through health services to fight against this disease and other major diseases. Multivariate analysis and the government helped in controlling the disease in the focus of Nola-Bilolo, which was formerly hyperendemic. The authors report the results of the control measures that resulted in the extinction of the disease in this outbreak. This is a retrospective study from 1991 to 2008, and the data were collected from the National Program to fight against human African trypanosomiasis in Bangui and in the diagnostic and treatment center of Nola. It was highly endemic, with more than 300 cases recorded in the year 1991. The average number of cases was 200.8 per year between 1992 and 1998. Less than 50 cases per year were recorded from 2000 to 2006, and no cases have been detected since 2007. 69.35% of the patients were actively screened. 5,000 conical deltamethrin-impregnated traps (Gouteux and Lancien) had been used in 15 districts in the city of Nola and 46 surrounding villages by 20 trappers fully supported by the program. This is an example of regular active mass screening. Systematic treatment of detected cases and well-conducted vector control measures give hope to the affected populations to live peacefully in order to contribute to the development of their country.
Dermatologic Infectious Diseases in International Travelers.
Wilson, Mary E.; Chen, Lin H.
2004-02-01
Skin lesions provide an important clue to the diagnoses of many infections in returned travelers. New information related to epidemiology, recognition, diagnosis, or management is described for the systemic infections--dengue fever, several of the rickettsial infections, African trypanosomiasis, and coccidioidomycosis. Many pathogens cause focal skin findings. Recent findings are presented for cutaneous leishmaniasis, Buruli ulcer, gnatho-stomiasis, cutaneous larva migrans, myiasis, tungiasis, and scabies. This paper describes the most common skin problems in returning travelers and outlines the types of infections that cause skin lesions, as defined by morphologic characteristics.
Role of cytokines in Trypanosoma brucei-induced anaemia: A review of the literature.
Musaya, J; Matovu, E; Nyirenda, M; Chisi, J
2015-06-01
Anaemia is an important complication of trypanosomiasis. The mechanisms through which trypanosomal infection leads to anaemia are poorly defined. A number of studies have implicated inflammatory cytokines, but these data are limited and inconsistent. In this article, we reviewed the published literature on cytokines associated with Trypanosoma brucei infections and their role in the immunopathology leading to anaemia. Articles were searched in PubMed through screening of titles and abstracts with no limitation on date of publishing and study design. Articles in English were searched using keywords "African trypanosomiasis", "sleeping sickness", "Trypanosoma brucei", in all possible combinations with "anaemia" and/or "cytokines". Twelve articles examining cytokines and their role in trypanosomeinduced anaemia were identified out of 1095 originally retrieved from PubMed. None of the articles identified were from human-based studies. A total of eight cytokines were implicated, with four cytokines (IFN-γ, IL-10, TNF-α, IL-12) showing an association with anaemia. These articles reported that mice lacking TNF-α were able to control anaemia, and that IFN-γ was linked to severe anaemia given its capacity to suppress erythropoiesis, while IL-10 was shown to regulate IFN-γ and TNF-α, providing a balance that was associated with severity of anaemia. IFN-γ and TNF-α have also been reported to work in concert with other factors such as nitric oxide and iron in order to induce anaemia. IFN-γ, IL-10, and TNF-α were the three major cytokines identified to be heavily involved in anaemia caused by Trypanosoma brucei infection. The anti-inflammatory cytokine, IL-10, was shown to counter the effects of proinflammatory cytokines in order to balance the severity of anaemia. The mechanism of anaemia is multifactorial and therefore requires further, more elaborate research. Data from human subjects would also shed more light.
Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes.
Koumandou, V Lila; Boehm, Cordula; Horder, Katy A; Field, Mark C
2013-02-01
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.
Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M
2016-11-01
Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.
Ponte-Sucre, Alicia
2016-01-01
Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.
Sleeping Sickness in Travelers - Do They Really Sleep?
Urech, Karin; Neumayr, Andreas; Blum, Johannes
2011-01-01
The number of imported Human African Trypanosomiasis (HAT) cases in non-endemic countries has increased over the last years. The objective of this analysis is to describe the clinical presentation of HAT in Caucasian travelers. Literature was screened (MEDLINE, Pubmed) using the terms “Human African Trypanosomiasis”, “travelers” and “expatriates”; all European languages except Slavic ones were included. Publications without clinical description of patients were only included in the epidemiological analysis. Forty-five reports on Caucasians with T.b. rhodesiense and 15 with T.b. gambiense infections were included in the analysis of the clinical parameters. Both species have presented with fever (T.b. rhodesiense 97.8% and T.b. gambiense 93.3%), headache (50% each) and a trypanosomal chancre (T.b. rhodesiense 84.4%, T.b. gambiense 46.7%). While sleeping disorders dominate the clinical presentation of HAT in endemic regions, there have been only rare reports in travelers: insomnia (T.b. rhodesiense 7.1%, T.b. gambiense 21.4%), diurnal somnolence (T.b. rhodesiense 4.8%, T.b. gambiense none). Surprisingly, jaundice has been seen in 24.2% of the Caucasian T.b. rhodesiense patients, but has never been described in HAT patients in endemic regions. These results contrast to the clinical presentation of T.b. gambiense and T.b. rhodesiense HAT in Africans in endemic regions, where the presentation of chronic T.b. gambiense and acute T.b. rhodesiense HAT is different. The analysis of 14 reports on T.b. gambiense HAT in Africans living in a non-endemic country shows that neurological symptoms such as somnolence (46.2%), motor deficit (64.3%) and reflex anomalies (14.3%) as well as psychiatric symptoms such as hallucinations (21.4%) or depression (21.4%) may dominate the clinical picture. Often, the diagnosis has been missed initially: some patients have even been hospitalized in psychiatric clinics. In travelers T.b. rhodesiense and gambiense present as acute illnesses and chancres are frequently seen. The diagnosis of HAT in Africans living outside the endemic region is often missed or delayed, leading to presentation with advanced stages of the disease. PMID:22069503
The effects of trypanosomiasis on rural economy*
Wilson, S. G.; Morris, K. R. S.; Lewis, I. J.; Krog, E.
1963-01-01
Trypanosomiasis, both of humans and of livestock, is one of the most important factors restricting economic development in Africa today. The present paper outlines how this disease is limiting agricultural, veterinary and forestry development in the Sudan, Bechuanaland and West Africa. The present tsetse-fly distribution is reviewed. Glossina palpalis and G. morsitans occur in the south Sudan and G. morsitans in the Ngamiland district of Bechuanaland; G. morsitans, G. palpalis and G. tachinoides are the most important species in West Africa. These tsetse flies have altered the cattle distribution in all three regions and, in addition to causing widespread disease, have created local overstocking problems in the tsetse-free grazing areas, and have enforced nomadism on breeding herds and economic loss in slaughter cattle along the trade cattle routes in West Africa. Human trypanosomiasis is not now such an urgent problem and public health measures have led to its control in all three areas. Increased agricultural development, which can be a successful and economic method of reclaiming land from tsetse flies, must be intensified in all three areas. Forest conservation policy comes into conflict with tsetse control measures only in West Africa. Detailed tsetse-fly surveys and research, on which future plans can be firmly based, are now urgently required. ImagesFIG. 6 PMID:14001093
Where, When and Why Do Tsetse Contact Humans? Answers from Studies in a National Park of Zimbabwe
Torr, Stephen J.; Chamisa, Andrew; Mangwiro, T. N. Clement; Vale, Glyn A.
2012-01-01
Background Sleeping sickness, also called human African trypanosomiasis, is transmitted by the tsetse, a blood-sucking fly confined to sub-Saharan Africa. The form of the disease in West and Central Africa is carried mainly by species of tsetse that inhabit riverine woodland and feed avidly on humans. In contrast, the vectors for the East and Southern African form of the disease are usually savannah species that feed mostly on wild and domestic animals and bite humans infrequently, mainly because the odours produced by humans can be repellent. Hence, it takes a long time to catch many savannah tsetse from people, which in turn means that studies of the nature of contact between savannah tsetse and humans, and the ways of minimizing it, have been largely neglected. Methodology/Principal Findings The savannah tsetse, Glossina morsitans morsitans and G. pallidipes, were caught from men in the Mana Pools National park of Zimbabwe. Mostly the catch consisted of young G. m. morsitans, with little food reserve. Catches were increased by 4–8 times if the men were walking, not stationary, and increased about ten times more if they rode on a truck at 10 km/h. Catches were unaffected if the men used deodorant or were baited with artificial ox odour, but declined by about 95% if the men were with an ox. Surprisingly, men pursuing their normal daily activities were bitten about as much when in or near buildings as when in woodland. Catches from oxen and a standard ox-like trap were poor indices of the number and physiological state of tsetse attacking men. Conclusion/Significance The search for new strategies to minimize the contact between humans and savannah tsetse should focus on that occurring in buildings and vehicles. There is a need to design a man-like trap to help to provide an index of sleeping sickness risk. PMID:22953013
Where, when and why do tsetse contact humans? Answers from studies in a national park of Zimbabwe.
Torr, Stephen J; Chamisa, Andrew; Mangwiro, T N Clement; Vale, Glyn A
2012-01-01
Sleeping sickness, also called human African trypanosomiasis, is transmitted by the tsetse, a blood-sucking fly confined to sub-Saharan Africa. The form of the disease in West and Central Africa is carried mainly by species of tsetse that inhabit riverine woodland and feed avidly on humans. In contrast, the vectors for the East and Southern African form of the disease are usually savannah species that feed mostly on wild and domestic animals and bite humans infrequently, mainly because the odours produced by humans can be repellent. Hence, it takes a long time to catch many savannah tsetse from people, which in turn means that studies of the nature of contact between savannah tsetse and humans, and the ways of minimizing it, have been largely neglected. The savannah tsetse, Glossina morsitans morsitans and G. pallidipes, were caught from men in the Mana Pools National park of Zimbabwe. Mostly the catch consisted of young G. m. morsitans, with little food reserve. Catches were increased by 4-8 times if the men were walking, not stationary, and increased about ten times more if they rode on a truck at 10 km/h. Catches were unaffected if the men used deodorant or were baited with artificial ox odour, but declined by about 95% if the men were with an ox. Surprisingly, men pursuing their normal daily activities were bitten about as much when in or near buildings as when in woodland. Catches from oxen and a standard ox-like trap were poor indices of the number and physiological state of tsetse attacking men. The search for new strategies to minimize the contact between humans and savannah tsetse should focus on that occurring in buildings and vehicles. There is a need to design a man-like trap to help to provide an index of sleeping sickness risk.
Esterhuizen, Johan; Rayaisse, Jean Baptiste; Tirados, Inaki; Mpiana, Serge; Solano, Philippe; Vale, Glyn A.; Lehane, Michael J.; Torr, Stephen J.
2011-01-01
Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m2 of cloth) for small targets plus flanking nets is 5.5–15X greater than for 1 m2 targets and 8.6–37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness. PMID:21829743
Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆
Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.
2013-01-01
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663
Corbel, Vincent; Henry, Marie-Claire
2011-03-16
The International Symposium on Malaria and Human African Trypanosomiasis: New Strategies for their Prevention & Control was held 7-8 October, 2010 in Cotonou, Benin with about 250 participants from 20 countries. This scientific event aimed at identifying the gaps and research priorities in the prevention and control of malaria and sleeping sickness in Africa and to promote exchange between North and South in the fields of medical entomology, epidemiology, immunology and parasitology. A broad range of influential partners from academia (scientists), stakeholders, public health workers and industry attempted the meeting and about 40 oral communications and 20 posters were presented by phD students and internationally-recognized scientists from the North and the South. Finally, a special award ceremony was held to recognize efforts in pioneer work conducted by staff involved in the diagnostic of the Sleeping illness in West Africa with partnership and assistance from WHO and Sanofi-Aventis group.
Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum
Cuypers, Bart; Van den Broeck, Frederik; Van Reet, Nick; Meehan, Conor J.; Cauchard, Julien; Wilkes, Jonathan M.; Claes, Filip; Goddeeris, Bruno; Birhanu, Hadush; Dujardin, Jean-Claude; Laukens, Kris; Büscher, Philippe
2017-01-01
Abstract Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission. PMID:28541535
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei
Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa
2015-01-01
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527
Chemotherapeutic approaches to protozoa: kinetoplastida--current level of knowledge and outlook.
Harder, A; Greif, G; Haberkorn, A
2001-09-01
The possibilities for treating haemoflagellate infections (African trypanosomiasis) are very limited (Table 1; Mehlhorn and Schrevel 1995; Croft 1997; Hunter 1997; Wang 1997; Trouiller and Olliaro 1998). All the available drugs have severe side-effects in humans and animals. Vaccination is not really an option, in view of the wide antigen variability. At present, there are several drug combinations in clinical trials: suramin/eflornithine, suramin/metronidazole, suramin/pentamidine, melarsoprol/pentamidine, melarsoprol/nifurtimox and nifurtimox/eflornithine. Some of these combinations were successful in treating resistant Trypanosoma brucei rhodesiense and/or T. b. gambiense infections (Keiser et al. 2001). In leishmaniasis, the tendency is still to resort to the old antimony compounds, with their severe side effects. At present, miltefosine is in clinical phase and is the first oral drug against visceral leishmaniasis (Jha et al. 1999). Two drugs are currently used against Chagas' disease, although these do not cure chronic effects. There is no prospect of novel drugs in this indication either (Pecoul et al. 1999; Morel 2000).
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.
Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M
2015-10-01
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania
2013-01-01
Background Pig keeping is becoming increasingly common across sub-Saharan Africa. Domestic pigs from the Arusha region of northern Tanzania were screened for trypanosomes using PCR-based methods to examine the role of pigs as a reservoir of human and animal trypanosomiasis. Methods A total of 168 blood samples were obtained from domestic pigs opportunistically sampled across four districts in Tanzania (Babati, Mbulu, Arumeru and Dodoma) during December 2004. A suite of PCR-based methods was used to identify the species and sub-species of trypanosomes including: Internally Transcribed Sequence to identify multiple species; species specific PCR to identify T. brucei s. l. and T. godfreyi and a multiplex PCR reaction to distinguish T. b. rhodesiense from T. brucei s. l. Results Of the 168 domestic pigs screened for animal and human infective trypanosome DNA, 28 (16.7%) were infected with one or more species of trypanosome; these included: six pigs infected with Trypanosoma vivax (3.6%); three with Trypanosoma simiae (1.8%); two with Trypanosoma congolense (Forest) (1%) and four with Trypanosoma godfreyi (2.4%). Nineteen pigs were infected with Trypanosoma brucei s. l. (10.1%) of which eight were identified as carrying the human infective sub-species Trypanosoma brucei rhodesiense (4.8%). Conclusion These results show that in Tanzania domestic pigs may act as a significant reservoir for animal trypanosomiasis including the cattle pathogens T. vivax and T. congolense, the pig pathogen T. simiae, and provide a significant reservoir for T. b. rhodesiense, the causative agent of acute Rhodesian sleeping sickness. PMID:24499540
Simoben, Conrad V; Ntie-Kang, Fidele; Akone, Sergi H; Sippl, Wolfgang
2018-05-09
Parasitic diseases continue to represent a threat on a global scale, particularly among the poorest countries in the world. This is particularly because of the absence of vaccines, and in some cases, resistance against available drugs, currently being used for their treatment. In this review emphasis is laid on natural products and scaffolds from African medicinal plants (AMPs) for lead drug discovery and possible further development of drugs for the treatment of parasitic diseases. In the discussion, emphasis has been laid on alkaloids, terpenoids, quinones, flavonoids and narrower compound classes of compounds with micromolar range activities against Schistosoma, Trypanosoma and Leishmania species. In each subparagraph, emphasis is laid on the compound subclasses with most promising in vitro and/or in vivo activities of plant extracts and isolated compounds. Suggestions for future drug development from African medicinal plants have also been provided. This review covering 167 references, including 82 compounds, provides information published within two decades (1997-2017).
Mercer, Luke; Bowling, Tana; Perales, Joe; Freeman, Jennifer; Nguyen, Tien; Bacchi, Cyrus; Yarlett, Nigel; Don, Robert; Jacobs, Robert; Nare, Bakela
2011-02-08
There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp. In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10-12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.
Choi, Kwang-Shik; Darby, Alistair C.; Causse, Sandrine; Kapitano, Berisha; Hall, Martin J. R.; Steen, Keith; Lutumba, Pascal; Madinga, Joules; Torr, Steve J.; Okedi, Loyce M.; Lehane, Michael J.; Donnelly, Martin J.
2011-01-01
Background The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. Principal Findings The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. Conclusion/Significance We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme. PMID:21858237
[Socio-entomologic survey in human trypanosomiasis focus of Yamba (Peoples Republic of Congo)].
Gouteux, J P; Malonga, J R
1985-01-01
A study carried out at villagers level in a focus infected by human trypanosomiasis (Yamba, Bouenza region, Congo, Mikengue ethnic group) revealed that modern medicin is recognized by them as the sole possibility to treat the sleeping sickness. The witch doctor, if he cannot transmit the sickness, is perfectly able to aggravate it. He is considered as the responsible for any fatal issue. Tsetse flies are charged of transmitting the sickness as well as other biting insects (black flies, ceratopogonidae). The elders give an historical role to pigs in spreading the sickness. Villagers seem very determined to assume themselves fighting against the tsetse fly by trapping, but impregnation of traps by an insecticide got some problems (technical know-how, equipment) which have been solved by a new model of trap designed by the ORSTOM Center in Brazzaville.
Kazumba, Léon Mbiyangandu; Kaka, Jean-Claude Tshinzobe; Ngoyi, Dieudonné Mumba; Tshala-Katumbay, Désiré
2018-06-01
We conducted a retrospective study on mortality trends and risk factors in 781 naïve cases of advanced stage-2 sleeping sickness admitted between 1989 and 2012 at the National Reference Center for Human African Trypanosomiasis (HAT), Department of Neurology, Kinshasa University, Democratic Republic of Congo (DRC). Death was the outcome variable whereas age, gender, duration of disease, location of trypanosomes in body fluids, cytorachy, protidorachy, clinical status (assessed on a syndromic and functional basis) on admission, and treatment regimen were predictors in logistic regression models run at the 0.05 significance level. Death proportions were 17.2% in the standard melarsoprol schedule (3-series of intravenous melarsoprol on 3 successive days at 3.6 mg/kg/d, with a one-week interval between the series, ARS 9); 12.1% in the short schedule melarsoprol (10 consecutive days of intravenous melarsoprol at 2.2 mg/kg/d, ARS 10), 5.4% in the first-line eflornithine (14 days of eflornithine at 400 mg/kg/d in 4 infusions a day DFMO B), 9.1% in the NECT treatment regimen (eflornithine for 7 days at 400, mg/kg/d in 2 infusions a day combined with oral nifurtimox for 10 days at 15 mg/kg/d in 3 doses a day); and high (36%) in the group with select severely affected patients given eflornithine because of their clinical status on admission, at the time when this expensive drug was kept for treatment of relapses (14 days at 400 mg/kg/d in 4 infusions a day, DFMO A). After adjusting for treatment, death odds ratios were as follows: 10.40 [(95% CI: 6.55-16.51); p = .000] for clinical dysfunction (severely impaired clinical status) on admission, 2.14 [(95% CI: 1.35-3.39); p = .001] for high protidorachy, 1.99 [(95% CI: 1.18-3.37); p = .010] for the presence of parasites in the CSF and 1.70 [(95% CI: 1.03-2.81); p = .038] for high cytorachy. A multivariable analysis within treatment groups retained clinical status on admission (in ARS 9, ARS 10 and DFMO B groups) and high protidorachy (in ARS 10 and DFMO B groups) as significant predictors of death. The algorithm for initial clinical status assessment used in the present study may serve as the basis for further development of standardized assessment tools relevant to the clinical management of HAT and information exchange in epidemiological reports.
Kambiré, R; Lingué, K; Courtin, F; Sidibé, I; Kiendrébéogo, D; N'gouan, K E; Blé, L; Kaba, D; Koffi, M; Solano, P; Bucheton, B; Jamonneau, V
2012-11-01
The objective of this paper was to describe recent data from Burkina Faso and Côte d'Ivoire on Human African Trypanosomosis medical monitoring in order to (i) update the disease situation in these two countries that have been sharing important migratory, economic and epidemiological links for more than a century and (ii) to define the future strategic plans to achieve the goal of a sustainable control/elimination process. Results of active and passive surveillance indicate that all sleeping sickness patients diagnosed these last years in Burkina Faso were imported cases from Côte d'Ivoire. Nevertheless the re-introduction of the parasite is effective and the risk of a resumption of transmission exists. In Côte d'Ivoire, few cases are still diagnosed in several historical foci and the fear exists that the disease could reemerge in these foci or spread to other areas. In order to achieve a sustainable elimination of sleeping sickness in these two countries, control entities have to adapt their strategy to the different epidemiological contexts. At the exception of specific cases, the current disease prevalence no longer justifies the use of expensive medical surveys by exhaustive screening of the population. New disease control strategies, based on the exchange of epidemiological information between the two countries and integrated to the regular national health systems are required to target priority intervention areas. Follow-up in time of both treated patients and serological suspects that are potential asymptomatic carriers of parasite is also important. In parallel, researchers need to better characterize the respective roles of the human and animal reservoir in the maintenance of transmission and evaluate the different control strategies taken by National Control Programs in term of cost/effectiveness to help optimize them.
Watier-Grillot, S; Herder, S; Marié, J-L; Bourry, O; Cuny, G; Davoust, B
2016-05-01
This survey screened native dogs (Canis familiaris) in Gabon (Africa) for trypanosome infection. A total of 376 apparently healthy dogs, divided into two populations, were examined. The first group included 252 semi-domesticated dogs inhabiting 16 villages of the Ogooué-Ivindo Province, a rural inland area in northeast Gabon, and the second group 124 dogs belonging to protection companies or families from Libreville (n = 113) and Port-Gentil (n = 11), in the coastal area of Gabon. Both study areas include active or former foci of sleeping sickness in Gabon. Molecular testing (polymerase chain reaction) was performed on blood samples from dogs in both groups. All dogs were negative for T. congolense ("savanna type" and "forest type"). Eighteen dogs (4.7%), however, tested positive for T. brucei s.l.: 3% (8/252) were from the Ogooué-Ivindo Province, and 8% (10/124) from the coastal area. These animals may be potential reservoirs of the parasite T. brucei gambiense, responsible for human African trypanosomiasis. This hypothesis, as well as the role of the dog as a sentinel of human infection by T. brucei gambiense, should be investigated in further studies.
Fournet, F; Kone, A; Meda, A H; Traore, S; Hervouet, J P
2001-01-01
The purpose of this study was to classify the risk for transmission of African human trypanosomiasis (sleeping sickness) according to population and settlement densities in four different areas of Zoukougbeu, Cote d'Ivoire, where the exact location of cases reported since 1990 is known. Epidemiological risk indexes were calculated from entomological data obtained from three surveys and analyzed with respect to presence of patients and occupancy rate in each area. Results indicated that there was a risk of transmission near the village of Bahigbeu II where the population density is between 30 and 40 inhabitants per km2 and settlement density is 4 per km2. There was also a risk in less inhabited areas such as Ouatigbeu where the population density is less than 30 inhabitants per km2 and dwelling density less than 4 per km2. In fact, cases are regularly reported in Ouatigbeu but never in Bahigbeu II. Based on these findings, we conclude that, while land occupancy can be considered as a risk factor for sleeping sickness, other factors such as human mobility must be taken into account to characterize risk areas and predict outbreaks.
Diamidines as antitrypanosomal, antileishmanial and antimalarial agents.
Werbovetz, Karl
2006-02-01
Diamidine-containing compounds have a long history of use in the treatment of African trypanosomiasis and leishmaniasis. The discovery that diamidine prodrugs possess in vivo antimicrobial activity when administered orally has led to a renewed interest in this class of compounds for the treatment of parasitic infections. In this review, the selectivity of diamidines against trypanosomes, Leishmania and Plasmodium is rationalized through mechanism-of-action studies. An overview of the antiprotozoal activities of newer diamidines and diamidine prodrugs is also presented, along with a summary of the progress made toward the clinical development of new diamidines for use against these parasitic diseases.
2011-01-01
Background Internal transcribed spacer one (ITS1) of the ribosomal DNA is known to be a suitable target for PCR-based detection of trypanosomes. The analysis of this region provides a multi-species-specific diagnosis by a single PCR. Using ITS1 primer-based PCR, a cross sectional study was carried out in the period from September to November 2009 on samples collected from 687 camels from geographically distinct zones in the Sudan to detect all possible African trypanosomes, which can infect camels. Results The results showed that all PCR-positive camels were infected with a single parasite species; Trypanosoma evansi. The highest prevalence, 57.1% (117/205), was observed in the Butana plains of mid-Eastern Sudan and the lowest, 6.0% (4/67), was in the Umshadeeda eastern part of White Nile State. In another experiment, the RoTat 1.2 gene encoding the variable surface glycoprotein (VSG) of T. evansi was analyzed for its presence or absence by a polymerase chain reaction (PCR) using T. evansi species-specific primers. The study showed that the RoTat 1.2 VSG gene was absent in thirteen out of thirty T. evansi-positive samples. Conclusions It is concluded that camel trypanosomiasis in Sudan is apparently caused by a single parasite species T. evansi and there were no other typanosomes species detected. In addition, the disease is highly prevalent in the country, which strengthens the need to change control policies and institute measures that help prevent the spread of the parasite. To our knowledge, this is the first molecular diagnosis report, which gives a picture of camel trypanosomiasis covering large geographical areas in Sudan. PMID:21375725
Duvallet, G; Stanghellini, A; Saccharin, C; Vivant, J F
1979-01-01
Vavoua human trypanosomiasis focus, located 60 km north of Daloa (Ivory Coast Republic) is facing a period of hyperactivity. A medical survey has been conducted in 9 villages of this focus: 7.424 persons have been examined and 128 new cases diagnosed in the field after clinical and parasitological examinations. Indirect Fluorescence Antibody Test applied to dried blood blots, in the laboratory, revealed 266 immunological suspects to be reexamined. 185 suspects were reexamined, 104 of whom were diagnosed after tyrpanosomes had been found in blood or/and in gland juice. The microhaematocrit centrifuge technique gave good results. Most of the 232 new cases were in the classical first period (unaltered CSF). Authors are insisting on the importance of survey prospections allowing an early diagnosis of sleeping sickness and on the interest of an immunodiagnostic test in addition to classical techniques to diagnose asymptomatical forms.
New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth.
Suzuki, Mitsuko; Tung, Nguyen Huu; Kwofie, Kofi D; Adegle, Richard; Amoa-Bosompem, Michael; Sakyiamah, Maxwell; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo Kyereme; Anyan, William K; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred Ampomah; Appiah-Opong, Regina; Nyarko, Alexander K; Yamaoka, Shoji; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo; Ohta, Nobuo; Boakye, Daniel A; Ayi, Irene; Shoyama, Yukihiro
2015-08-01
Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 μM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F
2011-07-01
Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.
Head, Michael G; Fitchett, Joseph R; Nageshwaran, Vaitehi; Kumari, Nina; Hayward, Andrew; Atun, Rifat
2016-01-01
Infectious diseases account for a significant global burden of disease and substantial investment in research and development. This paper presents a systematic assessment of research investments awarded to UK institutions and global health metrics assessing disease burden. We systematically sourced research funding data awarded from public and philanthropic organisations between 1997 and 2013. We screened awards for relevance to infection and categorised data by type of science, disease area and specific pathogen. Investments were compared with mortality, disability-adjusted life years (DALYs) and years lived with disability (YLD) across three time points. Between 1997-2013, there were 7398 awards with a total investment of £3.7 billion. An increase in research funding across 2011-2013 was observed for most disease areas, with notable exceptions being sexually transmitted infections and sepsis research where funding decreased. Most funding remains for pre-clinical research (£2.2 billion, 59.4%). Relative to global mortality, DALYs and YLDs, acute hepatitis C, leishmaniasis and African trypanosomiasis received comparatively high levels of funding. Pneumonia, shigellosis, pertussis, cholera and syphilis were poorly funded across all health metrics. Tuberculosis (TB) consistently attracts relatively less funding than HIV and malaria. Most infections have received increases in research investment, alongside decreases in global burden of disease in 2013. The UK demonstrates research strengths in some neglected tropical diseases such as African trypanosomiasis and leishmaniasis, but syphilis, cholera, shigellosis and pneumonia remain poorly funded relative to their global burden. Acute hepatitis C appears well funded but the figures do not adequately take into account projected future chronic burdens for this condition. These findings can help to inform global policymakers on resource allocation for research investment.
Head, Michael G.; Fitchett, Joseph R.; Nageshwaran, Vaitehi; Kumari, Nina; Hayward, Andrew; Atun, Rifat
2015-01-01
Background Infectious diseases account for a significant global burden of disease and substantial investment in research and development. This paper presents a systematic assessment of research investments awarded to UK institutions and global health metrics assessing disease burden. Methods We systematically sourced research funding data awarded from public and philanthropic organisations between 1997 and 2013. We screened awards for relevance to infection and categorised data by type of science, disease area and specific pathogen. Investments were compared with mortality, disability-adjusted life years (DALYs) and years lived with disability (YLD) across three time points. Findings Between 1997–2013, there were 7398 awards with a total investment of £3.7 billion. An increase in research funding across 2011–2013 was observed for most disease areas, with notable exceptions being sexually transmitted infections and sepsis research where funding decreased. Most funding remains for pre-clinical research (£2.2 billion, 59.4%). Relative to global mortality, DALYs and YLDs, acute hepatitis C, leishmaniasis and African trypanosomiasis received comparatively high levels of funding. Pneumonia, shigellosis, pertussis, cholera and syphilis were poorly funded across all health metrics. Tuberculosis (TB) consistently attracts relatively less funding than HIV and malaria. Interpretation Most infections have received increases in research investment, alongside decreases in global burden of disease in 2013. The UK demonstrates research strengths in some neglected tropical diseases such as African trypanosomiasis and leishmaniasis, but syphilis, cholera, shigellosis and pneumonia remain poorly funded relative to their global burden. Acute hepatitis C appears well funded but the figures do not adequately take into account projected future chronic burdens for this condition. These findings can help to inform global policymakers on resource allocation for research investment. PMID:26870829
Echodu, Richard; Opiyo, Elizabeth A.; Dion, Kirstin; Halyard, Alexis; Dunn, Augustine W.; Aksoy, Serap; Caccone, Adalgisa
2017-01-01
Uganda is the only country where the chronic and acute forms of human African Trypanosomiasis (HAT) or sleeping sickness both occur and are separated by < 100 km in areas north of Lake Kyoga. In Uganda, Glossina fuscipes fuscipes is the main vector of the Trypanosoma parasites responsible for these diseases as well for the animal African Trypanosomiasis (AAT), or Nagana. We used highly polymorphic microsatellite loci and a mitochondrial DNA (mtDNA) marker to provide fine scale spatial resolution of genetic structure of G. f. fuscipes from 42 sampling sites from the northern region of Uganda where a merger of the two disease belts is feared. Based on microsatellite analyses, we found that G. f. fuscipes in northern Uganda are structured into three distinct genetic clusters with varying degrees of interconnectivity among them. Based on genetic assignment and spatial location, we grouped the sampling sites into four genetic units corresponding to northwestern Uganda in the Albert Nile drainage, northeastern Uganda in the Lake Kyoga drainage, western Uganda in the Victoria Nile drainage, and a transition zone between the two northern genetic clusters characterized by high level of genetic admixture. An analysis using HYBRIDLAB supported a hybrid swarm model as most consistent with tsetse genotypes in these admixed samples. Results of mtDNA analyses revealed the presence of 30 haplotypes representing three main haplogroups, whose location broadly overlaps with the microsatellite defined clusters. Migration analyses based on microsatellites point to moderate migration among the northern units located in the Albert Nile, Achwa River, Okole River, and Lake Kyoga drainages, but not between the northern units and the Victoria Nile drainage in the west. Effective population size estimates were variable with low to moderate sizes in most populations and with evidence of recent population bottlenecks, especially in the northeast unit of the Lake Kyoga drainage. Our microsatellite and mtDNA based analyses indicate that G. f. fuscipes movement along the Achwa and Okole rivers may facilitate northwest expansion of the Rhodesiense disease belt in Uganda. We identified tsetse migration corridors and recommend a rolling carpet approach from south of Lake Kyoga northward to minimize disease dispersal and prevent vector re-colonization. Additionally, our findings highlight the need for continuing tsetse monitoring efforts during and after control. PMID:28453513
Cock, I E; Selesho, M I; Van Vuuren, S F
2018-06-28
Worldwide, more than three billion cases of parasitic disease are reported yearly and it is likely that this figure is substantially under-estimated. Approximately one in six people globally are estimated to be infected with at least one parasite species annually. In South Africa, the prevalence of Schistosoma haematobium (bilharzia) and intestinal worms and helminths are particularly high, especially in children and in crowded or poorer rural communities with inadequate sanitation and nutrition. Despite alarmingly high estimates, medical research into parasitic diseases remains neglected and only malaria receives significant attention and funding. Traditional medicines have been used for centuries in Africa by multiple ethnic groups and many people rely on these healing systems as their primary healthcare modality. The traditional use of South African medicinal plants to treat parasite infestations is relatively well documented, and it is important to link these traditional uses to scientific evidence validating efficacy. To document the medicinal plants used for parasitic infections and critically review the literature on the anti-parasitic properties of South African plants against some neglected parasitic diseases. A review of the literature (ethnobotanical books and publications documenting traditional plant use) was undertaken related to specific medicinal use for parasitic infections in Southern Africa. Inclusion criteria focused on human use. Exclusion criteria included veterinary use and malaria due to the extensive nature of these subject matters. An in-depth analysis of previous studies was undertaken and future prospectives are considered. In particular, bilharzia, gastrointestinal worms and helminths, ectoparasites, trichomoniasis, leishmaniasis and trypanosomiasis are reviewed with special emphasis on the gaps in research. Despite the availability of relatively extensive ethnobotanical records on the anti-parasitic properties of southern African medicinal plants, the antiparasitic properties of many plants have been poorly examined. There was in many instances a lack of evidence to support traditional use of many species towards some parasites and research is urgently needed in this area. Copyright © 2018 Elsevier B.V. All rights reserved.
Potent antiprotozoal activity of a novel semi-synthetic berberine derivative.
Bahar, Mark; Deng, Ye; Zhu, Xiaohua; He, Shanshan; Pandharkar, Trupti; Drew, Mark E; Navarro-Vázquez, Armando; Anklin, Clemens; Gil, Roberto R; Doskotch, Raymond W; Werbovetz, Karl A; Kinghorn, A Douglas
2011-05-01
Treatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds. Copyright © 2011. Published by Elsevier Ltd.
Macleod, Ewan T.; Anderson, Neil E.; Schaten, Kathrin; Kuleszo, Joanna; Simuunza, Martin; Welburn, Susan C.; Atkinson, Peter M.
