Science.gov

Sample records for human aldo-keto reductase

  1. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.

    PubMed

    Chang, Qing; Griest, Terry A; Harter, Theresa M; Petrash, J Mark

    2007-03-01

    We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  2. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae*

    PubMed Central

    Chang, Qing; Griest, Terry A.; Harter, Theresa M.; Petrash, J. Mark

    2007-01-01

    SUMMARY We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  3. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    PubMed

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency.

  4. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol

    PubMed Central

    Endo, Satoshi; Matsunaga, Toshiyuki; Ohta, Chisato; Soda, Midori; Kanamori, Ayano; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH. PMID:21187079

  5. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons.

    PubMed

    Penning, Trevor M

    2014-11-17

    Aldo-keto reductases (AKRs) are promiscuous NAD(P)(H) dependent oxidoreductases implicated in the metabolic activation of polycyclic aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen species (ROS). The PAH o-quinones are Michael acceptors and can form adducts but are also redox-active and enter into futile redox cycles to amplify ROS formation. Evidence exists to support this metabolic pathway in humans. The human recombinant AKR1A1 and AKR1C1-AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating ROS formation. Moreover, this pathway of PAH activation occurs in a panel of human lung cell lines, resulting in the production of ROS and oxidative DNA damage in the form of 8-oxo-2'-deoxyguanosine. Using stable-isotope dilution liquid chromatography tandem mass spectrometry, this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide pathway to the activation of this human carcinogen in human lung cells. Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on p53 showed that the o-quinone produced by AKRs was the more potent mutagen, provided that it was permitted to redox cycle, and that the mutations observed were G to T transversions, reminiscent of those observed in human lung cancer. It is concluded that there is sufficient evidence to support the role of human AKRs in the metabolic activation of PAH in human lung cell lines and that they may contribute to the causation of human lung cancer.

  6. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    2015-01-01

    Aldo-keto reductases (AKRs) are promiscuous NAD(P)(H) dependent oxidoreductases implicated in the metabolic activation of polycyclic aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen species (ROS). The PAH o-quinones are Michael acceptors and can form adducts but are also redox-active and enter into futile redox cycles to amplify ROS formation. Evidence exists to support this metabolic pathway in humans. The human recombinant AKR1A1 and AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating ROS formation. Moreover, this pathway of PAH activation occurs in a panel of human lung cell lines, resulting in the production of ROS and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine. Using stable-isotope dilution liquid chromatography tandem mass spectrometry, this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide pathway to the activation of this human carcinogen in human lung cells. Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on p53 showed that the o-quinone produced by AKRs was the more potent mutagen, provided that it was permitted to redox cycle, and that the mutations observed were G to T transversions, reminiscent of those observed in human lung cancer. It is concluded that there is sufficient evidence to support the role of human AKRs in the metabolic activation of PAH in human lung cell lines and that they may contribute to the causation of human lung cancer. PMID:25279998

  7. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  8. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-01

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  9. Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity toward steroids and 3-keto-acyl-CoA conjugates.

    PubMed

    Weber, Susanne; Salabei, Joshua K; Möller, Gabriele; Kremmer, Elisabeth; Bhatnagar, Aruni; Adamski, Jerzy; Barski, Oleg A

    2015-03-01

    Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.

  10. Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde

    PubMed Central

    Ruiz, F. Xavier; Moro, Armando; Gallego, Oriol; Ardèvol, Albert; Rovira, Carme; Petrash, J. Mark; Parés, Xavier; Farrés, Jaume

    2011-01-01

    NADP(H)-dependent cytosolic aldo-keto reductases (AKR) are mostly monomeric enzymes which fold into a typical (α/β)8-barrel structure. Substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable loops (A, B, and C). Based on sequence identity, AKR have been grouped into families, namely AKR1–AKR15, containing multiple subfamilies. Two human enzymes from the AKR1B subfamily (AKR1B1 and AKR1B10) are of special interest. AKR1B1 (aldose reductase) is related to secondary diabetic complications, while AKR1B10 is induced in cancer cells and is highly active with all-trans-retinaldehyde. Residues interacting with all-trans-retinaldehyde and differing between AKR1B1 and AKR1B10 are Leu125Lys and Val131Ala (loop A), Leu301Val, Ser303Gln, and Cys304Ser (loop C). Recently, we demonstrated the importance of Lys125 as a determinant of AKR1B10 specificity for retinoids. Residues 301 and 304 are also involved in interactions with substrates or inhibitors, and thus we checked their contribution to retinoid specificity. We also extended our study with retinoids to rodent members of the AKR1B subfamily: AKR1B3 (aldose reductase), AKR1B7 (mouse vas deferens protein), AKR1B8 (fibroblast-growth factor 1-regulated protein), and AKR1B9 (Chinese hamster ovary reductase), which were tested against all-trans isomers of retinaldehyde and retinol. All enzymes were active with retinaldehyde, but with kcat values (0.02–0.52 min−1) much lower than that of AKR1B10 (27 min−1). None of the enzymes showed oxidizing activity with retinol. Since these enzymes (except AKR1B3) have Lys125, other residues should account for retinaldehyde specificity. Here, by using site-directed mutagenesis and molecular modeling, we further delineate the contribution of residues 301 and 304. We demonstrate that besides Lys125, Ser304 is a major structural determinant for all-trans-retinaldehyde specificity of AKR1B10. PMID:21329680

  11. Oxidation of PAH trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10

    PubMed Central

    Quinn, Amy M.; Harvey, Ronald G.; Penning, Trevor M.

    2009-01-01

    AKR1B10 has been identified as a potential biomarker for human non-small cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro, and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (−)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols. PMID:18788756

  12. Identification of a role for a mouse sperm surface aldo-keto reductase (AKR1B7) and its human analogue in the detoxification of the reactive aldehyde, acrolein.

    PubMed

    Jagoe, W N; Howe, K; O'Brien, S C; Carroll, J

    2013-10-01

    Mouse vas deferens protein (AKR1B7), a member of the aldo-keto reductase family, was purified to homogeneity. Antibodies raised to AKR1B7 revealed an aldo-keto reductase on the human sperm surface, while confocal microscopy experiments demonstrated that this enzyme covered the entire human sperm surface and was concentrated on the mid-piece. Further functional characterisation of a recombinant form of AKR1B7 showed that the likely role of AKR1B7 is the reduction of the reactive aldehyde, acrolein, a by-product of spermine catabolism in the reproductive tract. A similar acrolein detoxification activity was displayed by human sperm membrane extracts but was not present in seminal plasma. These results indicate that human sperm possess an aldo-keto reductase on their membrane surface and are thus enzymatically protected against reactive aldehyde species both in the male and female reproductive tract.

  13. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  14. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

  15. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  16. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  17. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  18. Expression of Aldo-Keto Reductase Family 1 Member B10 in the Early Stages of Human Hepatocarcinogenesis

    PubMed Central

    Tsuzura, Hironori; Genda, Takuya; Sato, Shunsuke; Murata, Ayato; Kanemitsu, Yoshio; Narita, Yutaka; Ishikawa, Sachiko; Kikuchi, Tetsu; Mori, Masashi; Hirano, Katsuharu; Iijima, Katsuyori; Wada, Ryo; Ichida, Takafumi

    2014-01-01

    Aldo-keto reductase family 1, member B10 (AKR1B10), a cancer-related oxidoreductase, is expressed in well-differentiated hepatocellular carcinomas (HCCs). However, AKR1B10 levels are minimal in normal liver tissues (NLs), similar to the 70-kilodalton heat shock protein (HSP70) and glypican-3. Moreover, the role of AKR1B10 in chronic hepatitis or cirrhosis, which are considered preneoplastic conditions for HCC, has not been fully elucidated. The aim of this study was to evaluate the expression of AKR1B10, HSP70, and glypican-3 in 61 HCC tissue samples compared to corresponding non-tumorous liver tissues (NTs), comprising 42 chronic hepatitis and 19 cirrhosis cases to clarify the significance of molecular changes at the preneoplastic stages of HCC. Immunohistochemical analysis demonstrated that the median expression levels of AKR1B10 were higher in HCCs than in NTs (p < 0.001) and higher in NTs than NLs (p < 0.001) with 54.8%, 2.1%, and 0.3% expression in HCCs, NTs, and NLs, respectively. HSP70 and glypican-3 were expressed in HCCs, but minimally in NTs and NLs with no significant difference between expression in NTs and NLs. Furthermore, a multivariate analysis identified an association between hepatic steatosis and AKR1B10 expression in NTs (p = 0.020). Of the three protein expressed in well-differentiated HCCs, only AKR1B10 was upregulated in preneoplastic conditions, and a steatosis-related factor might influence its expression. PMID:24747592

  19. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids

    PubMed Central

    Gallego, Oriol; Belyaeva, Olga V.; Porté, Sergio; Ruiz, F. Xavier; Stetsenko, Anton V.; Shabrova, Elena V.; Kostereva, Natalia V.; Farrés, Jaume; Parés, Xavier; Kedishvili, Natalia Y.

    2006-01-01

    Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low Km values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low Km values for retinoids (0.12–1.1 μM), whilst they strongly differ in their kcat values, which range from 0.35 min−1 for AKR1B1 to 302 min−1 for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. PMID:16787387

  20. Functional genomic studies of aldo-keto reductases.

    PubMed

    Petrash, J M; Murthy, B S; Young, M; Morris, K; Rikimaru, L; Griest, T A; Harter, T

    2001-01-30

    Aldose reductase (AR) is considered a potential mediator of diabetic complications and is a drug target for inhibitors of diabetic retinopathy and neuropathy in clinical trials. However, the physiological role of this enzyme still has not been established. Since effective inhibition of diabetic complications will require early intervention, it is important to delineate whether AR fulfills a physiological role that cannot be compensated by an alternate aldo-keto reductase. Functional genomics provides a variety of powerful new tools to probe the physiological roles of individual genes, especially those comprising gene families. Several eucaryotic genomes have been sequenced and annotated, including yeast, nematode and fly. To probe the function of AR, we have chosen to utilize the budding yeast Saccharomyces cerevisiae as a potential model system. Unlike Caenorhabditis elegans and D. melanogaster, yeast provides a more desirable system for our studies because its genome is manipulated more readily and is able to sustain multiple gene deletions in the presence of either drug or auxotrophic selectable markers. Using BLAST searches against the human AR gene sequence, we identified six genes in the complete S. cerevisiae genome with strong homology to AR. In all cases, amino acids thought to play important catalytic roles in human AR are conserved in the yeast AR-like genes. All six yeast AR-like open reading frames (ORFs) have been cloned into plasmid expression vectors. Substrate and AR inhibitor specificities have been surveyed on four of the enzyme forms to identify, which are the most functionally similar to human AR. Our data reveal that two of the enzymes (YDR368Wp and YHR104Wp) are notable for their similarity to human AR in terms of activity with aldoses and substituted aromatic aldehydes. Ongoing studies are aimed at characterizing the phenotypes of yeast strains containing single and multiple knockouts of the AR-like genes. PMID:11306085

  1. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1).

    PubMed

    Chen, Mo; Jin, Yi; Penning, Trevor M

    2015-06-01

    Aldo-keto reductases (AKRs) are an expanding family of NAD(P)(H)-dependent oxidoreductases that catalyze the reduction of either carbonyl groups or α,β-unsaturated ketones on a variety of endogenous and exogenous substrates. The enzymes catalyze a sequential ordered bi-bi kinetic mechanism, in which cofactor is bound first and released last. Using human steroid 5β-reductase (AKR1D1) as a representative enzyme, the influence of substrate structure on the rate-limiting steps of AKR catalysis has been previously determined. The rate of the chemistry step was found to differ by two orders of magnitude when different steroid substrates were used in single turnover experiments with AKR1D1. This difference was reflected in multiple turnover experiments. C17-C21 steroid substrates exhibited a fast chemistry step followed by slow product release as suggested by "burst" phase kinetics. By contrast, C27 steroids have a slower chemical step that determines the rate of the reaction and "burst-phase" kinetics are no longer observed. Here we present single turnover kinetic experiments and find that they support the existence of two different binding poses for fast substrates due to their biphasic nature. We also re-interpret the loss of "burst-phase" kinetics in the multiple turnover experiments as due to long range effects of the steroid side-chain interacting with distal parts of the steroid pocket to perturb the reaction trajectory for hydride transfer and thus reduce kcat. The ability of steroid structure and hence binding pose to influence rate determination in steroid transforming AKRs is discussed as a general phenomenon.

  2. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3.

    PubMed

    Knight, L P; Primiano, T; Groopman, J D; Kensler, T W; Sutter, T R

    1999-07-01

    The aflatoxin B1 (AFB1) aldehyde metabolite of AFB1 may contribute to the cytotoxicity of this hepatocarcinogen via protein adduction. Aflatoxin B1 aldehyde reductases, specifically the NADPH-dependent aldo-keto reductases of rat (AKR7A1) and human (AKR7A2), are known to metabolize the AFB1 dihydrodiol by forming AFB1 dialcohol. Using a rat AKR7A1 cDNA, we isolated and characterized a distinct aldo-keto reductase (AKR7A3) from an adult human liver cDNA library. The deduced amino acid sequence of AKR7A3 shares 80 and 88% identity with rat AKR7A1 and human AKR7A2, respectively. Recombinant rat AKR7A1 and human AKR7A3 were expressed and purified from Escherichia coli as hexa-histidine tagged fusion proteins. These proteins catalyzed the reduction of several model carbonyl-containing substrates. The NADPH-dependent formation of AFB1 dialcohol by recombinant human AKR7A3 was confirmed by liquid chromatography coupled to electrospray ionization mass spectrometry. Rabbit polyclonal antibodies produced using recombinant rat AKR7A1 protein were shown to detect nanogram amounts of rat and human AKR7A protein. The amount of AKR7A-related protein in hepatic cytosols of 1, 2-dithiole-3-thione-treated rats was 18-fold greater than in cytosols from untreated animals. These antibodies detected AKR7A-related protein in normal human liver samples ranging from 0.3 to 0.8 microg/mg cytosolic protein. Northern blot analysis showed varying levels of expression of AKR7A RNA in human liver and in several extrahepatic tissues, with relatively high levels in the stomach, pancreas, kidney and liver. Based on the kinetic parameters determined using recombinant human AKR7A3 and AFB1 dihydrodiol at pH 7.4, the catalytic efficiency of this reaction (k2/K, per M/s) equals or exceeds those reported for other enzymes, for example cytochrome P450s and glutathione S-transferases, known to metabolize AFB1 in vivo. These findings indicate that, depending on the extent of AFB1 dihydrodiol formation, AKR

  3. Age-Specific Peculiarities of Modulation of Blood Aldo-Keto Reductase Isoenzyme Spectrum.

    PubMed

    Davydov, V V

    2015-12-01

    The aldo-keto reductase spectrum of the blood was studied at different stages of ontogeny to elucidate the role of reduction pathway in utilization of the carbonyl products of free radical oxidation in modulation of organism sensitivity to the damaging effect of stress during ontogeny. The studies revealed the age-specific changes in aldo-keto reductase spectrum in the blood. An analogy of the aldo-keto reductase spectrum structure in animals of early maturity and in old rats was found. The appearance of age specificity of the aldo-keto reductase spectrum in the blood creates metabolic prerequisites for changes in the efficiency of utilization of carbonyl products of free radical oxidation via their reductive transformation.

  4. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  5. Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis.

    PubMed

    Selga, Elisabet; Noé, Véronique; Ciudad, Carlos J

    2008-01-15

    While studying differentially expressed genes between sensitive and 10(-5)M Methotrexate (MTX) resistant HT29 human colon cancer cells, we identified some members of the aldo-keto reductase (AKR) superfamily. The study was followed with the member AKR1C1 (EC 1.1.1.213), validating its increase in mRNA and protein levels in MTX resistant cells. The genomic content for AKR1C1 remained unchanged between sensitive and resistant cells, thereby excluding a mechanism of AKR1C1 gene amplification. Thus, we cloned the AKR1C1 human promoter and performed luciferase experiments that revealed a transcriptional regulation of the gene in the resistant cells. Computational studies showed a putative binding site for the transcription factor Sp1. The co-transfection of Sp1 or Sp3 with different constructs of AKR1C1 promoter deletions, including and excluding the proximal GC-box, demonstrated a key role for these factors in regulating AKR1C1 transcriptional activity. Gel-shift assays revealed an increase in Sp1 and Sp3 binding in resistant compared to sensitive cells, without differences in Sp1 protein levels. Dephosphorylation of the extracts coincided with a decrease in Sp1 binding, which is consistent with a process of regulation of Sp1 by phosphorylation. We also investigated the possible relationship between AKR1C1 expression and MTX action. Overexpression of AKR1C1 counteracted the S-phase accumulation of cells and apoptosis caused by MTX treatment. This suggests a role of AKR1C1 in cell proliferation. Finally, overexpression of AKR1C1 in MTX sensitive HT29 cells conferred resistance to the chemotherapeutic agent and silencing of AKR1C1 by means of iRNA technology sensitized the cells to MTX.

  6. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase.

    PubMed Central

    Ireland, L S; Harrison, D J; Neal, G E; Hayes, J D

    1998-01-01

    The masking of charged amino or carboxy groups by N-phthalidylation and O-phthalidylation has been used to improve the absorption of many drugs, including ampicillin and 5-fluorouracil. Following absorption of such prodrugs, the phthalidyl group is hydrolysed to release 2-carboxybenzaldehyde (2-CBA) and the pharmaceutically active compound; in humans, 2-CBA is further metabolized to 2-hydroxymethylbenzoic acid by reduction of the aldehyde group. In the present work, the enzyme responsible for the reduction of 2-CBA in humans is identified as a homologue of rat aflatoxin B1-aldehyde reductase (rAFAR). This novel human aldo-keto reductase (AKR) has been cloned from a liver cDNA library, and together with the rat protein, establishes the AKR7 family of the AKR superfamily. Unlike its rat homologue, human AFAR (hAFAR) appears to be constitutively expressed in human liver, and is widely expressed in extrahepatic tissues. The deduced human and rat protein sequences share 78% identity and 87% similarity. Although the two AKR7 proteins are predicted to possess distinct secondary structural features which distinguish them from the prototypic AKR1 family of AKRs, the catalytic- and NADPH-binding residues appear to be conserved in both families. Certain of the predicted structural features of the AKR7 family members are shared with the AKR6 beta-subunits of voltage-gated K+-channels. In addition to reducing the dialdehydic form of aflatoxin B1-8,9-dihydrodiol, hAFAR shows high affinity for the gamma-aminobutyric acid metabolite succinic semialdehyde (SSA) which is structurally related to 2-CBA, suggesting that hAFAR could function as both a SSA reductase and a 2-CBA reductase in vivo. This hypothesis is supported in part by the finding that the major peak of 2-CBA reductase activity in human liver co-purifies with hAFAR protein. PMID:9576847

  7. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    PubMed Central

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179

  8. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  9. Aldo-Keto Reductases 1B in Endocrinology and Metabolism.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers.

  10. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.

    PubMed

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira

    2012-02-01

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.

  11. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.

    PubMed

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira

    2012-02-01

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ. PMID:22281686

  12. Alternative splicing in the aldo-keto reductase superfamily: implications for protein nomenclature.

    PubMed

    Barski, Oleg A; Mindnich, Rebekka; Penning, Trevor M

    2013-02-25

    The aldo-keto reductase superfamily contains 173 proteins which are present in all phyla. Examination of the human and mouse genomes has identified that in some instances a single AKR gene can give rise to alternatively spliced mRNA variants which in some cases can give rise to more than one protein isoform. This is currently well documented in the AKR6A subfamily which contains the β-subunits of the voltage-gated potassium ion channels. With the emergence of second generation sequencing it is likely that the occurrence of transcript variants and protein isoforms from a single AKR gene may become common place. To deal with this issue we recommend that the Ensembl data-base nomenclature be used to annotate the transcript variants from a single AKR gene. However, since multiple transcript variants could give rise to either the same or multiple protein isoforms from the same AKR gene we also propose to expand the nomenclature of the AKR protein superfamily, so that when a protein isoform is shown to be expressed and is functional it would be assigned the standard AKR name followed by a "period or full-stop" and a number for that unique isoform. Numbers will be assigned chronologically and linked to the respective transcripts annotated in Ensembl e.g. AKR6A5.1 (Kvβ2.1) (AKR6A5-001, -006 and -201), followed by AKR6A5.2 (Kvβ2.2) (AKR6A5-002,-202). This nomenclature is expandable and it enables multiple protein isoforms to be assigned to their respective transcripts when they arise from the same AKR gene or for a single protein isoform to be assigned to multiple transcripts when the transcripts encode the same AKR protein.