2016-01-01
Background This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. Methods The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. Results Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5–10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. Conclusion ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale. PMID:28027323
Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P
2017-10-27
Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.
MORRISON, LIAM J.; McCORMACK, GILLIAN; SWEENEY, LINDSAY; LIKEUFACK, ANNE C. L.; TRUC, PHILIPPE; TURNER, C. MICHAEL; TAIT, ANDY; MacLEOD, ANNETTE
2007-01-01
Whole genome amplification methods are a recently developed tool for amplifying DNA from limited template. We report its application in trypanosome infections, characterised by low parasitaemias. Multiple Displacement Amplification (MDA) amplifies DNA with a simple in vitro step, and was evaluated on mouse blood samples on FTA filter cards with known numbers of Trypanosoma brucei parasites. The data showed a twenty-fold increase in the number of PCRs possible per sample, using primers diagnostic for the multi-copy ribosomal ITS region or 177 bp repeats, and a twenty-fold increase in sensitivity over nested PCR against a single copy microsatellite. Using MDA for microsatellite genotyping caused allele dropout at low DNA concentrations, which was overcome by pooling multiple MDA reactions. The validity of using MDA was established with samples from Human African Trypanosomiasis patients. The use of MDA allows maximal use of finite DNA samples and may prove a valuable tool in studies where multiple reactions are necessary, such as population genetic analyses. PMID:17556624
Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H
2011-10-13
Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.
The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases.
Cheuka, Peter Mubanga; Mayoka, Godfrey; Mutai, Peggoty; Chibale, Kelly
2016-12-31
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness), leishmaniasis, schistosomiasis and lymphatic filariasis.
Cestari, Igor; Haas, Paige; Moretti, Nilmar Silvio; Schenkman, Sergio; Stuart, Ken
2016-05-19
Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ferreira, Leonardo L G; Ferreira, Rafaela S; Palomino, David L; Andricopulo, Adriano D
2018-04-27
The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity the enzyme. The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mothana, Ramzi A; Al-Musayeib, Nawal M; Matheeussen, An; Cos, Paul; Maes, Louis
2012-12-03
Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC₅₀ 2.2 µg/mL) while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC₅₀ < 10 µg/mL). Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC₅₀ 3.5 and 8.4 µg/mL). Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.
Prevalence and Types of Coinfections in Sleeping Sickness Patients in Kenya (2000/2009)
Kagira, J. M.; Maina, N.; Njenga, J.; Karanja, S. M.; Karori, S. M.; Ngotho, J. M.
2011-01-01
The occurrence of coinfections in human African trypanosomiasis (HAT) patients was investigated using a retrospective data of hospital records at the National Sleeping Sickness Referral Hospital in Alupe, Kenya. A total of 31 patients, 19 males and 12 females, were diagnosed with HAT between the years 2000 and 2009. The observed co-infections included malaria (100%), helminthosis (64.5%), typhoid (22.5%), urinary tract infections (16.1%), HIV (12.9%), and tuberculosis (3.2%). The species of helminthes observed included Ancylostoma duodenale (38.7%), Ascaris lumbricoides (45.7%), Strongyloides stercoralis (9.7%), and Taenia spp. (3.2%). The patients were also infected with Entamoeba spp. (32.3%) and Trichomonas hominis (22.6%) protozoan parasites. The main clinical signs observed at the point of admission included headache (74.2%), fever (48.4%), sleep disorders (45.2%), and general body pain (41.9%). The HAT patients were treated with suramin (early stage, 9/31) and melarsoprol (late stage, 22/31). In conclusion, the study has shown that HAT patients have multiple co-infections which may influence the disease pathogenesis and complicate management of HAT. PMID:21915184
One Health: Past Successes and Future Challenges in Three African Contexts
Okello, Anna L.; Bardosh, Kevin; Smith, James; Welburn, Susan C.
2014-01-01
Background The recent emergence of zoonotic diseases such as Highly Pathogenic Avian Influenza (HPAI) and Severe Acute Respiratory Syndrome (SARS) have contributed to dominant Global Health narratives around health securitisation and pandemic preparedness, calling for greater co-operation between the health, veterinary and environmental sectors in the ever-evolving One Health movement. A decade later, One Health advocates face increasing pressure to translate the approach from theory into action. Methodology/Principal Findings A qualitative case study methodology was used to examine the emerging relationships between international One Health dialogue and its practical implementation in the African health policy context. A series of Key Informant Interviews (n = 32) with policy makers, government officials and academics in Nigeria, Tanzania and Uganda are presented as three separate case studies. Each case examines a significant aspect of One Health operationalisation, framed around the control of both emerging and Neglected Zoonotic Diseases including HPAI, Human African Trypanosomiasis and rabies. The research found that while there is general enthusiasm and a strong affirmative argument for adoption of One Health approaches in Africa, identifying alternative contexts away from a narrow focus on pandemics will help broaden its appeal, particularly for national or regionally significant endemic and neglected diseases not usually addressed under a “global” remit. Conclusions/Significance There is no ‘one size fits all’ approach to achieving the intersectoral collaboration, significant resource mobilisation and political co-operation required to realise a One Health approach. Individual country requirements cannot be underestimated, dismissed or prescribed in a top down manner. This article contributes to the growing discussion regarding not whether One Health should be operationalised, but how this may be achieved. PMID:24851901
Vázquez-Raygoza, Alejandra; Cano-González, Lucia; Velázquez-Martínez, Israel; Trejo-Soto, Pedro Josué; Castillo, Rafael; Hernández-Campos, Alicia; Hernández-Luis, Francisco; Oria-Hernández, Jesús; Castillo-Villanueva, Adriana; Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Valdez-Solana, Mónica; Téllez-Valencia, Alfredo
2017-11-24
Human African Trypanosomiasis (HAT), a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by Trypanosoma brucei . Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT. In this context, T. brucei depends on glycolysis as the unique source for ATP supply; therefore, the enzyme triosephosphate isomerase (TIM) is an attractive target for drug design. In the present work, three new benzimidazole derivatives were found as TbTIM inactivators (compounds 1 , 2 and 3 ) with an I 50 value of 84, 82 and 73 µM, respectively. Kinetic analyses indicated that the three molecules were selective when tested against human TIM (HsTIM) activity. Additionally, to study their binding mode in TbTIM, we performed a 100 ns molecular dynamics simulation of TbTIM-inactivator complexes. Simulations showed that the binding of compounds disturbs the structure of the protein, affecting the conformations of important domains such as loop 6 and loop 8. In addition, the physicochemical and drug-like parameters showed by the three compounds suggest a good oral absorption. In conclusion, these molecules will serve as a guide to design more potent inactivators that could be used to obtain new drugs against HAT.
Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Anti-Parasitic Drug Targets
Yang, Yunyun; Ko, Tzu-Ping; Chen, Chun-Chi; Huang, Guozhong; Zheng, Yingying; Liu, Weidong; Wang, Iren; Ho, Meng-Ru; Danny Hsu, Shang-Te; O’Dowd, Bing; Huff, Hannah C.; Huang, Chun-Hsiang; Docampo, Roberto; Oldfield, Eric; Guo, Rey-Ting
2016-01-01
Trypanosomatid parasites are the causative agents of many neglected tropical diseases including the leishmaniases, Chagas disease, and human African trypanosomiasis. They exploit unusual vacuolar soluble pyrophosphatases (VSPs), absent in humans, for cell growth and virulence and as such, are drug targets. Here, we report the crystal structures of VSP1s from Trypanosoma cruzi and T. brucei, together with that of the T. cruzi protein bound to a bisphosphonate inhibitor. Both VSP1s form a hybrid structure containing an (N-terminal) EF-hand domain fused to a (C-terminal) pyrophosphatase domain. The two domains are connected via an extended loop of about 17 residues. Crystallographic analysis and size exclusion chromatography indicate that the VSP1s form tetramers containing head-to-tail dimers. Phosphate and diphosphate ligands bind in the PPase substrate-binding pocket and interact with several conserved residues, and a bisphosphonate inhibitor (BPH-1260) binds to the same site. Based on Cytoscape and other bioinformatics analyses it is apparent that similar folds will be found in most if not all trypanosomatid VSP1s, including those found in insects (Angomonas deanei, Strigomonas culicis), plant pathogens (Phytomonas spp.) and Leishmania spp. Overall, the results are of general interest since they open the way to structure-based drug design for many of the neglected tropical diseases. PMID:26907161
Gomes, Joana; Leão, Celia; Ferreira, Filipa; Afonso, Maria Odete; Santos, Catarina; Josenando, Theophile; Seixas, Jorge; Atouguia, Jorge; Centeno-Lima, Sonia
2009-10-24
Tsetse flies (Glossina spp.) are responsible for the transmission of trypanosomes, agents of animal and Human African Trypanosomiasis (HAT). These diseases are associated with considerable animal and human economical loss, morbidity and mortality. The correct identification of trypanosomes species infecting tsetse flies is crucial for adequate control measures. Identification presently requires technically difficult, cumbersome and expensive on-site fly dissection. To obviate this difficulty we explored the possibility of correctly identifying trypanosomes in tsetse collected, under field conditions, only for number determination. Tsetse flies, that remained exposed for weeks in field traps in the Vista Alegre HAT focus in Angola, were obtained. The flies were not dissected on site and were stored at room temperature for months. DNA extraction using the whole tsetse bodies and PCR analysis were performed in 73 randomly chosen flies. Despite the extensive degradation of the tsetse, DNA extraction was conducted successfully in 62 out of the 73 flies. PCR analysis detected the presence of T. brucei s.l DNA in 3.2 % of the tsetse. This approach could be cost-effective and suitable for vector related HAT control activities in the context of countries where entomological trained personnel is missing and financial resources are limited.
Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne
2017-09-03
In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.
Mukendi, Deby; Lilo Kalo, Jean-Roger; Mpanya, Alain; Minikulu, Luigi; Kayembe, Tharcisse; Lutumba, Pascal; Barbé, Barbara; Gillet, Philippe; Jacobs, Jan; Van Loen, Harry; Yansouni, Cédric P; Chappuis, François; Ravinetto, Raffaella; Verdonck, Kristien; Boelaert, Marleen; Winkler, Andrea S; Bottieau, Emmanuel
2017-11-01
There is little published information on the epidemiology of neurological disorders in rural Central Africa, although the burden is considered to be substantial. This study aimed to investigate the pattern, etiology, and outcome of neurological disorders in children > 5 years and adults admitted to the rural hospital of Mosango, province of Kwilu, Democratic Republic of Congo, with a focus on severe and treatable infections of the central nervous system (CNS). From September 2012 to January 2015, 351 consecutive patients hospitalized for recent and/or ongoing neurological disorder were prospectively evaluated by a neurologist, subjected to a set of reference diagnostic tests in blood or cerebrospinal fluid, and followed-up for 3-6 months after discharge. No neuroimaging was available. Severe headache (199, 56.7%), gait/walking disorders (97, 27.6%), epileptic seizure (87, 24.8%), and focal neurological deficit (86, 24.5%) were the predominant presentations, often in combination. Infections of the CNS were documented in 63 (17.9%) patients and mainly included bacterial meningitis and unspecified meningoencephalitis (33, 9.4%), second-stage human African trypanosomiasis (10, 2.8%), and human immunodeficiency virus (HIV)-related neurological disorders (10, 2.8%). Other focal/systemic infections with neurological manifestations were diagnosed in an additional 60 (17.1%) cases. The leading noncommunicable conditions were epilepsy (61, 17.3%), psychiatric disorders (56, 16.0%), and cerebrovascular accident (23, 6.6%). Overall fatality rate was 8.2% (29/351), but up to 23.8% for CNS infections. Sequelae were observed in 76 (21.6%) patients. Clinical presentations and etiologies of neurological disorders were very diverse in this rural Central African setting and caused considerable mortality and morbidity.
Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-01-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228
Genetic recombination between human and animal parasites creates novel strains of human pathogen.
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-03-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.
Camara, Mariame; Ouattara, Eric; Duvignaud, Alexandre; Migliani, René; Camara, Oumou; Leno, Mamadou; Solano, Philippe; Bucheton, Bruno; Camara, Mamadou; Malvy, Denis
2017-11-01
The 2014-2015 Ebola outbreak massively hit Guinea. The coastal districts of Boffa, Dubreka and Forecariah, three major foci of Human African Trypanosomiasis (HAT), were particularly affected. We aimed to assess the impact of this epidemic on sleeping sickness screening and caring activities. We used preexisting data from the Guinean sleeping sickness control program, collected between 2012 and 2015. We described monthly: the number of persons (i) screened actively; (ii) or passively; (iii) treated for HAT; (iv) attending post-treatment follow-up visits. We compared clinical data, treatment characteristics and Disability Adjusted Life-Years (DALYs) before (February 2012 to December 2013) and during (January 2014 to October 2015) the Ebola outbreak period according to available data. Whereas 32,221 persons were actively screened from February 2012 to December 2013, before the official declaration of the first Ebola case in Guinea, no active screening campaigns could be performed during the Ebola outbreak. Following the reinforcement and extension of HAT passive surveillance system early in 2014, the number of persons tested passively by month increased from 7 to 286 between April and September 2014 and then abruptly decreased to 180 until January 2015 and to none after March 2015. 213 patients initiated HAT treatment, 154 (72%) before Ebola and 59 (28%) during the Ebola outbreak. Those initiating HAT therapy during Ebola outbreak were recruited through passive screening and diagnosed at a later stage 2 of the disease (96% vs. 55% before Ebola, p<0.0001). The proportion of patients attending the 3 months and 6 months post-treatment follow-up visits decreased from 44% to 10% (p <0.0001) and from 16% to 3% (p = 0.017) respectively. The DALYs generated before the Ebola outbreak were estimated to 48.7 (46.7-51.5) and increased up to 168.7 (162.7-174.7), 284.9 (277.1-292.8) and 466.3 (455.7-477.0) during Ebola assuming case fatality rates of 2%, 5% and 10% respectively among under-reported HAT cases. The 2014-2015 Ebola outbreak deeply impacted HAT screening activities in Guinea. Active screening campaigns were stopped. Passive screening dramatically decreased during the Ebola period, but trends could not be compared with pre-Ebola period (data not available). Few patients were diagnosed with more advanced HAT during the Ebola period and retention rates in follow-up were lowered. The drop in newly diagnosed HAT cases during Ebola epidemic is unlikely due to a fall in HAT incidence. Even if we were unable to demonstrate it directly, it is much more probably the consequence of hampered screening activities and of the fear of the population on subsequent confirmation and linkage to care. Reinforced program monitoring, alternative control strategies and sustainable financial and human resources allocation are mandatory during post Ebola period to reduce HAT burden in Guinea.
Human Chagas Disease and Migration in the Context of Globalization: Some Particular Aspects
Pinto Dias, João Carlos
2013-01-01
Human Chagas disease originated in Latin America, being spread around the world in relation with multiple bioecological, sociocultural, and political factors. The process of the disease production and dispersion is discussed, emphasizing the human migration and correlated aspects, in the context of globalization. Positive and negative consequences concern the future of this trypanosomiasis, mainly in terms of the ecologic and sociopolitical characteristics of the endemic and nonendemic countries. PMID:23606862
Watson, Christopher P; Dogruel, Murat; Mihoreanu, Larisa; Begley, David J; Weksler, Babette B; Couraud, Pierre O; Romero, Ignacio A; Thomas, Sarah A
2012-02-03
Human African trypanosomiasis (HAT) is a parasitic disease affecting sub-Saharan Africa. The parasites are able to traverse the blood-brain barrier (BBB), which marks stage 2 (S2) of the disease. Delivery of anti-parasitic drugs across the BBB is key to treating S2 effectively and the difficulty in achieving this goal is likely to be a reason why some drugs require highly intensive treatment regimes to be effective. This study aimed to investigate not only the drug transport mechanisms utilised by nifurtimox at the BBB, but also the impact of nifurtimox-eflornithine combination therapy (NECT) and other anti-HAT drug combination therapies (CTs) on radiolabelled-nifurtimox delivery in an in vitro model of drug accumulation and the human BBB, the hCMEC/D3 cell line. We found that nifurtimox appeared to use several membrane transporters, in particular breast-cancer resistance protein (BCRP), to exit the BBB cells. The addition of eflornithine caused no change in the accumulation of nifurtimox, nor did the addition of clinically relevant doses of the other anti-HAT drugs suramin, nifurtimox or melarsoprol, but a significant increase was observed with the addition of pentamidine. The results provide evidence that anti-HAT drugs are interacting with membrane transporters at the human BBB and suggest that combination with known transport inhibitors could potentially improve their efficacy. Copyright © 2011 Elsevier B.V. All rights reserved.
Nicotinamide Inhibits the Lysosomal Cathepsin b-like Protease and Kills African Trypanosomes*
Unciti-Broceta, Juan D.; Maceira, José; Morales, Sonia; García-Pérez, Angélica; Muñóz-Torres, Manuel E.; Garcia-Salcedo, Jose A.
2013-01-01
Nicotinamide, a soluble compound of the vitamin B3 group, has antimicrobial activity against several microorganisms ranging from viruses to parasite protozoans. However, the mode of action of this antimicrobial activity is unknown. Here, we investigate the trypanocidal activity of nicotinamide on Trypanosoma brucei, the causative agent of African trypanosomiasis. Incubation of trypanosomes with nicotinamide causes deleterious defects in endocytic traffic, disruption of the lysosome, failure of cytokinesis, and, ultimately, cell death. At the same concentrations there was no effect on a cultured mammalian cell line. The effects on endocytosis and vesicle traffic were visible within 3 h and can be attributed to inhibition of lysosomal cathepsin b-like protease activity. The inhibitory effect of nicotinamide was confirmed by a direct activity assay of recombinant cathepsin b-like protein. Taken together, these data demonstrate that inhibition of the lysosomal protease cathepsin b-like blocks endocytosis, causing cell death. In addition, these results demonstrate for the first time the inhibitory effect of nicotinamide on a protease. PMID:23443665
Sommerfeld, J; Oduola, A M J
2007-01-01
The African continent is disproportionately affected by infectious diseases. Malaria, HIV/AIDS, tuberculosis, and more "neglected" diseases including African trypanosomiasis, Buruli ulcer, leishmaniasis, onchocerciasis and trachoma continue to dramatically impact social and economic development on the continent. Health biotechnologies provide potential to develop effective strategies for the fight against the vicious circle of poverty and infections by helping in the development and improvement of novel affordable drugs, diagnostics and vaccines against these diseases. As the prospects of this emerging biotechnology research and deployment of its products become a reality in Africa, there is a need to consider the ethical, legal and social implications of both the scientific and technological advances and their use in the communities. The article provides a short overview of the potential values of biotechnology, issues involved in its transfer and presents the rationale, design and recommendations of the international workshop/symposium held in April 2005 at the International Institute for Tropical Agriculture (IITA) in Ibadan, Nigeria.
Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama.
Kim, Soo-Jin; Ka, Sojeong; Ha, Jung-Woo; Kim, Jaemin; Yoo, DongAhn; Kim, Kwondo; Lee, Hak-Kyo; Lim, Dajeong; Cho, Seoae; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Kemp, Stephen; Oh, Sung Jong; Kim, Heebal
2017-05-12
Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle. We analysed genetic variation patterns in N'Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N'Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N'Dama may engage in skeletal growth as well as immune systems. Our results imply that N'Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds.
2015-01-01
Tropical protozoal infections are a significant cause of morbidity and mortality worldwide; four in particular (human African trypanosomiasis (HAT), Chagas disease, cutaneous leishmaniasis, and malaria) have an estimated combined burden of over 87 million disability-adjusted life years. New drugs are needed for each of these diseases. Building on the previous identification of NEU-617 (1) as a potent and nontoxic inhibitor of proliferation for the HAT pathogen (Trypanosoma brucei), we have now tested this class of analogs against other protozoal species: T. cruzi (Chagas disease), Leishmania major (cutaneous leishmaniasis), and Plasmodium falciparum (malaria). Based on hits identified in this screening campaign, we describe the preparation of several replacements for the quinazoline scaffold and report these inhibitors’ biological activities against these parasites. In doing this, we have identified several potent proliferation inhibitors for each pathogen, such as 4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)-6-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)quinoline-3-carbonitrile (NEU-924, 83) for T. cruzi and N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-7-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)cinnolin-4-amine (NEU-1017, 68) for L. major and P. falciparum. PMID:26087257
Sykes, Melissa L.; Jones, Amy J.; Shelper, Todd B.; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E.
2017-01-01
ABSTRACT Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro. Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. PMID:28674055
Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M
2017-09-01
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.
Structure- and ligand-based structure-activity relationships for a series of inhibitors of aldolase.
Ferreira, Leonardo G; Andricopulo, Adriano D
2012-12-01
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r²=0.98 and q²=0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pKi values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases
Short, Erica E; Caminade, Cyril; Thomas, Bolaji N
2017-01-01
The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected. PMID:29317829
Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases.
Short, Erica E; Caminade, Cyril; Thomas, Bolaji N
2017-01-01
The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases.
Ravera, Mauro; Moreno-Viguri, Elsa; Paucar, Rocio; Pérez-Silanes, Silvia; Gabano, Elisabetta
2018-06-01
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design. Copyright © 2018. Published by Elsevier Masson SAS.
Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1
MacLeod, Annette
2018-01-01
In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, ‘inhibitor of cysteine peptidase’, had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum. PMID:29346416
2012-01-01
Background Loop-mediated isothermal amplification (LAMP) is a novel strategy which amplifies DNA with high sensitivity and rapidity under isothermal conditions. In the present study, the performance of the repetitive insertion mobile element (RIME)-LAMP and human serum resistance-associated gene (SRA)-LAMP assays were evaluated using clinical specimens obtained from four male patients from Luangwa and Zambezi valleys in Zambia and Zimbabwe, respectively. Findings The cases reported in this preliminary communication were all first diagnosed by microscopy, through passive surveillance, and confirmed by both RIME-LAMP and SRA-LAMP. A good correlation between microscopy and LAMP was observed and contributed to staging and successful treatment of patient. RIME-LAMP and SRA-LAMP complimented each other well in all the cases. Conclusions Both RIME-LAMP and SRA-LAMP were able to detect Trypanosoma brucei rhodesiense DNA in patient blood and CSF and hence confirmed HAT in the parasitaemic patients. Our study indicates that the LAMP technique is a potential tool for HAT diagnosis, staging and may be useful for making therapeutic decisions. However, no statistically significant conclusion may be drawn due to the limited sample size used in the present study. It is thus imperative to conduct a detailed study to further evaluate the potential of LAMP as a bedside diagnostic test for HAT. PMID:23211002
Human Parasitology and Parasitic Diseases: Heading Towards 2050.
Hotez, Peter J
2018-01-01
By 2050 our civilized planet may be comprised predominantly of networked megacities embedded in warm subtropical and tropical climates, and under stress from climate change and catastrophic weather events. Urban slum areas in these cities, including those found in wealthier middle- and high-income nations (blue marble health), will be especially vulnerable to disease. Moreover, regional conflicts fought over shifting and limited resources, including water, will collapse health systems infrastructures to further promote disease emergence and reemergence. Thus while by 2050 we might congratulate ourselves for successfully eliminating some key parasitic and neglected tropical diseases such as dracunculiasis, lymphatic filariasis, onchocerciasis, and human African trypanosomiasis, there could be a commensurate rise in other parasitic diseases based on the scenarios highlighted above. Of particular concern are urban and newly urbanized helminth infections, including schistosomiasis and some soil-transmitted helminth infections, as well zoonotic helminthiases, such as toxocariasis, food-borne trematodiases, and cysticercosis. Protozoan infections persisting in urban environments, including leishmaniasis, Chagas disease, malaria, and intestinal protozoan infections, will also remain, as will zoonotic diseases such as toxoplasmosis. Our best hope to counteract the parasitic diseases emerging in our steaming 21st century megacities is to develop new and innovative technologies through gene editing, systems biology, and immunology, and the new single-celled OMICs. However, success on this front will require our ability to contain the globalization of antiscience beliefs and sentiments. © 2018 Elsevier Ltd All rights reserved.
Shereni, William; Anderson, Neil E; Nyakupinda, Learnmore; Cecchi, Giuliano
2016-11-25
In Zimbabwe, cases of human African trypanosomiasis (HAT) are caused by the unicellular protozoan Trypanosoma brucei, sub-species T. b. rhodesiense. They are reported from the tsetse-infested area in the northern part of the country, broadly corresponding to the valley of the Zambezi River. Tsetse-transmitted trypanosomes, in particular T. congolense and T. vivax, also cause morbidity and mortality in livestock, thus generating poverty and food insecurity. Two species of tsetse fly, Glossina morsistans morsitans and G. pallidipes, are known to be present in the Zambezi Valley, although their distributional patterns and densities have not been investigated in detail. The present study tries to address this gap by providing some insight into the dynamics of trypanosomiasis in humans and livestock. Tsetse distribution and trypanosome infections were studied using traps and fixed fly rounds located at 10 km intervals along a 110 km long transect straddling the southern escarpment of the Zambezi Valley. Three km long fly rounds were conducted on 12 sites, and were repeated 11 times over a 7-month period. Additional traps were deployed and monitored in selected sites. Microscopic examination of 2092 flies for trypanosome infections was conducted. Surveys confirmed the presence of G. morsitans morsitans and G. pallidipes in the Zambezi Valley floor. Moving south, the apparent density of tsetse flies appears to peak in the vicinity of the escarpment, then drops on the highlands. Only one fly was caught south of the old game fence separating protected and settled areas. A trypanosome infection rate of 6.31% was recorded in tsetse flies dissected. Only one infection of the T. brucei-type was detected. Tsetse fly distribution in the study area appears to be driven by ecological factors such as variation in land use and altitude-mediated climatic patterns. Although targeted control of tsetse flies have played a role in determining distribution, no major control operations have been implemented in the area for 15 years. Trypanosome infections in tsetse flies are consistent with HAT epidemiological data, which considers the situation to be generally 'low risk'. Nonetheless, underreporting is likely to conceal the true epidemiological picture, and efforts are needed to strengthen the diagnostic capacities of health facilities.
2013-01-01
Background Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the ‘Stamp Out Sleeping Sickness’ programme. Methods A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Results Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km2. Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse effective products the most effective way to increase pyrethroid use. Conclusions Conflicts of interest between veterinary business and vector control were found to constrain sleeping sickness control. While a variety of strategies could increase pyrethroid use, regulation of the insecticide market could effectively double the number of treated cattle with little cost to government, donors or farmers. Such regulation is entirely consistent with the role of the state in a privatised veterinary system and should include a mitigation strategy against the potential development of tick resistance. PMID:23841963
Bardosh, Kevin; Waiswa, Charles; Welburn, Susan C
2013-07-10
Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the 'Stamp Out Sleeping Sickness' programme. A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km(2). Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse effective products the most effective way to increase pyrethroid use. Conflicts of interest between veterinary business and vector control were found to constrain sleeping sickness control. While a variety of strategies could increase pyrethroid use, regulation of the insecticide market could effectively double the number of treated cattle with little cost to government, donors or farmers. Such regulation is entirely consistent with the role of the state in a privatised veterinary system and should include a mitigation strategy against the potential development of tick resistance.
2011-06-01
the flagellate protozoon Trypanosoma cruzi (previously Schizo- trypanum cruzi). In humans, T. cruzi can infect parenchy- mal cells of many different...Hemiptera, suborder Het- eroptera, family Reduviidae, subfamily Triatominae), the arthropod vector, in Brazil in 1909.1,2 Chagas used infected reduviid...bugs to experimentally infect a monkey, from which he subsequently isolated blood-stage parasites. Cha- gas later identified the same parasites in the
Sharlow, Elizabeth R.; Lyda, Todd A.; Dodson, Heidi C.; Mustata, Gabriela; Morris, Meredith T.; Leimgruber, Stephanie S.; Lee, Kuo-Hsiung; Kashiwada, Yoshiki; Close, David; Lazo, John S.; Morris, James C.
2010-01-01
Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome. PMID:20405000
Vale, Glyn A.; Chamisa, Andrew; Mangwiro, Clement; Torr, Stephen J.
2013-01-01
Background When taking a bloodmeal from humans, tsetse flies can transmit the trypanosomes responsible for sleeping sickness, or human African trypanosomiasis. While it is commonly assumed that humans must enter the normal woodland habitat of the tsetse in order to have much chance of contacting the flies, recent studies suggested that important contact can occur due to tsetse entering buildings. Hence, we need to know more about tsetse in buildings, and to understand why, when and how they enter such places. Methodology/Principal Findings Buildings studied were single storied and comprised a large house with a thatched roof and smaller houses with roofs of metal or asbestos. Each building was unoccupied except for the few minutes of its inspection every two hours, so focusing on the responses of tsetse to the house itself, rather than to humans inside. The composition, and physiological condition of catches of tsetse flies, Glossina morsitans morsitans and G. pallidipes, in the houses and the diurnal and seasonal pattern of catches, were intermediate between these aspects of the catches from artificial refuges and a host-like trap. Several times more tsetse were caught in the large house, as against the smaller structures. Doors and windows seemed about equally effective as entry points. Many of the tsetse in houses were old enough to be potential vectors of sleeping sickness, and some of the flies alighted on the humans that inspected the houses. Conclusion/Significance Houses are attractive in themselves. Some of the tsetse attracted seem to be in a host-seeking phase of behavior and others appear to be looking for shelter from high temperatures outside. The risk of contracting sleeping sickness in houses varies according to house design. PMID:23469309
Vale, Glyn A; Chamisa, Andrew; Mangwiro, Clement; Torr, Stephen J
2013-01-01
When taking a bloodmeal from humans, tsetse flies can transmit the trypanosomes responsible for sleeping sickness, or human African trypanosomiasis. While it is commonly assumed that humans must enter the normal woodland habitat of the tsetse in order to have much chance of contacting the flies, recent studies suggested that important contact can occur due to tsetse entering buildings. Hence, we need to know more about tsetse in buildings, and to understand why, when and how they enter such places. Buildings studied were single storied and comprised a large house with a thatched roof and smaller houses with roofs of metal or asbestos. Each building was unoccupied except for the few minutes of its inspection every two hours, so focusing on the responses of tsetse to the house itself, rather than to humans inside. The composition, and physiological condition of catches of tsetse flies, Glossina morsitans morsitans and G. pallidipes, in the houses and the diurnal and seasonal pattern of catches, were intermediate between these aspects of the catches from artificial refuges and a host-like trap. Several times more tsetse were caught in the large house, as against the smaller structures. Doors and windows seemed about equally effective as entry points. Many of the tsetse in houses were old enough to be potential vectors of sleeping sickness, and some of the flies alighted on the humans that inspected the houses. Houses are attractive in themselves. Some of the tsetse attracted seem to be in a host-seeking phase of behavior and others appear to be looking for shelter from high temperatures outside. The risk of contracting sleeping sickness in houses varies according to house design.
Vale, Glyn A.; Hall, David R.; Chamisa, Andrew; Torr, Stephen J.
2012-01-01
Background In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts. Methodology/Principal Findings In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men. Conclusion/Significance Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study. PMID:23301107
Boer, Kimberly R.; Dyserinck, Heleen C.; Büscher, Philippe; Schallig, Henk D. H. F.; Leeflang, Mariska M. G.
2012-01-01
Background A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Methodology Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. Results 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Conclusion Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and direct resources appropriately. PMID:22253934
Jacobi, Eva Anne
2010-01-01
As European colonization spread widely over the African continent the health and physical welfare of the African population gained more and more importance to European colonists who concentrated on capitalizing on African human resources for an improved financial and economic outcome of their colonies. This brought tropical medicine to the top of the European colonial agenda and raised the awareness of the threat of infectious diseases, such as the African Trypanosomiasis or so-called sleeping disease. In 1916 a group of scientists from the pharmaceutical company Bayer AG discovered a substance on the base of dye rather than arsenic. The drug was called Bayer 205 and showed outstanding therapeutic effects. It also reduced adverse reactions in people infected with sleeping disease. As Germany had already lost its colonies, the Bayer company--supported by the German government--negotiated with the English and Belgian governments and was allowed to send an expedition to East Africa. During 1921 and 1923 the new drug was tested in English Rhodesia and Belgian Congo and proved revolutionary, especially in comparison with conventional substances. In due course, the drug Bayer 205 was named Germanin and it was subsequently proposed to use it for political leverage: knowledge and use of the new drug was to be given only in exchange for parts of the former German colonies. However, the reactions of the international media put an end to Germany's neo-colonial-dreams, even before the proposal had reached governmental level. Even so, the incident never disappeared from the mind of those who wished to revive German colonialism. Thus, it is no surprise, that the tale of the discovery and perceived "injustice" of a thwarted scientific success regained an important place in National Socialist propaganda. This article will examine two sources to exemplify the role Germanin attained in National Socialist propaganda: Hellmuth Unger's popular science novel Germanin. Geschichte einer deutschen Grosstat and Max Kimmich's movie Germanin. Geschichte einer kolonialen Tat, a film adaption of Unger's book which mainly treats the expedition Friedrich Karl Kleine, a real-life German professor, once lead into Africa. The film mixes political and ideological propaganda with entertaining adventure, lined by an exotic and--when it came to women--rather erotic presentation of the African population.
Pohlig, Gabriele; Bernhard, Sonja C; Blum, Johannes; Burri, Christian; Mpanya, Alain; Lubaki, Jean-Pierre Fina; Mpoto, Alfred Mpoo; Munungu, Blaise Fungula; N'tombe, Patrick Mangoni; Deo, Gratias Kambau Manesa; Mutantu, Pierre Nsele; Kuikumbi, Florent Mbo; Mintwo, Alain Fukinsia; Munungi, Augustin Kayeye; Dala, Amadeu; Macharia, Stephen; Bilenge, Constantin Miaka Mia; Mesu, Victor Kande Betu Ku; Franco, Jose Ramon; Dituvanga, Ndinga Dieyi; Tidwell, Richard R; Olson, Carol A
2016-02-01
Sleeping sickness (human African trypanosomiasis [HAT]) is a neglected tropical disease with limited treatment options that currently require parenteral administration. In previous studies, orally administered pafuramidine was well tolerated in healthy patients (for up to 21 days) and stage 1 HAT patients (for up to 10 days), and demonstrated efficacy comparable to pentamidine. This was a Phase 3, multi-center, randomized, open-label, parallel-group, active control study where 273 male and female patients with first stage Trypanosoma brucei gambiense HAT were treated at six sites: one trypanosomiasis reference center in Angola, one hospital in South Sudan, and four hospitals in the Democratic Republic of the Congo between August 2005 and September 2009 to support the registration of pafuramidine for treatment of first stage HAT in collaboration with the United States Food and Drug Administration. Patients were treated with either 100 mg of pafuramidine orally twice a day for 10 days or 4 mg/kg pentamidine intramuscularly once daily for 7 days to assess the efficacy and safety of pafuramidine versus pentamidine. Pregnant and lactating women as well as adolescents were included. The primary efficacy endpoint was the combined rate of clinical and parasitological cure at 12 months. The primary safety outcome was the frequency and severity of adverse events. The study was registered on the International Clinical Trials Registry Platform at www.clinicaltrials.gov with the number ISRCTN85534673. The overall cure rate at 12 months was 89% in the pafuramidine group and 95% in the pentamidine group; pafuramidine was non-inferior to pentamidine as the upper bound of the 95% confidence interval did not exceed 15%. The safety profile of pafuramidine was superior to pentamidine; however, 3 patients in the pafuramidine group had glomerulonephritis or nephropathy approximately 8 weeks post-treatment. Two of these events were judged as possibly related to pafuramidine. Despite good tolerability observed in preceding studies, the development program for pafuramidine was discontinued due to delayed post-treatment toxicity.