  13. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.

    PubMed

    Spite, Matthew; Baba, Shahid P; Ahmed, Yonis; Barski, Oleg A; Nijhawan, Kanchan; Petrash, J Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-07-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  14. Lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products

    DOEpatents

    Scharf, Michael; Sethi, Amit

    2016-09-13

    Termites have specialized digestive systems that overcome the lignin barrier in wood to release fermentable simple sugars. Using the termite Reticulitermes flavipes and its gut symbionts, high-throughput titanium pyrosequencing and proteomics approaches experimentally compared the effects of lignin-containing diets on host-symbiont digestome composition. Proteomic investigations and functional digestive studies with recombinant lignocellulases conducted in parallel provided strong evidence of congruence at the transcription and translational levels and provide enzymatic strategies for overcoming recalcitrant lignin barriers in biofuel feedstocks. Briefly described, therefore, the disclosure provides a system for generating a fermentable product from a lignified plant material, the system comprising a cooperating series of at least two catalytically active polypeptides, where said catalytically active polypeptides are selected from the group consisting of: cellulase Cell-1, .beta.-glu cellulase, an aldo-keto-reductase, a catalase, a laccase, and an endo-xylanase.

  15. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells.

    PubMed

    Tian, Yuantong; Zhao, Lijing; Wang, Ye; Zhang, Haitao; Xu, Duo; Zhao, Xuejian; Li, Yi; Li, Jing

    2016-01-01

    Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form p-p interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound.

  16. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461.

    PubMed

    Luo, Xi; Wang, Ya-Jun; Zheng, Yu-Guo

    2015-09-01

    An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis-Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg(-1), 0.204 mM, 4.42 mM and 697.4 min(-1), respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.

  17. Catalytic mechanism of the primary human prostaglandin F2α synthase, aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H).

    PubMed

    Nagata, Nanae; Kusakari, Yukiko; Fukunishi, Yoshifumi; Inoue, Tsuyoshi; Urade, Yoshihiro

    2011-04-01

    Aldo-keto reductase 1B1 and 1B3 (AKR1B1 and AKR1B3) are the primary human and mouse prostaglandin F(2α) (PGF(2α)) synthases, respectively, which catalyze the NADPH-dependent reduction of PGH(2), a common intermediate of various prostanoids, to form PGF(2α). In this study, we found that AKR1B1 and AKR1B3, but not AKR1B7 and AKR1C3, also catalyzed the isomerization of PGH(2) to PGD(2) in the absence of NADPH or NADP(+). Both PGD(2) and PGF(2α) synthase activities of AKR1B1 and AKR1B3 completely disappeared in the presence of NADP(+) or after heat treatment of these enzymes at 100 °C for 5 min. The K(m), V(max), pK and optimum pH values of the PGD(2) synthase activities of AKR1B1 and AKR1B3 were 23 and 18 μM, 151 and 57 nmol·min(-1)·(mg protein)(-1), 7.9 and 7.6, and pH 8.5 for both AKRs, respectively, and those of PGF(2α) synthase activity were 29 and 33 μM, 169 and 240 nmol·min(-1)·(mg protein)(-1), 6.2 and 5.4, and pH 5.5 and pH 5.0, respectively, in the presence of 0.5 mm NADPH. Site-directed mutagenesis of the catalytic tetrad of AKR1B1, composed of Tyr, Lys, His and Asp, revealed that the triad of Asp43, Lys77 and His110, but not Tyr48, acts as a proton donor in most AKR activities, and is crucial for PGD(2) and PGF(2α) synthase activities. These results, together with molecular docking simulation of PGH(2) to the crystallographic structure of AKR1B1, indicate that His110 acts as a base in concert with Asp43 and Lys77 and as an acid to generate PGD(2) and PGF(2α) in the absence of NADPH or NADP(+) and in the presence of NADPH, respectively.

  18. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  19. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design.

    PubMed

    Luo, Xi; Wang, Ya-Jun; Shen, Wei; Zheng, Yu-Guo

    2016-04-20

    Optically pure t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate ((R)-1b) is the key chiral precursor for atorvastatin calcium, the most widely used cholesterol-lowering drug. Wild-type aldo-keto reductase KlAKR from Kluyveromyces lactis has ideal diastereoselectivity toward t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a, dep>99.5%) but poor activity. A rational engineering was used to improve the KlAKR activity. Based on homology modeling and molecular docking, two amino acid residues (295 and 296) were selected as mutation sites, and two rounds of site-saturation mutagenesis were performed. Among the mutants, KlAKR-Y295W/W296L exhibited the highest catalytic efficiency (kcat/Km) toward 1a up to 12.37s(-1)mM(-1), which was 11.25-fold higher than that of wild-type KlAKR. Moreover, the majority of mutations have no negative impact on stereoselectivity. Using KlAKR-Y295W/W296L coupled with Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for cofactor regeneration, (R)-1b was accumulated up to 162.7mM with dep value above 99.5%. KlAKR-Y295W/W296L represents a robust tool for (R)-1b synthesis.

  20. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.

    PubMed

    Porté, Sergio; Xavier Ruiz, F; Giménez, Joan; Molist, Iago; Alvarez, Susana; Domínguez, Marta; Alvarez, Rosana; de Lera, Angel R; Parés, Xavier; Farrés, Jaume

    2013-02-25

    Biological activity of natural retinoids requires the oxidation of retinol to retinoic acid (RA) and its binding to specific nuclear receptors in target tissues. The first step of this pathway, the reversible oxidoreduction of retinol to retinaldehyde, is essential to control RA levels. The enzymes of retinol oxidation are NAD-dependent dehydrogenases of the cytosolic medium-chain (MDR) and the membrane-bound short-chain (SDR) dehydrogenases/reductases. Retinaldehyde reduction can be performed by SDR and aldo-keto reductases (AKR), while its oxidation to RA is carried out by aldehyde dehydrogenases (ALDH). In contrast to SDR, AKR and ALDH are cytosolic. A common property of these enzymes is that they only use free retinoid, but not retinoid bound to cellular retinol binding protein (CRBP). The relative contribution of each enzyme type in retinoid metabolism is discussed in terms of the different subcellular localization, topology of membrane-bound enzymes, kinetic constants, binding affinity of CRBP for retinol and retinaldehyde, and partition of retinoid pools between membranes and cytoplasm. The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships. Kinetics with the 4-methyl derivatives of retinaldehyde isomers was performed to identify structural features for substrate specificity. Hydrophilic derivatives were better substrates than the more hydrophobic compounds. We also explored the inhibitory properties of some synthetic retinoids, known for binding to retinoic acid receptors (RAR) and retinoid X receptors (RXR). Consistent with its substrate specificity towards retinaldehyde, AKR1B10 was more effectively inhibited by synthetic retinoids than AKR1B1. A RARβ/γ agonist (UVI2008) inhibited AKR1B10 with the highest potency and selectivity, and docking simulations predicted that its carboxyl group binds to the anion-binding pocket. PMID

  1. Effect of cytochrome P450 and aldo-keto reductase inhibitors on progesterone inactivation in primary bovine hepatic cell cultures.

    PubMed

    Lemley, C O; Wilson, M E

    2010-10-01

    Progesterone is required for maintenance of pregnancy, and peripheral concentrations of progesterone are affected by both production and inactivation. Hepatic cytochrome P450 (EC 1.14.14.1) and aldo-keto reductase (EC 1.1.1.145-151) enzymes play a pivotal role in the first step of steroid inactivation, which involves the addition of hydroxyl groups to various sites of the cyclopentanoperhydrophenanthrene nucleus. The current objective was to discern the proportional involvement of hepatic progesterone inactivating enzymes on progesterone decay using specific enzyme inhibitors. Ticlopidine, diltiazem, curcumin, dicumarol, and naproxen were used because of their selective inhibition of cytochrome P450s, aldo-keto reductases, and glucuronosyltransferases. Liver biopsies were collected from 6 lactating Holstein dairy cows, and cells were dissociated using a nonperfusion technique. Confluent wells were preincubated for 4 h with enzyme inhibitor and then challenged with progesterone for 1 h. Cell viability was unaffected by inhibitor treatment and averaged 84±1%. In control wells, 50% of the progesterone had been inactivated after a 1-h challenge with 5 ng/mL of progesterone. Preincubation with curcumin, ticlopidine, or naproxen caused the greatest reduction in progesterone inactivation compared with controls and averaged 77, 39, or 37%, respectively. Hydroxylation of 4-nitrophenol to 4-nitrocatechol in intact cells was inhibited by approximately 65% after treatment with curcumin or ticlopidine. Glucuronidation of phenol red or 4-nitrocatechol in intact cells was inhibited by treatment with curcumin, dicumarol, or naproxen. In cytoplasmic preparations, aldo-keto reductase 1C activity was inhibited by curcumin, dicumarol, or naproxen treatment. Microsomal cytochrome P450 2C activity was inhibited by treatment with curcumin or ticlopidine, whereas cytochrome P450 3A activity was inhibited by treatment with curcumin or diltiazem. The contribution of cytochrome P450 2C and

  2. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.

    PubMed

    Chouinard, S W; Wilson, G F; Schlimgen, A K; Ganetzky, B

    1995-07-18

    Genetic and physiological studies of the Drosophila Hyperkinetic (Hk) mutant revealed defects in the function or regulation of K+ channels encoded by the Shaker (Sh) locus. The Hk polypeptide, determined from analysis of cDNA clones, is a homologue of mammalian K+ channel beta subunits (Kv beta). Coexpression of Hk with Sh in Xenopus oocytes increases current amplitudes and changes the voltage dependence and kinetics of activation and inactivation, consistent with predicted functions of Hk in vivo. Sequence alignments show that Hk, together with mammalian Kv beta, represents an additional branch of the aldo-keto reductase superfamily. These results are relevant to understanding the function and evolutionary origin of Kv beta.