Estimating and mapping the population at risk of sleeping sickness.
Simarro, Pere P; Cecchi, Giuliano; Franco, José R; Paone, Massimo; Diarra, Abdoulaye; Ruiz-Postigo, José Antonio; Fèvre, Eric M; Mattioli, Raffaele C; Jannin, Jean G
2012-01-01
Human African trypanosomiasis (HAT), also known as sleeping sickness, persists as a public health problem in several sub-Saharan countries. Evidence-based, spatially explicit estimates of population at risk are needed to inform planning and implementation of field interventions, monitor disease trends, raise awareness and support advocacy. Comprehensive, geo-referenced epidemiological records from HAT-affected countries were combined with human population layers to map five categories of risk, ranging from "very high" to "very low," and to estimate the corresponding at-risk population. Approximately 70 million people distributed over a surface of 1.55 million km(2) are estimated to be at different levels of risk of contracting HAT. Trypanosoma brucei gambiense accounts for 82.2% of the population at risk, the remaining 17.8% being at risk of infection from T. b. rhodesiense. Twenty-one million people live in areas classified as moderate to very high risk, where more than 1 HAT case per 10,000 inhabitants per annum is reported. Updated estimates of the population at risk of sleeping sickness were made, based on quantitative information on the reported cases and the geographic distribution of human population. Due to substantial methodological differences, it is not possible to make direct comparisons with previous figures for at-risk population. By contrast, it will be possible to explore trends in the future. The presented maps of different HAT risk levels will help to develop site-specific strategies for control and surveillance, and to monitor progress achieved by ongoing efforts aimed at the elimination of sleeping sickness.
Population mobility and trypanosomiasis in Africa*
Prothero, R. Mansell
1963-01-01
Population mobility has long been established as a feature of life in Africa south of the Sahara. Even though it appears to be a factor in the spread of sleeping-sickness there do not seem to have been serious epidemics until the latter part of the nineteenth century and the early decades of the twentieth century. Various types of population movement of the present day and their possible relevance to trypanosomiasis are discussed. Density of population and settlement patterns are also important. Some of the changes in these which are relevant to trypanosomiasis are outlined and the need for more detailed information on these and on population mobility is emphasized. PMID:13986384
Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations
Rascalou, Guilhem; Pontier, Dominique; Menu, Frédéric; Gourbière, Sébastien
2012-01-01
Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale. PMID:22629337
Pearce, Louise
1921-01-01
The present study of the action of tryparsamide in human trypanosomiasis concludes a series of chemical and biological investigations in a particular problem of chemotherapy and thus represents the final step in a logical method of approach to such a problem. It has been shown that tryparsamide, the sodium salt of N-phenylglycineamide-p-arsonic acid, possesses a marked trypanocidal activity in human trypanosomiasis caused by Tr. gambiense. Single doses of from 0.5 to 5.0 gm. produced a peripheral sterilization of lymph glands and blood in an average of 6 to 12 hours. The duration of the peripheral sterilization following single doses of 17 to 83 mg. per kilo ranged from 17 to 58 days in patients who ultimately showed a return of trypanosomes to the peripheral blood. In a number of patients, however, treated with single doses of 9 to 68 mg. per kilo, no such relapse was detected during an observation period of from 40 to 111 days. The drug is extremely soluble in water and may be administered intramuscularly as well as intravenously. The immediate trypanocidal action after intramuscular administration was as rapid as that following the intravenous route while the duration of peripheral sterilization was appreciably longer. Relatively few repeated doses produced in advanced cases a marked and rapid diminution of the cells of the spinal fluid and were associated with definite improvement of mental and nervous symptoms. The occurrence of visual disturbances in certain advanced cases was the only untoward effect detected during the course of the work, and was apparently related to a too frequent administration of the drug. The condition was transitory in the majority of instances and resumption of treatment was not followed by a recurrence of this symptom. The general beneficial effect of the drug was a noticeable feature of its action in both early and advanced cases as shown by the disappearance of subjective symptoms, by the return of the pulse and temperature to normal limits, by the pronounced improvement of the blood picture, and by well marked gains in weight. PMID:19868583
Labib, Rola M.; Ebada, Sherif S.; Youssef, Fadia S.; Ashour, Mohamed L.; Ross, Samir A.
2016-01-01
Background: Leishmaniasis and African trypanosomiasis are recognized as the leading causes of mortality and morbidity with the greatest prevalence in the developing countries. They affect more than one billion of the poorest people on the globe. Objective: To find a cheap, affordable, safe, and efficacious antileshmanial and antitrypanosomal natural drug and to elucidate its probable mode of action. Materials and Methods: Phytochemical investigation of the non-polar fraction of the methanol extract of leaves of Ochrosia elliptica Labill. (Apocyanaceae) resulted in the isolation of ursolic acid, which was unambiguously determined based on HR-ESI-FTMS, extensive 1D and 2D NMR spectroscopy. It was further tested for its cytotoxicity, antimicrobial, antimalarial, antileishmanial, and trypanocidal potency. in-silico molecular modeling studies were conducted on six vital parasitic enzymes including farnesyl diphosphate synthase, N-myristoyl transferase, pteridine reductase 1, trypanothione reductase, methionyl-tRNA synthetase, and inosine–adenosine–guanosine nucleoside hydrolase to discover its potential mode of action as antitrypanosomal and antileishmanial agent. Results: Ursolic acid displayed considerable antitrypanosomal and antileishmanial activities with IC50 values ranging between 1.53 and 8.79 μg/mL. It showed superior antitrypanosomal activity as compared to the standard drug difluoromethylornithine (DFMO), with higher binding affinities towards trypanothione reductase and pteridine reductase 1. It displayed free binding energy of -30.73 and -50.08 kcal/mole towards the previously mentioned enzymes, respectively. In addition, ursolic acid exhibited considerable affinities to farnesyl diphosphate synthase, N-myristoyl transferase and methionyl-tRNA synthetase with free binding energies ranging from -42.54 to -63.93 kcal/mole. Conclusion: Ursolic acid offers a safe, effective and cheap antitrypanosomal and antileishmanial candidate acting on several key parasitic enzymes. SUMMARY The fresh leaves of Ochrosia elleptica Labill., family Apocyanaceae are a reliable source of ursolic acid.Ursolic acid displayed considerable antitrypanosomal and antileishmanial activities. It showed superior antitrypanosomal activity as compared to difluoromethylornithine (DFMO), potent antitrypanosomal reference drug.In silico molecular modeling studies revealed that the antileishmanial and antitrypanosomal activities of ursolic acid could be partially explained in view of its multiple inhibitory effects on vital parasitic enzymes with the highest potency exerted in the inhibition of pteridine reductase 1 and trypanothione reductase. Abbreviations used: AHT: African Human Trypanosomiasis, ATCC: American type cell culture, BuOH: n-butanol, DCM: dichloromethane, DFMO: difluoromethylornithine, EtOAc: ethyl acetate, FCS: fetal calf serum, HMBC: Heteronuclear Multiple Bond Correlation, HMQC: Heteronuclear Multiple-Quantum Correlation, HR-ESI-FTMS: High Resolution Electrospray ionozation Mass Spectrometry, MENA: Middle East and North Africa, MeOH: Methanol, MRSA: Methicillin-resistant Staphylococcus aureus, NTDs: Neglected tropical diseases, TLC: Thin layer chromatography, UA: Ursolic acid, UV: Ultra violet, WHO: World Health Organization. PMID:27867276
Pays, J F; Saliou, P
2005-12-01
Franco-Brazilian cooperation in the field of microbiology and tropical diseases dates back to the onset of those disciplines. Physicians were sent over by France, namely Marchoux, Simond and Salimbeni from 1901 to 1905 to study yellow fever, and Emile Brumpt from 1913 to 1914 to teach parasitology. These missions brought in some important results. After confirming that the yellow fever agent was a filterable virus and that Stegomya (Aedes) its only vector, Simond and Marchoux clarified the biology of the mosquito and showed that sexual transmission of the virus could occur. They also set up different measures for the control of yellow fever outbreaks which Oswaldo Cruz was inspired by for his campaign against yellow fever. Emile Brumpt implemented the teaching of parasitology at the Faculty of Medicine in São Paulo and contributed to human American trypanosomiasis by defining the transmission of the disease and the cycle of the parasite responsible for it. He also developed the technique known as xenodiagnosis. Simond and Marchoux's works on yellow fever found an immediate application in French colonies, particularly in sub-Saharan Africa. However, the fight against large African endemics such as sleeping sickness, the other human trypanosomiases, could not have been carried out successfully without the contribution of mobile teams following Eugène Jamot's initiative in addition to the permanent centres which characterized the French colonial system.
Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo
2017-07-06
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.
Ngahang Kamte, Stephane L.; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Biapa Nya, Prosper C.; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Tapondjou, Léon Azefack; Giordani, Cristiano; Benelli, Giovanni; Hofer, Anders
2017-01-01
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils. PMID:28684709
Patham, Bhargavi; Duffy, Josh; Lane, Ariel; Davis, Richard C; Wipf, Peter; Fewell, Sheara W; Brodsky, Jeffrey L; Mensa-Wilmot, Kojo
2009-04-15
HAT (human African trypanosomiasis), caused by the protozoan parasite Trypanosoma brucei, is an emerging disease for which new drugs are needed. Expression of plasma membrane proteins [e.g. VSG (variant surface glycoprotein)] is crucial for the establishment and maintenance of an infection by T. brucei. Transport of a majority of proteins to the plasma membrane involves their translocation into the ER (endoplasmic reticulum). Thus inhibition of protein import into the ER of T. brucei would be a logical target for discovery of lead compounds against trypanosomes. We have developed a TbRM (T. brucei microsome) system that imports VSG_117 post-translationally. Using this system, MAL3-101, equisetin and CJ-21,058 were discovered to be small molecule inhibitors of VSG_117 translocation into the ER. These agents also killed bloodstream T. brucei in vitro; the concentrations at which 50% of parasites were killed (IC50) were 1.5 microM (MAL3-101), 3.3 microM (equisetin) and 7 microM (CJ-21,058). Thus VSG_117 import into TbRMs is a rapid and novel assay to identify 'new chemical entities' (e.g. MAL3-101, equisetin and CJ-21,058) for anti-trypanosome drug development.
[Control of human African trypanosomiasis: back to square one].
Jannin, J; Louis, F J; Lucas, P; Simarro, P P
2001-01-01
The natural history of sleeping sickness is cyclic. The first epidemic outbreak in the 19th century devastated the population and resolved spontaneously for lack of victims. Intensive development during the colonial period and the movement of population that it spawned led to another epidemic in the early 1920s that reached such severe proportions that drastic steps had to be taken. At that time, Jamot was given complete political, administrative, and financial freedom to combat the disease. This program led to the development of the mobile team concept and so-called vertically structured vector control strategy and was so successful that sleeping sickness ceased to be considered as a major public health problem at the beginning of the 1960s. In the ensuing years sleeping sickness was largely neglected. Monitoring the disease required specialized teams that were no longer considered as cost-effective. One by one the measures that had been implemented to control the disease disappeared, thus setting the scene for a new outbreak grew. In 1995, the incidence of sleeping sickness reached the same levels as in the 1920s. The current situation is a classic example of a neglected disease with a paucity of competent specialists, diagnostic tests, effective drugs, and operational facilities. It was not until 2001 that new hope appeared thanks to a combined public- and private-sector initiative allowing restructuring of treatment teams, renovation of facilities, free distribution of drugs, and research to develop new therapeutic agents. Also thanks to the PATTEC initiative, the governments of the African affected nations are showing new in interest in sleeping sickness. However the battle is far from won and much effort will be required. Time is running out and the stakes are high.
Navarro, Gabriel; Chokpaiboon, Supchar; De Muylder, Geraldine; Bray, Walter M; Nisam, Sean C; McKerrow, James H; Pudhom, Khanitha; Linington, Roger G
2012-01-01
Human African trypanosomiasis (HAT) is an infectious disease with a large global health burden occurring primarily in Central and Eastern Africa. Most current treatments have poor blood brain barrier (BBB) penetration, which prevent them from targeting the most lethal stage of the infection. In addition, current therapeutics suffer from a variety of limitations ranging from serious side effects to difficulties with treatment administration. Therefore it is of crucial importance to find new treatments that are safe, affordable, and effective against both sub-species of Trypanosoma brucei. Semi-synthetic derivatization of the fungally-derived natural product merulin A (1) has led to the discovery of new development candidates for the protozoan parasite T. brucei, the causative agent of HAT. Creation of an initial SAR library based around the merulin scaffold revealed several key features required for activity, including the endoperoxide bridge, as well as one position suitable for further derivatization. Subsequent synthesis of a 20-membered analogue library, guided by the addition of acyl groups that improve the drug-like properties of the merulin A core, resulted in the development of compound 12 with an IC(50) of 60 nM against T. brucei, and a selectivity index greater than 300-fold against HeLa and immortalized glial cells. We report the semi-synthetic optimization of the merulin class of endoperoxide natural products as development candidates against T. brucei. We have identified compounds with low nM antiparasitic activities and high selectivity indices against HeLa cells. These compounds can be produced economically in large quantities via a one step derivatization from the microbial fermentation broth isolate, making them encouraging lead candidates for further development.
Kristensson, Krister; Nygård, Mikael; Bertini, Giuseppe; Bentivoglio, Marina
2010-06-01
The extracellular parasite Trypanosoma brucei causes human African trypanosomiasis (HAT), also known as sleeping sickness. Trypanosomes are transmitted by tsetse flies and HAT occurs in foci in sub-Saharan Africa. The disease, which is invariably lethal if untreated, evolves in a first hemo-lymphatic stage, progressing to a second meningo-encephalitic stage when the parasites cross the blood-brain barrier. At first, trypanosomes are restricted to circumventricular organs and choroid plexus in the brain outside the blood-brain barrier, and to dorsal root ganglia. Later, parasites cross the blood-brain barrier at post-capillary venules, through a multi-step process similar to that of lymphocytes. Accumulation of parasites in the brain is regulated by cytokines and chemokines. Trypanosomes can alter neuronal function and the most prominent manifestation is represented by sleep alterations. These are characterized, in HAT and experimental rodent infections, by disruption of the sleep-wake 24h cycle and internal sleep structure. Trypanosome infections alter also some, but not all, other endogenous biological rhythms. A number of neural pathways and molecules may be involved in such effects. Trypanosomes secrete prostaglandins including the somnogenic PGD2, and they interact with the host's immune system to cause release of pro-inflammatory cytokines. From the sites of early localization of parasites in the brain and meninges, such molecules could affect adjacent brain areas implicated in sleep-wakefulness regulation, including the suprachiasmatic nucleus and its downstream targets, to cause the changes characteristic of the disease. This raises challenging issues on the effects of cytokines on synaptic functions potentially involved in sleep-wakefulness alterations. (c) 2009 Elsevier Ltd. All rights reserved.
Epidemiology of Sleeping Sickness in Boffa (Guinea): Where Are the Trypanosomes?
Kagbadouno, Moise Saa; Camara, Mamadou; Rouamba, Jeremi; Rayaisse, Jean-Baptiste; Traoré, Ibrahima Sory; Camara, Oumou; Onikoyamou, Mory Fassou; Courtin, Fabrice; Ravel, Sophie; de Meeûs, Thierry; Bucheton, Bruno; Jamonneau, Vincent; Solano, Philippe
2012-01-01
Human African Trypanosomiasis (HAT) in West Africa is a lethal, neglected disease caused by Trypanosoma brucei gambiense transmitted by the tsetse Glossina palpalis gambiensis. Although the littoral part of Guinea with its typical mangrove habitat is the most prevalent area in West Africa, very few data are available on the epidemiology of the disease in such biotopes. As part of a HAT elimination project in Guinea, we carried a cross-sectional study of the distribution and abundance of people, livestock, tsetse and trypanosomes in the focus of Boffa. An exhaustive census of the human population was done, together with spatial mapping of the area. Entomological data were collected, a human medical survey was organized together with a survey in domestic animals. In total, 45 HAT cases were detected out of 14445 people who attended the survey, these latter representing 50.9% of the total population. Potential additional carriers of T. b. gambiense were also identified by the trypanolysis test (14 human subjects and two domestic animals). No trypanosome pathogenic to animals were found, neither in the 874 tsetse dissected nor in the 300 domestic animals sampled. High densities of tsetse were found in places frequented by humans, such as pirogue jetties, narrow mangrove channels and watering points. The prevalence of T. b. gambiense in humans, combined to low attendance of the population at risk to medical surveys, and to an additional proportion of human and animal carriers of T. b. gambiense who are not treated, highlights the limits of strategies targeting HAT patients only. In order to stop T. b. gambiense transmission, vector control should be added to the current strategy of case detection and treatment. Such an integrated strategy will combine medical surveillance to find and treat cases, and vector control activities to protect people from the infective bites of tsetse. PMID:23272259
The common zoonotic protozoal diseases causing abortion.
Shaapan, Raafat Mohamed
2016-12-01
Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum , Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii . The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still need of wide scope for evaluation of the zoonotic impact and control of these diseases.
Evaluating long-term effectiveness of sleeping sickness control measures in Guinea.
Pandey, Abhishek; Atkins, Katherine E; Bucheton, Bruno; Camara, Mamadou; Aksoy, Serap; Galvani, Alison P; Ndeffo-Mbah, Martial L
2015-10-22
Human African Trypanosomiasis threatens human health across Africa. The subspecies T.b. gambiense is responsible for the vast majority of reported HAT cases. Over the past decade, expanded control efforts accomplished a substantial reduction in HAT transmission, spurring the WHO to include Gambian HAT on its roadmap for 2020 elimination. To inform the implementation of this elimination goal, we evaluated the likelihood that current control interventions will achieve the 2020 target in Boffa prefecture in Guinea, which has one of the highest prevalences for HAT in the country, and where vector control measures have been implemented in combination with the traditional screen and treat strategy. We developed a three-species mathematical model of HAT and used a Bayesian melding approach to calibrate the model to epidemiological and entomological data from Boffa. From the calibrated model, we generated the probabilistic predictions regarding the likelihood that the current HAT control programs could achieve elimination by 2020 in Boffa. Our model projections indicate that if annual vector control is implemented in combination with annual or biennial active case detection and treatment, the probability of eliminating HAT as public health problem in Boffa by 2020 is over 90%. Annual implementation of vector control alone has a significant impact but a decreased chance of reaching the objective (77%). However, if the ongoing control efforts are interrupted, HAT will continue to remain a public health problem. In the presence of a non-human animal transmission reservoir, intervention strategies must be maintained at high coverage, even after 2020 elimination, to prevent HAT reemerging as a public health problem. Complementing active screening and treatment with vector control has the potential to achieve the elimination target before 2020 in the Boffa focus. However, surveillance must continue after elimination to prevent reemergence.
Kannen, Vinicius; Sakita, Juliana Y; Carneiro, Zumira A; Bader, Michael; Alenina, Natalia; Teixeira, Regina R; de Oliveira, Enio C; Brunaldi, Mariângela O; Gasparotto, Bianca; Sartori, Daniela C; Fernandes, Cleverson R; Silva, João S; Andrade, Marcus V; Silva, Wilson A; Uyemura, Sergio A; Garcia, Sérgio B
2018-06-01
Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-Kit W-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-Kit W-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.
The neurology of parasitic diseases and malaria.
Román, Gustavo C
2011-02-01
Neurologists should be aware of parasitic diseases occurring in travelers and recent migrants because the world has become a global village as a result of tourism and immigration. Global warming is changing the distribution of diseases formerly confined to the tropics. The two most common parasitic diseases of the nervous system are Plasmodium falciparum malaria presenting as a febrile encephalopathy with normal CSF and neurocysticercosis causing seizures with focal MRI lesions or with intracranial hypertension. Numerous parasites may cause larva migrans with eosinophilic meningitis. Spinal cord involvement is the signature presentation of schistosomiasis. Trypanosoma cruzi, the agent of Chagas disease in the Americas, may cause myocardiopathy and embolic stroke. Sleeping sickness remains the most common manifestation of African trypanosomiasis. These conditions are challenging to diagnose unless a history of travel is elicited. Prospective travelers should be advised of preventive measures to avoid potentially severe infections of the nervous system.
NASA Astrophysics Data System (ADS)
Zhai, Mengting; Chen, Yan; Li, Jing; Zhou, Jun
2017-12-01
The molecular electrongativity distance vector (MEDV-13) was used to describe the molecular structure of benzyl ether diamidine derivatives in this paper, Based on MEDV-13, The three-parameter (M 3, M 15, M 47) QSAR model of insecticidal activity (pIC 50) for 60 benzyl ether diamidine derivatives was constructed by leaps-and-bounds regression (LBR) . The traditional correlation coefficient (R) and the cross-validation correlation coefficient (R CV ) were 0.975 and 0.971, respectively. The robustness of the regression model was validated by Jackknife method, the correlation coefficient R were between 0.971 and 0.983. Meanwhile, the independent variables in the model were tested to be no autocorrelation. The regression results indicate that the model has good robust and predictive capabilities. The research would provide theoretical guidance for the development of new generation of anti African trypanosomiasis drugs with efficiency and low toxicity.
Biological Activities of the Essential Oil from Erigeron floribundus.
Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana
2016-08-13
Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).
Social stigma towards neglected tropical diseases: a systematic review.
Hofstraat, Karlijn; van Brakel, Wim H
2016-03-01
People affected by neglected tropical diseases (NTDs) are frequently the target of social stigmatization. To date not much attention has been given to stigma in relation to NTDs. The objective of this review is to identify the extent of social stigma and the similarities and differences in the causes, manifestations, impact of stigma and interventions used between the NTDs. A systematic review was conducted in Pubmed, ScienceDirect, PsycINFO and Web of Knowledge. The search encompassed 17 NTDs, including podoconiosis, but not leprosy as this NTD has recently been reviewed. However, leprosy was included in the discussion. The 52 selected articles provided evidence on stigma related to lymphatic filariasis (LF), podoconiosis, Buruli ulcer, onchocerciasis, schistosomiasis, leishmaniasis, Chagas disease, trachoma, soil-transmitted helminthiasis (STH) and human African trypanosomiasis. The similarities predominated in stigma related to the various NTDs; only minimal differences in stigma reasons and measures were found. These similarities suggest that joint approaches to reduce stigmatization may be feasible. Lessons from leprosy and other stigmatized health conditions can be used to plan such joint approaches. Further research will be necessary to study the efficacy of joint interventions and to investigate stigma related to NTDs for which no evidence is available yet. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Alirol, Emilie; Horie, Ninon Seiko; Barbé, Barbara; Lejon, Veerle; Verdonck, Kristien; Gillet, Philippe; Jacobs, Jan; Büscher, Philippe; Kanal, Basudha; Bhattarai, Narayan Raj; El Safi, Sayda; Phe, Thong; Lim, Kruy; Leng, Long; Lutumba, Pascal; Mukendi, Deby; Bottieau, Emmanuel; Boelaert, Marleen; Rijal, Suman; Chappuis, François
2016-11-01
In resource-limited settings, the scarcity of skilled personnel and adequate laboratory facilities makes the differential diagnosis of fevers complex [1-5]. Febrile illnesses are diagnosed clinically in most rural centers, and both Rapid Diagnostic Tests (RDTs) and clinical algorithms can be valuable aids to health workers and facilitate therapeutic decisions [6,7]. The persistent fever syndrome targeted by NIDIAG is defined as presence of fever for at least one week. The NIDIAG clinical research consortium focused on potentially severe and treatable infections and therefore targeted the following conditions as differential diagnosis of persistent fever: visceral leishmaniasis (VL), human African trypanosomiasis (HAT), enteric (typhoid and paratyphoid) fever, brucellosis, melioidosis, leptospirosis, malaria, tuberculosis, amoebic liver abscess, relapsing fever, HIV/AIDS, rickettsiosis, and other infectious diseases (e.g., pneumonia). From January 2013 to October 2014, a prospective clinical phase III diagnostic accuracy study was conducted in one site in Cambodia, two sites in Nepal, two sites in Democratic Republic of the Congo (DRC), and one site in Sudan (clinicaltrials.gov no. NCT01766830). The study objectives were to (1) determine the prevalence of the target diseases in patients presenting with persistent fever, (2) assess the predictive value of clinical and first-line laboratory features, and (3) assess the diagnostic accuracy of several RDTs for the diagnosis of the different target conditions.
Kinung'hi, S M; Malele, I I; Kibona, S N; Matemba, L E; Sahani, J K; Kishamawe, C; Mlengeya, T D K
2006-09-01
A study was undertaken to investigate knowledge, attitudes and practices about sleeping sickness (human African trypanosomiasis) among communities living in and around Serengeti National Park (SENAPA). Structured questionnaires were administered to a total of 1490 consenting participants. Of the respondents, 924 (62%) knew sleeping sickness, and 807 (87.3%) knew the right place to seek healthcare. Of 924 who knew sleeping sickness, 386 (42%) said the disease was present in the areas they live. Most respondents (85.4%) knew that sleeping sickness infections were acquired in the bush and forest. The most common (69.3%) sources of information about sleeping sickness were relatives and friends. Symptoms of sleeping sickness mentioned included abnormal sleep (45.2%), fever (35.3%), body malaise (14.5%), headache (7.6%) and lymph node enlargement (6.1%). Of 1490 people interviewed 90.4% knew tsetse flies and 89.8% had been bitten by tsetse flies. The majority (86.6%) of the respondents knew that sleeping sickness is transmitted through a tsetse bite. Activities that exposed people to tsetse bites included working in tsetse infested bushes/forests, grazing livestock in tsetse infested areas and hunting game animals. In conclusion, communities living in and around SENAPA were knowledgeable about tsetse and sleeping sickness. The communities can thus understand and support community based tsetse and sleeping sickness control programmes to ensure success.
Pyana, Patient Pati; Sere, Modou; Kaboré, Jacques; De Meeûs, Thierry; MacLeod, Annette; Bucheton, Bruno; Van Reet, Nick; Büscher, Philippe; Belem, Adrien Marie Gaston; Jamonneau, Vincent
2015-03-01
Human African trypanosomiasis (HAT) in the Democratic Republic of the Congo (DRC) is caused by the protozoan Trypanosoma brucei gambiense. Until recently, all patients in the second or neurological stage of the disease were treated with melarsoprol. At the end of the past and the beginning of the present century, alarmingly high relapse rates in patients treated with melarsoprol were reported in isolated HAT foci. In the Mbuji-Mayi focus of DRC, a particular mutation that confers cross resistance for pentamidine and melarsoprol was recently found for all strains studied. Nevertheless, treatment successfully cured a significant proportion of patients. To check for the existence of other possible genetic factors of the parasites, we genotyped trypanosomes isolated from patients before and after treatment (relapsing patients) with eight microsatellite markers. We found no evidence of any genetic correlation between parasite genotype and treatment outcome and we concluded that relapse or cure probably depend more on patients' factors such as disease progression, nutritional or immunological status or co-infections with other pathogens. The existence of a melarsoprol and pentamidine resistance associated mutation at such high rates highlights an increasing problem, even for other drugs, especially those using the same transporters as melarsoprol and pentamidine. Copyright © 2014 Elsevier B.V. All rights reserved.
Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles
Scullion, Paul; del Pino, Ricardo C.; Vincent, Isabel M.; Zhang, Yong-Kang; Alley, Michael R. K.; Jacobs, Robert T.; Read, Kevin D.
2018-01-01
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. PMID:29425238
Cunningham, Lucas J.; Lingley, Jessica K.; Haines, Lee R.; Ndung’u, Joseph M.; Torr, Stephen J.; Adams, Emily R.
2016-01-01
Background As the reality of eliminating human African trypanosomiasis (HAT) by 2020 draws closer, the need to detect and identify the remaining areas of transmission increases. Here, we have explored the feasibility of using commercially available LAMP kits, designed to detect the Trypanozoon group of trypanosomes, as a xenomonitoring tool to screen tsetse flies for trypanosomes to be used in future epidemiological surveys. Methods and Findings The DNA extraction method was simplified and worked with the LAMP kits to detect a single positive fly when pooled with 19 negative flies, and the absolute lowest limit of detection that the kits were able to work at was the equivalent of 0.1 trypanosome per ml. The DNA from Trypanosoma brucei brucei could be detected six days after the fly had taken a blood meal containing dead trypanosomes, and when confronted with a range of non-target species, from both laboratory-reared flies and wild-caught flies, the kits showed no evidence of cross-reacting. Conclusion We have shown that it is possible to use a simplified DNA extraction method in conjunction with the pooling of tsetse flies to decrease the time it would take to screen large numbers of flies for the presence of Trypanozoon trypanosomes. The use of commercially-available LAMP kits provides a reliable and highly sensitive tool for xenomonitoring and identifying potential sleeping sickness transmission sites. PMID:26890882
Creek, Darren J; Mazet, Muriel; Achcar, Fiona; Anderson, Jana; Kim, Dong-Hyun; Kamour, Ruwida; Morand, Pauline; Millerioux, Yoann; Biran, Marc; Kerkhoven, Eduard J; Chokkathukalam, Achuthanunni; Weidt, Stefan K; Burgess, Karl E V; Breitling, Rainer; Watson, David G; Bringaud, Frédéric; Barrett, Michael P
2015-03-01
Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.
Majekodunmi, Ayodele O; Dongkum, Charles; Idehen, Christopher; Langs, Dachung Tok; Welburn, Susan C
2018-06-01
Fulani pastoralists in Nigeria lack adequate access to good quality veterinary services and often resort to treating their animals themselves. There are several negative aspects to this, including poor treatment outcomes, misuse of veterinary drugs and subsequent resistance, and further barriers to good relations between pastoralists and veterinary services. A participatory epidemiology survey was undertaken in Fulani communities, to examine their ability to diagnose and treat bovine diseases. Qualitative participatory epidemiology techniques including semi-structured interviews, ranking and participant and non-participant observations were used for data collection. Quantitative analysis to match Fulani disease descriptions to veterinary diseases was done by hierarchical clustering and multi-dimensional scaling. A concurrent parasitological survey for soil-transmitted parasites, trypanosomiasis and tick-borne diseases was undertaken to validate results. Fulani pastoralists displayed high levels of ethnoveterinary knowledge and good clinical diagnostic abilities. Diseases considered important by pastoralists included: hanta (CBPP); sammore (trypanosomiasis); boro (foot and mouth disease), gortowel (liver fluke) , dauda (parasitic gastro-enteritis with bloody diarrhoea) and susa (parasitic gastro-enteritis). The parasitology survey supported the participatory epidemiology results but also showed a high prevalence of tick-borne diseases that were not mentioned by pastoralists in this study. The use of " hanta " to describe CBPP is important as the accepted translation is liver-fluke ( hanta is the Hausa word for liver). Gortowel and dauda , two previously undescribed Fulfulde disease names have now been matched to liver fluke and PGE with bloody diarrhoea. Fulani showed low levels of bovine veterinary knowledge with mostly incorrect veterinary drugs chosen for treatment. Levels of ethno- and bio-veterinary knowledge and their application within pastoralist livestock healthcare practices are discussed.
Laboratory-Acquired Parasitic Infections from Accidental Exposures
Herwaldt, Barbara L.
2001-01-01
Parasitic diseases are receiving increasing attention in developed countries in part because of their importance in travelers, immigrants, and immunocompromised persons. The main purpose of this review is to educate laboratorians, the primary readership, and health care workers, the secondary readership, about the potential hazards of handling specimens that contain viable parasites and about the diseases that can result. This is accomplished partly through discussion of the occupationally acquired cases of parasitic infections that have been reported, focusing for each case on the type of accident that resulted in infection, the length of the incubation period, the clinical manifestations that developed, and the means by which infection was detected. The article focuses on the cases of infection with the protozoa that cause leishmaniasis, malaria, toxoplasmosis, Chagas' disease (American trypanosomiasis), and African trypanosomiasis. Data about 164 such cases are discussed, as are data about cases caused by intestinal protozoa and by helminths. Of the 105 case-patients infected with blood and tissue protozoa who either recalled an accident or for whom the likely route of transmission could be presumed, 47 (44.8%) had percutaneous exposure via a contaminated needle or other sharp object. Some accidents were directly linked to poor laboratory practices (e.g., recapping a needle or working barehanded). To decrease the likelihood of accidental exposures, persons who could be exposed to pathogenic parasites must be thoroughly instructed in safety precautions before they begin to work and through ongoing training programs. Protocols should be provided for handling specimens that could contain viable organisms, using protective clothing and equipment, dealing with spills of infectious organisms, and responding to accidents. Special care should be exercised when using needles and other sharp objects. PMID:11585780
Topics on the Pathology of Protozoan and Invasive Arthropod Diseases
2011-06-01
Rhodesian trypanosomiasis. This drug is an arsenical derivative that can have drastic side effects, in- cluding seizures associated with acute cerebral edema...other hollow viscera have also been reported in some patients with chronic Cha- gas’ disease. Congenital Chagas’ Disease Intrauterine infection...sign) is typical of the Gambian form (Fig 3.12). It is considered a sign of peripheral trypanosomiasis without cerebral involvement; however, there is
Meyer, Anne; Holt, Hannah R; Oumarou, Farikou; Chilongo, Kalinga; Gilbert, William; Fauron, Albane; Mumba, Chisoni; Guitian, Javier
2018-03-07
Animal African trypanosomiasis (AAT) and its tsetse vector are responsible for annual losses estimated in billions of US dollars ($). Recent years have seen the implementation of a series of multinational interventions. However, actors of AAT control face complex resource allocation decisions due to the geographical range of AAT, diversity of ecological and livestock systems, and range of control methods available. The study presented here integrates an existing tsetse abundance model with a bio-economic herd model that captures local production characteristics as well as heterogeneities in AAT incidence and breed. These models were used to predict the impact of tsetse elimination on the net value of cattle production in the districts of Mambwe, in Zambia, and Faro et Déo in Cameroon. The net value of cattle production under the current situation was used as a baseline, and compared with alternative publicly funded control programmes. In Zambia, the current baseline is AAT control implemented privately by cattle owners (Scenario Z0). In Cameroon, the baseline (Scenario C0) is a small-scale publicly funded tsetse control programme and privately funded control at farm level. The model was run for 10 years, using a discount rate of 5%. Compared to Scenario C0, benefit-cost ratios (BCR) of 4.5 (4.4-4.7) for Scenario C1 (tsetse suppression using insecticide treatment of cattle (ITC) and traps + maintenance with ITC barrier), and 3.8 (3.6-4.0) for Scenario C2 (tsetse suppression using ITC and traps + maintenance with barrier of targets), were estimated in Cameroon. For Zambia, the benefit-cost ratio calculated for Scenarios Z1 (targets, ITC barrier), Z2 (targets, barrier traps), Z3 (aerial spraying, ITC barrier), and Z4 (aerial spraying, barrier traps) were 2.3 (1.8 - 2.7), 2.0 (1.6-2.4), 2.8 (2.3-3.3) and 2.5 (2.0-2.9), respectively. Sensitivity analysis showed that the profitability of the projects is relatively resistant to variations in the costs of the interventions and their technical efficiency. It is envisioned that the methodologies presented here will be useful for the evaluation and design of existing and future control programmes, ensuring they have tangible benefits in the communities they are targeting.
An overview on the ecology of Triatominae (Hemiptera:Reduviidae).
Galvão, Cleber; Justi, Silvia A
2015-11-01
Chagas disease, the American trypanosomiasis, is an important neglected tropical illness caused by the flagellate protozoan Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) and transmitted by insects of the subfamily Triatominae (Hemiptera: Reduviidae). Here we provide an overview on the current knowledge about Triatominae ecology, its association with human, T. cruzi infection and the immediate consequences of habitat fragmentation. We also discuss the geographic distribution of the species and the importance of predicting their distributions to control programs. Copyright © 2015 Elsevier B.V. All rights reserved.
Trypanosoma cruzi: adaptation to its vectors and its hosts
Noireau, François; Diosque, Patricio; Jansen, Ana Maria
2009-01-01
American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability. PMID:19250627
Ebiloma, Godwin U; Ayuga, Teresa Díaz; Balogun, Emmanuel O; Gil, Lucía Abad; Donachie, Anne; Kaiser, Marcel; Herraiz, Tomás; Inaoka, Daniel K; Shiba, Tomoo; Harada, Shigeharu; Kita, Kiyoshi; de Koning, Harry P; Dardonville, Christophe
2018-04-25
African trypanosomiasis is a neglected parasitic disease that is still of great public health relevance, and a severe impediment to agriculture in endemic areas. The pathogens possess certain unique metabolic features that can be exploited for the development of new drugs. Notably, they rely on an essential, mitochondrially-localized enzyme, Trypanosome Alternative Oxidase (TAO) for their energy metabolism, which is absent in the mammalian hosts and therefore an attractive target for the design of safe drugs. In this study, we cloned, expressed and purified the physiologically relevant form of TAO, which lacks the N-terminal 25 amino acid mitochondrial targeting sequence (ΔMTS-TAO). A new class of 32 cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde inhibitors was designed and synthesized, enabling the first structure-activity relationship studies on ΔMTS-TAO. Remarkably, we obtained compounds with enzyme inhibition values (IC 50 ) as low as 2 nM, which were efficacious against wild type and multidrug-resistant strains of T. brucei and T. congolense. The inhibitors 13, 15, 16, 19, and 30, designed with a mitochondrion-targeting lipophilic cation tail, displayed trypanocidal potencies comparable to the reference drugs pentamidine and diminazene, and showed no cross-resistance with the critical diamidine and melaminophenyl arsenical classes of trypanocides. The cationic inhibitors 15, 16, 19, 20, and 30 were also much more selective (900 - 344,000) over human cells than the non-targeted neutral derivatives (selectivity >8-fold). A preliminary in vivo study showed that modest doses of 15 and 16 reduced parasitaemia of mice infected with T. b. rhodesiense (STIB900). These compounds represent a promising new class of potent and selective hits against African trypanosomes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Ndeledje, Noël; Bouyer, Jérémy; Stachurski, Frédéric; Grimaud, Patrice; Belem, Adrien Marie Gaston; Molélé Mbaïndingatoloum, Fidèle; Bengaly, Zakaria; Oumar Alfaroukh, Idriss; Cecchi, Guiliano; Lancelot, Renaud
2013-01-01
Background In Chad, several species of tsetse flies (Genus: Glossina ) transmit African animal trypanosomoses (AAT), which represents a major obstacle to cattle rearing, and sleeping sickness, which impacts public health. After the failure of past interventions to eradicate tsetse, the government of Chad is now looking for other approaches that integrate cost-effective intervention techniques, which can be applied by the stake holders to control tsetse-transmitted trypanosomoses in a sustainable manner. The present study thus attempted to assess the efficacy of restricted application of insecticides to cattle leg extremities using footbaths for controlling Glossina m. submorsitans, G . tachinoides and G . f . fuscipes in southern Chad. Methodology/Principal Findings Two sites were included, one close to the historical human African trypanosomiasis (HAT) focus of Moundou and the other to the active foci of Bodo and Moissala. At both sites, a treated and an untreated herd were compared. In the treatment sites, cattle were treated on a regular basis using a formulation of deltamethrin 0.005% (67 to 98 cattle were treated in one of the sites and 88 to 102 in the other one). For each herd, tsetse densities were monthly monitored using 7 biconical traps set along the river and beside the cattle pen from February to December 2009. The impact of footbath treatment on tsetse populations was strong (p < 10-3) with a reduction of 80% in total tsetse catches by the end of the 6-month footbath treatment. Conclusions/Significance The impact of footbath treatment as a vector control tool within an integrated strategy to manage AAT and HAT is discussed in the framework of the “One Health” concept. Like other techniques based on the treatment of cattle, this technology should be used under controlled conditions, in order to avoid the development of insecticide and acaricide resistance in tsetse and tick populations, respectively. PMID:23799148
Steverding, Dietmar
2015-01-01
Chemotherapy of human African trypanosomiasis (HAT) is unsatisfactory because only a few drugs, with serious side effects and poor efficacy, are available. As drug combination regimes often achieve greater therapeutic efficacy than monotherapies, here the trypanocidal activity of the cysteine protease inhibitor K11777 in combination with current anti-HAT drugs using bloodstream forms of Trypanosoma brucei was investigated. Isobolographic analysis was used to determine the interaction between cysteine protease inhibitors (K11777, CA-074Me and CAA0225) and anti-HAT drugs (suramin, pentamidine, melarsoprol and eflornithine). Bloodstream forms of T. brucei were incubated in culture medium containing cysteine protease inhibitors or anti-HAT drugs alone or in combination at a 1:1 fixed-dose ratio. After 48 h incubation, live cells were counted, the 50% growth inhibition values determined and combination indices calculated. The general cytotoxicity of drug combinations was evaluated with human leukaemia HL-60 cells. Combinations of K11777 with suramin, pentamidine and melarsoprol showed antagonistic effects while with eflornithine a synergistic effect was observed. Whereas eflornithine antagonises with CA-074Me, an inhibitor inactivating the targeted TbCATL only under reducing conditions, it synergises with CAA0255, an inhibitor structurally related to CA-074Me which inactivates TbCATL independently of thiols. These findings indicate an essential role of thiols for the synergistic interaction between K11777 and eflornithine. Encouragingly, the K11777/eflornithine combination displayed higher trypanocidal than cytotoxic activity. The results of this study suggest that the combination of the cysteine protease inhibitor K11777 and eflornithine display promising synergistic trypanocidal activity that warrants further investigation of the drug combination as possible alternative treatment of HAT. Copyright © 2015 Elsevier Inc. All rights reserved.
Tiberti, Natalia; Sanchez, Jean-Charles
2015-09-01
The quantitative proteomics data here reported are part of a research article entitled "Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense", published by Tiberti et al., 2015. Transl. Proteomics 6, 1-9. Sleeping sickness (human African trypanosomiasis - HAT) is a deadly neglected tropical disease affecting mainly rural communities in sub-Saharan Africa. This parasitic disease is caused by the Trypanosoma brucei (T. b.) parasite, which is transmitted to the human host through the bite of the tse-tse fly. Two parasite sub-species, T. b. rhodesiense and T. b. gambiense, are responsible for two clinically different and geographically separated forms of sleeping sickness. The objective of the present study was to characterise and compare the cerebrospinal fluid (CSF) proteome of stage 2 (meningo-encephalitic stage) HAT patients suffering from T. b. gambiense or T. b. rhodesiense disease using high-throughput quantitative proteomics and the Tandem Mass Tag (TMT(®)) isobaric labelling. In order to evaluate the CSF proteome in the context of HAT pathophysiology, the protein dataset was then submitted to gene ontology and pathway analysis. Two significantly differentially expressed proteins (C-reactive protein and orosomucoid 1) were further verified on a larger population of patients (n=185) by ELISA, confirming the mass spectrometry results. By showing a predominant involvement of the acute immune response in rhodesiense HAT, the proteomics results obtained in this work will contribute to further understand the mechanisms of pathology occurring in HAT and to propose new biomarkers of potential clinical utility. The mass spectrometry raw data are available in the Pride Archive via ProteomeXchange through the identifier PXD001082.
Gürtler, Lutz G; Eberle, Josef
2017-08-01
Transmission of infectious agents might be associated with iatrogenic actions of charitable help in health care. An example is the vaccination against yellow fever in USA that transmitted hepatitis B virus. Another example is injections of praziquantel for treatment and cure of schistosomiasis in Central and Northern Africa, with a focus in Egypt that has spread hepatitis C virus. There is no indication that human T-lymphotropic virus type 1 was spread by injection treatment for African trypanosomiasis, syphilis and treponematosis, but these treatments might have contributed to the early spread of human immunodeficiency virus type 1 (HIV-1) in Central Africa. Slave trade contributed as well to the spread of viruses from Africa to the Americas; it was stopped in 1850. Until that date HIV-1 was not transported to the Americas. By analysis of nucleic acid sequence data it can be concluded that the continental spread of HCV and HIV-1 might have started around 1920 with an exponential phase from 1940 to 1970. Further iatrogenic actions that promoted the spread of HCV and HIV-1 might be vaccinations to prevent deadly diseases. The successful vaccination was followed by diminution of the infectious agent in the population such as small pox, yellow fever and measles. Measurements to reduce the spread of plague and cholera were further benefits increasing survival of diseased subjects in a population. Thus, the reduction of exposure to deadly infectious agents might have given a chance to HIV-1 infected subjects to survive and for HIV-1 to be distributed around the world starting from Central Africa in the 1950s.
Trypanosomiasis control in relation to other public health services.
FENDALL, N R; SOUTHGATE, B A; BERRIE, J R
1963-01-01
The authors describe the aims and principles of trypanosomiasis control and discuss the individual techniques of control and the ways in which these can be channelled through a general rural health service. They argue that, given the circumstances at present prevailing in rural Africa, a broad-based general public health service should be established before specific campaigns for control or eradication of sleeping-sickness, or indeed any other specific diseases, are instituted. They emphasize the necessity of international co-operation for effective trypanomiasis control.
Trypanosomiasis control in relation to other public health services*
Fendall, N. R. E.; Southgate, B. A.; Berrie, J. R. H.
1963-01-01
The authors describe the aims and principles of trypanosomiasis control and discuss the individual techniques of control and the ways in which these can be channelled through a general rural health service. They argue that, given the circumstances at present prevailing in rural Africa, a broad-based general public health service should be established before specific campaigns for control or eradication of sleeping-sickness, or indeed any other specific diseases, are instituted. They emphasize the necessity of international co-operation for effective trypanomiasis control. PMID:13962907
Hutin, Yvan J F; Legros, Dominique; Owini, Vincent; Brown, Vincent; Lee, Evan; Mbulamberi, Dawson; Paquet, Christophe
2004-04-01
We estimated the pre-intervention prevalence of Trypanosoma brucei gambiense (Tbg) trypanosomiasis using the lot quality assurance sampling (LQAS) methods in 14 parishes of Terego County in northern Uganda. A total of 826 participants were included in the survey sample in 1996. The prevalence of laboratory confirmed Tbg trypanosomiasis adjusted for parish population sizes was 2.2% (95% confidence interval =1.1-3.2). This estimate was consistent with the 1.1% period prevalence calculated on the basis of cases identified through passive and active screening in 1996-1999. Ranking of parishes in four categories according to LQAS analysis of the 1996 survey predicted the prevalences observed during the first round of active screening in the population in 1997-1998 (P < 0.0001, by chi-square test). Overall prevalence and ranking of parishes obtained with LQAS were validated by the results of the population screening, suggesting that these survey methods may be useful in the pre-intervention phase of sleeping sickness control programs.
Lim, Kah Tee; Zahari, Zuriati; Amanah, Azimah; Zainuddin, Zafarina; Adenan, Mohd Ilham
2016-03-01
To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Hollingsworth, T Déirdre; Adams, Emily R; Anderson, Roy M; Atkins, Katherine; Bartsch, Sarah; Basáñez, María-Gloria; Behrend, Matthew; Blok, David J; Chapman, Lloyd A C; Coffeng, Luc; Courtenay, Orin; Crump, Ron E; de Vlas, Sake J; Dobson, Andy; Dyson, Louise; Farkas, Hajnal; Galvani, Alison P; Gambhir, Manoj; Gurarie, David; Irvine, Michael A; Jervis, Sarah; Keeling, Matt J; Kelly-Hope, Louise; King, Charles; Lee, Bruce Y; Le Rutte, Epke A; Lietman, Thomas M; Ndeffo-Mbah, Martial; Medley, Graham F; Michael, Edwin; Pandey, Abhishek; Peterson, Jennifer K; Pinsent, Amy; Porco, Travis C; Richardus, Jan Hendrik; Reimer, Lisa; Rock, Kat S; Singh, Brajendra K; Stolk, Wilma; Swaminathan, Subramanian; Torr, Steve J; Townsend, Jeffrey; Truscott, James; Walker, Martin; Zoueva, Alexandra
2015-12-09
Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020.
Dicko, Ahmadou H.; Lancelot, Renaud; Seck, Momar T.; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J. B.; Lefrançois, Thierry; Fonta, William M.; Peck, Steven L.; Bouyer, Jérémy
2014-01-01
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models’ results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs. PMID:24982143
Drug development against sleeping sickness: old wine in new bottles?
Stein, J; Mogk, S; Mudogo, C N; Sommer, B P; Scholze, M; Meiwes, A; Huber, M; Gray, A; Duszenko, M
2014-01-01
Atoxyl, the first medicinal drug against human African trypanosomiasis (HAT), also known as sleeping sickness, was applied more than 100 years ago. Ever since, the search for more effective, more specific and less toxic drugs continued, leading to a set of compounds currently in use against this devastating disease. Unfortunately, none of these medicines fulfill modern pharmaceutical requirements and may be considered as therapeutic ultima ratio due to the many, often severe side effects. Starting with a historic overview on drug development against HAT, we present a selection of trypanosome specific pathways and enzymes considered as highly potent druggable targets. In addition, we describe cellular mechanisms the parasite uses for differentiation and cell density regulation and present our considerations how interference with these steps, elementary for life cycle progression and infection, may lead to new aspects of drug development. Finally we refer to our recent work about CNS infection that offers novel insights in how trypanosomes hide in an immune privileged area to establish a chronic state of the disease, thereby considering new ways for drug application. Depressingly, HAT specific drug development has failed over the last 30 years to produce better suited medicine. However, unraveling of parasite-specific pathways and cellular behavior together with the ability to produce high resolution structures of essential parasite proteins by X-ray crystallography, leads us to the optimistic view that development of an ultimate drug to eradicate sleeping sickness from the globe might just be around the corner.
[International Partnership for Therapeutic Drug Development of NTDs by DNDi].
Yamada, Haruki; Hirabayashi, Fumiko; Brünger, Chris
2016-01-01
The Drugs for Neglected Diseases initiative (DNDi), with headquarters in Geneva, is a non-profit drug research and development (R&D) organization and Product Development Partnership (PDP) which was established in 2003 by 7 founding organizations such as Médecins Sans Frontières (MSF), the Pasteur Institute, The Specific Programme for Research and Training in Tropical Diseases (WHO-TDR), etc. DNDi has worked mainly on the development of new treatments for neglected tropical diseases (NTDs), which is difficult to achieve under market economy conditions. DNDi has promoted overall drug discovery research including the screening of drug candidates, hit to lead, lead optimization, pre-clinical and clinical studies in the area of infectious diseases with a focus on malaria, sleeping sickness (human African trypanosomiasis; HAT), Chagas disease, leishmaniasis, filarial diseases and pediatric formulations for HIV treatment. DNDi's achievements include the development of novel therapies based on patient needs through innovative partnerships with over 130 organizations in industry, government, academia, and public institutions around the world. To date, DNDi has registered 6 novel treatments adapted to the needs of patients in poor countries, and has another 12 novel entities in development. DNDi Japan is a Japanese non-profit organization (NPO) based on the global principles of DNDi and, as the only PDP in Japan, is supporting NTD drug discovery projects in collaboration with Japanese pharmaceutical companies, academic institutions and government agencies by utilizing Japan's excellent R&D capabilities to develop new treatments for NTDs in order to contribute to global health.
Dicko, Ahmadou H; Lancelot, Renaud; Seck, Momar T; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J B; Lefrançois, Thierry; Fonta, William M; Peck, Steven L; Bouyer, Jérémy
2014-07-15
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models' results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs.
Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo
2017-06-02
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The effects of war on the control of diseases of livestock in Rhodesia (Zimbabwe).
Lawrence, J A; Foggin, C M; Norval, R A
1980-07-26
The disruption of veterinary services in the tribal areas of Rhodesia (now Zimbabwe) during seven years of conflict resulted in serious epidemics of disease. The cessation of dipping was followed by the death of an estimated one million cattle from tick-borne disease. Heavy mortality followed the disruption of control measures for trypanosomiasis. Foot-and-mouth disease and anthrax spread widely in the tribal areas. Rabies, normally restricted to areas bordering Botswana and Mocambique, became widespread. A marked increase in human deaths from anthrax and rabies occurred.
Ngonyoka, Anibariki; Gwakisa, Paul S; Estes, Anna B; Salekwa, Linda P; Nnko, Happiness J; Hudson, Peter J; Cattadori, Isabella M
2017-09-04
Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economical consequences, for instance, loss of livestock, animal productivity, and manpower. We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for effective control of trypanosomiasis.
Ofon, Elvis; Noyes, Harry; Mulindwa, Julius; Ilboudo, Hamidou; Simuunza, Martin; Ebo'o, Vincent; Njiokou, Flobert; Koffi, Mathurin; Bucheton, Bruno; Fogue, Pythagore; Hertz-Fowler, Christiane; MacLeod, Annette; Simo, Gustave
2017-10-01
Human African Trypanosomiasis (HAT) is a neglected disease targeted for elimination as a public health problem by 2020. Elimination requires a better understanding of the epidemiology and clinical evolution of HAT. In addition to the classical clinical evolution of HAT, asymptomatic carriers and spontaneous cure have been reported in West Africa. A genetic component to human susceptibility to HAT has been suggested to explain these newly observed responses to infection. In order to test for genetic associations with infection response, genetic polymorphism in 17 genes were tested (APOL1, IL1B, IL4, IL4R, IL6, IL8, IL12B, IL12RB1, IL10, TNFA, INFG, MIF, HLA-G, HLA-A, HP, HPR and CFH). A case-control study was performed on 180 blood samples collected from 56 cases and 124 controls from Cameroon. DNA was extracted from blood samples. After quality control, 25 samples (24 controls and 1 case) were eliminated. The genotyping undertaken on 155 individuals including 55 cases and 100 controls were investigated at 96 loci (88 SNPs and 8 indels) located on 17 genes. Associations between these loci and HAT were estimated via a case-control association test. Analyses of 64 SNPs and 4 indels out of 96 identified in the selected genes reveal that the minor allele (T) of rs8062041 in haptoglobin (HP) appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204-0.6319])); indicating higher frequency in cases compared to controls. This minor allele with adjusted p value of 0.0163 is associated with a lower risk (protective effect) of developing sleeping sickness. The haptoglobin related protein HPR and HP are tightly linked and both are duplicated in some people and may lead to higher activity. This increased production could be responsible of the protection associated with rs8062041 even though this SNP is within HP.
Ofon, Elvis; Noyes, Harry; Mulindwa, Julius; Ilboudo, Hamidou; Simuunza, Martin; Ebo’o, Vincent; Njiokou, Flobert; Koffi, Mathurin; Bucheton, Bruno; Fogue, Pythagore; Hertz-Fowler, Christiane; MacLeod, Annette
2017-01-01
Background Human African Trypanosomiasis (HAT) is a neglected disease targeted for elimination as a public health problem by 2020. Elimination requires a better understanding of the epidemiology and clinical evolution of HAT. In addition to the classical clinical evolution of HAT, asymptomatic carriers and spontaneous cure have been reported in West Africa. A genetic component to human susceptibility to HAT has been suggested to explain these newly observed responses to infection. In order to test for genetic associations with infection response, genetic polymorphism in 17 genes were tested (APOL1, IL1B, IL4, IL4R, IL6, IL8, IL12B, IL12RB1, IL10, TNFA, INFG, MIF, HLA-G, HLA-A, HP, HPR and CFH). Methodology A case-control study was performed on 180 blood samples collected from 56 cases and 124 controls from Cameroon. DNA was extracted from blood samples. After quality control, 25 samples (24 controls and 1 case) were eliminated. The genotyping undertaken on 155 individuals including 55 cases and 100 controls were investigated at 96 loci (88 SNPs and 8 indels) located on 17 genes. Associations between these loci and HAT were estimated via a case-control association test. Results Analyses of 64 SNPs and 4 indels out of 96 identified in the selected genes reveal that the minor allele (T) of rs8062041 in haptoglobin (HP) appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204–0.6319])); indicating higher frequency in cases compared to controls. This minor allele with adjusted p value of 0.0163 is associated with a lower risk (protective effect) of developing sleeping sickness. Conclusion The haptoglobin related protein HPR and HP are tightly linked and both are duplicated in some people and may lead to higher activity. This increased production could be responsible of the protection associated with rs8062041 even though this SNP is within HP. PMID:29077717
Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle.
Cox, Andrew P; Tosas, Olga; Tilley, Aimee; Picozzi, Kim; Coleman, Paul; Hide, Geoff; Welburn, Susan C
2010-09-06
In East Africa, animal trypanosomiasis is caused by many tsetse transmitted protozoan parasites including Trypanosoma vivax, T. congolense and subspecies of T. brucei s.l. (T. b. brucei and zoonotic human infective T. b. rhodesiense) that may co-circulate in domestic and wild animals. Accurate species-specific prevalence measurements of these parasites in animal populations are complicated by mixed infections of trypanosomes within individual hosts, low parasite densities and difficulties in conducting field studies. Many Polymerase Chain Reaction (PCR) based diagnostic tools are available to characterise and quantify infection in animals. These are important for assessing the contribution of infections in animal reservoirs and the risk posed to humans from zoonotic trypanosome species. New matrices for DNA capture have simplified large scale field PCR analyses but few studies have examined the impact of these techniques on prevalence estimations. The Whatman FTA matrix has been evaluated using a random sample of 35 village zebu cattle from a population naturally exposed to trypanosome infection. Using a generic trypanosome-specific PCR, prevalence was systematically evaluated. Multiple PCR samples taken from single FTA cards demonstrated that a single punch from an FTA card is not sufficient to confirm the infectivity status of an individual animal as parasite DNA is unevenly distributed across the card. At low parasite densities in the host, this stochastic sampling effect results in underestimation of prevalence based on single punch PCR testing. Repeated testing increased the estimated prevalence of all Trypanosoma spp. from 9.7% to 86%. Using repeat testing, a very high prevalence of pathogenic trypanosomes was detected in these local village cattle: T. brucei (34.3%), T. congolense (42.9%) and T. vivax (22.9%). These results show that, despite the convenience of Whatman FTA cards and specific PCR based detection tools, the chronically low parasitaemias in indigenous African zebu cattle make it difficult to establish true prevalence. Although this study specifically applies to FTA cards, a similar effect would be experienced with other approaches using blood samples containing low parasite densities. For example, using blood film microscopy or PCR detection from liquid samples where the probability of detecting a parasite or DNA molecule, in the required number of fields of view or PCR reaction, is less than one.
Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle
2010-01-01
Background In East Africa, animal trypanosomiasis is caused by many tsetse transmitted protozoan parasites including Trypanosoma vivax, T. congolense and subspecies of T. brucei s.l. (T. b. brucei and zoonotic human infective T. b. rhodesiense) that may co-circulate in domestic and wild animals. Accurate species-specific prevalence measurements of these parasites in animal populations are complicated by mixed infections of trypanosomes within individual hosts, low parasite densities and difficulties in conducting field studies. Many Polymerase Chain Reaction (PCR) based diagnostic tools are available to characterise and quantify infection in animals. These are important for assessing the contribution of infections in animal reservoirs and the risk posed to humans from zoonotic trypanosome species. New matrices for DNA capture have simplified large scale field PCR analyses but few studies have examined the impact of these techniques on prevalence estimations. Results The Whatman FTA matrix has been evaluated using a random sample of 35 village zebu cattle from a population naturally exposed to trypanosome infection. Using a generic trypanosome-specific PCR, prevalence was systematically evaluated. Multiple PCR samples taken from single FTA cards demonstrated that a single punch from an FTA card is not sufficient to confirm the infectivity status of an individual animal as parasite DNA is unevenly distributed across the card. At low parasite densities in the host, this stochastic sampling effect results in underestimation of prevalence based on single punch PCR testing. Repeated testing increased the estimated prevalence of all Trypanosoma spp. from 9.7% to 86%. Using repeat testing, a very high prevalence of pathogenic trypanosomes was detected in these local village cattle: T. brucei (34.3%), T. congolense (42.9%) and T. vivax (22.9%). Conclusions These results show that, despite the convenience of Whatman FTA cards and specific PCR based detection tools, the chronically low parasitaemias in indigenous African zebu cattle make it difficult to establish true prevalence. Although this study specifically applies to FTA cards, a similar effect would be experienced with other approaches using blood samples containing low parasite densities. For example, using blood film microscopy or PCR detection from liquid samples where the probability of detecting a parasite or DNA molecule, in the required number of fields of view or PCR reaction, is less than one. PMID:20815940
Mbang Nguema, O A; Mavoungou, J F; Mawili-Mboumba, D P; Zinga Koumba, R C; Bouyou-Akotet, M K; M'batchi, B
2015-09-01
Trypanosoma's vectors distribution is poorly investigated in Gabon, where Trypanosomiasis historical foci exist. Thus, an active detection of Trypanosoma sp transmission needs to be assessed. The present study aims to identify potential vectors of Trypanosoma sp and to evaluate the infection rate of the Tsetse fly in an area of Gabon. An entomological survey was conducted in the National Park of Ivindo in May 2012 using Vavoua traps. All captured insects were identified. Tsetse were dissected and organs were microscopically observed to detect the presence of Trypanosoma sp. 247 biting flies known as vectors of Trypanosomiasis were caught including 189 tsetse flies, 32 Tabanid and 26 Stomoxys. Tsetse flies had the highest bulk densities per trap per day (ADT = 3 tsetse / trap / day), while the lowest density was found among Stomoxys (ADT= 0.41 Stomoxys / trap / day). The infection rate of flies was 6.3%. Infectious organs were midguts and to a lesser extent salivary glands and proboscis. The presence of Tsetse infected by Trypanosoma highlights an existing risk of trypanosomiasis infection in the National Park of Ivindo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrozi, L.F.; Neumann, E.; Squires, G.
The blood-sucking reduviid bug Triatoma infestans, one of the most important vector of American human trypanosomiasis (Chagas disease) is infected by the Triatoma virus (TrV). TrV has been classified as a member of the Cripavirus genus (type cricket paralysis virus) in the Dicistroviridae family. This work presents the three-dimensional cryo-electron microscopy (cryo-EM) reconstruction of the TrV capsid at about 25 A resolution and its use as a template for phasing the available crystallographic data by the molecular replacement method. The main structural differences between the cryo-EM reconstruction of TrV and other two viruses, one from the same family, the cricketmore » paralysis virus (CrPV) and the human rhinovirus 16 from the Picornaviridae family are presented and discussed.« less
Rayaisse, J B; Tirados, I; Kaba, D; Dewhirst, S Y; Logan, J G; Diarrassouba, A; Salou, E; Omolo, M O; Solano, P; Lehane, M J; Pickett, J A; Vale, G A; Torr, S J; Esterhuizen, J
2010-03-16
Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced ( approximately 5x) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2x) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (approximately 5x) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (approximately 500 mg/h) doses of acetone also consistently produced significant but slight (approximately 1.6x) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only approximately 50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short-range interaction.
Mpanya, Alain; Hendrickx, David; Baloji, Sylvain; Lumbala, Crispin; da Luz, Raquel Inocêncio; Boelaert, Marleen; Lutumba, Pascal
2015-01-01
Background Socio-cultural and economic factors constitute real barriers for uptake of screening and treatment of Human African Trypanosomiasis (HAT) in the Democratic Republic of Congo (DRC). Better understanding and addressing these barriers may enhance the effectiveness of HAT control. Methods We performed a qualitative study consisting of semi-structured interviews and focus group discussions in the Bandundu and Kasaï Oriental provinces, two provinces lagging behind in the HAT elimination effort. Our study population included current and former HAT patients, as well as healthcare providers and program managers of the national HAT control program. All interviews and discussions were voice recorded on a digital device and data were analysed with the ATLAS.ti software. Findings Health workers and community members quoted a number of prohibitions that have to be respected for six months after HAT treatment: no work, no sexual intercourse, no hot food, not walking in the sun. Violating these restrictions is believed to cause serious, and sometimes deadly, complications. These strong prohibitions are well-known by the community and lead some people to avoid HAT screening campaigns, for fear of having to observe such taboos in case of diagnosis. Discussion The restrictions originally aimed to mitigate the severe adverse effects of the melarsoprol regimen, but are not evidence-based and became obsolete with the new safer drugs. Correct health information regarding HAT treatment is essential. Health providers should address the perspective of the community in a constant dialogue to keep abreast of unintended transformations of meaning. PMID:25856578
Mpanya, Alain; Hendrickx, David; Baloji, Sylvain; Lumbala, Crispin; da Luz, Raquel Inocêncio; Boelaert, Marleen; Lutumba, Pascal
2015-04-01
Socio-cultural and economic factors constitute real barriers for uptake of screening and treatment of Human African Trypanosomiasis (HAT) in the Democratic Republic of Congo (DRC). Better understanding and addressing these barriers may enhance the effectiveness of HAT control. We performed a qualitative study consisting of semi-structured interviews and focus group discussions in the Bandundu and Kasaï Oriental provinces, two provinces lagging behind in the HAT elimination effort. Our study population included current and former HAT patients, as well as healthcare providers and program managers of the national HAT control program. All interviews and discussions were voice recorded on a digital device and data were analysed with the ATLAS.ti software. Health workers and community members quoted a number of prohibitions that have to be respected for six months after HAT treatment: no work, no sexual intercourse, no hot food, not walking in the sun. Violating these restrictions is believed to cause serious, and sometimes deadly, complications. These strong prohibitions are well-known by the community and lead some people to avoid HAT screening campaigns, for fear of having to observe such taboos in case of diagnosis. The restrictions originally aimed to mitigate the severe adverse effects of the melarsoprol regimen, but are not evidence-based and became obsolete with the new safer drugs. Correct health information regarding HAT treatment is essential. Health providers should address the perspective of the community in a constant dialogue to keep abreast of unintended transformations of meaning.
Current strategies and successes in engaging women in vector control: a systematic review
Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H
2018-01-01
Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913
Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control?
Bossard, Géraldine; Cuny, Gérard; Geiger, Anne
2013-01-01
Human African trypanosomiasis (HAT) is caused by trypanosomes of the species Trypanosoma brucei and belongs to the neglected tropical diseases. Presently, WHO has listed 36 countries as being endemic for sleeping sickness. No vaccine is available, and disease treatment is difficult and has life-threatening side effects. Therefore, there is a crucial need to search for new therapeutic targets against the parasite. Trypanosome excreted-secreted proteins could be promising targets, as the total secretome was shown to inhibit, in vitro, host dendritic cell maturation and their ability to induce lymphocytic allogenic responses. The secretome was found surprisingly rich in various proteins and unexpectedly rich in diverse peptidases, covering more than ten peptidase families or subfamilies. Given their abundance, one may speculate that they would play a genuine role not only in classical "housekeeping" tasks but also in pathogenesis. The paper reviews the deleterious role of proteases from trypanosomes, owing to their capacity to degrade host circulating or structural proteins, as well as proteic hormones, causing severe damage and preventing host immune response. In addition, proteases account for a number of drug targets, such drugs being used to treat severe diseases such AIDS. This review underlines the importance of secreted proteins and especially of secreted proteases as potential targets in HAT-fighting strategies. It points out the need to conduct further investigations on the specific role of each of these various proteases in order to identify those playing a central role in sleeping sickness and would be suitable for drug targeting. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Courtin, F; Jamonneau, V; Kambiré, R; Solano, P
2010-12-01
Following the sociopolitical unrest that occurred in Ivory Coast in 2002, 360,000 Burkinabe immigrants returned to Burkina Faso that was the epicenter of sleeping sickness last century and is now thought to be free of autochthonous transmission. The purpose of this study was to determine if the massive return of immigrants from human African trypanosomiasis (HAT) endemic areas of Ivory Coast to areas in Burkina Faso where the vector (tsetse fly) is currently present could lead to re-emergence of the disease. Risk areas for re-emergence were identified taking into account the number of returning immigrants, history of the disease, and presence of tsetse flies. Based on these criteria, study was focused on two villages, i.e., Folonzo and Gbalara, located in southern Burkina Faso near the Ivory Coast border. Study in these two villages consisted of characterization of the population (repatriates or not, origin, ...) and medical surveys to assess the presence/absence of the disease. Departure of some returning immigrants from areas including sleeping sickness foci in Ivory Coast (e.g. center west) confirmed the potential risk of re-emergence of the disease. Although no case of sleeping sickness was diagnosed, several serologically positive people were identified and will be followed up. This study failed to demonstrate a clear-cut correlation between massive population movements due to war and reemergence of sleeping sickness. However, this study may have been timed too soon after the return of immigrants to detect reemergence of HAT that could require several years.