  3. Crystallographic analysis of a novel aldo-keto reductase from Thermotoga maritima in complex with NADP⁺.

    PubMed

    Hou, Hai; Li, Ruiying; Wang, Xiaoyan; Yuan, Zhen; Liu, Xuemeng; Chen, Zhenmin; Xu, Xiaoling

    2015-07-01

    Aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-dependent oxidoreductases that catalyse the asymmetric reduction of aldehydes and ketones to chiral alcohols in various organisms. The novel aldo-keto reductase Tm1743 from Thermotoga maritima was identified to have a broad substrate specificity and high thermostability, serving as an important enzyme in biocatalysis and fine-chemical synthesis. In this study, Tm1743 was overexpressed in Escherichia coli BL21(DE3) cells with an N-terminal His6 tag and was purified by Ni(2+)-chelating affinity and size-exclusion chromatography. Purified recombinant enzyme was incubated with its cofactor NADP(+) and its substrate ethyl 2-oxo-4-phenylbutyrate (EOPB) for crystallization. Two X-ray diffraction data sets were collected at 2.0 and 1.7 Å resolution from dodecahedral crystals grown from samples containing Tm1743-NADP(+)-EOPB and Tm1743-NADP(+), respectively. Both crystals belonged to space group P3121, with similar unit-cell parameters. However, in the refined structure model only NADP(+) was observed in the active site of the full-length Tm1743 enzyme. Degradation of the N-terminal vector-derived amino acids during crystallization was confirmed by Western blot and mass-spectrometric analyses.

  4. Aldo Keto Reductase 1B7 and Prostaglandin F2α Are Regulators of Adrenal Endocrine Functions

    PubMed Central

    Lambert-Langlais, Sarah; Volat, Fanny; Manin, Michèle; Coudoré, François; Val, Pierre; Sahut-Barnola, Isabelle; Ragazzon, Bruno; Louiset, Estelle; Delarue, Catherine; Lefebvre, Hervé; Urade, Yoshihiro; Martinez, Antoine

    2009-01-01

    Prostaglandin F2α (PGF2α), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF2α synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family. The adrenal gland is a major site of AKR1B expression in both human (AKR1B1) and mouse (AKR1B3, AKR1B7). Thus, we examined the PGF2α biosynthetic pathway and its functional impact on both cortical and medullary zones. Both compartments produced PGF2α but expressed different biosynthetic isozymes. In chromaffin cells, PGF2α secretion appeared constitutive and correlated to continuous expression of COX1 and AKR1B3. In steroidogenic cells, PGF2α secretion was stimulated by adrenocorticotropic hormone (ACTH) and correlated to ACTH-responsiveness of both COX2 and AKR1B7/B1. The pivotal role of AKR1B7 in ACTH-induced PGF2α release and functional coupling with COX2 was demonstrated using over- and down-expression in cell lines. PGF2α receptor was only detected in chromaffin cells, making medulla the primary target of PGF2α action. By comparing PGF2α-responsiveness of isolated cells and whole adrenal cultures, we demonstrated that PGF2α repressed glucocorticoid secretion by an indirect mechanism involving a decrease in catecholamine release which in turn decreased adrenal steroidogenesis. PGF2α may be regarded as a negative autocrine/paracrine regulator within a novel intra-adrenal feedback loop. The coordinated cell-specific regulation of COX2 and AKR1B7 ensures the generation of this stress-induced corticostatic signal. PMID:19809495

  5. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  6. Gene expression and promoter analysis of a novel tomato aldo-keto reductase in response to environmental stresses.

    PubMed

    Suekawa, Marina; Fujikawa, Yukichi; Inada, Shuhei; Murano, Asako; Esaka, Muneharu

    2016-08-01

    The functional role of an uncharacterized tomato (Solanum lycopersicum) aldo-keto reductase 4B, denoted as SlAKR4B, was investigated. The gene expression of tomato SlAKR4B was detected at a high level in the senescent leaves and the ripening fruits of tomato. Although d-galacturonic acid reductase activities tended to be higher in tomato SlAKR4B-overexpressing transgenic tobacco BY-2 cell lines than those in control cell lines, SlAKR4B gene expression was not well correlated with l-ascorbic acid content among the cell lines. The analysis of the transgenic cell lines showed that tomato SlAKR4B has enzyme activities toward d-galacturonic acid as well as glyceraldehyde and glyoxal, suggesting that the SlAKR4B gene encodes a functional enzyme in tomato. Gene expression of SlAKR4B was induced by NaCl, H2O2, and plant hormones such as salicylic acid and jasmonic acid, suggesting that SlAKR4B is involved in the stress response. The transient expression assay using protoplasts showed the promoter activity of the SlAKR4B gene was as high as that of the cauliflower mosaic virus 35S promoter. Also, the promoter region of the SlAKR4B gene was suggested to contain cis-element(s) for abiotic stress-inducible expression. PMID:27337067

  7. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  8. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    PubMed

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein.

  9. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    PubMed

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein. PMID:26577640

  10. Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Yoshida, Kazuhiko; Tanino, Mishie; Kimura, Taichi; Nishihara, Hiroshi; Abe, Takashige; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2016-01-01

    In treating bladder cancer, determining the molecular mechanisms of tumor invasion, metastasis, and drug resistance are urgent to improving long-term patient survival. One of the metabolic enzymes, aldo-keto reductase 1C1 (AKR1C1), plays an essential role in cancer invasion/metastasis and chemoresistance. In orthotopic xenograft models of a human bladder cancer cell line, UM-UC-3, metastatic sublines were established from tumors in the liver, lung, and bone. These cells possessed elevated levels of EMT-associated markers, such as Snail, Slug, or CD44, and exhibited enhanced invasion. By microarray analysis, AKR1C1 was found to be up-regulated in metastatic lesions, which was verified in metastatic human bladder cancer specimens. Decreased invasion caused by AKR1C1 knockdown suggests a novel role of AKR1C1 in cancer invasion, which is probably due to the regulation of Rac1, Src, or Akt. An inflammatory cytokine, interleukin-1β, was found to increase AKR1C1 in bladder cancer cell lines. One particular non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic sublines. These data uncover the crucial role of AKR1C1 in regulating both metastasis and drug resistance; as a result, AKR1C1 should be a potent molecular target in invasive bladder cancer treatment. PMID:27698389

  11. Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling

    PubMed Central

    Lin, Eugene E.; Pentz, Ellen S.; Sequeira-Lopez, Maria Luisa S.

    2015-01-01

    We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression—together with renin—is progressively restricted in the kidney arteries toward the glomerulus. Subsequently, when formerly renin-expressing cells reacquire renin expression, AKR1B7 is reexpressed as well. This pattern of coexpression persists in extreme pathological situations, such as deletion of the genes for aldosterone synthase or Dicer. However, the two proteins do not colocalize within the same organelles: renin is found in the secretory granules, whereas AKR1B7 localizes to the endoplasmic reticulum. Interestingly, upon deletion of the renin gene, AKR1B7 expression is maintained in a pattern mimicking the embryonic expression of renin, while ablation of renin cells resulted in complete abolition of AKR1B7 expression. Finally, we demonstrate that AKR1B7 transcription is controlled by cAMP. Cultured cells of the renin lineage reacquire the ability to express both renin and AKR1B7 upon elevation of intracellular cAMP. In vivo, deleting elements of the cAMP-response pathway (CBP/P300) results in a stark decrease in AKR1B7- and renin-positive cells. In summary, AKR1B7 is expressed within the renin cell throughout development and perturbations to homeostasis, and AKR1B7 is regulated by cAMP levels within the renin cell. PMID:26180185

  12. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease.

    PubMed

    Jumper, Natalie; Hodgkinson, Tom; Arscott, Guyan; Har-Shai, Yaron; Paus, Ralf; Bayat, Ardeshir

    2016-07-01

    Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease. PMID:27025872

  13. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    SciTech Connect

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 {mu}M, 4-hydroxynonenal (HNE) at 0.10 {mu}M, trans-2-hexanal at 0.10 {mu}M, and trans-2,4-hexadienal at 0.05 {mu}M, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 {mu}M (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  14. Sequence analysis of frog rho-crystallin by cDNA cloning and sequencing: a member of the aldo-keto reductase family.

    PubMed

    Lu, S F; Pan, F M; Chiou, S H

    1995-09-25

    rho-Crystallin is a major enzyme crystallin present in the lenses of amphibian species with a blocked amino terminus. In order to facilitate the determination of the primary sequence of this taxon-specific crystallin, cDNA mixture was synthesized from the poly(A)+mRNA of bullfrog eye lenses. cDNAs encoding rho-crystallin were then amplified by polymerase chain reaction (PCR) using a new protocol of Rapid Amplification of cDNA Ends (RACE). PCR-amplified product corresponding to rho-crystallin was obtained, which was then subcloned into pUC18 vector and then transformed into E. coli strain JM109. Plasmids purified from the positive clones were prepared for nucleotide sequencing by the automatic fluorescence-based dideoxynucleotide chain-termination method. Sequencing more than 15 clones containing DNA inserts coding for rho-crystallin constructed only one unique and complete full-length reading frame of 975 base pairs covering a deduced protein sequence of 324 amino acids including the universal initiating methionine. It shows 96, 59, 46 and 37 percent sequence similarity to another rho-crystallin from European common frog, bovine prostaglandin-F synthase, human aldose reductase and human aldehyde reductase, respectively, revealing the close relationship between rho-crystallins from related amphibian species and its possible evolutionary relatedness with various aldo-keto reductases. In this study a phylogenetic tree for rho-crystallin and related enzymes is constructed based on multiple-sequence alignment program using a combination of distance matrix and approximate parsimony methods. We have thus established the remote phylogenetic relationship between rho-crystallin and some aldehyde/aldose reductases, which may provide a possible link for the recruitment of this crystallin from detoxification-related enzymes and its physiological role in maintaining a transparent and clear lens.