Trouiller, P; Battistella, C; Pinel, J; Pecoul, B
1999-06-01
OBJECTIVES To quantify past outcomes of tropical pharmacology research and development (R & D) and to assess past benefits of the American orphan drug act and potential benefits of the future European orphan drug regulation on tropical diseases. This paper presents two analyses: a 1983-97 retrospective study of the United States Orphan Drug Act concerning rare diseases and a prospective study of the European Proposal for a Regulation Concerning Orphan Drugs and its possible impact on tropical diseases. Different programmes have in the past tried to stimulate R & D in this area, but results remain limited. Of 1450 new chemical entities marketed between 1972 and 1997, 13 were specifically for tropical diseases and considered as essential drugs. Between 1983 & 1997, the US Orphan Drug Act approved 837 drugs and marketing of 152 new molecular entities (NMEs). Three NMEs have been designated for malaria and human African trypanosomiasis. Seven others, already commonly used in tropical diseases, received either orphan designation or an orphan approval for another indication. Pharmaceutical companies benefit from the US framework only when the US market exclusivity clause was applicable. Future European orphan drug regulation appears to be similar to the US Orphan Drug Act. CONCLUSION The orphan drug programmes relating to rare diseases have met with some success. Considering tropical diseases rare diseases seems inadequate to boost pharmaceutical R & D. However, some provisions of the European text may be relevant to tropical diseases, admitting the need for a more specific rule for evaluations of this kind of drug and recognizing the existence of 'diseases of exception'.
Song, Jie; Baker, Nicola; Rothert, Monja; Henke, Björn; Jeacock, Laura; Horn, David; Beitz, Eric
2016-02-01
The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.
Rodriguez, Indra G; Loaiza, Jose R
2017-10-10
American trypanosomiasis, or Chagas disease, is a growing public health problem in Panama, and further forest degradation due to human population growth is expected to worsen the situation. Most people infected with the parasite Trypanosoma cruzi are silently ill, and their life expectancy is severely compromised, which contributes to further deterioration of living conditions in endemic regions. Here, we review the outcomes of nearly 100 years of ecological and epidemiological investigation about Chagas disease in Panama, in an attempt to highlight progress, identify needs, and re-orient future efforts. Rhodnius pallescens and Triatoma dimidiata are both primary vectors of T. cruzi in Panama, but R. pallescens seems more efficient in human-altered forest ecosystems due to a greater degree of association with Attalea butyracea. In contrast, T. dimidiata transmits T. cruzi efficiently under more sylvatic conditions (e.g. settlements inside old-growth or secondary forest patches), where its populations reach considerable numbers irrespective of the absence of A. butyracea. A trend of increasing forest degradation, suburbanization, and development of tourism in Panama favoring the establishment of A. butyracea and other palm tree species (Acrocomia sp.) suggests that a colonist species like R. pallescens will continue to play a more prominent role in the transmission of T. cruzi than a forest specialist like T. dimidiata. However, studies about the taxonomic status and ecology of these vectors are still needed in Panama to address their transmission potential fully. The implementation of an active surveillance system and education programs could greatly minimize the risk of Chagas disease transmission in Panama, preventing fatal infections in children from endemic areas.
Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan
2016-09-01
We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). © 2016 The Author(s).
Ngonyoka, Anibariki; Gwakisa, Paul S; Estes, Anna B; Nnko, Happiness J; Hudson, Peter J; Cattadori, Isabella M
2017-06-01
Human activities modify ecosystem structure and function and can also alter the vital rates of vectors and thus the risk of infection with vector-borne diseases. In the Maasai Steppe ecosystem of northern Tanzania, local communities depend on livestock and suitable pasture that is shared with wildlife, which can increase tsetse abundance and the risk of trypanosomiasis. We monitored the monthly tsetse fly abundance adjacent to Tarangire National Park in 2014-2015 using geo-referenced, baited epsilon traps. We examined the effect of habitat types and vegetation greenness (NDVI) on the relative abundance of tsetse fly species. Host availability (livestock and wildlife) was also recorded within 100×100 m of each trap site. The highest tsetse abundance was found in the ecotone between Acacia-Commiphora woodland and grassland, and the lowest in riverine woodland. Glossina swynnertoni was the most abundant species (68%) trapped throughout the entire study, while G. pallidipes was the least common (4%). Relative species abundance was negatively associated with NDVI, with greatest abundance observed in the dry season. The relationship with the abundance of wildlife and livestock was more complex, as we found positive and negative associations depending on the host and fly species. While habitat is important for tsetse distribution, hosts also play a critical role in affecting fly abundance and, potentially, trypanosomiasis risk. © 2017 The Society for Vector Ecology.
Menna-Barreto, Rubem Figueiredo Sadok; de Castro, Solange Lisboa
2014-01-01
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Cardiac Involvement with Parasitic Infections
Hidron, Alicia; Vogenthaler, Nicholas; Santos-Preciado, José I.; Rodriguez-Morales, Alfonso J.; Franco-Paredes, Carlos; Rassi, Anis
2010-01-01
Summary: Parasitic infections previously seen only in developing tropical settings can be currently diagnosed worldwide due to travel and population migration. Some parasites may directly or indirectly affect various anatomical structures of the heart, with infections manifested as myocarditis, pericarditis, pancarditis, or pulmonary hypertension. Thus, it has become quite relevant for clinicians in developed settings to consider parasitic infections in the differential diagnosis of myocardial and pericardial disease anywhere around the globe. Chagas' disease is by far the most important parasitic infection of the heart and one that it is currently considered a global parasitic infection due to the growing migration of populations from areas where these infections are highly endemic to settings where they are not endemic. Current advances in the treatment of African trypanosomiasis offer hope to prevent not only the neurological complications but also the frequently identified cardiac manifestations of this life-threatening parasitic infection. The lack of effective vaccines, optimal chemoprophylaxis, or evidence-based pharmacological therapies to control many of the parasitic diseases of the heart, in particular Chagas' disease, makes this disease one of the most important public health challenges of our time. PMID:20375355
Access to essential drugs in poor countries: a lost battle?
Pécoul, B; Chirac, P; Trouiller, P; Pinel, J
1999-01-27
Drugs offer a simple, cost-effective solution to many health problems, provided they are available, affordable, and properly used. However, effective treatment is lacking in poor countries for many diseases, including African trypanosomiasis, Shigella dysentery, leishmaniasis, tuberculosis, and bacterial meningitis. Treatment may be precluded because no effective drug exists, it is too expensive, or it has been withdrawn from the market. Moreover, research and development in tropical diseases have come to a near standstill. This article focuses on the problems of access to quality drugs for the treatment of diseases that predominantly affect the developing world: (1) poor-quality and counterfeit drugs; (2) lack of availability of essential drugs due to fluctuating production or prohibitive cost; (3) need to develop field-based drug research to determine optimum utilization and remotivate research and development for new drugs for the developing world; and (4) potential consequences of recent World Trade Organization agreements on the availability of old and new drugs. These problems are not independent and unrelated but are a result of the fundamental nature of the pharmaceutical market and the way it is regulated.
de Jesus, Teresa Cristina Leandro; Tonelli, Renata Rosito; Nardelli, Sheila C.; da Silva Augusto, Leonardo; Motta, Maria Cristina M.; Girard-Dias, Wendell; Miranda, Kildare; Ulrich, Paul; Jimenez, Veronica; Barquilla, Antonio; Navarro, Miguel; Docampo, Roberto; Schenkman, Sergio
2010-01-01
Target of rapamycin (TOR) kinases are highly conserved protein kinases that integrate signals from nutrients and growth factors to coordinate cell growth and cell cycle progression. It has been previously described that two TOR kinases control cell growth in the protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis. Here we studied an unusual TOR-like protein named TbTOR-like 1 containing a PDZ domain and found exclusively in kinetoplastids. TbTOR-like 1 localizes to unique cytosolic granules. After hyperosmotic stress, the localization of the protein shifts to the cell periphery, different from other organelle markers. Ablation of TbTOR-like 1 causes a progressive inhibition of cell proliferation, producing parasites accumulating in the S/G2 phase of the cell cycle. TbTOR-like 1 knocked down cells have an increased area occupied by acidic vacuoles, known as acidocalcisomes, and are enriched in polyphosphate and pyrophosphate. These results suggest that TbTOR-like 1 might be involved in the control of acidocalcisome and polyphosphate metabolism in T. brucei. PMID:20495004
Padilla-Docal, Bárbara; Dorta-Contreras, Alberto J.; Moreira, Juan M.; Martini-Robles, Luiggi; Muzzio-Aroca, Jenny; Alarcón, Fernando; Magraner-Tarrau, María Esther; Bu-Coifiu-Fanego, Raisa
2011-01-01
Angiostrongylus cantonensis meningitis was first reported in Cuba in 1981, and it was recently reported in South America. The aim of this paper is to evaluate the intrathecal immunoglobulin synthesis patterns from Cuba's and Ecuador's patients with angiostrongyliasis; 8 Ecuadorian patients from two different outbreaks and 28 Cuban patients were studied. Simultaneous blood and cerebrospinal fluid simples were taken. Immunoglobulin (Ig) A, IgM, IgG, and albumin were quantified by radial immunodiffusion. Corresponding Reibergrams were applied. A three-Ig pattern was the most frequent in the two groups, but IgM was presented in all Ecuadorian young mature patients; however, in the Cuban children, only 12 of 28 patients had intrathecal IgM, but about 90% had an IgA and IgG synthesis at time of later puncture. This indicates that, with a larger amount of parasites ingested, clinical symptoms are more severe, and a higher frequency of intrathecal IgM synthesis could be observed. This is discussed as a similarity with the intrathecal IgM synthesis in African trypanosomiasis. PMID:21363978
Guanylhydrazones in therapy of Pneumocystis carinii pneumonia in immunosuppressed rats.
Walzer, P D; Foy, J; Runck, J; Steele, P; White, M; Klein, R S; Otter, B A; Sundberg, R J
1994-01-01
Guanylhydrazones are cationic heteroaromatic drugs similar to the diamidines which are effective in the treatment of African trypanosomiasis and pneumocystosis. On the basis of their antitrypanosomal activity, different guanylhydrazones were selected for evaluation in a rat model of Pneumocystis carinii pneumonia. The most active compounds were the 2-(4'-formylphenyl)-1-methylimidazo-[1,2-a] pyridinium guanylhydrazones which, at a dose of 2 mg/kg/day, were about as effective as trimethoprim-sulfamethoxazole at a dose of 50 mg of trimethoprim per kg/day plus 250 mg of sulfamethoxazole per kg/day. The anti-P. carinii activity of these guanylhydrazone derivatives was found with parenteral but not with oral administration. The 1,3-arylene diketone bis(guanylhydrazones) were generally ineffective, although a triacetyl derivative showed some anti-P. carinii activity. Nitroimidazole guanylhydrazone derivatives were also ineffective. Attempts to improve the therapeutic efficacy of the different guanylhydrazones were limited by problems of toxicity. We conclude that some guanylhydrazone derivatives are potent anti-P. carinii drugs and that further studies should be pursued to develop safer compounds and investigate structure-activity relationships. PMID:7872750
Martins-Neto, Rafael Gioia
2003-01-01
A discussion of the known fossil tabanids (Diptera Tabanidae) is presented based on fossil evidence. This includes the origin of the hemathophagy in the Brachycera, more specifically for tabanids. Several tabanid species in the extant fauna are vectors for disease-producing organisms that affect humans and animals. Bacteria, viruses, rickettsiae, protozoa, and filarial worms can be transmitted by them, causing such diseases as anthrax, tularemia, anaplasmosis, various forms of trypanosomiasis, Q fever, and filariasis. However, if tabanids are directly responsible for all of these diseases is not consensual and the known fossil evidence is presented here.
Okello, Anna; Welburn, Susan; Smith, James
2015-07-01
The recent adoption of the World Health Assembly Resolution 66.12 for neglected tropical diseases (NTDs) in May 2013 is an important turning point for advocacy regarding a number of endemic zoonotic infections, defined by the World Health Organization as the neglected zoonotic diseases (NZDs). In addition to NTD-listed zoonoses such as rabies, echinococcosis (hydatid disease), leishmaniasis, Human African trypanosomiasis (sleeping sickness) and Taenia solium cysticercosis, the NZDs also include important bacterial zoonoses such as anthrax, bovine tuberculosis and brucellosis. To date, analysis of the processes that prioritize, develop and deliver zoonoses control programmes in many low- and middle-income countries is lacking, despite its potential to highlight significant evidence gaps and institutional constraints to the intersectoral approach required for their control. Policy process analysis was conducted via a series of semi-structured interviews with key policy actors within various ministries and institutes in Uganda and Nigeria. The study concluded that despite the rhetoric around 'linear' models of health policy development promoting consultation with a wide range of national stakeholders, the decision-making process for zoonotic disease control appears instead overtly influenced by the external political economy of trending pandemic threats, often overlooking national and regional zoonoses priorities. The inclusion of political systems remains a key factor in the zoonoses analysis matrix, enhancing our understanding of the intersectoral and transdisciplinary approaches required for their control. The authors consider policy process analysis to be a fundamental first step of any attempt to holistically strengthen human and animal health systems in a development context, particularly regarding the promotion of integrated control policies for regionally important zoonoses under the growing One Health movement. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
Progress towards the eradication of Tsetse from the Loos islands, Guinea
2011-01-01
Background The tsetse fly Glossina palpalis gambiensis is the main vector of sleeping sickness (Human African Trypanosomiasis - HAT) in West Africa, in particular in littoral Guinea where this disease is currently very active. The Loos islands constitute a small archipelago some 5 km from mainland Guinea, where G. p. gambiensis is well known as a nuisance and potential disease vector by inhabitants of the three main islands, Fotoba, Room, and Kassa. The National Control Program against HAT of Guinea has decided to eradicate tsetse in Loos islands in order to sustainably protect humans and economic activities. After baseline data collection, tsetse control began on the islands in 2006. On each of the three islands a specific combination of control methods was implemented according to the entomological situation found. Results Starting densities before control operations were 10, 3 and 1 tsetse/trap/day in Kassa, Room and Fotoba respectively, but by July 2010, tsetse were no longer caught in any of the sentinel traps used for monitoring. The reduction rate was faster where several control methods were implemented as a combination (impregnated traps and targets ITT, selective groundspraying, epicutaneous insecticide treatment of pigs, and impregnated fences around pig pens), whereas it was slower when ITT were used as the only control method. Conclusions This 100% suppression is a promising step in the eradication process, but G. p. gambiensis may still occur at very low, undetectable, densities on the archipelago. Next step will consist in assessing a 0.05 probability of tsetse absence to ascertain a provisional eradication status. Throughout these operations, a key factor has been the involvement of local teams and local communities without whom such results would be impossible to obtain. Work will continue thanks to the partners involved until total eradication of the tsetse on Loos islands can be declared. PMID:21310074
Kimaro, Esther G; Toribio, Jenny-Ann L M L; Mor, Siobhan M
2017-11-01
Climate change is predicted to increase incidence of vector-borne diseases in humans, however, little is known about the impact of such diseases in livestock. In the absence of historical data with which to examine the inter-relation between climate and disease, participatory epidemiological (PE) methods were used with Maasai pastoralists of Monduli District, northern Tanzania to establish local observations on two major vector-borne diseases of cattle, namely East Coast fever (ECF) and African animal trypanosomiasis (AAT). Data collection involving gender segregated groups (10 men groups and 9 women groups) occurred in 10 randomly selected villages between November 2014 and March 2015. ECF and AAT were ranked amongst the top 5 most important cattle diseases with strong agreement across informant groups (Kendall's W=0.40 for men and 0.45 for women; p<0.01). Matrix scoring for both men and women groups confirmed that Masaai easily recognize these diseases. All groups associated ECF with the wet and cool dry seasons. AAT was more variable throughout the year, with more cases reported in the long dry season. Likewise, pastoralists reported differences in seasonal occurrence of disease vectors (Rhipicephalus appendiculatus and Glossina spp.) by village. Comparing 2014-1984, participant groups consistently reported declines in rainfall, vegetation cover and quality pasture, as well as increases in severe droughts. Experiences with ECF/AAT and vector abundance between these time periods was more variable across villages, and likely relates to changes in climate and animal management practices over the last 30 years. This baseline study is the first to document the inter-relation between climate and cattle vector-borne disease from the pastoralist perspective. Findings from this study reveal a complex interplay between human, animal and environmental factors, understanding of which is urgently required to devise approaches to mitigate effects of climate change in these vulnerable areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Fexinidazole: A Potential New Drug Candidate for Chagas Disease
Bahia, Maria Terezinha; de Andrade, Isabel Mayer; Martins, Tassiane Assíria Fontes; do Nascimento, Álvaro Fernando da Silva; Diniz, Lívia de Figueiredo; Caldas, Ivo Santana; Talvani, André; Trunz, Bernadette Bourdin; Torreele, Els; Ribeiro, Isabela
2012-01-01
Background New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi. Methods and Findings We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses. Conclusions Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazole-susceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD. PMID:23133682
Santer, Roger D
2017-03-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed.
2017-01-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed. PMID:28306721
Lindh, Jenny M.; Goswami, Parikshit; Blackburn, Richard S.; Arnold, Sarah E. J.; Vale, Glyn A.; Lehane, Mike J.; Torr, Steve J.
2012-01-01
Background Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue. Conclusions/Significance Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region. PMID:22666511
Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective
Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Barton Behravesh, Casey
2018-01-01
Background Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government. Materials and methods The One Health Zoonotic Disease Prioritization tool, a semi-quantitative tool developed by the U.S. Centers for Disease Control and Prevention, was used for the prioritization of zoonoses. Workshop participants included voting members and observers representing multiple government and non-governmental sectors. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. We used a decision tree to provide a ranked list of zoonoses. Participants then established next steps for multisectoral engagement for the prioritized zoonoses. A sensitivity analysis demonstrated how criteria weights impacted disease prioritization. Results Forty-eight zoonoses were considered during the workshop. Criteria selected to prioritize zoonotic diseases were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Sensitivity analysis did not indicate significant changes in zoonotic disease prioritization based on criteria weights. Discussion One Health approaches and multisectoral collaborations are crucial to the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonoses of national concern. Identifying these priority diseases enables Uganda’s National One Health Platform and Zoonotic Disease Coordination Office to address these zoonoses in the future with a targeted allocation of resources. PMID:29715287
Gatton, Michelle L; Ciketic, Sadmir; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; Bell, David; Cunningham, Jane; González, Iveth J
2018-01-01
Malaria rapid diagnostic tests (RDTs) can produce false positive (FP) results in patients with human African trypanosomiasis and rheumatoid factor (RF), but specificity against other infectious agents and immunological factors is largely unknown. Low diagnostic specificity caused by cross-reactivity may lead to over-estimates of the number of malaria cases and over-use of antimalarial drugs, at the cost of not diagnosing and treating the true underlying condition. Data from the WHO Malaria RDT Product Testing Programme was analysed to assess FP rates of 221 RDTs against four infectious agents (Chagas, dengue, Leishmaniasis and Schistosomiasis) and four immunological factors (anti-nuclear antibody, human anti-mouse antibody (HAMA), RF and rapid plasma regain). Only RDTs with a FP rate against clean negative samples less than 10% were included. Paired t-tests were used to compare product-specific FP rates on clean negative samples and samples containing non-Plasmodium infectious agents and immunological factors. Forty (18%) RDTs showed no FP results against any tested infectious agent or immunological factor. In the remaining RDTs significant and clinically relevant increases in FP rates were observed for samples containing HAMA and RF (P<0.001). There were significant correlations between product-matched FP rates for RF and HAMA on all RDT test bands (P<0.001), and FP rates for each infectious agent and immunological factor were also correlated between test bands of combination RDTs (P≤0.002). False positive results against non-Plasmodium infectious agents and immunological factors does not appear to be a universal property of malaria RDTs. However, since many malaria RDTs have elevated FP rates against HAMA and RF positive samples practitioners may need to consider the possibility of false positive results for malaria in patients with conditions that stimulate HAMA or RF.
An African Perspective on Human Rights.
ERIC Educational Resources Information Center
Shiman, David
1992-01-01
Presents a series of classroom activities comparing differing views of human rights in the United Nations Universal Declaration of Human Rights and the African Charter on Human and People's Rights. Includes excerpts from the African Charter on Human and People's Rights and the full text of the Universal Declaration of Human Rights. (CFR)
Büscher, Philippe; Mertens, Pascal; Leclipteux, Thierry; Gilleman, Quentin; Jacquet, Diane; Mumba-Ngoyi, Dieudonné; Pyana, Patient Pati; Boelaert, Marleen; Lejon, Veerle
2014-06-01
Human African trypanosomiasis (HAT) is a life-threatening infection affecting rural populations in sub-Saharan Africa. Large-scale population screening by antibody detection with the Card Agglutination Test for Trypanosomiasis (CATT)/Trypanosoma brucei (T b) gambiense helped reduce the number of reported cases of gambiense HAT to fewer than 10 000 in 2011. Because low case numbers lead to decreased cost-effectiveness of such active screening, we aimed to assess diagnostic accuracy of a rapid serodiagnostic test (HAT Sero-K-SeT) applicable in primary health-care centres. In our case-control study, we assessed participants older than 11 years who presented for HAT Sero-K-SeT and CATT/T b gambiense at primary care centres or to mobile teams (and existing patients with confirmed disease status at these centres) in Bandundu Province, DR Congo. We defined cases as patients with trypanosomes that had been identified in lymph node aspirate, blood, or cerebrospinal fluid. During screening, we recruited controls without previous history of HAT or detectable trypanosomes in blood or lymph who resided in the same area as the cases. We assessed diagnostic accuracy of three antibody detection tests for gambiense HAT: HAT Sero-K-SeT and CATT/T b gambiense (done with venous blood at the primary care centres) and immune trypanolysis (done with plasma at the Institute of Tropical Medicine, Antwerp, Belgium). Between June 6, 2012, and Feb 25, 2013, we included 134 cases and 356 controls. HAT Sero-K-SeT had a sensitivity of 0·985 (132 true positives, 95% CI 0·947-0·996) and a specificity of 0·986 (351 true negatives, 0·968-0·994), which did not differ significantly from CATT/T b gambiense (sensitivity 95% CI 0·955, 95% CI 0·906-0·979 [128 true positives] and specificity 0·972, 0·949-0·985 [346 true negatives]) or immune trypanolysis (sensitivity 0·985, 0·947-0·996 [132 true positives] and specificity 0·980, 0·960-0·990 [349 true negatives]). The diagnostic accuracy of HAT Sero-K-SeT is adequate for T b gambiense antibody detection in local health centres and could be used for active screening whenever a cold chain and electricity supply are unavailable and CATT/T b gambiense cannot be done. Copyright © 2014 Büscher et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
Omolo, Maurice O; Hassanali, Ahmed; Mpiana, Serge; Esterhuizen, Johan; Lindh, Jenny; Lehane, Mike J; Solano, Philippe; Rayaisse, Jean Baptiste; Vale, Glyn A; Torr, Steve J; Tirados, Inaki
2009-01-01
We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1x1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximately 16 m(3)) from which the air was exhausted at approximately 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by approximately 15%. Dispensing CO(2) at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO(2). For G. f. quanzensis, pig odour and CO(2) attracted similar numbers of tsetse, but CO(2) had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.
Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.
Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike
2016-08-01
Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments, respectively. Spray-dried GHQ168 demonstrated exciting antitrypanosomal efficacy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Simo, Gustave; Mbida Mbida, Jean Arthur; Ebo'o Eyenga, Vincent; Asonganyi, Tazoacha; Njiokou, Flobert; Grébaut, Pascal
2014-08-16
The sleeping sickness focus of Campo lies along the Atlantic coast and extends along the Ntem River, which constitutes the Cameroonian and Equatorial Guinean border. It is a hypo-endemic focus with the disease prevalence varying from 0.3 to 0.86% during the last few decades. Investigations on animal reservoirs revealed a prevalence of Trypanosoma brucei gambiense of 0.6% in wild animals and 4.83% in domestic animals of this focus. From 2001 to 2012, about 19 931 tsetse were collected in this focus and five tsetse species including Glossina palpalis palpalis, G. pallicera, G. nigrofusca, G. tabaniformis and G. caliginea were identified. The analysis of blood meals of these flies showed that they feed on human, pig, goat, sheep, and wild animals such as antelope, duiker, wild pig, turtle and snake. The percentage of blood meals taken on these hosts varies according to sampling periods. For instance, 6.8% of blood meals from pig were reported in 2004 and 22% in 2008. This variation is subjected to considerable evolutions because the Campo HAT focus is submitted to socio-economic mutations including the reopening of a new wood company, the construction of autonomous port at "Kribi" as well as the dam at "Memve ele". These activities will bring more that 3000 inhabitants around Campo and induce the deforestation for the implementation of farmlands as well as breeding of domestic animals. Such mutations have impacts on the transmission and the epidemiology of sleeping sickness due to the modification of the fauna composition, the nutritional behavior of tsetse, the zoophilic/anthropophilic index. To achieve the elimination goal in the sleeping sickness focus of Campo, we report in this paper the current epidemiological situation of the disease, the research findings of the last decades notably on the population genetics of trypanosomes, the modifications of nutritional behavior of tsetse, the prevalence of T. b. gambiense in humans, domestic and wild animals. An overview on the types of mutations occurring in the region has been raised and a discussion on the strategies that can be implemented to achieve the elimination of the disease has been made.
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei
Alibu, Vincent P.; Burchmore, Richard J.; Gilbert, Ian H.; Trybiło, Maciej; Driessen, Nicole N.; Gilbert, David; Breitling, Rainer; Bakker, Barbara M.; Barrett, Michael P.
2013-01-01
Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate “leak” must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally. PMID:24339766
Hotez, Peter J.; Kamath, Aruna
2009-01-01
The neglected tropical diseases (NTDs) are the most common conditions affecting the poorest 500 million people living in sub-Saharan Africa (SSA), and together produce a burden of disease that may be equivalent to up to one-half of SSA's malaria disease burden and more than double that caused by tuberculosis. Approximately 85% of the NTD disease burden results from helminth infections. Hookworm infection occurs in almost half of SSA's poorest people, including 40–50 million school-aged children and 7 million pregnant women in whom it is a leading cause of anemia. Schistosomiasis is the second most prevalent NTD after hookworm (192 million cases), accounting for 93% of the world's number of cases and possibly associated with increased horizontal transmission of HIV/AIDS. Lymphatic filariasis (46–51 million cases) and onchocerciasis (37 million cases) are also widespread in SSA, each disease representing a significant cause of disability and reduction in the region's agricultural productivity. There is a dearth of information on Africa's non-helminth NTDs. The protozoan infections, human African trypanosomiasis and visceral leishmaniasis, affect almost 100,000 people, primarily in areas of conflict in SSA where they cause high mortality, and where trachoma is the most prevalent bacterial NTD (30 million cases). However, there are little or no data on some very important protozoan infections, e.g., amebiasis and toxoplasmosis; bacterial infections, e.g., typhoid fever and non-typhoidal salmonellosis, the tick-borne bacterial zoonoses, and non-tuberculosis mycobaterial infections; and arboviral infections. Thus, the overall burden of Africa's NTDs may be severely underestimated. A full assessment is an important step for disease control priorities, particularly in Nigeria and the Democratic Republic of Congo, where the greatest number of NTDs may occur. PMID:19707588
Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei
Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth
2014-01-01
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907
Millan, Cinthia R.; Acosta-Reyes, Francisco J.; Lagartera, Laura; Ebiloma, Godwin U.; Lemgruber, Leandro; Nué Martínez, J. Jonathan; Saperas, Núria
2017-01-01
Abstract Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)–biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida. PMID:28637278
Santer, Roger D.
2014-01-01
Palpalis group tsetse flies are the major vectors of human African trypanosomiasis, and visually-attractive targets and traps are important tools for their control. Considerable efforts are underway to optimise these visual baits, and one factor that has been investigated is coloration. Analyses of the link between visual bait coloration and tsetse fly catches have used methods which poorly replicate sensory processing in the fly visual system, but doing so would allow the visual information driving tsetse attraction to these baits to be more fully understood, and the reflectance spectra of candidate visual baits to be more completely analysed. Following methods well established for other species, I reanalyse the numbers of tsetse flies caught at visual baits based upon the calculated photoreceptor excitations elicited by those baits. I do this for large sets of previously published data for Glossina fuscipes fuscipes (Lindh et al. (2012). PLoS Negl Trop Dis 6: e1661), G. palpalis palpalis (Green (1988). Bull Ent Res 78: 591), and G. pallidipes (Green and Flint (1986). Bull Ent Res 76: 409). Tsetse attraction to visual baits in these studies can be explained by a colour opponent mechanism to which the UV-blue photoreceptor R7y contributes positively, and both the green-yellow photoreceptor R8y, and the low-wavelength UV photoreceptor R7p, contribute negatively. A tool for calculating fly photoreceptor excitations is made available with this paper, and this will facilitate a complete and biologically authentic description of visual bait reflectance spectra that can be employed in the search for more efficacious visual baits, or the analysis of future studies of tsetse fly attraction. PMID:25473844
Palmer, Jennifer J; Kelly, Ann H; Surur, Elizeous I; Checchi, Francesco; Jones, Caroline
2014-11-01
For several decades, control programmes for human African trypanosomiasis (HAT, or sleeping sickness) in South Sudan have been delivered almost entirely as humanitarian interventions: large, well-organised, externally-funded but short-term programmes with a strategic focus on active screening. When attempts to hand over these programmes to local partners fail, resident populations must actively seek and negotiate access to tests at hospitals via passive screening. However, little is known about the social impact of such humanitarian interventions or the consequences of withdrawal on access to and utilisation of remaining services by local populations. Based on qualitative and quantitative fieldwork in Nimule, South Sudan (2008-2010), where passive screening necessarily became the predominant strategy, this paper investigates the reasons why, among two ethnic groups (Madi returnees and Dinka displaced populations), service uptake was so much higher among the latter. HAT tests were the only form of clinical care for which displaced Dinka populations could self-refer; access to all other services was negotiated through indigenous area workers. Because of the long history of conflict, these encounters were often morally and politically fraught. An open-door policy to screening supported Dinka people to 'try' HAT tests in the normal course of treatment-seeking, thereby empowering them to use HAT services more actively. This paper argues that in a context like South Sudan, where HAT control increasingly depends upon patient-led approaches to case-detection, it is imperative to understand the cultural values and political histories associated with the practice of testing and how medical humanitarian programmes shape this landscape of care, even after they have been scaled down. Copyright © 2014 Elsevier Ltd. All rights reserved.
Santer, Roger D
2014-12-01
Palpalis group tsetse flies are the major vectors of human African trypanosomiasis, and visually-attractive targets and traps are important tools for their control. Considerable efforts are underway to optimise these visual baits, and one factor that has been investigated is coloration. Analyses of the link between visual bait coloration and tsetse fly catches have used methods which poorly replicate sensory processing in the fly visual system, but doing so would allow the visual information driving tsetse attraction to these baits to be more fully understood, and the reflectance spectra of candidate visual baits to be more completely analysed. Following methods well established for other species, I reanalyse the numbers of tsetse flies caught at visual baits based upon the calculated photoreceptor excitations elicited by those baits. I do this for large sets of previously published data for Glossina fuscipes fuscipes (Lindh et al. (2012). PLoS Negl Trop Dis 6: e1661), G. palpalis palpalis (Green (1988). Bull Ent Res 78: 591), and G. pallidipes (Green and Flint (1986). Bull Ent Res 76: 409). Tsetse attraction to visual baits in these studies can be explained by a colour opponent mechanism to which the UV-blue photoreceptor R7y contributes positively, and both the green-yellow photoreceptor R8y, and the low-wavelength UV photoreceptor R7p, contribute negatively. A tool for calculating fly photoreceptor excitations is made available with this paper, and this will facilitate a complete and biologically authentic description of visual bait reflectance spectra that can be employed in the search for more efficacious visual baits, or the analysis of future studies of tsetse fly attraction.
Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael
2013-11-15
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gibson, W; Mehlitz, D; Lanham, S M; Godfrey, D G
1978-09-01
29 Trypanozoon stocks from Liberian pigs and dogs were screened for human plasma resistance and electrophoretic isoenzyme patterns of eleven enzymes. Two stocks from pigs were found both to be resistant to human plasma and to have an isoenzyme marker, a slow alanine aminotransferase (ALAT) pattern, previously found only in Trypanosoma brucei gambiense from man. This constitutes evidence that the pig is a reservoir of human trypanosomiasis in West Africa. The T.b.gambiense ALAT was also found in stocks from 5 other pigs and a dog, but none of these stocks was resistant to human plasma; conversely, 9 further isolations from pigs and 2 from dogs were plasma resistant but did not have the T.b.gambiense ALAT. The lack of correspondence between the two characteristics is discussed. A T.b.gambiense stock from man in Zaire had the ALAT pattern characteristic of T.b.gambiense from Senegal and Nigeria, together with the ASAT triplet found in most T.b.gambiense stocks. Peptidase polymorphism was shown in trypanosomes for the first time.
Benchimol-Barbosa, Paulo R
2010-05-28
In 2006, Brazilian government received the international certificate of interruption of the vectorial transmission of Chagas' disease. However, outbreaks reported in Brazilian Amazon rainforest bear a regular occurrence and represents a relevant regional epidemiological gauge. The wild life cycle of the Chagas' disease transmission (i.e., triatomine-marsupial cycle) is present outside the previously reported endemic belt, ubiquitously, as infective triatomines can be demonstrated in Palm trees widespread all over the Amazon rainforest. As humans invade the rainforest, one is incidentally caught up and further becomes' an active part of American trypanosomiasis wild life cycle. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.
Natural Products as a Source for Treating Neglected Parasitic Diseases
Ndjonka, Dieudonné; Rapado, Ludmila Nakamura; Silber, Ariel M.; Liebau, Eva; Wrenger, Carsten
2013-01-01
Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available. Here, the selection of antiparasitic drugs varies between different organisms. Some of the currently available drugs are chemically de novo synthesized, however, the majority of drugs are derived from natural sources such as plants which have subsequently been chemically modified to warrant higher potency against these human pathogens. In this review article we will provide an overview of the current status of plant derived pharmaceuticals and their chemical modifications to target parasite-specific peculiarities in order to interfere with their proliferation in the human host. PMID:23389040
Drug repurposing and human parasitic protozoan diseases
Andrews, Katherine T.; Fisher, Gillian; Skinner-Adams, Tina S.
2014-01-01
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis. PMID:25057459
Ndiaye Diallo, R; Gadji, M; Hennig, B J; Guèye, M V; Gaye, A; Diop, J P D; Sylla Niang, M; Lopez Sall, P; Guèye, P M; Dem, A; Faye, O; Dieye, A; Cisse, A; Sembene, M; Ka, S; Diop, N; Williams, S M; Matovu, E; Ramesar, R S; Wonkam, A; Newport, M; Rotimi, C; Ramsay, M
2017-01-01
The 9th meeting of the African Society of Human Genetics, in partnership with the Senegalese Cancer Research and Study Group and the Human Heredity and Health in Africa (H3Africa) Consortium, was held in Dakar, Senegal. The theme was Strengthening Human Genetics Research in Africa. The 210 delegates came from 21 African countries and from France, Switzerland, UK, UAE, Canada and the USA. The goal was to highlight genetic and genomic science across the African continent with the ultimate goal of improving the health of Africans and those across the globe, and to promote the careers of young African scientists in the field. A session on the sustainability of genomic research in Africa brought to light innovative and practical approaches to supporting research in resource-limited settings and the importance of promoting genetics in academic, research funding, governmental and private sectors. This meeting led to the formation of the Senegalese Society for Human Genetics.
Detection of thiol-based redox switch processes in parasites - facts and future.
Rahbari, Mahsa; Diederich, Kathrin; Becker, Katja; Krauth-Siegel, R Luise; Jortzik, Esther
2015-05-01
Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.
Wright, Megan H; Paape, Daniel; Price, Helen P; Smith, Deborah F; Tate, Edward W
2016-06-10
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei , the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei . Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei . We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rea, Dean; Hazell, Carole; Andrews, Norma W.
2006-08-01
Recombinant oligopeptidase B from T. brucei has been prepared and crystallized. Data were collected to 2.7 Å. Heavy-atom soaks and preparation of selenomethionine-substituted protein are in progress for structure determination by MAD or MIR. African sleeping sickness, also called trypanosomiasis, is a significant cause of morbidity and mortality in sub-Saharan Africa. Peptidases from Trypanosoma brucei, the causative agent, include the serine peptidase oligopeptidase B, a documented virulence factor and therapeutic target. Determination of the three-dimensional structure of oligopeptidase B is desirable to facilitate the development of novel inhibitors. Oligopeptidase B was overexpressed in Escherichia coli as an N-terminally hexahistidine-tagged fusionmore » protein, purified using metal-affinity chromatography and crystallized using the hanging-drop vapour-diffusion technique in 7%(w/v) polyethylene glycol 6000, 1 M LiCl, 0.1 M bis-tris propane pH 7.5. Diffraction data to 2.7 Å resolution were collected using synchrotron radiation. The crystals belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 124.5, c = 249.9 Å. A complete data set to 2.7 Å was collected using synchrotron radiation.« less
de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa
2010-05-01
Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.
Latif, B. M. A.; Adam, Katherine M. G.
1973-01-01
Epidemiological studies, if they are to lead to appropriate preventive procedures, require knowledge of the host distribution of the parasite. Progress in the epidemiology of African trypanosomiasis is restricted by the lack of a reliable and simple method of differentiating Trypanosoma brucei, T. rhodesiense, and T. gambiense. The recently introduced blood inoculation infectivity test promises to fulfil this need by distinguishing T. brucei from T. rhodesiense, but it would not be suitable for separating T. brucei from T. gambiense, since rats and mice are frequently refractory to infection by fresh isolates of T. gambiense. Previous studies had indicated that the indirect fluorescent antibody test might differentiate not only the subgenera of the salivarian trypanosome species but also members of the subgenus Trypanozoon. A method of performing the test is described that enables T. brucei, T. rhodesiense, and T. gambiense to be differentiated by the titre of the sera. The method might be used in conjunction with the blood inoculation infectivity test to distinguish between new isolates of the subgenus Trypanozoon in East Africa, and also to search for possible animal reservoirs of T. gambiense in West Africa. PMID:4587481
Travelers' Health: Trypanosomiasis, American (Chagas Disease)
... Minute Travel Long-Term Travel Mass Gatherings Medical Tourism Mental Health Motion Sickness Natural Disasters Pregnant Travelers Road Safety Senior Citizens Sex Tourism STDs Sun Exposure Swimming and Diving Study Abroad ...
Campbell, Michael C.; Tishkoff, Sarah A.
2010-01-01
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304
The Notion of Ubuntu and Communalism in African Educational Discourse
ERIC Educational Resources Information Center
Venter, Elza
2004-01-01
The notion of "ubuntu" and "communalism" is of great importance in an African educational discourse, as well as in African Philosophy of Education and in African philosophical discourse. "Ubuntu" is a philosophy that promotes the common good of society and includes humanness as an essential element of human growth. In…
Deforestation does not affect the prevalence of a common trypanosome in African birds.
Valkiūnas, Gediminas; Iezhova, Tatjana A; Sehgal, Ravinder N M
2016-10-01
In spite of numerous reports of avian Trypanosoma spp. in birds throughout the world, patterns of the distribution and prevalence of these blood parasites remains insufficiently understood. It is clear that spatial heterogeneity influences parameters of parasite distributions in natural populations, but data regarding avian trypanosomes are scarce. Using microscopy and molecular diagnostic methods, we analysed the variation of prevalence of avian Trypanosoma parasites in two widespread African bird species, the yellow-whiskered greenbul Andropadus latirostris and the olive sunbird Cyanomitra olivacea. In all, 353 birds were captured in pristine forests and agroforest sites in Cameroon and Ghana. Overall, the prevalence of avian trypanosomes was 51.3%. Five morphospecies were reported (Trypanosoma everetti, T. anguiformis, T. avium, T. naviformis, T. ontarioensis). Trypanosoma everetti predominated, representing 98% of all Trypanosoma spp. reports, and it was present in both avian hosts. The prevalence of T. everetti was significantly less in the yellow-whiskered greenbul (19%) than olive sunbird (83%), and the same pattern of prevalence was reported in these avian hosts at different study sites. We found no interaction between sites and the prevalence of T. everetti. For both avian hosts, the prevalence did not differ significantly between pristine forests and agroforests. This indicates the same pattern of transmission at sites with different levels of deforestation and suggests that spatial heterogeneity related to deforestation does not affect the prevalence of avian Trypanosoma infections. It is likely that host-related factors, but not environmental conditions favour or reduce these parasite infections in forests of sub-Saharan Africa. Microscopic and PCR-based diagnostics showed the same sensitivity in diagnostics of T. everetti. We discuss the implications of these findings for the epidemiology of avian trypanosomiasis in natural populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Harrill, Alison H; Desmet, Kristina D; Wolf, Kristina K; Bridges, Arlene S; Eaddy, J Scott; Kurtz, C Lisa; Hall, J Ed; Paine, Mary F; Tidwell, Richard R; Watkins, Paul B
2012-12-01
DB289 is the first oral drug shown in clinical trials to have efficacy in treating African trypanosomiasis (African sleeping sickness). Mild liver toxicity was noted but was not treatment limiting. However, development of DB289 was terminated when several treated subjects developed severe kidney injury, a liability not predicted from preclinical testing. We tested the hypothesis that the kidney safety liability of DB289 would be detected in a mouse diversity panel (MDP) comprised of 34 genetically diverse inbred mouse strains. MDP mice received 10 days of oral treatment with DB289 or vehicle and classical renal biomarkers blood urea nitrogen (BUN) and serum creatinine (sCr), as well as urine biomarkers of kidney injury were measured. While BUN and sCr remained within reference ranges, marked elevations were observed for kidney injury molecule-1 (KIM-1) in the urine of sensitive mouse strains. KIM-1 elevations were not always coincident with elevations in alanine aminotransferase (ALT), suggesting that renal injury was not linked to hepatic injury. Genome-wide association analyses of KIM-1 elevations indicated that genes participating in cholesterol and lipid biosynthesis and transport, oxidative stress, and cytokine release may play a role in DB289 renal injury. Taken together, the data resulting from this study highlight the utility of using an MDP to predict clinically relevant toxicities, to identify relevant toxicity biomarkers that may translate into the clinic, and to identify potential mechanisms underlying toxicities. In addition, the sensitive mouse strains identified in this study may be useful in screening next-in-class compounds for renal injury.
de Alcântara, Bianca Gonçalves Vasconcelos; Domingos, Olívia da Silva
2017-01-01
Flavonoids have demonstrated in vivo and in vitro leishmanicidal, trypanocidal, antioxidant, and prooxidant properties. The chemotherapy of trypanosomiasis and leishmaniasis lacks efficacy, presents high toxicity, and is related to the development of drug resistance. Thus, a series of 40 flavonoids were investigated with the purpose of correlating these properties via structure and activity analyses based on integrated networks and QSAR models. The classical groups for the antioxidant activity of flavonoids were combined in order to explain the influence of antioxidant and prooxidant activities on the antiparasitic properties. These analyses become useful for the development of efficient treatments for leishmaniasis and trypanosomiasis. Finally, the dual activity of flavonoids presenting both anti- and prooxidant activities revealed that the existence of a balance between these two features could be important to the development of adequate therapeutic strategies. PMID:28751930
Zulantay, I; Apt, W; Gil, L C; Rocha, C; Mundaca, K; Solari, A; Sánchez, G; Rodriguez, C; Martínez, G; De Pablos, L M; Sandoval, L; Rodríguez, J; Vilchez, S; Osuna, A
2007-12-01
In the xenodiagnosis (XD) of American trypanosomiasis (Chagas disease), Trypanosoma cruzi in the triatomine bugs fed on the patient can now be detected using PCR (XD-PCR) as well as by microscopy (XD-M). In a study to compare XD-PCR with XD-M, triatomine bugs were fed on 50 cases of chronic American trypanosomiasis, of whom only 25 were ever found positive by XD-M. Overall, the bugs fed on 34 of the patients (all 25 cases found positive by XD-M and nine of the other patients) were found PCR-positive, giving a 330-bp fragment corresponding to part of the hyper variable region of the kinetoplast DNA of T. cruzi. Of the 25 patients who were ever found positive by XD-M, 20 gave bugs that were smear-positive on day 90 and a similar number (24; P=0.125) gave bugs that were PCR-positive at this time. On day 30, however, the bugs fed on only 11 of these 25 patients were found positive by microscopy, whereas 23 of these patients were found positive by XD-PCR (P=0.0016). Thus, not only was XD-PCR more sensitive than XD-M but it was also quicker, revealing more cases within 30 days than detected using XD-M over a period of 90 days.
Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita
2018-01-01
ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei. PMID:29925672
Smith, Joseph T; Singha, Ujjal K; Misra, Smita; Chaudhuri, Minu
2018-06-27
The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei , the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei , a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei , and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei . Copyright © 2018 Smith et al.
American Trypanosomiasis (Also Known as Chagas Disease) Detailed FAQs
... have Chagas disease. In what parts of the world is Chagas disease found? People who have Chagas disease can be found anywhere in the world. However, vectorborne transmission is confined to the Americas, ...
Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N
1995-01-01
We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363
American Trypanosomiasis (Also Known as Chagas Disease) Diagnosis
... Parasite That Causes Chagas Disease Among United States Blood Donors Information For: Adoption: Agencies & Parents Blood Banks Travelers ... Parasite That Causes Chagas Disease Among United States Blood Donors Information For: Adoption: Agencies & Parents Blood Banks Travelers ...
American Trypanosomiasis (Also Known as Chagas Disease) Treatment
... Parasite That Causes Chagas Disease Among United States Blood Donors Information For: Adoption: Agencies & Parents Blood Banks Travelers ... Parasite That Causes Chagas Disease Among United States Blood Donors Information For: Adoption: Agencies & Parents Blood Banks Travelers ...
21 CFR 866.3870 - Trypanosoma spp. serological reagents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...
21 CFR 866.3870 - Trypanosoma spp. serological reagents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...
21 CFR 866.3870 - Trypanosoma spp. serological reagents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...
21 CFR 866.3870 - Trypanosoma spp. serological reagents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...
21 CFR 866.3870 - Trypanosoma spp. serological reagents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...
American Trypanosomiasis (Also Known as Chagas Disease) Triatomine Bug FAQs
... Beneath porches Between rocky structures Under cement In rock, wood, brush piles, or beneath bark In rodent ... walls, roofs, and doors Removing wood, brush, and rock piles near your house Using screens on doors ...
Alderton, Simon; Macleod, Ewan T; Anderson, Neil E; Palmer, Gwen; Machila, Noreen; Simuunza, Martin; Welburn, Susan C; Atkinson, Peter M
2018-02-01
This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole.
Elhassan, Nuha; Gebremeskel, Eyoab Iyasu; Elnour, Mohamed Ali; Isabirye, Dan; Okello, John; Hussien, Ayman; Kwiatksowski, Dominic; Hirbo, Jibril; Tishkoff, Sara; Ibrahim, Muntaser E
2014-01-01
Human genetic variation particularly in Africa is still poorly understood. This is despite a consensus on the large African effective population size compared to populations from other continents. Based on sequencing of the mitochondrial Cytochrome C Oxidase subunit II (MT-CO2), and genome wide microsatellite data we observe evidence suggesting the effective size (Ne) of humans to be larger than the current estimates, with a foci of increased genetic diversity in east Africa, and a population size of east Africans being at least 2-6 fold larger than other populations. Both phylogenetic and network analysis indicate that east Africans possess more ancestral lineages in comparison to various continental populations placing them at the root of the human evolutionary tree. Our results also affirm east Africa as the likely spot from which migration towards Asia has taken place. The study reflects the spectacular level of sequence variation within east Africans in comparison to the global sample, and appeals for further studies that may contribute towards filling the existing gaps in the database. The implication of these data to current genomic research, as well as the need to carry out defined studies of human genetic variation that includes more African populations; particularly east Africans is paramount.
On the "Africanization" of English Studies in South Africa
ERIC Educational Resources Information Center
Cornwell, Gareth
2006-01-01
The article is an exploration of current trends within, and the desired destiny of, the humanities discipline of English Studies in the context of calls for the "Africanization" of South African universities. The essay advocates the embrace of a non-universalist, emancipationist humanism. (Contains 8 notes.)
Batista, J S; Riet-Correa, F; Teixeira, M M G; Madruga, C R; Simões, S D V; Maia, T F
2007-01-31
An outbreak of trypanosomiasis by Trypanosoma vivax is reported in the semiarid of Paraíba, Northeastern Brazil from May to August 2002. Sixty-four cows out of 130 were affected; 11 died and the other recovered after treatment with diminazene aceturate. Affected animals had fever, anemia, weight loss, hypoglycemia, increased serum levels of aspartate aminotransferase and, in nine cows, nervous signs. All cows with nervous signs died; six of them recovered after treatment, but the disease relapsed. Six cows aborted and one delivered a calf that died immediately after parturition. Thirty-two out of 100 calves were affected and five died. Nervous signs were not observed in the calves. Gross lesions were thickening of the meninges, enlarged lymph nodes and prominent white pulp of the spleen. The main histological lesion was meningoencephalitis and malacia in the brain of cows with nervous signs. No antibodies against trypanosomes were found in 33 blood samples collected before the outbreak in the affected farm and in 29 samples collected at the same time in two other neighbor farms. Until January 2003, all 89 animals tested had antibodies against T. vivax, suggesting the occurrence of sub clinical infections in cattle without clinical signs. Only two out of 85 serum samples collected on April 2004 were positive for T. vivax antibodies. Data obtained suggested that the semiarid region is non-endemic for trypanosomiasis and that disease occurred due to introduction of the parasite in a susceptible population after an apparent rise in the Tabanus spp. population.
Moreno, S Andrea; Concepción, Juan Luis; Nava, Mayerly; Molinari, Jesús
2013-11-01
In Venezuela, horses are indispensable for extensive cattle raising, and extensive cattle raising prevails in all regions. This determines the numerical relationship between horses and cattle (r = 0.93) to be relatively constant nationwide. At regional level, the average extension of cattle ranches varies greatly. However, in relation to the area covered by pastures, the numbers of horses (r = 0.95) and cattle (r = 0.93) are relatively uniform nationwide. Water buffalo occupy small fractions of the territory; therefore, their numbers are related to the area of pastures less strongly (r = 0.56). There is no information on the numerical relationship between the numbers of horses and water buffalo. In the Llanos region of the country, equine trypanosomiasis is responsible for a high mortality in horses, causing considerable financial losses to cattle ranches. So far, such losses have not been assessed. For this region, in 2008, it can be calculated that: (1) with no treatment, losses owing to horse mortality caused by this hemoparasitosis would have amounted to US$7,486,000; (2) the diagnosis and treatment of affected horses would have required an investment of US$805,000; and (3) in terms of horses saved, this investment would have resulted in benefit of US$6,232,000. Therefore, for every monetary unit invested, there would be a benefit 7.75 times greater, this ratio being applicable to any year and all regions of the country. It follows that the profitability of investing in the diagnosis and treatment of equine trypanosomiasis is guaranteed.
Preventive health care and screening of Latin American immigrants in the United States.
Weissman, A M
1994-01-01
The Central and South American immigrant population in the United States is large and growing. A review of the preventive health care needs of this population has not previously been done but would be helpful to clinicians caring for immigrants in this country. Using MEDLINE, the literature related to immigrants and their health status was searched, using the key words "immigrant," "refugee," "South/Central/Latin America," "health status," "screening," "nutrition," "parasites," "stomach/gastric cancer," "children," and "psychological." The American Statistics Index and Index to International Statistics were also resources. The available literature was reviewed and led to the recommendations in this article. Screening strategies for Latin American immigrants are discussed for intestinal parasites, tuberculosis, hepatitis B, schistosomiasis, leprosy, American trypanosomiasis (Chagas disease), malaria, human immunodeficiency virus (HIV) infection, cervical and gastric cancer, sickle cell trait, malnutrition, iron-deficiency anemia, incomplete immunizations, dental problems, psychological problems, impairment in the elderly, alcohol use, smoking, physical inactivity, and hypertension. There are not enough data to evaluate fully the screening strategies for most of these conditions, but recommendations are offered based on current knowledge. Screening is recommended for intestinal parasites and schistosomiasis, tuberculosis, hepatitis B in prenatal patients, leprosy in immigrants from high-risk areas, yearly Papanicolaou smears, malnutrition, iron-deficiency anemia, incomplete immunizations, dental problems, history of violence, and depression. Screening for sickle cell trait in prenatal patients from South America and universal hepatitis B screening are less clearly indicated but could be appropriate. Screening for American trypanosomiasis (Chagas disease), malaria, and gastric cancer is not recommended. Screening for HIV infection, functional impairment in the elderly, alcohol use, cigarette smoking, physical inactivity, and hypertension should be the same as for the general population.
Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.
Hailu, Gebremedhin S; Robaa, Dina; Forgione, Mariantonietta; Sippl, Wolfgang; Rotili, Dante; Mai, Antonello
2017-06-22
Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn 2+ - and NAD + -dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.
Human Trypanosomiasis in the Eastern Plains of Colombia: New Transmission Scenario
Angulo-Silva, Victor Manuel; Castellanos-Domínguez, Yeny Zulay; Flórez-Martínez, Mónica; Esteban-Adarme, Lyda; Pérez-Mancipe, William; Farfán-García, Ana Elvira; Luna-Marín, Katherine Paola
2016-01-01
Characteristics of Trypanosoma cruzi infection were studied in a rural area of the eastern plains of Colombia. Using enzyme-linked immunosorbent assay and indirect fluorescent-antibody tests, the infection was determined in 11.6% of the inhabitants of 142 dwellings. During 6 months of community surveillance, in 42.3% dwellings, 609 triatomines were collected (597 Rhodnius prolixus and seven, three, one, and one of Panstrongylus geniculatus, Psammolestes arturi, Eratyrus mucronatus, and Triatoma maculata, respectively). Rhodnius prolixus was found in 80% peridomiciliary Attalea butyracea palms examined with baited traps, and its infection with T. cruzi was 30% and 38.5% in dwellings and palms, respectively. Trypanosoma cruzi was isolated in five of 35 triatomines and in one of 24 dogs. The blood of domestic and wild animals was identified in triatomines collected in the intradomicile and in palms. These results support the extension of the wild cycle of T. cruzi to human dwellings and the characterization of a new scenario for transmission in Colombia. PMID:26728765
The impact of HIV/AIDS on human development in African countries.
Boutayeb, Abdesslam
2009-11-18
In the present paper, we consider the impact of HIV/AIDS on human development in African countries, showing that, beyond health issues, this disease should and must be seen as a global development concern, affecting all components of human development. Consequently, we stress the necessity of multidisciplinary approaches that model, estimate and predict the real impact of HIV/AIDS on human development of African countries in order to optimise the strategies proposed by national countries, international institutions and their partners. In our search strategy, we relied on secondary information, mainly through National Human Development Reports of some African countries and regular publications released by the United Nations (UN), United Nations Development Programme (UNDP), World Health Organization (WHO) and the World Bank. We restricted ourselves to reports dealing explicitly with the impact of HIV/AIDS on human development in African countries. HIV/AIDS is affecting the global human development of African countries through its devastating impact on health and demographic indicators such as life expectancy at birth, healthcare assistance, age and sex distribution, economic indicators like income, work force, and economic growth, education and knowledge acquisition and other indicators like governance, gender inequality and human rights. On the basis of the national reports reviewed, it appears clearly that HIV/AIDS is no longer a crisis only for the healthcare sector, but presents a challenge to all sectors. Consequently, HIV/AIDS is a development question and should be viewed as such. The disease is impeding development by imposing a steady decline in the key indicators of human development and hence reversing the social and economic gains that African countries are striving to attain. Being at the same time a cause and consequence of poverty and underdevelopment, it constitutes a challenge to human security and human development by diminishing the chances of alleviating poverty and hunger, achieving universal primary education, promoting gender equality, reducing child and maternal mortality, and ensuring environmental sustainability.
The peopling of the African continent and the diaspora into the new world
Campbell, Michael C; Hirbo, Jibril B; Townsend, Jeffrey P; Tishkoff, Sarah A
2014-01-01
Africa is the birthplace of anatomically modern humans, and is the geographic origin of human migration across the globe within the last 100,000 years. The history of African populations has consisted of a number of demographic events that have influenced patterns of genetic and phenotypic variation across the continent. With the increasing amount of genomic data and corresponding developments in computational methods, researchers are able to explore long-standing evolutionary questions, expanding our understanding of human history within and outside of Africa. This review will summarize some of the recent findings regarding African demographic history, including the African Diaspora, and will briefly explore their implications for disease susceptibility in populations of African descent. PMID:25461616
Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations.
van de Loosdrecht, Marieke; Bouzouggar, Abdeljalil; Humphrey, Louise; Posth, Cosimo; Barton, Nick; Aximu-Petri, Ayinuer; Nickel, Birgit; Nagel, Sarah; Talbi, El Hassan; El Hajraoui, Mohammed Abdeljalil; Amzazi, Saaïd; Hublin, Jean-Jacques; Pääbo, Svante; Schiffels, Stephan; Meyer, Matthias; Haak, Wolfgang; Jeong, Choongwon; Krause, Johannes
2018-05-04
North Africa is a key region for understanding human history, but the genetic history of its people is largely unknown. We present genomic data from seven 15,000-year-old modern humans, attributed to the Iberomaurusian culture, from Morocco. We find a genetic affinity with early Holocene Near Easterners, best represented by Levantine Natufians, suggesting a pre-agricultural connection between Africa and the Near East. We do not find evidence for gene flow from Paleolithic Europeans to Late Pleistocene North Africans. The Taforalt individuals derive one-third of their ancestry from sub-Saharan Africans, best approximated by a mixture of genetic components preserved in present-day West and East Africans. Thus, we provide direct evidence for genetic interactions between modern humans across Africa and Eurasia in the Pleistocene. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Torreele, Els; Bourdin Trunz, Bernadette; Tweats, David; Kaiser, Marcel; Brun, Reto; Mazué, Guy; Bray, Michael A; Pécoul, Bernard
2010-12-21
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are scarce, toxic, no longer effective, or very difficult to administer, in particular for the advanced, fatal stage of the disease (stage 2, chronic HAT). New safe, effective and easy-to-use treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining efforts of more than 700 new and existing nitroheterocycles, could be a short-course, safe and effective oral treatment curing both acute and chronic HAT and that could be implemented at the primary health care level. To complete the preclinical development and meet the regulatory requirements before initiating human trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological profile of fexinidazole have been assessed. Standard in vitro and in vivo anti-parasitic activity assays were conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range of preclinical pharmacology and safety studies, as required by international regulatory guidelines before initiating human studies, have been conducted. Fexinidazole is moderately active in vitro against African trypanosomes (IC₅₀ against laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 µg/mL) and oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day for 5 days cured mice with acute and chronic infection respectively, the latter being a model for the advanced and fatal stage of the disease when parasites have disseminated into the brain. In laboratory animals, fexinidazole is well absorbed after oral administration and readily distributes throughout the body, including the brain. The absolute bioavailability of oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative) that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a C(max) of 500, 14171 and 13651 ng/mL respectively, and an AUC₀₋₂₄ of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog) have shown that fexinidazole is well tolerated. The No Observed Adverse Event Levels in the 4-weeks repeated dose toxicity studies in rats and dogs was 200 mg/kg/day in both species, with no issues of concern identified for doses up to 800 mg/kg/day. While fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats. The results of the preclinical pharmacological and safety studies indicate that fexinidazole is a safe and effective oral drug candidate with no untoward effects that would preclude evaluation in man. The drug has entered first-in-human phase I studies in September 2009. Fexinidazole is the first new clinical drug candidate with the potential for treating advanced-stage sleeping sickness in thirty years.
In Vitro Trypanocidal Activity of Antibodies to Bacterially Expressed Trypanosoma brucei Tubulin
Kateete, DP; Alezuyo, C; Nanteza, A; Asiimwe, C; Lubega, GW
2012-01-01
Background There are only four drugs for treating African trypanosomiasis, a devastating disease in sub-Saharan Africa. With slow discovery of better drugs, vaccination is viewed as the best method of control. We previously showed that antibodies to native Trypanosoma brucei brucei tubulin inhibit the growth of trypanosomes in culture. Here, we aimed to determine the effect of antibodies to bacterially expressed trypanosome tubulin on T. brucei brucei growth. Methods T. brucei brucei alpha and beta tubulin genes were individually expressed in Escherichia coli under the tryptophan promoter. Monoclonal tubulin antibodies reacted specifically with the expressed tubulins with no cross-reaction with the opposite tubulin. Rabbits were immunized with 450µg each of the concentrated recombinant tubulin, and production of antibodies assessed by ELISA and Western blotting. The effect of polyclonal antibodies on trypanosome growth was determined by culturing bloodstream T. brucei brucei in up to 25% of antisera. Results Low antisera dilutions (25%) from the immunized rabbits inhibited trypanosome growth. The most cytotoxic antisera were from one rabbit immunized with a mixture of both alpha and beta tubulins. However, the result was not reproduced in other rabbits and there was no apparent effect on growth at higher antisera dilutions. Conclusion Antibodies to bacterially expressed trypanosome tubulin are not effective at killing cultured bloodstream trypanosomes. PMID:23109963
Trypanosoma Infection Rates in Glossina Species in Mtito Andei Division, Makueni County, Kenya
Nthiwa, Daniel Mutiso; Odongo, David O.; Ochanda, Horace; Khamadi, Samoel; Gichimu, Bernard M.
2015-01-01
African Animal Trypanosomiasis (AAT) transmitted cyclically by tsetse fly (Glossina spp.) is a major obstacle to livestock production in the tropical parts of Africa. The objective of this study was to determine the infection rates of trypanosomes in Glossina species in Mtito Andei Division, Makueni County, Kenya. Tsetse fly species, G. longipennis and G. pallidipes, were trapped and DNA was isolated from their dissected internal organs (proboscis, salivary glands, and midguts). The DNA was then subjected to a nested PCR assay using internal transcribed spacer primers and individual trypanosome species were identified following agarose gel electrophoresis. Out of the 117 flies trapped in the area 39 (33.3%) were teneral while 78 (67%) were nonteneral. G. pallidipes constituted the largest percentage of 58% while G. longipennis were 42%. The overall trypanosomes infection rate in all nonteneral Glossina spp. was 11.53% with G. longipennis recording the highest infection rate of 23.08% while G. pallidipes had an infection rate of 5.77%. T. vivax was the most infectious (10.26%) compared to T. congolense (1.28%). Mean apparent densities were strongly positively correlated with infection rates (r = 0.95) confirming the importance of this parameter as an indicator of AAT transmission risk. PMID:26617992
Rickettsiae, protozoa, and opisthokonta/metazoa.
Schmutzhard, Erich; Helbok, Raimund
2014-01-01
Rhizobiales (formerly named Rickettsiales) cause in rare instances meningitis and meningovasculitis, respectively. In case of history of exposure, infection by Rhizobiales needs to be considered since both diagnosis and therapy may be extremely difficult and pathogen-specific. The same applies to protozoa; in this chapter, Babesia species, free-living amoebae and Entamoeba histolytica infection, including severe meningitis and brain abscess, infection by Trypanosoma species (South American and African trypanosomiasis) are discussed with respect to history, epidemiology, clinical signs, and symptoms as well as differential diagnosis and therapy. Parasitic flatworms and roundworms, potentially able to invade the central nervous system, trematodes (flukes), cestodes (in particular, Cysticercus cellulosae), but also nematodes (in particular, Strongyloides spp. in the immunocompromised) are of worldwide importance. In contrast, filarial worms, Toxocara spp., Trichinella spp., Gnathostoma and Angiostrongylus spp. are seen only in certain geographically confined areas. Even more regionally confined are infestations of the central nervous system by metazoa, in particular, tongue worms (=arthropods) or larvae of flies (=maggots). The aim of this chapter is (1) to alert the neurologist to these infections, and (2) to enable the attending emergency neurologist to take a knowledgeable history, with an emphasis on epidemiology, clinical signs, and symptoms as well as therapeutic management possibilities. © 2014 Elsevier B.V. All rights reserved.
Chagas Disease (American trypanosomiasis)
... B C D E F G H I J K L M N O P Q R S T U V W X Y Z Regions » Africa Americas South-East Asia Europe Eastern Mediterranean Western Pacific WHO in countries » Overview Statistics Cooperation strategies ...
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans.
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-08-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. © 2014 Anatomical Society.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-01-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. PMID:24845949
Kovacic, Vanja; Tirados, Inaki; Esterhuizen, Johan; Mangwiro, Clement T. N.; Torr, Stephen J.; Lehane, Michael J.; Smith, Helen
2013-01-01
Background There is renewed vigour in efforts to eliminate neglected tropical diseases including sleeping sickness (human African trypanosomiasis or HAT), including attempts to develop more cost-effective methods of tsetse control. In the West Nile region of Uganda, newly designed insecticide-treated targets are being deployed over an area of ∼500 km2. The operational area covers villages where tsetse control has not been conducted previously. The effectiveness of the targets will depend, in part, on their acceptance by the local community. Methodology/Principal Findings We assessed knowledge, perceptions and acceptance of tsetse baits (traps, targets) in villages where they had or had not been used previously. We conducted sixteen focus group discussions with male and female participants in eight villages across Arua District. Discussions were audio recorded, translated and transcribed. We used thematic analysis to compare the views of both groups and identify salient themes. Conclusions/Significance Despite the villages being less than 10 km apart, community members perceived deployed baits very differently. Villagers who had never seen traps before expressed fear, anxiety and panic when they first encountered them. This was related to associations with witchcraft and “ghosts from the river” which are traditionally linked with physical or mental illness, death and misfortune. By contrast, villagers living in areas where traps had been used previously had positive attitudes towards them and were fully aware of their purpose and benefits. The latter group reported that they had similar negative perceptions when tsetse control interventions first started a decade ago. Our results suggest that despite their proximity, acceptance of traps varies markedly between villages and this is related to the duration of experience with tsetse control programs. The success of community-based interventions against tsetse will therefore depend on early engagements with communities and carefully designed sensitization campaigns that reach all communities, especially those living in areas new to such interventions. PMID:24349593
Shaw, Alexandra P. M.; Tirados, Inaki; Mangwiro, Clement T. N.; Esterhuizen, Johan; Lehane, Michael J.; Torr, Stephen J.; Kovacic, Vanja
2015-01-01
Introduction To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis Methodology/Principal Findings In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets (“tiny targets”). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). Discussion Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques. PMID:25811956
In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants
Setzer, William N.; Ogungbe, Ifedayo V.
2012-01-01
Background Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. Methods A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). Results This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. Conclusions This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations. PMID:22848767
Nagagi, Yakob P; Silayo, Richard S; Kweka, Eliningaya J
2017-01-01
Glossina swynnertoni is a savannah tsetse that is largely confined to the Serengeti-Mara [a very small part of East Africa covering northern Tanzania (Arusha and Manyara regions and parts of Shinyanga and Mara regions) extending Maasai Mara ecosystem in southwestern Kenya]. Nevertheless, it is of great concern to human and animal health and is one of the top target tsetse species for eradication. To achieve this eradication objective, it is important to know about its behaviour so that the appropriate tools/measures especially the right traps can be applied against it. In this paper G. swynnertoni is reviewed in terms of its behaviour, and development of traps for its survey and control. Glossina swynnertoni control is of paramount importance in Tanzania tourism industry and country's income. Since, G. swynnertoni is also distributed in national parks, control is vital as it might reduce tourists excursion/movement, by transmitting the African trypanosomiasis among travelers. Different literature search engines such as Google Scholar and PubMed were deployed for literature search. It was found that the behaviour of G. swynnertoni is relatively similar but unique from other tsetse flies. Its feeding cycle is 2½-3 days as opposed to 3-4 days observed in other tsetse species. The flight activity pattern varied between sex, with male having their peak at 1100-1200 hrs and females 1400-1600 hrs. The activity in both sexes decline rapidly towards the dusk (1700-1800 hrs). It was further that host odours, relatively smaller and vertically oriented devices, as well as host movement are the main attractive factors to this tsetse species, which can be exploited to design efficient artificial devices for control of G. swynnertoni . Therefore, due to its restricted distribution and threat it poses on tourism industry, deliberate efforts need to be made against G. swynnertoni as a next candidate to be eradicated using artificial bait technology.
Kaiser, Marcel; Chatelain, Eric; Moawad, Sarah R.; Ganame, Danny; Ioset, Jean-Robert; Avery, Vicky M.
2012-01-01
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. PMID:23209849
Stolk, Wilma A; Kulik, Margarete C; le Rutte, Epke A; Jacobson, Julie; Richardus, Jan Hendrik; de Vlas, Sake J; Houweling, Tanja A J
2016-05-01
The World Health Organization (WHO) has set ambitious time-bound targets for the control and elimination of neglected tropical diseases (NTDs). Investing in NTDs is not only seen as good value for money, but is also advocated as a pro-poor policy since it would improve population health in the poorest populations. We studied the extent to which the disease burden from nine NTDs (lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, trachoma, Chagas disease, human African trypanosomiasis, leprosy, visceral leishmaniasis) was concentrated in the poorest countries in 1990 and 2010, and how this would change by 2020 in case the WHO targets are met. Our analysis was based on 1990 and 2010 data from the Global Burden of Disease (GBD) 2010 study and on projections of the 2020 burden. Low and lower-middle income countries together accounted for 69% and 81% of the global burden in 1990 and 2010 respectively. Only the soil-transmitted helminths and Chagas disease caused a considerable burden in upper-middle income countries. The global burden from these NTDs declined by 27% between 1990 and 2010, but reduction largely came to the benefit of upper-middle income countries. Achieving the WHO targets would lead to a further 55% reduction in the global burden between 2010 and 2020 in each country income group, and 81% of the global reduction would occur in low and lower-middle income countries. The GBD 2010 data show the burden of the nine selected NTDs in DALYs is strongly concentrated in low and lower-middle income countries, which implies that the beneficial impact of NTD control eventually also largely comes to the benefit of these same countries. While the nine NTDs became increasingly concentrated in developing countries in the 1990-2010 period, this trend would be rectified if the WHO targets were met, supporting the pro-poor designation.