  15. The role of cytochromes p450 and aldo-keto reductases in prognosis of breast carcinoma patients.

    PubMed

    Hlaváč, Viktor; Brynychová, Veronika; Václavíková, Radka; Ehrlichová, Marie; Vrána, David; Pecha, Václav; Trnková, Markéta; Kodet, Roman; Mrhalová, Marcela; Kubáčková, Kateřina; Gatěk, Jiří; Vážan, Petr; Souček, Pavel

    2014-12-01

    Metabolism of anticancer drugs affects their antitumor effects. This study has investigated the associations of gene expression of enzymes metabolizing anticancer drugs with therapy response and survival of breast carcinoma patients. Gene expression of 13 aldo-keto reductases (AKRs), carbonyl reductase 1, and 10 cytochromes P450 (CYPs) was assessed using quantitative real-time polymerase chain reaction in tumors and paired adjacent nonneoplastic tissues from 68 posttreatment breast carcinoma patients. Eleven candidate genes were then evaluated in an independent series of 50 pretreatment patients. Protein expression of the most significant genes was confirmed by immunoblotting. AKR1A1 was significantly overexpressed and AKR1C1-4, KCNAB1, CYP2C19, CYP3A4, and CYP3A5 downregulated in tumors compared with control nonneoplastic tissues after correction for multiple testing. Significant association of CYP2B6 transcript levels in tumors with expression of hormonal receptors was found in the posttreatment set and replicated in the pretreatment set of patients. Significantly higher intratumoral levels of AKR1C1, AKR1C2, or CYP2W1 were found in responders to neoadjuvant chemotherapy compared with nonresponders. Patients with high AKR7A3 or CYP2B6 levels in the pretreatment set had significantly longer disease-free survival than patients with low levels. Protein products of AKR1C1, AKR1C2, AKR7A3, CYP3A4, and carbonyl reductase (CBR1) were found in tumors and those of AKR1C1, AKR7A3, and CBR1 correlated with their transcript levels. Small interfering RNA-directed knockdown of AKR1C2 or vector-mediated upregulation of CYP3A4 in MDA-MB-231 model cell line had no effect on cell proliferation after paclitaxel treatment in vitro. Prognostic and predictive roles of drug-metabolizing enzymes strikingly differ between posttreatment and pretreatment breast carcinoma patients. Mechanisms of action of AKR1C2, AKR7A3, CYP2B6, CYP3A4, and CBR1 should continue to be further followed in

  16. Rat NAD+-dependent 3alpha-hydroxysteroid dehydrogenase (AKR1C17): a member of the aldo-keto reductase family highly expressed in kidney cytosol.

    PubMed

    Sanai, Masaharu; Endo, Satoshi; Matsunaga, Toshiyuki; Ishikura, Shuhei; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2007-08-01

    Mammalian 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) have been divided into two types: Cytosolic NADP(H)-dependent 3alpha-HSDs belonging to the aldo-keto reductase family, and mitochondrial and microsomal NAD(+)-dependent 3alpha-HSDs belonging to the short-chain dehydrogenase/reductase family. In this study, we characterized a rat aldo-keto reductase (AKR1C17), whose functions are unknown. The recombinant AKR1C17 efficiently oxidized 3alpha-hydroxysteroids and bile acids using NAD(+) as the preferred coenzyme at an optimal pH of 7.4-9.5, and was inhibited by ketamine and organic anions. The mRNA for AKR1C17 was detected specifically in rat kidney, where the enzyme was more highly expressed as a cytosolic protein than NADP(H)-dependent 3alpha-HSD (AKR1C9). Thus, AKR1C17 represents a novel NAD(+)-dependent type of cytosolic 3alpha-HSD with unique inhibitor sensitivity and tissue distribution. In addition, the replacement of Gln270 and Glu276 of AKR1C17 with the corresponding residues of NADP(H)-dependent 3alpha-HSD resulted in a switch in favor of NADP(+) specificity, suggesting their key roles in coenzyme specificity.

  17. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  18. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases.

    PubMed

    Ellis, E M; Judah, D J; Neal, G E; Hayes, J D

    1993-11-01

    Protection of liver against the toxic and carcinogenic effects of aflatoxin B1 (AFB1) can be achieved through the induction of detoxification enzymes by chemoprotectors such as the phenolic antioxidant ethoxyquin. We have cloned and sequenced a cDNA encoding an aldehyde reductase (AFB1-AR), which is expressed in rat liver in response to dietary ethoxyquin. Expression of the cDNA in Escherichia coli and purification of the recombinant enzyme reveals that the protein exhibits aldehyde reductase activity and is capable of converting the protein-binding dialdehyde form of AFB1-dihydrodiol to the nonbinding dialcohol metabolite. We show that the mRNA encoding this enzyme is markedly elevated in the liver of rats fed an ethoxyquin-containing diet, correlating with acquisition of resistance to AFB1. AFB1-AR represents the only carcinogen-metabolizing aldehyde reductase identified to date that is induced by a chemoprotector. Alignment of the amino acid sequence of AFB1-AR with other known and putative aldehyde reductases shows that it defines a subfamily within the aldo-keto reductase superfamily. PMID:8234296

  19. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10.

    PubMed

    Morikawa, Yoshifumi; Kezuka, Chihiro; Endo, Satoshi; Ikari, Akira; Soda, Midori; Yamamura, Keiko; Toyooka, Naoki; El-Kabbani, Ossama; Hara, Akira; Matsunaga, Toshiyuki

    2015-03-25

    Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2. PMID:25686905

  20. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione.

    PubMed

    Park, Jong-Heum; Mangal, Dipti; Frey, Alexander J; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2009-10-23

    Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by aldo-keto reductases are ligands for the aryl hydrocarbon receptor (AhR) (Burczynski, M. E., and Penning, T. M. (2000) Cancer Res. 60, 908-915). They induce oxidative DNA lesions (reactive oxygen species-mediated DNA strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) formation) in human lung cells. We tested whether the AhR enhances PAH o-quinone-mediated oxidative DNA damage by translocating these ligands to the nucleus. Using the single cell gel electrophoresis (comet) assay to detect DNA strand breaks in murine hepatoma Hepa1c1c7 cells and its AhR- and aryl hydrocarbon receptor nuclear translocator-deficient variants, benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) produced fewer DNA strand breaks in AhR-deficient cells compared with aryl hydrocarbon receptor nuclear translocator-deficient and wild type Hepa1c1c7 cells. Decreased DNA strand breaks were also observed in human bronchoalveolar H358 cells in which the AhR was silenced by siRNA. The antioxidant alpha-tocopherol and the iron chelator/antioxidant desferal decreased the formation of B[a]P-7,8-dione-mediated DNA strand breaks indicating that they were reactive oxygen species-dependent. By coupling the comet assay to 8-oxoguanine glycosylase (hOGG1), which excises 8-oxo-Gua, strand breaks dependent upon this lesion were measured. hOGG1 treatment produced more DNA single strand breaks in B[a]P-7,8-dione-treated Hepa cells and H358 cells than in its absence. The levels of hOGG1-dependent DNA strand breaks mediated by B[a]P-7,8-dione were lower in AhR-deficient Hepa and AhR knockdown H358 cells. The AhR antagonist alpha-naphthoflavone also attenuated B[a]P-7,8-dione-mediated DNA strand breaks. The decrease in 8-oxo-dGuo levels in AhR-deficient Hepa cells and AhR knockdown H358 cells was validated by immunoaffinity capture stable isotope dilution ([(15)N(5)]8-oxo-dGuo) liquid chromatography-electrospray ionization/multiple reaction

  1. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    PubMed

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. PMID:26995646

  2. Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor.

    PubMed

    Adeniji, Adegoke; Uddin, Md Jashim; Zang, Tianzhu; Tamae, Daniel; Wangtrakuldee, Phumvadee; Marnett, Lawrence J; Penning, Trevor M

    2016-08-25

    Type 5 17β-hydroxysteroid dehydrogenase, aldo-keto reductase 1C3 (AKR1C3) converts Δ(4)-androstene-3,17-dione and 5α-androstane-3,17-dione to testosterone (T) and 5α-dihydrotestosterone, respectively, in castration resistant prostate cancer (CRPC). In CRPC, AKR1C3 is implicated in drug resistance, and enzalutamide drug resistance can be surmounted by indomethacin a potent inhibitor of AKR1C3. We examined a series of naproxen analogues and find that (R)-2-(6-methoxynaphthalen-2-yl)butanoic acid (in which the methyl group of R-naproxen was replaced by an ethyl group) acts as a potent AKR1C3 inhibitor that displays selectivity for AKR1C3 over other AKR1C enzymes. This compound was devoid of inhibitory activity on COX isozymes and blocked AKR1C3 mediated production of T and induction of PSA in LNCaP-AKR1C3 cells as a model of a CRPC cell line. R-Profens are substrate selective COX-2 inhibitors and block the oxygenation of endocannabinoids and in the context of advanced prostate cancer R-profens could inhibit intratumoral androgen synthesis and act as analgesics for metastatic disease.

  3. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  4. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family.

  5. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update.

    PubMed

    Sengupta, Debashree; Naik, Dhiraj; Reddy, Attipalli R

    2015-05-01

    The aldo-keto reductase (AKR) superfamily comprises of a large number of primarily monomeric protein members, which reduce a broad spectrum of substrates ranging from simple sugars to potentially toxic aldehydes. Plant AKRs can be broadly categorized into four important functional groups, which highlight their roles in diverse plant metabolic reactions including reactive aldehyde detoxification, biosynthesis of osmolytes, secondary metabolism and membrane transport. Further, multiple overlapping functional aspects of plant AKRs including biotic and abiotic stress defense, production of commercially important secondary metabolites, iron acquisition from soil, plant-microbe interactions etc. are discussed as subcategories within respective major groups. Owing to the broad substrate specificity and multiple stress tolerance of the well-characterized AKR4C9 from Arabidopsis thaliana, protein sequences of all the homologues of AKR4C9 (A9-like proteins) from forty different plant species (Phytozome database) were analyzed. The analysis revealed that all A9-like proteins possess strictly conserved key catalytic residues (D-47, Y-52 and K-81) and belong to the pfam00248 and cl00470 AKR superfamilies. Based on structural homology of the three flexible loops of AKR4C9 (Loop A, B and C) responsible for broad substrate specificity, A9-like proteins found in Brassica rapa, Phaseolus vulgaris, Cucumis sativus, Populus trichocarpa and Solanum lycopersicum were predicted to have a similar range of substrate specificity. Thus, plant AKRs can be considered as potential breeding targets for developing stress tolerant varieties in the future. The present review provides a consolidated update on the current research status of plant AKRs with an emphasis on important functional aspects as well as their potential future prospects and an insight into the overall structure-function relationships of A9-like proteins.

  6. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update.