Novel Membrane-Bound eIF2α Kinase in the Flagellar Pocket of Trypanosoma brucei▿
Moraes, Maria Carolina S.; Jesus, Teresa C. L.; Hashimoto, Nilce N.; Dey, Madhusudan; Schwartz, Kevin J.; Alves, Viviane S.; Avila, Carla C.; Bangs, James D.; Dever, Thomas E.; Schenkman, Sergio; Castilho, Beatriz A.
2007-01-01
Translational control mediated by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) is central to stress-induced programs of gene expression. Trypanosomatids, important human pathogens, display differentiation processes elicited by contact with the distinct physiological milieu found in their insect vectors and mammalian hosts, likely representing stress situations. Trypanosoma brucei, the agent of African trypanosomiasis, encodes three potential eIF2α kinases (TbeIF2K1 to -K3). We show here that TbeIF2K2 is a transmembrane glycoprotein expressed both in procyclic and in bloodstream forms. The catalytic domain of TbeIF2K2 phosphorylates yeast and mammalian eIF2α at Ser51. It also phosphorylates the highly unusual form of eIF2α found in trypanosomatids specifically at residue Thr169 that corresponds to Ser51 in other eukaryotes. T. brucei eIF2α, however, is not a substrate for GCN2 or PKR in vitro. The putative regulatory domain of TbeIF2K2 does not share any sequence similarity with known eIF2α kinases. In both procyclic and bloodstream forms TbeIF2K2 is mainly localized in the membrane of the flagellar pocket, an organelle that is the exclusive site of exo- and endocytosis in these parasites. It can also be detected in endocytic compartments but not in lysosomes, suggesting that it is recycled between endosomes and the flagellar pocket. TbeIF2K2 location suggests a relevance in sensing protein or nutrient transport in T. brucei, an organism that relies heavily on posttranscriptional regulatory mechanisms to control gene expression in different environmental conditions. This is the first membrane-associated eIF2α kinase described in unicellular eukaryotes. PMID:17873083
Priotto, Gerardo; Fogg, Carole; Balasegaram, Manica; Erphas, Olema; Louga, Albino; Checchi, Francesco; Ghabri, Salah; Piola, Patrice
2006-01-01
Objectives: Our objective was to compare the efficacy and safety of three drug combinations for the treatment of late-stage human African trypanosomiasis caused by Trypanosoma brucei gambiense. Design: This trial was a randomized, open-label, active control, parallel clinical trial comparing three arms. Setting: The study took place at the Sleeping Sickness Treatment Center run by Médecins Sans Frontières at Omugo, Arua District, Uganda Participants: Stage 2 patients diagnosed in Northern Uganda were screened for inclusion and a total of 54 selected. Interventions: Three drug combinations were given to randomly assigned patients: melarsoprol-nifurtimox (M+N), melarsoprol-eflornithine (M+E), and nifurtimox-eflornithine (N+E). Dosages were uniform: intravenous (IV) melarsoprol 1.8 mg/kg/d, daily for 10 d; IV eflornithine 400 mg/kg/d, every 6 h for 7 d; oral nifurtimox 15 (adults) or 20 (children <15 y) mg/kg/d, every 8 h for 10 d. Patients were followed up for 24 mo. Outcome Measures: Outcomes were cure rates and adverse events attributable to treatment. Results: Randomization was performed on 54 patients before enrollment was suspended due to unacceptable toxicity in one of the three arms. Cure rates obtained with the intention to treat analysis were M+N 44.4%, M+E 78.9%, and N+E 94.1%, and were significantly higher with N+E (p = 0.003) and M+E (p = 0.045) than with M+N. Adverse events were less frequent and less severe with N+E, resulting in fewer treatment interruptions and no fatalities. Four patients died who were taking melarsoprol-nifurtimox and one who was taking melarsoprol-eflornithine. Conclusions: The N+E combination appears to be a promising first-line therapy that may improve treatment of sleeping sickness, although the results from this interrupted study do not permit conclusive interpretations. Larger studies are needed to continue the evaluation of this drug combination in the treatment of T. b. gambiense sleeping sickness. PMID:17160135
Kato, Charles D; Nanteza, Ann; Mugasa, Claire; Edyelu, Andrew; Matovu, Enock; Alibu, Vincent P
2015-01-01
The acute form of Human African Trypanosomiasis (HAT, also known as Sleeping sickness) caused by Trypanosoma brucei rhodesiense has been shown to have a wide spectrum of focus specific clinical presentation and severity in East and Southern Africa. Indeed HAT occurs in regions endemic for other tropical diseases, however data on how these co-morbidities might complicate the clinical picture and affect disease outcome remains largely scanty. We here describe the clinical presentation, presence of co-infections, and how the latter impact on HAT prognosis. We carried out a retrospective analysis of clinical data from 258 sleeping sickness patients reporting to Lwala hospital between 2005 and 2012. The mean patient age was 28.6 years with a significant number of cases below 18 years (p< 0.0001). About 93.4% of the cases were diagnosed as late stage (p< 0.0001). The case fatality rate was 10.5% with post treatment reactive encephalopathys reported in 7.9% of the cases, of whom 36.8% eventually died. Fever was significantly (p = 0.045) higher in patients under 18 years. Of the early stage patients, 26.7% and 6.7% presented with late stage signs of sleep disorder and mental confusion respectively. Among the co-infections, malaria was significantly more prevalent (28.9%; p< 0.0001) followed by urinary tract infections (4.2%). Co-infections were present in 14.3% of in-hospital deaths, 38.5% of which were recorded as Malaria. Malaria was significantly more common in patients under 18 years (45.5%; p< 0.02), and was reported in 60% of the fatal cases in this age group. We show a wide spectrum of sleeping sickness clinical presentation and disease outcome that was apparently not significantly influenced by concurrent infections. It would thus be interesting to determine the host and/or parasite factors that might be responsible for the observed diverse clinical presentation.
Rock, K S; Pandey, A; Ndeffo-Mbah, M L; Atkins, K E; Lumbala, C; Galvani, A; Keeling, M J
2017-03-01
Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem - defined as <1 new case per 10,000 inhabitants in 90% of foci, and <2000 reported cases by 2020. Using two independent mathematical models, this study assessed the achievability of these goals in the former Equateur province of the Democratic Republic of Congo, which historically had endemic levels of disease. The two deterministic models used different assumptions on disease progression, risk of infection and non-participation in screening, reflecting biological uncertainty. To validate the models a censor-fit-uncensor procedure was used to fit to health-zone level data from 2000 to 2012; initially the last six years were censored, then three and the final step utilised all data. The different model projections were used to evaluate the expected transmission and reporting for each health zone within each province under six intervention strategies using currently available tools. In 2012 there were 197 reported HAT cases in former Equateur reduced from 6828 in 2000, however this reflects lower active testing for HAT (1.3% of the population compared to 7.2%). Modelling results indicate that there are likely to be <300 reported cases in former Equateur in 2020 if screening continues at the mean level for 2000-2012 (6.2%), and <120 cases if vector control is introduced. Some health zones may fail to achieve <1 new case per 10,000 by 2020 without vector control, although most appear on track for this target using medical interventions alone. The full elimination goal will be harder to reach; between 39 and 54% of health zones analysed may have to improve their current medical-only strategy to stop transmission completely by 2030. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Rock, Kat S; Torr, Steve J; Lumbala, Crispin; Keeling, Matt J
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT.
Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy.
Tirados, Inaki; Esterhuizen, Johan; Kovacic, Vanja; Mangwiro, T N Clement; Vale, Glyn A; Hastings, Ian; Solano, Philippe; Lehane, Michael J; Torr, Steve J
2015-01-01
Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised.
Mpanya, Alain; Hendrickx, David; Vuna, Mimy; Kanyinda, Albert; Lumbala, Crispin; Tshilombo, Valéry; Mitashi, Patrick; Luboya, Oscar; Kande, Victor; Boelaert, Marleen; Lefèvre, Pierre; Lutumba, Pascal
2012-01-01
Control of human African trypanosomiasis (sleeping sickness) in the Democratic Republic of Congo is based on mass population active screening by mobile teams. Although generally considered a successful strategy, the community participation rates in these screening activities and ensuing treatment remain low in the Kasai-Oriental province. A better understanding of the reasons behind this observation is necessary to improve regional control activities. Thirteen focus group discussions were held in five health zones of the Kasai-Oriental province to gain insights in the regional perceptions regarding sleeping sickness and the national control programme's activities. Sleeping sickness is well known among the population and is considered a serious and life-threatening disease. The disease is acknowledged to have severe implications for the individual (e.g., persistence of manic periods and trembling hands, even after treatment), at the family level (e.g., income loss, conflicts, separations) and for communities (e.g., disruption of community life and activities). Several important barriers to screening and treatment were identified. Fear of drug toxicity, lack of confidentiality during screening procedures, financial barriers and a lack of communication between the mobile teams and local communities were described. Additionally, a number of regionally accepted prohibitions related to sleeping sickness treatment were described that were found to be a strong impediment to disease screening and treatment. These prohibitions, which do not seem to have a rational basis, have far-reaching socio-economic repercussions and severely restrict the participation in day-to-day life. A mobile screening calendar more adapted to the local conditions with more respect for privacy, the use of less toxic drugs, and a better understanding of the origin as well as better communication about the prohibitions related to treatment would facilitate higher participation rates among the Kasai-Oriental population in sleeping sickness screening and treatment activities organized by the national HAT control programme.
Hontelez, Jan A. C.; Bakker, Roel; Blok, David J.; Cai, Rui; Houweling, Tanja A. J.; Kulik, Margarete C.; Lenk, Edeltraud J.; Luyendijk, Marianne; Matthijsse, Suzette M.; Redekop, William K.; Wagenaar, Inge; Jacobson, Julie; Nagelkerke, Nico J. D.; Richardus, Jan H.
2016-01-01
Background The London Declaration (2012) was formulated to support and focus the control and elimination of ten neglected tropical diseases (NTDs), with targets for 2020 as formulated by the WHO Roadmap. Five NTDs (lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths and trachoma) are to be controlled by preventive chemotherapy (PCT), and four (Chagas’ disease, human African trypanosomiasis, leprosy and visceral leishmaniasis) by innovative and intensified disease management (IDM). Guinea worm, virtually eradicated, is not considered here. We aim to estimate the global health impact of meeting these targets in terms of averted morbidity, mortality, and disability adjusted life years (DALYs). Methods The Global Burden of Disease (GBD) 2010 study provides prevalence and burden estimates for all nine NTDs in 1990 and 2010, by country, age and sex, which were taken as the basis for our calculations. Estimates for other years were obtained by interpolating between 1990 (or the start-year of large-scale control efforts) and 2010, and further extrapolating until 2030, such that the 2020 targets were met. The NTD disease manifestations considered in the GBD study were analyzed as either reversible or irreversible. Health impacts were assessed by comparing the results of achieving the targets with the counterfactual, construed as the health burden had the 1990 (or 2010 if higher) situation continued unabated. Principle Findings/Conclusions Our calculations show that meeting the targets will lead to about 600 million averted DALYs in the period 2011–2030, nearly equally distributed between PCT and IDM-NTDs, with the health gain amongst PCT-NTDs mostly (96%) due to averted disability and amongst IDM-NTDs largely (95%) from averted mortality. These health gains include about 150 million averted irreversible disease manifestations (e.g. blindness) and 5 million averted deaths. Control of soil-transmitted helminths accounts for one third of all averted DALYs. We conclude that the projected health impact of the London Declaration justifies the required efforts. PMID:26890362
Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy
Kovacic, Vanja; Mangwiro, T. N. Clement; Vale, Glyn A.; Hastings, Ian; Solano, Philippe; Lehane, Michael J.; Torr, Steve J.
2015-01-01
Background Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. Methods and Findings The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. Interpretation The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised. PMID:26267814
2012-01-01
Background Neglected tropical diseases (NTDs) are a group of chronic parasitic diseases and related conditions that are the most common diseases among the 2·7 billion people globally living on less than US$2 per day. In response to the growing challenge of NTDs, Ethiopia is preparing to launch a NTD Master Plan. The purpose of this review is to underscore the burden of NTDs in Ethiopia, highlight the state of current interventions, and suggest ways forward. Results This review indicates that NTDs are significant public health problems in Ethiopia. From the analysis reported here, Ethiopia stands out for having the largest number of NTD cases following Nigeria and the Democratic Republic of Congo. Ethiopia is estimated to have the highest burden of trachoma, podoconiosis and cutaneous leishmaniasis in sub-Saharan Africa (SSA), the second highest burden in terms of ascariasis, leprosy and visceral leishmaniasis, and the third highest burden of hookworm. Infections such as schistosomiasis, trichuriasis, lymphatic filariasis and rabies are also common. A third of Ethiopians are infected with ascariasis, one quarter is infected with trichuriasis and one in eight Ethiopians lives with hookworm or is infected with trachoma. However, despite these high burdens of infection, the control of most NTDs in Ethiopia is in its infancy. In terms of NTD control achievements, Ethiopia reached the leprosy elimination target of 1 case/10,000 population in 1999. No cases of human African trypanosomiasis have been reported since 1984. Guinea worm eradication is in its final phase. The Onchocerciasis Control Program has been making steady progress since 2001. A national blindness survey was conducted in 2006 and the trachoma program has kicked off in some regions. Lymphatic Filariasis, podoconiosis and rabies mapping are underway. Conclusion Ethiopia bears a significant burden of NTDs compared to other SSA countries. To achieve success in integrated control of NTDs, integrated mapping, rapid scale up of interventions and operational research into co implementation of intervention packages will be crucial. PMID:23095679
Torr, Steve J.; Lumbala, Crispin; Keeling, Matt J.
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT. PMID:28056016
Socioeconomic Inequalities in Neglected Tropical Diseases: A Systematic Review
Houweling, Tanja A. J.; Karim-Kos, Henrike E.; Kulik, Margarete C.; Stolk, Wilma A.; Haagsma, Juanita A.; Lenk, Edeltraud J.; Richardus, Jan Hendrik; de Vlas, Sake J.
2016-01-01
Background Neglected tropical diseases (NTDs) are generally assumed to be concentrated in poor populations, but evidence on this remains scattered. We describe within-country socioeconomic inequalities in nine NTDs listed in the London Declaration for intensified control and/or elimination: lymphatic filariasis (LF), onchocerciasis, schistosomiasis, soil-transmitted helminthiasis (STH), trachoma, Chagas’ disease, human African trypanosomiasis (HAT), leprosy, and visceral leishmaniasis (VL). Methodology We conducted a systematic literature review, including publications between 2004–2013 found in Embase, Medline (OvidSP), Cochrane Central, Web of Science, Popline, Lilacs, and Scielo. We included publications in international peer-reviewed journals on studies concerning the top 20 countries in terms of the burden of the NTD under study. Principal findings We identified 5,516 publications, of which 93 met the inclusion criteria. Of these, 59 papers reported substantial and statistically significant socioeconomic inequalities in NTD distribution, with higher odds of infection or disease among poor and less-educated people compared with better-off groups. The findings were mixed in 23 studies, and 11 studies showed no substantial or statistically significant inequality. Most information was available for STH, VL, schistosomiasis, and, to a lesser extent, for trachoma. For the other NTDs, evidence on their socioeconomic distribution was scarce. The magnitude of inequality varied, but often, the odds of infection or disease were twice as high among socioeconomically disadvantaged groups compared with better-off strata. Inequalities often took the form of a gradient, with higher odds of infection or disease each step down the socioeconomic hierarchy. Notwithstanding these inequalities, the prevalence of some NTDs was sometimes also high among better-off groups in some highly endemic areas. Conclusions While recent evidence on socioeconomic inequalities is scarce for most individual NTDs, for some, there is considerable evidence of substantially higher odds of infection or disease among socioeconomically disadvantaged groups. NTD control activities as proposed in the London Declaration, when set up in a way that they reach the most in need, will benefit the poorest populations in poor countries. PMID:27171166
Laboratory Colonisation and Genetic Bottlenecks in the Tsetse Fly Glossina pallidipes
Ciosi, Marc
2014-01-01
Background The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations. Methodology/Principal Findings We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990's is likely reduced the effective population size of the Kenya/Uganda border population. Conclusions/Significance All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology. PMID:24551260
Relethford, John H; Smith, Fred H
2018-05-01
Ancient DNA analysis has shown that present-day humans of Eurasian ancestry are more similar to Neandertals than are present-day humans of sub-Saharan African ancestry, reflecting interbreeding after modern humans first left Africa. We use craniometric data to test the hypothesis that the crania of recent modern humans show the same pattern. We computed Mahalanobis squared distances between a published Neandertal centroid based on 37 craniometric traits and each of 2,413 recent modern humans from the Howells global data set (N = 373 sub-Saharan Africans, N = 2,040 individuals of Eurasian descent). The average distance to the Neandertal centroid is significantly lower for Eurasian crania than for sub-Saharan African crania as expected from the findings of ancient DNA (p < 0.001). This result holds when examining distances for separate geographic regions of humans of Eurasian descent (Europeans, Asians, Australasians, Native Americans, and Pacific Islanders). Most of these results are also seen when examining distances partitioning size and shape variation. Our results show that the genetic difference in Neandertal ancestry seen in the DNA of present-day sub-Saharan Africans and Eurasians is also found in patterns of recent modern human craniometric variation. © 2018 Wiley Periodicals, Inc.
Ngwena, Charles G
2012-11-01
Women in the African region are overburdened with unsafe abortion. Abortion regimes that fail to translate any given abortion rights into tangible access are partly to blame. Historically, African abortion laws have been highly restrictive. However, the post-independence era has witnessed a change toward liberalizing abortion law, even if incremental for many jurisdictions. Furthermore, Article 14 of the Protocol to the African Charter on Human and Peoples' Rights on the Rights of Women in Africa has significantly augmented the regional trend toward liberalization by recognizing abortion as a human right in given circumstances. However, states are failing to implement abortion laws. The jurisprudence that is emerging from the European Court of Human Rights and United Nations treaty bodies is a tool that can be used to render African governments accountable for failure to implement domestic abortion laws. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Treatment of Chagas Cardiomyopathy
Botoni, Fernando A.; Ribeiro, Antonio Luiz P.; Marinho, Carolina Coimbra; Lima, Marcia Maria Oliveira; Nunes, Maria do Carmo Pereira; Rocha, Manoel Otávio C.
2013-01-01
Chagas' disease (ChD), caused by the protozoa Trypanosoma cruzi (T. cruzi), was discovered and described by the Brazilian physician Carlos Chagas in 1909. After a century of original description, trypanosomiasis still brings much misery to humanity and is classified as a neglected tropical disease prevalent in underdeveloped countries, particularly in South America. It is an increasing worldwide problem due to the number of cases in endemic areas and the migration of infected subjects to more developed regions, mainly North America and Europe. Despite its importance, chronic chagas cardiomyopathy (CCC) pathophysiology is yet poorly understood, and independently of its social, clinical, and epidemiological importance, the therapeutic approach of CCC is still transposed from the knowledge acquired from other cardiomyopathies. Therefore, the objective of this review is to describe the treatment of Chagas cardiomyopathy with emphasis on its peculiarities. PMID:24350293
Njogu, Peter M; Guantai, Eric M; Pavadai, Elumalai; Chibale, Kelly
2016-01-08
Despite the tremendous improvement in overall global health heralded by the adoption of the Millennium Declaration in the year 2000, tropical infections remain a major health problem in the developing world. Recent estimates indicate that the major tropical infectious diseases, namely, malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for more than 2.2 million deaths and a loss of approximately 85 million disability-adjusted life years annually. The crucial role of chemotherapy in curtailing the deleterious health and economic impacts of these infections has invigorated the search for new drugs against tropical infectious diseases. The research efforts have involved increased application of computational technologies in mainstream drug discovery programs at the hit identification, hit-to-lead, and lead optimization stages. This review highlights various computer-aided drug discovery approaches that have been utilized in efforts to identify novel antimalarial, antitubercular, antitrypanosomal, and antileishmanial agents. The focus is largely on developments over the past 5 years (2010-2014).
Arsenic-Based Drugs: From Fowler's Solution to Modern Anticancer Chemotherapy
NASA Astrophysics Data System (ADS)
Gibaud, Stéphane; Jaouen, Gérard
Although arsenic is a poison and has a predominantly unfavorable reputation, it has been used as pharmaceutical agent since the first century BC. In 1786, Thomas Fowler reported the effects of arsenic in the cure of agues, remittent fevers, and periodic headaches. From this time on and despite abusive use, some interesting indications began to appear for trypanosomiasis, syphilis, and blood diseases. The first significant organoarsenical drug (atoxyl) was synthesized by Pierre Antoine Béchamp in 1859 by chemically reacting arsenic acid with aniline but additional experimentations on the properties of arsenic led Paul Ehrlich, the founder of chemotherapy, to the discovery of salvarsan in 1910. From the Second World War, Ernst A.H. Friedheim greatly improved the treatment of trypanosomiasis by melaminophenyl arsenicals. Until the 1990s some organoarsenicals were used for intestinal parasite infections but carcinogenic effects were displayed and all the drugs have been withdrawn in USA, in Europe, and elsewhere. In 2003, arsenic trioxide (Trisenox®) was re-introduced for the treatment of very specific hematological malignancies.
Miezan, T.; Doua, F.; Cattand, P.; de Raadt, P.
1991-01-01
The Testryp CATT was performed on dried blood samples on filter-paper and on diluted blood using a microtechnique. This method was applied to both sample collection techniques and was evaluated in parallel with the classical Testryp CATT on whole blood, as described in the instructions provided with the reagents by the manufacturer. A total of 2087 people were tested; 453 samples were tested in the laboratory and 1634 during a field survey in 5 villages of a trypanosomiasis focus in Daloa, Côte d'Ivoire. This study has demonstrated that the Testryp CATT micromethod on either type of sample collection gives results comparable to the Testryp CATT on whole blood. The collection of dried blood samples on filter-paper can be performed by non-specialized staff in trypanosomiasis control programmes of the national health services. In addition, a flask of CATT reagent will allow testing of 6 times more people by the micromethod than by the classical whole-blood method. The micromethod is suitable in the implementation of programmes for the serological surveillance of populations at risk. PMID:1959162
Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D.
2014-01-01
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance, and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago, and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent-African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions. PMID:25427668
American Trypanosomiasis (Also Known as Chagas Disease) Blood Screening FAQs
... For Health Care Providers, Emergency Consultations, and General Public. Contact Us Parasites Home Blood Screening FAQs Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir On this Page Why are blood banks now screening for Chagas disease? How does the ...
M.H, Branquinha; F.A, Marinho; L.S, Sangenito; S.S.C, Oliveira; K.C, Gonçalves; V, Ennes-Vidal; C.M, d’Avila-Levy; A.L.S, Santos
2013-01-01
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids. PMID:23899207
Detailed Analysis of the African Green Monkey Model of Nipah Virus Disease
Johnston, Sara C.; Briese, Thomas; Bell, Todd M.; Pratt, William D.; Shamblin, Joshua D.; Esham, Heather L.; Donnelly, Ginger C.; Johnson, Joshua C.; Hensley, Lisa E.; Lipkin, W. Ian; Honko, Anna N.
2015-01-01
Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5×104 plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans. PMID:25706617
Practices and discourses of ubuntu: Implications for an African model of disability?
Berghs, Maria
2017-01-01
Southern African scholars and activists working in disability studies have argued that ubuntu or unhu is a part of their world view. Thinking seriously about ubuntu, as a shared collective humanness or social ethics, means to examine how Africans have framed a struggle for this shared humanity in terms of decolonisation and activism. Three examples of applications of ubuntu are given, with two mainly linked to making explicit umaka. Firstly, ubuntu is linked to making visible the invisible inequalities for a common humanity in South Africa. Secondly, it becomes correlated to the expression of environmental justice in West and East African countries. An African model of disability that encapsulates ubuntu is correlated to how Africans have illustrated a social ethics of a common humanity in their grassroots struggles against oppression and disablement in the 20th century. Ubuntu also locates disability politically within the wider environment and practices of sustainability which are now important to the post-2105 agenda, Convention on the Rights of Persons with Disabilities (CRPD) and the (UN) Sustainable Development Goals linked to climate change. A different kind of political action linked to social justice seems to be evolving in line with ubuntu . This has implications for the future of disability studies.
Hunter-gatherer genomic diversity suggests a southern African origin for modern humans
Henn, Brenna M.; Gignoux, Christopher R.; Jobin, Matthew; Granka, Julie M.; Macpherson, J. M.; Kidd, Jeffrey M.; Rodríguez-Botigué, Laura; Ramachandran, Sohini; Hon, Lawrence; Brisbin, Abra; Lin, Alice A.; Underhill, Peter A.; Comas, David; Kidd, Kenneth K.; Norman, Paul J.; Parham, Peter; Bustamante, Carlos D.; Mountain, Joanna L.; Feldman, Marcus W.
2011-01-01
Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by FST, in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world. PMID:21383195
Practices and discourses of ubuntu: Implications for an African model of disability?
2017-01-01
Background Southern African scholars and activists working in disability studies have argued that ubuntu or unhu is a part of their world view. Objectives Thinking seriously about ubuntu, as a shared collective humanness or social ethics, means to examine how Africans have framed a struggle for this shared humanity in terms of decolonisation and activism. Method Three examples of applications of ubuntu are given, with two mainly linked to making explicit umaka. Firstly, ubuntu is linked to making visible the invisible inequalities for a common humanity in South Africa. Secondly, it becomes correlated to the expression of environmental justice in West and East African countries. Results An African model of disability that encapsulates ubuntu is correlated to how Africans have illustrated a social ethics of a common humanity in their grassroots struggles against oppression and disablement in the 20th century. Ubuntu also locates disability politically within the wider environment and practices of sustainability which are now important to the post-2105 agenda, Convention on the Rights of Persons with Disabilities (CRPD) and the (UN) Sustainable Development Goals linked to climate change. Conclusion A different kind of political action linked to social justice seems to be evolving in line with ubuntu. This has implications for the future of disability studies. PMID:28730067
Stijlemans, Benoit; De Baetselier, Patrick; Magez, Stefan; Van Ginderachter, Jo A.; De Trez, Carl
2018-01-01
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential. PMID:29497418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer
2010-09-02
Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzymemore » and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.« less
FIRST AFRICAN CASE OF SPOROTRICHOSIS BEURMANI: TRANSMISSION OF SPOROTRICHOSIS FROM MULE TO MAN
indefinite; its animal victims die of exhaustion. However, the classic iodine-iodide treatment for human sporotrichosis was found to be effective. This...particular sporotrichosis is of interest in human clinical study, since it can be transmitted from the animal to a healthy human. In fact, this first African case of human sporotrichosis was a case of mule-to-man infection.
Ariza, Antonio; Vickers, Tim J; Greig, Neil; Armour, Kirsten A; Dixon, Mark J; Eggleston, Ian M; Fairlamb, Alan H; Bond, Charles S
2006-02-01
Trypanothione replaces glutathione in defence against cellular damage caused by oxidants, xenobiotics and methylglyoxal in the trypanosomatid parasites, which cause trypanosomiasis and leishmaniasis. In Leishmania major, the first step in methylglyoxal detoxification is performed by a trypanothione-dependent glyoxalase I (GLO1) containing a nickel cofactor; all other characterized eukaryotic glyoxalases use zinc. In kinetic studies L. major and human enzymes were active with methylglyoxal derivatives of several thiols, but showed opposite substrate selectivities: N1-glutathionylspermidine hemithioacetal is 40-fold better with L. major GLO1, whereas glutathione hemithioacetal is 300-fold better with human GLO1. Similarly, S-4-bromobenzylglutathionylspermidine is a 24-fold more potent linear competitive inhibitor of L. major than human GLO1 (Kis of 0.54 microM and 12.6 microM, respectively), whereas S-4-bromobenzylglutathione is >4000-fold more active against human than L. major GLO1 (Kis of 0.13 microM and >500 microM respectively). The crystal structure of L. major GLO1 reveals differences in active site architecture to both human GLO1 and the nickel-dependent Escherichia coli GLO1, including increased negative charge and hydrophobic character and truncation of a loop that may regulate catalysis in the human enzyme. These differences correlate with the differential binding of glutathione and trypanothione-based substrates, and thus offer a route to the rational design of L. major-specific GLO1 inhibitors.
Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins
Murungi, Edwin K.; Kariithi, Henry M.; Adunga, Vincent; Obonyo, Meshack; Christoffels, Alan
2014-01-01
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector. PMID:26462947
"Disappearance" and Feminist Research in the South African Academy of Humanities
ERIC Educational Resources Information Center
Bennett, Jane
2016-01-01
Following a global trend in humanities since the mid-1970s, South African humanities faculties began to include formal programmes in gender and sexualities studies from the mid-1990s on. While the immediate post-flag democratic era encouraged intellectual concentration on diverse questions of power and knowledge, the new century saw a decline in…
Global diversity, population stratification, and selection of human copy number variation
Sudmant, Peter H.; Mallick, Swapan; Nelson, Bradley J.; Hormozdiari, Fereydoun; Krumm, Niklas; Huddleston, John; Coe, Bradley P.; Baker, Carl; Nordenfelt, Susanne; Bamshad, Michael; Jorde, Lynn B.; Posukh, Olga L.; Sahakyan, Hovhannes; Watkins, W. Scott; Yepiskoposyan, Levon; Abdullah, M. Syafiq; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Wee, Joseph T. S.; Tyler-Smith, Chris; van Driem, George; Romero, Irene Gallego; Jha, Aashish R.; Karachanak-Yankova, Sena; Toncheva, Draga; Comas, David; Henn, Brenna; Kivisild, Toomas; Ruiz-Linares, Andres; Sajantila, Antti; Metspalu, Ene; Parik, Jüri; Villems, Richard; Starikovskaya, Elena B.; Ayodo, George; Beall, Cynthia M.; Di Rienzo, Anna; Hammer, Michael; Khusainova, Rita; Khusnutdinova, Elza; Klitz, William; Winkler, Cheryl; Labuda, Damian; Metspalu, Mait; Tishkoff, Sarah A.; Dryomov, Stanislav; Sukernik, Rem; Patterson, Nick; Reich, David; Eichler, Evan E.
2015-01-01
In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load. PMID:26249230
Lutya, Thozama Mandisa
2010-12-01
The United Nations estimates that 79% of teenage girls trafficked globally every year are forced into involuntary prostitution. About 247 000 South African children work in exploitative conditions; about 40 000 South African female teenagers work as prostitutes. This paper investigates lifestyles and routine activities of teenagers at risk of being trafficked for involuntary prostitution. The key concepts involuntary prostitution, intergenerational sex and exploitative conditions are defined in relation to the lifestyles and routine activities of South African female teenagers. Human trafficking for involuntary prostitution is described, based on a literature review. Lifestyle exposure and routine activities theories help to explain the potential victimisation of these teenagers in human trafficking for involuntary prostitution. Actual lifestyle and routine activities of South African teenagers and risky behaviours (substance abuse, intergenerational sex and child prostitution) are discussed as factors that make teens vulnerable to such trafficking. This paper recommends that human trafficking prevention efforts (awareness programmes and information campaigns) be directed at places frequented by human traffickers and teenagers in the absence of a capable guardian to reduce victimisation, as traffickers analyse the lifestyles and routine activities of their targets. South Africa should also interrogate entrenched practices such as intergenerational sex.
Pagani, Luca; Schiffels, Stephan; Gurdasani, Deepti; Danecek, Petr; Scally, Aylwyn; Chen, Yuan; Xue, Yali; Haber, Marc; Ekong, Rosemary; Oljira, Tamiru; Mekonnen, Ephrem; Luiselli, Donata; Bradman, Neil; Bekele, Endashaw; Zalloua, Pierre; Durbin, Richard; Kivisild, Toomas; Tyler-Smith, Chris
2015-06-04
The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Michalkova, Veronika; Didion, Elise M.; Xiao, Yanyu; Attardo, Geoffrey M.; Aksoy, Serap
2018-01-01
Tsetse flies are important vectors of human and animal trypanosomiasis. Ability to reduce tsetse populations is an effective means of disease control. Lactation is an essential component of tsetse’s viviparous reproductive physiology and requires a dramatic increase in the expression and synthesis of milk proteins by the milk gland organ in order to nurture larval growth. In between each gonotrophic cycle, tsetse ceases milk production and milk gland tubules undergo a nearly two-fold reduction in width (involution). In this study, we examined the role autophagy plays during tsetse fly milk gland involution and reproductive output. Autophagy genes show elevated expression in tissues associated with lactation, immediately before or within two hours post-parturition, and decline at 24-48h post-parturition. This expression pattern is inversely correlated with that of the milk gland proteins (lactation-specific protein coding genes) and the autophagy inhibitor fk506-bp1. Increased expression of Drosophila inhibitor of apoptosis 1, diap1, was also observed in the milk gland during involution, when it likely prevents apoptosis of milk gland cells. RNAi-mediated knockdown of autophagy related gene 8a (atg8a) prevented rapid milk gland autophagy during involution, prolonging gestation, and reducing fecundity in the subsequent gonotrophic cycle. The resultant inhibition of autophagy reduced the recovery of stored lipids during the dry (non-lactating) periods by 15–20%. Ecdysone application, similar to levels that occur immediately before birth, induced autophagy, and increased milk gland involution even before abortion. This suggests that the ecdysteroid peak immediately preceding parturition likely triggers milk gland autophagy. Population modeling reveals that a delay in involution would yield a negative population growth rate. This study indicates that milk gland autophagy during involution is critical to restore nutrient reserves and allow efficient transition between pregnancy cycles. Targeting post-birth phases of reproduction could be utilized as a novel mechanism to suppress tsetse populations and reduce trypanosomiasis. PMID:29385123
Mitochondrial pathogenic mutations are population-specific.
Breen, Michael S; Kondrashov, Fyodor A
2010-12-31
Surveying deleterious variation in human populations is crucial for our understanding, diagnosis and potential treatment of human genetic pathologies. A number of recent genome-wide analyses focused on the prevalence of segregating deleterious alleles in the nuclear genome. However, such studies have not been conducted for the mitochondrial genome. We present a systematic survey of polymorphisms in the human mitochondrial genome, including those predicted to be deleterious and those that correspond to known pathogenic mutations. Analyzing 4458 completely sequenced mitochondrial genomes we characterize the genetic diversity of different types of single nucleotide polymorphisms (SNPs) in African (L haplotypes) and non-African (M and N haplotypes) populations. We find that the overall level of polymorphism is higher in the mitochondrial compared to the nuclear genome, although the mitochondrial genome appears to be under stronger selection as indicated by proportionally fewer nonsynonymous than synonymous substitutions. The African mitochondrial genomes show higher heterozygosity, a greater number of polymorphic sites and higher frequencies of polymorphisms for synonymous, benign and damaging polymorphism than non-African genomes. However, African genomes carry significantly fewer SNPs that have been previously characterized as pathogenic compared to non-African genomes. Finding SNPs classified as pathogenic to be the only category of polymorphisms that are more abundant in non-African genomes is best explained by a systematic ascertainment bias that favours the discovery of pathogenic polymorphisms segregating in non-African populations. This further suggests that, contrary to the common disease-common variant hypothesis, pathogenic mutations are largely population-specific and different SNPs may be associated with the same disease in different populations. Therefore, to obtain a comprehensive picture of the deleterious variability in the human population, as well as to improve the diagnostics of individuals carrying African mitochondrial haplotypes, it is necessary to survey different populations independently. This article was reviewed by Dr Mikhail Gelfand, Dr Vasily Ramensky (nominated by Dr Eugene Koonin) and Dr David Rand (nominated by Dr Laurence Hurst).
ERIC Educational Resources Information Center
Carrim, Nazir; Keet, Andre
2005-01-01
This article reflects on experiences of attempting to infuse human rights in the South African Revised National Curriculum Statement (RNCS). Using our experiences as members of Human Rights and Inclusivity Group (HRIWG), one of the curriculum development structures set up for the RNCS, and focusing particularly on the Learning Area of Mathematics,…
A Local Response to the Global Human Rights Standard: The "Ubuntu" Perspective on Human Dignity
ERIC Educational Resources Information Center
Murithi, Tim
2007-01-01
Some African leaders have made the argument that the promotion of an international human rights standard is a strategy that is used and abused by hypocritical Western governments to justify their intervention into the affairs of African countries. The tacit objective behind this articulation is the desire to avoid an external evaluation or…
Experimental Vaccines against Chagas Disease: A Journey through History.
Rodríguez-Morales, Olivia; Monteón-Padilla, Víctor; Carrillo-Sánchez, Silvia C; Rios-Castro, Martha; Martínez-Cruz, Mariana; Carabarin-Lima, Alejandro; Arce-Fonseca, Minerva
2015-01-01
Chagas disease, or American trypanosomiasis, which is caused by the protozoan parasite Trypanosoma cruzi, is primarily a vector disease endemic in 21 Latin American countries, including Mexico. Although many vector control programs have been implemented, T. cruzi has not been eradicated. The development of an anti-T. cruzi vaccine for prophylactic and therapeutic purposes may significantly contribute to the transmission control of Chagas disease. Immune protection against experimental infection with T. cruzi has been studied since the second decade of the last century, and many types of immunogens have been used subsequently, such as killed or attenuated parasites and new DNA vaccines. This primary prevention strategy appears feasible, effective, safe, and inexpensive, although problems remain. The objective of this review is to summarize the research efforts about the development of vaccines against Chagas disease worldwide. A thorough literature review was conducted by searching PubMed with the terms "Chagas disease" and "American trypanosomiasis" together with "vaccines" or "immunization". In addition, reports and journals not cited in PubMed were identified. Publications in English, Spanish, and Portuguese were reviewed.
Jennings, F W; Ulrich, P; Cerami, A
1987-09-01
The efficacy of 1,3,5-triacetylbenzene tris(guanylhydrazone) trihydrochloride i.e. [(TBG)] in the treatment of early and late stage infections of Trypanosoma brucei in mice was investigated. Successful treatment on day 3 after infection could be achieved by doses of 2 X 2.5 mg kg-1. If treatment was delayed to 21 days after infection then the mice had to be given either suramin (1 X 20 mg kg-1) or difluoromethyl-ornithine (DFMO) 2% solution for 14 days in addition to either 15 mg kg-1 (TBG) daily for 4 days or 10 mg kg-1 twice daily for 4 days to obtain permanent cures. Other guanylhydrazone compounds were investigated for the treatment of chronic T. brucei infections and, at the limited dose levels used, failed to give any permanent cures. The use of (TBG) in the treatment of early and late stage infections of T. congolense and T. evansi indicated that treatment on day 3 after infection could be successful but on day 21 after infection the results were disappointing.
Government Voices, People's Voices: Literacy/Adult Education for Progress and Human Welfare.
ERIC Educational Resources Information Center
Nasution, Amir H., Comp.
A compilation of resolutions and recommendations from conferences held by African Governments and African regional and national Adult Education Associations, this booklet shows the progress made in adult education and literacy in the African States. The Conference of African States held in Addis Ababa May 15-25, 1961 laid the foundation for adult…
Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods.
Madikizela, Lawrence Mzukisi; Tavengwa, Nikita Tawanda; Chimuka, Luke
2017-05-15
In this review paper, the milestones and challenges that have been achieved and experienced by African Environmental Scientists regarding the assessment of water pollution caused by the presence of pharmaceutical compounds in water bodies are highlighted. The identification and quantification of pharmaceuticals in the African water bodies is important to the general public at large due to the lack of information. The consumption of pharmaceuticals to promote human health is usually followed by excretion of these drugs via urine or fecal matter due to their slight transformation in the human metabolism. Therefore, large amounts of pharmaceuticals are being discharged continuously from wastewater treatment plants into African rivers due to inefficiency of employed sewage treatment processes. Large portions of African communities do not even have proper sanitation systems which results in direct contamination of water resources with human waste that contains pharmaceutical constituents among other pollutants. Therefore, this article provides the overview of the recent studies published, mostly from 2012 to 2016, that have focused on the occurrence of different classes of pharmaceuticals in African aqueous systems. Also, the current analytical methods that are being used in Africa for pharmaceutical quantification in environmental waters are highlighted. African Scientists have started to investigate the materials and remediation processes for the elimination of pharmaceuticals from water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global Change and Human Vulnerability to Vector-Borne Diseases
Sutherst, Robert W.
2004-01-01
Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459
Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E; Bedoya, Gabriel
2015-01-01
Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.
Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E.; Bedoya, Gabriel
2015-01-01
Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations. PMID:26360617
Trypanosomiasis and trypanotolerance in cattle: a role for congopain?
Authié, E
1994-09-01
A Trypanosoma congolense cysteine protease (congopain) elicits a high IgG response in trypanotolerant but not in trypanosusceptible cattle during primary infections. As discussed here by Edith Authié, this observation suggests that congopain, like other parasite cysteine proteases, may play a role in pathogenicity and that more efficient immune responses to congopain may contribute to trypanotolerance.
Agricultural Bioterrorism: A Federal Strategy to Meet the Threat
2002-01-01
sickness* Anthrax Avian influenza* Foot and mouth disease* Bluetongue* Hog cholera/classical swine fever* Bovine spongiform encephalopathy* Ornithosis...Psittacocis Contagious bovine pleuropneumonia* Rinderpest* Lumpy skin disease* Trypanosomiasis Newcastle disease* Poxvirus Paratuberculosis/Johne’s...including the animal diseases Bovine Spongi- form Encephalopathy, as well as Hendrah and Nipah viruses.154 An ex- panded research initiative should
Arteriviruses, Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys.
Bailey, Adam L; Lauck, Michael; Ghai, Ria R; Nelson, Chase W; Heimbruch, Katelyn; Hughes, Austin L; Goldberg, Tony L; Kuhn, Jens H; Jasinska, Anna J; Freimer, Nelson B; Apetrei, Cristian; O'Connor, David H
2016-08-01
Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Arteriviruses, Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys
Bailey, Adam L.; Lauck, Michael; Ghai, Ria R.; Nelson, Chase W.; Heimbruch, Katelyn; Hughes, Austin L.; Goldberg, Tony L.; Jasinska, Anna J.; Freimer, Nelson B.; Apetrei, Cristian
2016-01-01
ABSTRACT Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts. PMID:27170760
The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.
Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P; Song, Yun S; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R; Behar, Doron M; Bravi, Claudio M; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T S; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael F; Kivisild, Toomas; Klitz, William; Winkler, Cheryl A; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B; Tishkoff, Sarah A; Watkins, W Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David
2016-10-13
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
The Simons Genome Diversity Project: 300 genomes from 142 diverse populations
Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P.; Song, Yun S.; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R.; Behar, Doron M.; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L.; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M. Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M.; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B.; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M.; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T. S.; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael; Kivisild, Toomas; Klitz, William; Winkler, Cheryl; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B.; Tishkoff, Sarah A.; Watkins, W. Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David
2016-01-01
We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioral modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that in other non-Africans. PMID:27654912
ERIC Educational Resources Information Center
Adelowotan, Mo
2014-01-01
This paper discusses the role of open, distance and e-learning in the development of human resources by examining human capital development related disclosures in the corporate annual reports (CARs) of top South African listed companies. The study employed content analysis method to analyse the CARs of these companies with the aid of qualitative…
The vertebral formula of the last common ancestor of African apes and humans.
McCollum, Melanie A; Rosenman, Burt A; Suwa, Gen; Meindl, Richard S; Lovejoy, C Owen
2010-03-15
The modal number of lumbar vertebrae in modern humans is five. It varies between three and four in extant African apes (mean=3.5). Because both chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) possess the same distributions of thoracic, lumbar, and sacral vertebrae, it has been assumed from parsimony that the last common ancestor (LCA) of African apes and humans possessed a similarly short lower back. This "short-backed LCA" scenario has recently been viewed favorably in an analysis of the intra- and interspecific variation in axial formulas observed among African apes and humans (Pilbeam, 2004. J Exp Zool 302B:241-267). However, the number of bonobo (Pan paniscus) specimens in that study was small (N=17). Here we reconsider vertebral type and number in the LCA in light of an expanded P. paniscus sample as well as evidence provided by the human fossil record. The precaudal (pre-coccygeal) axial column of bonobos differs from those of chimpanzees and gorillas in displaying one additional vertebra as well as significantly different combinations of sacral, lumbar, and thoracic vertebrae. These findings, along with the six-segmented lumbar column of early Australopithecus and early Homo, suggest that the LCA possessed a long axial column and long lumbar spine and that reduction in the lumbar column occurred independently in humans and in each ape clade, and continued after separation of the two species of Pan as well. Such an explanation is strongly congruent with additional details of lumbar column reduction and lower back stabilization in African apes.
New Regions of the Human Genome Linked to Skin Color Variation in Some African Populations
In the first study of its kind, an international team of genomics researchers has identified new regions of the human genome that are associated with skin color variation in some African populations, opening new avenues for research on skin diseases and cancer in all populations.
NASA Astrophysics Data System (ADS)
Gosha, Kinnis
This dissertation presents the design, development and short-term evaluation of an embodied conversational agent designed to mentor human users. An embodied conversational agent (ECA) was created and programmed to mentor African American computer science majors on their decision to pursue graduate study in computing. Before constructing the ECA, previous research in the fields of embodied conversational agents, relational agents, mentorship, telementorship and successful mentoring programs and practices for African American graduate students were reviewed. A survey used to find areas of interest of the sample population. Experts were then interviewed to collect information on those areas of interest and a dialogue for the ECA was constructed based on the interview's transcripts. A between-group, mixed method experiment was conducted with 37 African American male undergraduate computer science majors where one group used the ECA mentor while the other group pursued mentoring advice from a human mentor. Results showed no significant difference between the ECA and human mentor when dealing with career mentoring functions. However, the human mentor was significantly better than the ECA mentor when addressing psychosocial mentoring functions.
Phylogenetic relations of humans and African apes from DNA sequences in the Psi eta-globin region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, M.M.; Slightom, J.L.; Goodman, M.
Sequences from the upstream and downstream flanking DNA regions of the Psi eta-globin locus in Pan troglodytes (common chimpanzee), Gorilla gorilla (gorilla), and Pongo pygmaeus (orangutan, the closest living relative to Homo, Pan, and Gorilla) provided further data for evaluating the phylogenetic relations of humans and African apes. These newly sequenced orthologs (an additional 4.9 kilobase pairs (kbp) for each species) were combined with published Psi eta-gene sequences and then compared to the same orthologous stretch (a continuous 7.1-kbp region) available for humans. Phylogenetic analysis of these nucleotide sequences by the parsimony method indicated (i) that human and chimpanzee aremore » more closely related to each other than either is to gorilla and (ii) that the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans. These results indicate that features unique to African apes (but not to humans) are primitive and that even local molecular clocks should be applied with caution.« less
Detecting Directional Selection in the Presence of Recent Admixture in African-Americans
Lohmueller, Kirk E.; Bustamante, Carlos D.; Clark, Andrew G.
2011-01-01
We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. PMID:21196524
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa
Baker, J L; Shriner, D; Bentley, A R; Rotimi, C N
2017-01-01
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations. PMID:27779243
Africa: Setting for Human Migration
ERIC Educational Resources Information Center
Buuba, Babacar Diop
2007-01-01
Analysis of African migrations can help to understand prehistoric, historical, ancient modern and contemporaneous migrations. Movements of populations were and continue to be so intense that, for some analysts, they constitute one of the dominant trends of the history and destiny of the very old continent. African and non-African states, whether…
Afrocentricity and History: Mediating the Meaning of Culture in Western Society.
ERIC Educational Resources Information Center
Asante, Molefi Kete
2000-01-01
Discusses how Afrocentricity entered the picture in the western world. Afrocentricity seeks to obliterate the mental, physical, cultural, and economic dislocation of African people by thrusting Africans as centered, healthy human beings in the context of African thought. Examines Eurocentric approaches (dialectical materialism, structuralism, and…
Prole, David L.; Taylor, Colin W.
2013-01-01
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs. PMID:23785469
Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris
2012-01-01
Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845
ERIC Educational Resources Information Center
Kivunja, Charles; Shizha, Edward
2015-01-01
With its origin in Greek where "diaspora" as a noun means "a dispersion" or as a verb means to "scatter about", the term is used in this paper to refer to the dispersion or scattering of Africans from their original African homeland and now live in countries other than their own. Indeed some Africans have dispersed…
Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.
2016-01-01
Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167
Jeliazkova, Ekaterina; Zheljazkov, Valtcho D; Kačániova, Miroslava; Astatkie, Tess; Tekwani, Babu L
2018-06-07
The profile and bioactivity of hops (Humulus lupulus L.) essential oil, a complex natural product extracted from cones via steam distillation, depends on genetic and environmental factors, and may also depend on extraction process. We hypothesized that compound mixtures eluted sequentially and captured at different timeframes during the steam distillation process of whole hop cones would have differential chemical and bioactivity profiles. The essential oil was collected sequentially at 8 distillation time (DT) intervals: 0-2, 2-5, 5-10, 10-30, 30-60, 60-120, 120-180, and 180-240 min. The control was a 4-h non-interrupted distillation. Nonlinear regression models described the DT and essential oil compounds relationship. Fractions yielded 0.035 to 0.313% essential oil, while control yielded 1.47%. The oil eluted during the first hour was 83.2%, 9.6% during the second hour, and only 7.2% during the second half of the distillation. Essential oil (EO) fractions had different chemical profile. Monoterpenes were eluted early, while sequiterpenes were eluted late. Myrcene and linalool were the highest in 0-2 min fraction, β-caryophyllene, β-copaene, β-farnesene, and α-humulene were highest in fractions from middle of distillation, whereas α- bergamotene, γ-muurolene, β- and α-selinene, γ- and δ-cadinene, caryophyllene oxide, humulne epoxide II, τ-cadinol, and 6-pentadecen-2-one were highest in 120-180 or 180-240 min fractions. The Gram-negative Escherichia coli was strongly inhibited by essential oil fractions from 2-5 min and 10-30 min, followed by oil fraction from 0-2 min. The strongest inhibition activity against Gram-negative Yersinia enterocolitica, and Gram-positive Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus subs. aureus was observed with the control essential oil. This is the first study to describe significant activity of hops essential oils against Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis (sleeping sickness in humans and nagana in other animals). Hops essential oil fractions or whole oil may be used as antimicrobial agents or for the development of new drugs.
Jain, Surendra; Jacob, Melissa; Walker, Larry; Tekwani, Babu
2016-05-18
Human African Trypanosomiasis (HAT) is a protozoan parasitic disease caused by Trypanosoma brucei. The disease is endemic in regions of sub-Saharan Africa, covering 36 countries and more than 60 million people at the risk. Only few drugs are available for the treatment of HAT. Current drugs suffer from severe toxicities and require intramuscular or intravenous administrations. The situation is further aggravated due to the emergence of drug resistance. There is an urgent need of new drugs that are effective orally against both stages of HAT. Natural products offer an unmatched source for bioactive molecules with new chemotypes. The extracts prepared from 522 plants collected from various parts of the North America were screened in vitro against blood stage trypamastigote forms of T. brucei. Active extracts were further screened at concentrations ranging from 10 to 0.4 μg/mL. Active extracts were also investigated for toxicity in Differentiated THP1 cells at 10 μg/mL concentration. The results were computed for dose-response analysis and determination of IC50/IC90 values. A significant number (150) of extracts showed >90 % inhibition of growth of trypomastigote blood forms of T. brucei in primary screening at 20 μg/mL concentration. The active extracts were further investigated for dose-response inhibition of T. brucei growth. The antitrypansomal activity of 125 plant extracts was confirmed with IC50 < 10 μg/mL. None of these active extracts showed toxicity against differentiated THP1 cells. Eight plants extracts namely, Alnus rubra, Hoita macrostachya, Sabal minor, Syzygium aqueum, Hamamelis virginiana, Coccoloba pubescens, Rhus integrifolia and Nuphar luteum were identified as highly potent antitrypanosomal extracts with IC50 values <1 μg/mL. Limited phytochemical and pharmacological reports are available for the lead plant extracts with potent antitrypanosomal activity. Follow up evaluation of these plant extracts is likely to yield new antitrypanosomal drug-leads or alternate medicines for treatment of HAT.
Palomba, M; Seke-Etet, P F; Laperchia, C; Tiberio, L; Xu, Y-Z; Colavito, V; Grassi-Zucconi, G; Bentivoglio, M
2015-04-02
Human African trypanosomiasis or sleeping sickness is a severe, neglected tropical disease caused by the extracellular parasite Trypanosoma brucei. The disease, which leads to chronic neuroinflammation, is characterized by sleep and wake disturbances, documented also in rodent models. In rats and mice infected with Trypanosoma brucei brucei, we here tested the hypothesis that the disease could target neurons of the lateral hypothalamus (LH) containing orexin (OX)-A or melanin-concentrating hormone (MCH), implicated in sleep/wake regulation. In the cerebrospinal fluid of infected rats, the OX-A level was significantly decreased early after parasite neuroinvasion, and returned to the control level at an advanced disease stage. The number of immunohistochemically characterized OX-A and MCH neurons decreased significantly in infected rats during disease progression and in infected mice at an advanced disease stage. A marked reduction of the complexity of dendritic arborizations of OX-A neurons was documented in infected mice. The evaluation of NeuN-immunoreactive neurons did not reveal significant neuronal loss in the LH of infected mice, thus suggesting a potential selective vulnerability of OX-A and MCH neurons. Immunophenotyping and quantitative analysis showed in infected mice marked activation of microglial cells surrounding OX-A neurons. Day/night oscillation of c-Fos baseline expression was used as marker of OX-A neuron activity in mice. In control animals Fos was expressed in a higher proportion of OX-A neurons in the night (activity) phase than in the day (rest) phase. Interestingly, in infected mice the diurnal spontaneous Fos oscillation was reversed, with a proportion of OX-A/Fos neurons significantly higher at daytime than at nighttime. Altogether the findings reveal a progressive decrease of OX-A and MCH neurons and dysregulation of OX-A neuron diurnal activity in rodent models of sleeping sickness. The data point to the involvement of these peptidergic neurons in the pathogenesis of sleep/wake alterations in the disease and to their vulnerability to inflammatory signaling. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Towards Human Rights in South African Schools: An Agenda for Research and Practice.
ERIC Educational Resources Information Center
Kruss, Glenda
2001-01-01
Develops a taxonomy of four kinds of situations in which race and other grounds for discrimination become the focus of school-level controversy surrounding equality and equity. Examines the kinds of responses and discourses South African schools use to engage with the policy discourse of desegregation and human rights and establishes an agenda for…
South African Educators' Mutually Inclusive Mandates to Promote Human Rights and Positive Discipline
ERIC Educational Resources Information Center
Coetzee, Susan; Mienie, Cathrine
2013-01-01
South African educators are mandated by international and national law to observe and promote human rights. However, given the realities of the limited teaching time available, educators cannot fulfill this obligation solely by teaching the curriculum. Another avenue needs to be found for educators to fulfill this obligation. Educators are also…
Ahmed, Heba A; MacLeod, Ewan T; Hide, Geoff; Welburn, Susan C; Picozzi, Kim
2011-05-07
Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable difficulties exist when using these approaches in the field environment. In large scale epidemiological studies, FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples. However, there are some difficulties in the downstream processing of these cards which is essential for the accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR. A comparison of five techniques was made. Detection from directly applied whole blood was less sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%). Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%) although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was not significantly different from direct DNA extraction from blood in the field (68.3%). Based on these results, the degree of effort required for each of these techniques and the difficulty of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed by elution in Chelex®100 as the best approach.
Using meta-quality to assess the utility of volunteered geographic information for science.
Langley, Shaun A; Messina, Joseph P; Moore, Nathan
2017-11-06
Volunteered geographic information (VGI) has strong potential to be increasingly valuable to scientists in collaboration with non-scientists. The abundance of mobile phones and other wireless forms of communication open up significant opportunities for the public to get involved in scientific research. As these devices and activities become more abundant, questions of uncertainty and error in volunteer data are emerging as critical components for using volunteer-sourced spatial data. Here we present a methodology for using VGI and assessing its sensitivity to three types of error. More specifically, this study evaluates the reliability of data from volunteers based on their historical patterns. The specific context is a case study in surveillance of tsetse flies, a health concern for being the primary vector of African Trypanosomiasis. Reliability, as measured by a reputation score, determines the threshold for accepting the volunteered data for inclusion in a tsetse presence/absence model. Higher reputation scores are successful in identifying areas of higher modeled tsetse prevalence. A dynamic threshold is needed but the quality of VGI will improve as more data are collected and the errors in identifying reliable participants will decrease. This system allows for two-way communication between researchers and the public, and a way to evaluate the reliability of VGI. Boosting the public's ability to participate in such work can improve disease surveillance and promote citizen science. In the absence of active surveillance, VGI can provide valuable spatial information given that the data are reliable.
Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms
Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David
2012-01-01
Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control <[2-13C]leucine<[2-13C]acetate<[1-13C]glucose) and corresponding depletion of cholesta-5,7,24-trienol. We conclude that anabolic fluxes originating in mitochondrial metabolism constitute a flexible part of sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028
Steinmann, Michael E; González-Salgado, Amaia; Bütikofer, Peter; Mäser, Pascal; Sigel, Erwin
2015-08-01
Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei. © FASEB.
African rainforests: past, present and future
Malhi, Yadvinder; Adu-Bredu, Stephen; Asare, Rebecca A.; Lewis, Simon L.; Mayaux, Philippe
2013-01-01
The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century. PMID:23878339
The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing
Culleton, Richard; Coban, Cevayir; Zeyrek, Fadile Yildiz; Cravo, Pedro; Kaneko, Akira; Randrianarivelojosia, Milijaona; Andrianaranjaka, Voahangy; Kano, Shigeyuki; Farnert, Anna; Arez, Ana Paula; Sharp, Paul M.; Carter, Richard; Tanabe, Kazuyuki
2011-01-01
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa. PMID:22195007
Genetic recombination events between sympatric Clade A and Clade C lice in Africa.
Veracx, Aurélie; Boutellis, Amina; Raoult, Didier
2013-09-01
Human head and body lice have been classified into three phylogenetic clades (Clades A, B, and C) based on mitochondrial DNA. Based on nuclear markers (the 18S rRNA gene and the PM2 spacer), two genotypes of Clade A head and body lice, including one that is specifically African (Clade A2), have been described. In this study, we sequenced the PM2 spacer of Clade C head lice from Ethiopia and compared these sequences with sequences from previous works. Trees were drawn, and an analysis of genetic diversity based on the cytochrome b gene and the PM2 spacer was performed for African and non-African lice. In the tree drawn based on the PM2 spacer, the African and non-African lice formed separate clusters. However, Clade C lice from Ethiopia were placed within the African Clade A subcluster (Clade A2). This result suggests that recombination events have occurred between Clade A2 lice and Clade C lice, reflecting the sympatric nature of African lice. Finally, the PM2 spacer and cytochrome b gene sequences of human lice revealed a higher level of genetic diversity in Africa than in other regions.
Limited Evidence for Classic Selective Sweeps in African Populations
Granka, Julie M.; Henn, Brenna M.; Gignoux, Christopher R.; Kidd, Jeffrey M.; Bustamante, Carlos D.; Feldman, Marcus W.
2012-01-01
While hundreds of loci have been identified as reflecting strong-positive selection in human populations, connections between candidate loci and specific selective pressures often remain obscure. This study investigates broader patterns of selection in African populations, which are underrepresented despite their potential to offer key insights into human adaptation. We scan for hard selective sweeps using several haplotype and allele-frequency statistics with a data set of nearly 500,000 genome-wide single-nucleotide polymorphisms in 12 highly diverged African populations that span a range of environments and subsistence strategies. We find that positive selection does not appear to be a strong determinant of allele-frequency differentiation among these African populations. Haplotype statistics do identify putatively selected regions that are shared across African populations. However, as assessed by extensive simulations, patterns of haplotype sharing between African populations follow neutral expectations and suggest that tails of the empirical distributions contain false-positive signals. After highlighting several genomic regions where positive selection can be inferred with higher confidence, we use a novel method to identify biological functions enriched among populations’ empirical tail genomic windows, such as immune response in agricultural groups. In general, however, it seems that current methods for selection scans are poorly suited to populations that, like the African populations in this study, are affected by ascertainment bias and have low levels of linkage disequilibrium, possibly old selective sweeps, and potentially reduced phasing accuracy. Additionally, population history can confound the interpretation of selection statistics, suggesting that greater care is needed in attributing broad genetic patterns to human adaptation. PMID:22960214
Education and the Quest for Human Completion: The African and Afro-American Perspectives Compared.
ERIC Educational Resources Information Center
Mungazi, Dickson A.
This paper examines the concept of human completion, as applied to both the African and the Afro-American experience, and how the search for completion by the individual influences the collective society. The theoretical concepts of Paulo Freire and Albert Memmi are applied to both groups. Both groups have been denied equal opportunity for…
ERIC Educational Resources Information Center
Williams, Rihana S.; Ari, Omer; Dortch, Cedrick
2011-01-01
African American adolescents from families with low levels of human capital (i.e., caregiver level of education) are at risk for poor early adult outcomes. The current study examined the relationships among 48 African American high school students' literacy performance (e.g., reading and vocabulary), their implicit views of intelligence, their…
Kant's Conception of Respect and African American Education Rights
ERIC Educational Resources Information Center
Bynum, Gregory Lewis
2011-01-01
Immanuel Kant envisioned a kind of respect in which one recognizes each human (1) as being not fully comprehensible by any human understanding, (2) as being an end in him- or herself, and (3) as being a potential source of moral law. In this essay, Gregory Lewis Bynum uses this conception of respect as a lens with which to examine African American…
Vers un nouvel humanisme : la perspective africaine
NASA Astrophysics Data System (ADS)
Ouane, Adama
2014-06-01
Towards a new humanism: the African perspective - The new integrated holistic humanism is a construct based on a number of frameworks with shared foundations. This article is dedicated to the African perspective, which is simply Africa's contribution to a universal civilisation based on humanistic values that are preserved and constantly rediscovered. The central hypothesis is one of fusion and cross-fertilisation which have followed a variety of paths. The first stage is that of affirming and reclaiming the black identity, and the second is the melding of cultural identities embodied in pan-Africanism, which is itself a bridge to pan-humanism. Both are the result of contact with western civilisation and culture through the medium of colonialism, as a form of domination, assimilation or subordination. They are marked by this proximity, and demand more detailed and endogenous reflection that incorporates precolonial secular values and practices. This is the premise on which the African renaissance is built, and each of its currents has its own ideologues, poets, eulogists and political champions. This analysis indicates that no specific national culture or civilisation can be regarded as the benchmark of human being and becoming, even though everyone is entitled to affirm their specific contribution and perspective.
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus
Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-01-01
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health. PMID:29652824
Finelli, P; Stanyon, R; Plesker, R; Ferguson-Smith, M A; O'Brien, P C; Wienberg, J
1999-07-01
We used reciprocal chromosome painting with both African green monkey (C. aethiops) and human chromosome specific DNA probes to delineate homologous regions in the two species. Probes were derived by fluorescence-activated chromosome flow sorting and then were reciprocally hybridized to metaphase spreads of each species. Segments in the size range of a single chromosome band were identified, demonstrating the sensitivity of the approach when comparing species that diverged more than 20 million years ago. Outgroup analysis shows that the great difference in diploid numbers between the African green monkey (2n = 60) and humans (2n = 46) is mainly owing to fissions, and the direction of change is towards increasing diploid numbers. However, most break points apparently lie outside of the centromere regions, suggesting that the changes were not solely Robertsonian as has been previously assumed. No reciprocal translocations have occurred in the phylogenetic lines leading to humans or African green monkeys. The primate paints established here are a valuable tool to establish interspecies homology, to define rearrangements, and to determine the mechanisms of chromosomal evolution in primate species.
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus.
Faye, Martin; Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Weidmann, Manfred; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-04-13
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
A revised timescale for human evolution based on ancient mitochondrial genomes
Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2016-01-01
Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248
A revised timescale for human evolution based on ancient mitochondrial genomes.
Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2013-04-08
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
van Klinken, Adriaan S; Gunda, Masiiwa Ragies
2012-01-01
Against the background of the HIV epidemic and the intense public controversy on homosexuality in African societies, this article investigates the discourses of academic African Christian theologians on homosexuality. Distinguishing some major strands in African theology, that is, inculturation, liberation, women's and reconstruction theology, the article examines how the central concepts of culture, liberation, justice, and human rights function in these discourses. On the basis of a qualitative analysis of a large number of publications, the article shows that stances of African theologians are varying from silence and rejection to acceptance. Although many African theologians have taken up the cudgels against gay rights, some "dissident voices" break the taboo and develop more inclusive concepts of African identity and African Christianity.
The isolation and identification of Trypanosoma cruzi from raccoons in Maryland
Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.
1958-01-01
Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.
Banister, Carolyn E.; Messersmith, Amy R.; Cai, Bo; Spiryda, Lisa B.; Glover, Saundra H.; Pirisi, Lucia; Creek, Kim E.
2015-01-01
Background. Cervical cancer incidence and mortality rates are higher in African Americans than in European Americans (white, non-Hispanic of European ancestry). The reasons for this disparity are not known. Methods. We recruited a population-based longitudinal cohort of 326 European American and 113 African American female college freshmen in Columbia, South Carolina, to compare clearance of high-risk human papillomavirus (HR-HPV) infection between ethnicities. HPV testing and typing from samples obtained for Papanicolaou testing occurred every 6 months. Results. African American participants had an increased risk of testing positive for HR-HPV, compared with European American participants, but the frequency of incident HPV infection was the same in African American and European American women. Thus, exposure to HPV could not explain the higher rate of HPV positivity among African American women. The time required for 50% of participants to clear HR-HPV infection was 601 days for African American women (n = 63) and 316 days for European American women (n = 178; odds ratio [OR], 1.61; 95% confidence interval [CI], 1.08–2.53). African American women were more likely than European American women to have an abnormal result of a Papanicolaou test (OR, 1.58; 95% CI, 1.05–2.39). Conclusions. We propose that the longer time to clearance of HR-HPV among African American women leads to increased rates of abnormal results of Papanicolaou tests and contributes to the increased rates of cervical cancer observed in African American women. PMID:25028692
Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra
2015-01-01
Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas are unlikely to remain effective for wildcat conservation, as the proximity to human settlements around these areas is projected to increase the wild/domestic animal interface. Thus, large, isolated protected areas will become increasingly important for wildcat conservation and efforts need to be made to prevent introduction of domestic cats into these areas. PMID:25691958
Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra
2015-01-01
Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas are unlikely to remain effective for wildcat conservation, as the proximity to human settlements around these areas is projected to increase the wild/domestic animal interface. Thus, large, isolated protected areas will become increasingly important for wildcat conservation and efforts need to be made to prevent introduction of domestic cats into these areas.
Hill, P; Wynder, E L; Garbaczewski, L; Garnes, H; Walker, A R
1982-05-01
A comparative study of the pituitary and testicular response to luteinizing releasing hormone (LHRH), thyrotrophic releasing hormone (TRH), and human chorionic gonadotrophin (HCG) administration was carried out in (a) low-risk young South African black men and high-risk North American black men for prostatic cancer and (b) healthy elderly South African men and South African black men with prostatic cancer. A comparable HCG response occurred in young South African and North American black men, while a greater release of prolactin, but a lesser release of luteinizing hormone in response to LHRH:TRH occurred in South African black men. The response to HCG was comparable in elderly and young South African black men, although the prolactin release in response to TRH was greater in elderly men. A more prolonged release of luteinizing hormone was evident in men with prostatic cancer. Higher estradiol and estrone but lower androstenedione levels occurred in men with prostatic cancer. Data suggest that, in the elderly South African black men with prostatic cancer, estrogen metabolism is modified and that either the estrogen level or the higher estrogen:androgen levels modify the pituitary response to LHRH:TRH. A Western diet enhanced the changes in hormone profiles evident in black South African men with prostatic cancer.
Detecting directional selection in the presence of recent admixture in African-Americans.
Lohmueller, Kirk E; Bustamante, Carlos D; Clark, Andrew G
2011-03-01
We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. © 2011 by the Genetics Society of America
Dale, Robert H I
2010-01-01
African (Loxodonta africana) and Asian elephants (Elephas maximus) have lived in the care of humans for many years, yet there is no consensus concerning some basic parameters describing their newborn calves. This study provides a broad empirical basis for generalizations about the birth heights, birth weights, birth times and gestation periods of elephant calves born in captivity. I obtained data concerning at least one of these four characteristics for 218 newborn calves from 74 institutions. Over the past 30 years, newborn Asian elephants have been taller and heavier than newborn African elephants. Neonatal African elephants exhibited sex differences in both weight and height, whereas neonatal Asian elephants have exhibited sex differences only in height. Primiparous dams ex situ are at least as old as their in situ counterparts, whereas ex situ sires appear to be younger than sires in range countries. Confirming earlier anecdotal evidence, both African [N=47] and Asian [N=91] dams gave birth most often at night.
ERIC Educational Resources Information Center
Grigsby, Sheila R.
2018-01-01
African American girls experience disparate rates of pregnancy and acquisition of sexually transmitted infections, including human immunodeficiency virus, when compared to their non-Hispanic White counterparts. Among African American girls, current pregnancy rates are equal to the national crisis levels of teen pregnancy reported in 1990. This…