    PubMed

    Sengupta, Debashree; Naik, Dhiraj; Reddy, Attipalli R

    2015-05-01

    The aldo-keto reductase (AKR) superfamily comprises of a large number of primarily monomeric protein members, which reduce a broad spectrum of substrates ranging from simple sugars to potentially toxic aldehydes. Plant AKRs can be broadly categorized into four important functional groups, which highlight their roles in diverse plant metabolic reactions including reactive aldehyde detoxification, biosynthesis of osmolytes, secondary metabolism and membrane transport. Further, multiple overlapping functional aspects of plant AKRs including biotic and abiotic stress defense, production of commercially important secondary metabolites, iron acquisition from soil, plant-microbe interactions etc. are discussed as subcategories within respective major groups. Owing to the broad substrate specificity and multiple stress tolerance of the well-characterized AKR4C9 from Arabidopsis thaliana, protein sequences of all the homologues of AKR4C9 (A9-like proteins) from forty different plant species (Phytozome database) were analyzed. The analysis revealed that all A9-like proteins possess strictly conserved key catalytic residues (D-47, Y-52 and K-81) and belong to the pfam00248 and cl00470 AKR superfamilies. Based on structural homology of the three flexible loops of AKR4C9 (Loop A, B and C) responsible for broad substrate specificity, A9-like proteins found in Brassica rapa, Phaseolus vulgaris, Cucumis sativus, Populus trichocarpa and Solanum lycopersicum were predicted to have a similar range of substrate specificity. Thus, plant AKRs can be considered as potential breeding targets for developing stress tolerant varieties in the future. The present review provides a consolidated update on the current research status of plant AKRs with an emphasis on important functional aspects as well as their potential future prospects and an insight into the overall structure-function relationships of A9-like proteins. PMID:25840343

  7. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  8. Synthesis and structure-activity relationships for 1-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-ones as novel non-carboxylate inhibitors of the aldo-keto reductase enzyme AKR1C3.

    PubMed

    Heinrich, Daniel M; Flanagan, Jack U; Jamieson, Stephen M F; Silva, Shevan; Rigoreau, Laurent J M; Trivier, Elisabeth; Raynham, Tony; Turnbull, Andrew P; Denny, William A

    2013-04-01

    High expression of the aldo-keto reductase enzyme AKR1C3 in the human prostate and breast has implicated it in the development and progression of leukemias and of prostate and breast cancers. Inhibitors are thus of interest as potential drugs. Most inhibitors of AKR1C3 are carboxylic acids, whose transport into cells is likely dominated by carrier-mediated processes. We describe here a series of (piperidinosulfonamidophenyl)pyrrolidin-2-ones as potent (<100 nM) and isoform-selective non-carboxylate inhibitors of AKR1C3. Structure-activity relationships identified the sulfonamide was critical, and a crystal structure showed the 2-pyrrolidinone does not interact directly with residues in the oxyanion hole. Variations in the position, co-planarity or electronic nature of the pyrrolidinone ring severely diminished activity, as did altering the size or polarity of the piperidino ring. There was a broad correlation between the enzyme potencies of the compounds and their effectiveness at inhibiting AKR1C3 activity in cells.

  9. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    SciTech Connect

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  10. The role of aldo-keto reductase 1C3 (AKR1C3)-mediated prostaglandin D2 (PGD2) metabolism in keloids.

    PubMed

    Mantel, Alon; Newsome, Austin; Thekkudan, Theresa; Frazier, Robert; Katdare, Meena

    2016-01-01

    Keloids are progressively expanding scars, mostly prevalent in individuals of African descent. Previous data identified increased mast cell number and activation state in keloids suggesting a role in disease progression. The major eicosanoid secreted by mast cells is prostaglandin D2 (PGD2), a relatively unstable pro-inflammatory mediator which can be spontaneously converted to 15-deoxy-(Delta12,14)-prostaglandin J2(15d-PGJ2) or enzymatically metabolized to 9α,11β-PGF2 by aldo-keto reductase 1C3 (AKR1C3). In this work, we investigated the possible role of PGD2 and its metabolites in keloids using CRL1762 keloid fibroblasts (KF) and immunohistochemical staining. Our data suggested approximately 3-fold increase of tryptase-positive mast cell count in keloids compared with normal skin. Furthermore, AKR1C3 was overexpressed in the fibrotic area of keloids while relatively weak staining detected in normal skin. Metabolism of PGD2 to 9α,11β-PGF2 by both, KF and normal fibroblasts, was dependent on AKR1C3 as this reaction was attenuated in the presence of the AKR1C3 inhibitor, 2'-hydroxyflavanone, or in cells with decreased AKR1C3 expression. 15d-PGJ2, but not the other tested PGs, inhibited KF proliferation, attenuated KF-mediated collagen gel contraction and increased caspase-3 activation. In addition, treatment with 15d-PGJ2 activated P38-MAPK, induced reactive oxygen species and upregulated superoxide dismutase-1 (SOD-1). Finally, inhibition of P38-MAPK further augmented 15d-PGJ2-induced caspase-3 cleavage and attenuated its effect on SOD-1 transcription. This work suggests that localized dual inhibition of AKR1C3 and P38-MAPK may inhibit keloid progression. Inhibiting AKR1C3 activity may generate oxidative environment due to redirection of PGD2 metabolism towards 15d-PGJ2 while inhibition of P38-MAPK will sensitize keloid cells to ROS-induced apoptosis. PMID:26308156

  11. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate

    PubMed Central

    Jin, Junfei; Liao, Weijia; Yao, Wenmin; Zhu, Rongping; Li, Yulan; He, Songqing

    2016-01-01

    AKR1B10 is involved in hepatocarcinogenesis via modulation of fatty acid and lipid synthesis. AKR1B10 inhibition results in apoptosis of tumor cells whose lipids, especially phospholipids, were decreased by over 50%, suggesting involvement of phospholipids like sphingosine-1-phosphate (S1P) in AKR1B10’s oncogenic function. Using a co-culture system, we found that co-culture of QSG-7701 (human hepatocyte) with HepG2 (hepatoma cell line) increases QSG-7701’s proliferation, in which AKR1B10-S1P signaling plays a pivotal role. Consistent with previous findings, AKR1B10 mRNA and protein levels were higher in primary hepatocellular carcinoma (PHC) tissues than in peri-tumor tissues. Interestingly, the level of S1P was also higher in PHC tissues than in peri-tumor tissues. After analyzing the correlation between AKR1B10 mRNA expression in PHC tissues and the clinical data, we found that AKR1B10 mRNA expression was associated with serum alpha-fetoprotein (AFP), tumor-node-metastasis (TNM) stage, and lymph node metastasis, but not with other clinicopathologic variables. A higher AKR1B10 mRNA expression level is related to a shorter DFS (disease free survival) and OS (overall survival), serving as an independent predictor of DFS and OS in PHC patients with surgical resection. PMID:26948042

  12. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    PubMed

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  13. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  14. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  15. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis.

  16. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  17. Crystal structure of perakine reductase, founding member of a novel aldo-keto reductase (AKR) subfamily that undergoes unique conformational changes during NADPH binding.

    PubMed

    Sun, Lianli; Chen, Yixin; Rajendran, Chitra; Mueller, Uwe; Panjikar, Santosh; Wang, Meitian; Mindnich, Rebekka; Rosenthal, Cindy; Penning, Trevor M; Stöckigt, Joachim

    2012-03-30

    Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His(6)-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His(6)-PR-A213W complex with NADPH was determined at 1.77 Å. Overall, PR folds in an unusual α(8)/β(6) barrel that has not been observed in any other AKR protein to date. NADPH binds in an extended pocket, but the nicotinamide riboside moiety is disordered. Upon NADPH binding, dramatic conformational changes and movements were observed: two additional β-strands in the C terminus become ordered to form one α-helix, and a movement of up to 24 Å occurs. This conformational change creates a large space that allows the binding of substrates of variable size for PR and enhances the enzyme activity; as a result cooperative kinetics are observed as NADPH is varied. As the founding member of the new AKR13D subfamily, PR also provides a structural template and model of cofactor binding for the AKR13 family. PMID:22334702

  18. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Ikari, Akira; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio

    2015-03-01

    In rabbit tissues, hydroxysteroid dehydrogenase belonging to the aldo-keto reductase (AKR) superfamily exists in six isoforms (AKRs: 1C5 and 1C29-1C33), sharing >73% amino acid sequence identity. AKR1C33 is strictly NADPH-specific, in contrast to dual NADPH/NADH specificity of the other isoforms. All coenzyme-binding residues of the structurally elucidated AKR1C5 are conserved in other isoforms, except that S217 (interacting with the pyrophosphate moiety) and T273 (interacting with the 2'-phosphate moiety) are replaced with F217 and N272, respectively, in AKR1C33. To explore the determinants for the NADPH specificity of AKR1C33, we prepared its F217S and N272T mutant enzymes. The mutation of F217S, but not N272T, converted AKR1C33 into a dually coenzyme-specific form that showed similar kcat values for NAD(P)H to those of AKR1C32. The reverse mutation (S217F) in dually coenzyme-specific AKR1C32 produced a strictly NADPH-specific form. The F217S mutation also abolished the activity towards 3-keto-5β-cholestanes that are substrates specific to AKR1C33, and markedly decreased the sensitivity to 4-pregnenes (such as deoxycorticosterone and medroxyprogesterone acetate) that were found to be potent mixed-type inhibitors of the wild-type enzyme. The results indicate the important role of F217 in the strict NADPH-dependency, as well as its involvement in the unique catalytic properties of AKR1C33.

  19. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  20. Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells

    SciTech Connect

    Lemieux, N. ); Malfoy, B. ); Forrest, G.L. )

    1993-01-01

    Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

  1. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP +

    SciTech Connect

    Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.; Nidetzky, Bernd

    2005-01-11

    Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+ were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP+-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contacts of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P)+ in the wild-type remains partly disordered in the NADP+-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.

  2. X-ray structure of the V301L aldo-keto reductase 1B10 complexed with NADP(+) and the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity.

    PubMed

    Ruiz, Francesc Xavier; Cousido-Siah, Alexandra; Mitschler, André; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2013-02-25

    Only one crystal structure is currently available for tumor marker AKR1B10, complexed with NADP(+) and tolrestat, which is an aldose reductase inhibitor (ARI) of the carboxylic acid type. Here, the X-ray structure of the complex of the V301L substituted AKR1B10 holoenzyme with fidarestat, an ARI of the cyclic imide type, was obtained at 1.60Å resolution by replacement soaking of crystals containing tolrestat. Previously, fidarestat was found to be safe in phase III trials for diabetic neuropathy and, consistent with its low in vivo side effects, was highly selective for aldose reductase (AR or AKR1B1) versus aldehyde reductase (AKR1A1). Now, inhibition studies showed that fidarestat was indeed 1300-fold more selective for AR as compared to AKR1B10, while the change of Val to Leu (found in AR) caused a 20-fold decrease in the IC50 value with fidarestat. Structural analysis of the V301L AKR1B10-fidarestat complex displayed enzyme-inhibitor interactions similar to those of the AR-fidarestat complex. However, a close inspection of both the new crystal structure and a computer model of the wild-type AKR1B10 complex with fidarestat revealed subtle changes that could affect fidarestat binding. In the crystal structure, a significant motion of loop A was observed between AR and V301L AKR1B10, linked to a Phe-122/Phe-123 side chain displacement. This was due to the presence of the more voluminous Gln-303 side chain (Ser-302 in AR) and of a water molecule buried in a subpocket located at the base of flexible loop A. In the wild-type AKR1B10 model, a short contact was predicted between the Val-301 side chain and fidarestat, but would not be present in AR or in V301L AKR1B10. Overall, these changes could contribute to the difference in inhibitory potency of fidarestat between AR and AKR1B10.

  3. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  4. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).

    PubMed

    Chen, Mo; Penning, Trevor M

    2014-05-01

    5β-Reduced steroids are non-planar steroids that have a 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ(4)-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldo-keto reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19-C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency.

  5. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  6. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  7. High-resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase

    SciTech Connect

    Hazemann, I.; Dauvergne, M. T.; Blakeley, M. P.; Meilleur, Flora; Haertlein, M.; Van Dorsselaer, A.; Mitschler, A.; Myles, Dean A A; Podjarny, A.

    2005-08-01

    Neutron diffraction data have been collected to 2.2 {angstrom} resolution from a small (0.15 mm{sup 3}) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase [h-AR(D)], subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm{sup 3} are reported. Neutron data were recorded to 2 {angstrom} resolution, with subsequent data analysis using data to 2.2 {angstrom}. This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples.

  8. Promiscuity and diversity in 3-ketosteroid reductases

    PubMed Central

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  9. Promiscuity and diversity in 3-ketosteroid reductases.

    PubMed

    Penning, Trevor M; Chen, Mo; Jin, Yi

    2015-07-01

    Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.

  10. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.

    PubMed

    Jin, Yi; Chen, Mo; Penning, Trevor M

    2014-08-15

    Human AKR1D1 (steroid 5β-reductase/aldo-keto reductase 1D1) catalyses the stereospecific reduction of double bonds in Δ4-3-oxosteroids, a unique reaction that introduces a 90° bend at the A/B ring fusion to yield 5β-dihydrosteroids. AKR1D1 is the only enzyme capable of steroid 5β-reduction in humans and plays critical physiological roles. In steroid hormone metabolism, AKR1D1 serves mainly to inactivate the major classes of steroid hormones. AKR1D1 also catalyses key steps of the biosynthetic pathway of bile acids, which regulate lipid emulsification and cholesterol homoeostasis. Interestingly, AKR1D1 displayed a 20-fold variation in the kcat values, with steroid hormone substrates (e.g. aldosterone, testosterone and cortisone) having significantly higher kcat values than steroids with longer side chains (e.g. 7α-hydroxycholestenone, a bile acid precursor). Transient kinetic analysis revealed striking variations up to two orders of magnitude in the rate of the chemistry step (kchem), which resulted in different rate determining steps for the fast and slow substrates. By contrast, similar Kd values were observed for representative fast and slow substrates, suggesting similar rates of release for different steroid products. The release of NADP+ was shown to control the overall turnover for fast substrates, but not for slow substrates. Despite having high kchem values with steroid hormones, the kinetic control of AKR1D1 is consistent with the enzyme catalysing the slowest step in the catabolic sequence of steroid hormone transformation in the liver. The inherent slowness of the conversion of the bile acid precursor by AKR1D1 is also indicative of a regulatory role in bile acid synthesis.

  11. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    PubMed

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  12. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  13. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes.

    PubMed

    Gibson, Douglas A; Simitsidellis, Ioannis; Cousins, Fiona L; Critchley, Hilary O D; Saunders, Philippa T K

    2016-01-01

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1-8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment. PMID:26817618

  14. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation.

    PubMed

    Penning, Trevor M

    2011-05-01

    Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases, e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. Article from the Special issue on Targeted Inhibitors.

  15. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  16. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.

    PubMed

    Chen, Mo; Jin, Yi; Penning, Trevor M

    2015-10-20

    Human steroid-5β-reductase (aldo-keto reductase 1D1, AKR1D1) stereospecifically reduces Δ(4)-3-ketosteroids to 5β-dihydrosteroids and is essential for steroid hormone metabolism and bile acid biosynthesis. Genetic defects in AKR1D1 cause bile acid deficiency that leads to life threatening neonatal hepatitis and cholestasis. The disease-associated P133R mutation caused significant decreases in catalytic efficiency with both the representative steroid (cortisone) and the bile acid precursor (7α-hydroxycholest-4-en-3-one) substrates. Pro133 is a second shell residue to the steroid binding channel and is distal to both the cofactor binding site and the catalytic center. Strikingly, the P133R mutation caused over a 40-fold increase in Kd values for the NADP(H) cofactors and increased the rate of release of NADP(+) from the enzyme by 2 orders of magnitude when compared to the wild type enzyme. By contrast the effect of the mutation on Kd values for steroids were 10-fold or less. The reduced affinity for the cofactor suggests that the mutant exists largely in the less stable cofactor-free form in the cell. Using stopped-flow spectroscopy, a significant reduction in the rate of the chemical step was observed in multiple turnover reactions catalyzed by the P133R mutant, possibly due to the altered position of NADPH. Thus, impaired NADPH binding and hydride transfer is the molecular basis for bile acid deficiency in patients with the P133R mutation. Results revealed that optimal cofactor binding is vulnerable to distant structural perturbation, which may apply to other disease-associated mutations in AKR1D1, all of which occur at conserved residues and are unstable.

  17. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    PubMed

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis. PMID:25182422

  18. Metabolism and disposition of a potent and selective JNK inhibitor [14C]tanzisertib following oral administration to rats, dogs and humans.

    PubMed

    Atsriku, Christian; Hoffmann, Matthew; Ye, Ying; Kumar, Gondi; Surapaneni, Sekhar

    2015-05-01

    1. The disposition of tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, orally active c-Jun amino-terminal kinase inhibitor intended for treatment of fibrotic diseases was studied in rats, dogs and humans following a single oral dose of [(14)C]tanzisertib (Independent Investigational Review Board Inc., Plantation, FL). 2. Administered dose was quantitatively recovered in all species and feces/bile was the major route of elimination. Tanzisertib was rapidly absorbed (Tmax: 1-2 h) across all species with unchanged tanzisertib representing >83% of plasma radioactivity in dogs and humans, whereas <34% was observed in rats. Variable amounts of unchanged tanzisertib (1.5-32% of dose) was recovered in urine/feces across all species, the highest in human feces. 3. Metabolic profiling revealed that tanzisertib was primarily metabolized via oxidation and conjugation pathways, but extensively metabolized in rats relative to dogs/humans. CC-418424 (S-cis isomer of tanzisertib) was the major plasma metabolite in rats (38.4-46.4% of plasma radioactivity), while the predominant plasma metabolite in humans and dogs was M18 (tanzisertib-/CC-418424 glucuronide), representing 7.7 and 3.2% of plasma radioactivity, respectively. Prevalent biliary metabolite in rats and dogs, M18 represented 16.8 and 17.1% of dose, respectively. 4. In vitro studies using liver subcellular fractions and expressed enzymes characterized involvement of novel human aldo-keto reductases for oxido-reduction and UDP-glucuronosyltransferases for conjugation pathways.

  19. Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum.

    PubMed

    Unterlinner, B; Lenz, R; Kutchan, T M

    1999-06-01

    The narcotic analgesic morphine is the major alkaloid of the opium poppy Papaver somniferum. Its biosynthetic precursor codeine is currently the most widely used and effective antitussive agent. Along the morphine biosynthetic pathway in opium poppy, codeinone reductase catalyzes the NADPH-dependent reduction of codeinone to codeine. In this study, we have isolated and characterized four cDNAs encoding codeinone reductase isoforms and have functionally expressed them in Escherichia coli. Heterologously expressed codeinone reductase-calmodulin-binding peptide fusion protein was purified from E. coli using calmodulin affinity column chromatography in a yield of 10 mg enzyme l-1. These four isoforms demonstrated very similar physical properties and substrate specificity. As least six alleles appear to be present in the poppy genome. A comparison of the translations of the nucleotide sequences indicate that the codeinone reductase isoforms are 53% identical to 6'-deoxychalcone synthase from soybean suggesting an evolutionary although not a functional link between enzymes of phenylpropanoid and alkaloid biosynthesis. By sequence comparison, both codeinone reductase and 6'-deoxy- chalcone synthase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism.

  20. Primary ∆4-3-oxosteroid 5β-reductase deficiency: two cases in China.

    PubMed

    Zhao, Jing; Fang, Ling-Juan; Setchell, Kenneth D R; Chen, Rui; Li, Li-Ting; Wang, Jian-She

    2012-12-21

    Aldo-keto reductase 1D1 (AKR1D1) deficiency, a rare but life-threatening form of bile acid deficiency, has not been previously described in China. Here, we describe the first two primary ∆4-3-oxosteroid 5β-reductase deficiency patients in Mainland China diagnosed by fast atom bombardment-mass spectroscopy of urinary bile acids and confirmed by genetic analysis. A high proportion of atypical 3-oxo-∆4-bile acids in the urine indicated a deficiency in ∆4-3-oxosteroid 5β-reductase. All of the coding exons and adjacent intronic sequence of the AKR1D1 gene were sequenced using peripheral lymphocyte genomic DNA of two patients and one of the patient's parents. One patient exhibited compound heterozygous mutations: c.396C>A and c.722A>T, while the other was heterozygous for the mutation c.797G>A. Based on these mutations, a diagnosis of primary ∆4-3-oxosteroid 5β-reductase deficiency could be confirmed. With ursodeoxycholic acid treatment and fat-soluble vitamin supplements, liver function tests normalized rapidly, and the degree of hepatomegaly was markedly reduced in both patients.

  1. Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A.

    PubMed

    Erzinger, Melanie M; Bovet, Cédric; Hecht, Katrin M; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J

    2016-01-01

    The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues. PMID:26950072

  2. Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A

    PubMed Central

    Erzinger, Melanie M.; Bovet, Cédric; Hecht, Katrin M.; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W.; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J.

    2016-01-01

    The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues. PMID:26950072

  3. DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases.

    SciTech Connect

    Eschenfeldt, W. H.; Stols, L.; Rosenbaum, H.; Khambatta, Z. S.; Quaite, E. R.; Wu, S.; Kilgore, D. C.; Trent, J. D.; Donnelly, M. I.; Genencor International; Eastman Chemical Company

    2001-09-01

    Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-D-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressed in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid. Compared to previously described DKGRs isolated from Corynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higher k{sub cat}/K{sub m} values than those previously determined, primarily as a result of better binding of substrate. The K{sub m} values for the two new reductases were 57 and 67 {mu}M, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.

  4. Differential expression of the enzymatic system controlling synthesis, metabolism, and transport of PGF2 alpha in human fetal membranes.

    PubMed

    Breuiller-Fouché, Michelle; Leroy, Marie-Josèphe; Dubois, Olivier; Reinaud, Pierrette; Chissey, Audrey; Qi, Hong; Germain, Guy; Fortier, Michel A; Charpigny, Gilles

    2010-07-01

    The present study investigated the expression of genes and proteins associated with PGF2alpha biosynthesis, catabolism, and transport in matched amnion and choriodecidua of human term placenta. The concentration of PGF2alpha within fetal membranes depends on the balance between complex enzymatic systems responsible for, respectively, its synthesis-by prostaglandin-endoperoxide synthase 2 (PTGS2) and members of the aldo-keto reductase (AKR) family, AKR1C3 and AKR1B1-and its catabolic inactivation-through hydroxy-prostaglandin-dehydrogenase (HPGD). We observed that AKR1C3 shows equal basal expression (mRNA and protein) in choriodecidua and amnion but that AKR1B1 exhibits preferential expression in the choriodecidua. Expression of HPGD and solute carrier organic anion transporter family member 2A1 (SLCO2A1) was found primarily in the choriodecidua. We also evaluated whether an inflammatory environment induced by the gram-negative bacterial endotoxin lipopolysaccharide (LPS) affects expression of each candidate enzymes. The amnion responded to LPS with a small but significant decrease of AKR1B1 mRNA expression. In contrast, we found a significant increase in PTGS2 and AKR1C3 mRNA expression in choriodecidua after LPS challenge, but such regulation was confirmed only at protein levels for PTGS2 and not for AKR1C3. Our results suggest that the choriodecidua appears to be the main tissue, which expresses maximally all the components (synthesis, degradation, and transport) controlling PGF2alpha levels. PMID:20357271

  5. Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells.

    PubMed

    Jia, Yi; Domenico, Joanne; Swasey, Christina; Wang, Meiqin; Gelfand, Erwin W; Lucas, Joseph J

    2014-01-01

    G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers. PMID:24848372

  6. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system.

    PubMed

    Yoon, Shin Ah; Jung, Jihye; Park, Seongsoon; Kim, Hyung Kwoun

    2013-02-01

    The aldo-keto reductases catalyze reduction reactions using various aliphatic and aromatic aldehydes/ketones. Most reductases require NADPH exclusively as their cofactors. However, NADPH is much more expensive and unstable than NADH. In this study, we attempted to change the five amino acid residues that interact with the 2'-phosphate group of the adenosine ribose of NADPH. These residues were selected based on a docking model of the YOL151W reductase and were substituted with other amino acids to develop NADH-utilizing enzymes. Ten mutants were constructed by site-directed mutagenesis and expressed in Escherichia coli. Among them, four mutants showed higher reductase activities than wild-type when using the NADH cofactor. Analysis of the kinetic parameters for the wild type and mutants indicated that the kcat/Km value of the Asn9Glu mutant toward NADH increased 3-fold. A docking model was used to show that the carboxyl group of Glu 9 of the mutant formed an additional hydrogen bond with the 2'-hydroxyl group of adenosine ribose. The Asn9Glu mutant was able to produce (R)-ethyl-4-chloro-3-hydroxyl butanoate rapidly when using the NADH regeneration system. PMID:23412065

  7. Cloning and sequence of the human adrenodoxin reductase gene.

    PubMed Central

    Lin, D; Shi, Y F; Miller, W L

    1990-01-01

    Adrenodoxin reductase (ferrodoxin:NADP+ oxidoreductase, EC 1.18.1.2) is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. We cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G + C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of "housekeeping" genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon. Images PMID:2236061

  8. Identification of a newly isolated erythritol-producing yeast and cloning of its erythrose [corrected] reductase genes.

    PubMed

    Deng, Huihui; Han, Ye; Liu, Yuanyuan; Jia, Wei; Zhou, Zhijiang

    2012-11-01

    A new erythritol-producing yeast (strain BH010) was isolated in this study. Analysis of the D1/D2 domain of the 26S rDNA sequence, the ITS/5.8S rDNA sequence [corrected] and the 18S rDNA sequence allowed the taxonomic position of strain BH010 to be discussed, [corrected] and it was identified and named Moniliella sp. BH010. Physiological characteristics were described. Scanning electron micrography clearly indicated that the cells were cylindrical to elliptical with an average size of 5 × 10 μm when growing in liquid medium [corrected] and that pseudohyphae and blastoconidia were observed when cultivated in agar plates. The erythrose [corrected] reductase genes were cloned, sequenced, and analyzed. BLAST analysis and multiple sequence alignment demonstrated that erythrose [corrected] reductase genes of Moniliella sp. BH010 shared very high homology with that of Trichosporonoides megachiliensis SNG-42 except for the presence of introns. The deduced amino acid sequences showed high homology to the aldo-keto reductase superfamily.

  9. Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis.

    PubMed

    Ziegler, Jörg; Voigtländer, Susan; Schmidt, Jürgen; Kramell, Robert; Miersch, Otto; Ammer, Christian; Gesell, Andreas; Kutchan, Toni M

    2006-10-01

    Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7-epi-salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.

  10. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.

  11. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general. PMID:26813442

  12. Functional expression of novel human and murine AKR1B genes

    PubMed Central

    Salabei, Joshua K.; Li, Xiao-Ping; Petrash, J. Mark; Bhatnagar, Aruni; Barski, Oleg A.

    2011-01-01

    The Aldo Keto Reductases (AKRs) are a superfamily of enzymes that catalyze the reduction of biogenic and xenobiotic aldehydes and ketones. AKR1B family has 2 known members in humans and 3 in rodents. Two novel gene loci, hereafter referred to as AKR1B15 in human and Akr1b16 in mouse have been predicted to exist within the AKR1B clusters. AKR1B15 displays 91% and 67% sequence identity with human genes AKR1B10 and AKR1B1, respectively while Akr1b16 shares 82–84% identity with murine Akr1b8 and Akr1b7. We tested the hypothesis that AKR1B15 and Akr1b16 genes are expressed as functional proteins in human and murine tissues, respectively. Using whole tissue mRNA, we were able to clone the full-length open reading frames for AKR1B15 from human eye and testes, and Akr1b16 from murine spleen, demonstrating that these genes are transcriptionally active. The corresponding cDNAs were cloned into pET28a and pIRES-hrGFP-1α vectors for bacterial and mammalian expression respectively. Both genes were expressed as 36 kDA proteins found in the insoluble fraction of bacterial cell lysate. These proteins, expressed in bacteria showed no enzymatic activity. However, lysates from COS-7 cells transfected with AKR1B15 showed a 4.8-fold (with p-nitrobenzaldehyde) and 3.3-fold (with DL-glyceraldehyde) increase in enzyme activity compared with untransfected COS-7 cells. The Akr1b16 transcript was shown to be ubiquitously expressed in murine tissues. Highest levels of transcript were found in heart, spleen, and lung. From these observations we conclude that the predicted AKR1B15 and 1b16 genes are expressed in several murine and human tissues. Further studies are required to elucidate their physiological roles. PMID:21276782

  13. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase.

    PubMed

    Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A G; Pajares, María A; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  14. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  15. Detoxication of benzo[a]pyrene-7,8-dione by sulfotransferases (SULTs) in human lung cells.

    PubMed

    Zhang, Li; Huang, Meng; Blair, Ian A; Penning, Trevor M

    2012-08-24

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.

  16. Identification of stable benzo[a]pyrene-7,8-dione-DNA adducts in human lung cells.

    PubMed

    Huang, Meng; Blair, Ian A; Penning, Trevor M

    2013-05-20

    Metabolic activation of the proximate carcinogen benzo[a]pyrene-7,8-trans-dihydrodiol (B[a]P-7,8-trans-dihydrodiol) by aldo-keto reductases (AKRs) leads to B[a]P-7,8-dione that is both electrophilic and redox-active. B[a]P-7,8-dione generates reactive oxygen species resulting in oxidative DNA damage in human lung cells. However, information on the formation of stable B[a]P-7,8-dione-DNA adducts in these cells is lacking. We studied stable DNA adduct formation of B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. After treatment with 2 μM B[a]P-7,8-dione, the cellular DNA was extracted from the cell pellets subjected to enzyme hydrolysis and subsequent analysis by LC-MS/MS. Several stable DNA adducts of B[a]P-7,8-dione were only detected in A549 and HBEC-KT cells. In A549 cells, the structures of stable B[a]P-7,8-dione-DNA adducts were identified as hydrated-B[a]P-7,8-dione-N(2)-2'-deoxyguanosine and hydrated-B[a]P-7,8-dione-N1-2'-deoxyguanosine. In HBEC-KT cells, the structures of stable B[a]P-7,8-dione-DNA adducts were identified as hydrated-B[a]P-7,8-dione-2'-deoxyadenosine, hydrated-B[a]P-7,8-dione-N1- or N3-2'-deoxyadenosine, and B[a]P-7,8-dione-N1- or N3-2'-deoxyadenosine. In each case, adduct structures were characterized by MS(n) spectra. Adduct structures were also compared to those synthesized from reactions of B[a]P-7,8-dione with either deoxyribonucleosides or salmon testis DNA in vitro but were found to be different.

  17. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells.

    PubMed

    Zhang, Li; Huang, Meng; Blair, Ian A; Penning, Trevor M

    2013-10-21

    Polycyclic aromatic hydrocarbons (PAHs) are environmental and tobacco carcinogens. Proximate carcinogenic PAH trans-dihydrodiols are activated by human aldo-keto reductases (AKRs) to yield electrophilic and redox-active o-quinones. Interconversion among benzo[a]pyrene (B[a]P)-7,8-dione, a representative PAH o-quinone, and its corresponding catechol generates a futile redox-cycle with the concomitant production of reactive oxygen species (ROS). We investigated whether glucuronidation of B[a]P-7,8-catechol by human UDP glucuronosyltransferases (UGTs) could intercept the catechol in three different human lung cells. RT-PCR showed that UGT1A1, 1A3, and 2B7 were only expressed in human lung adenocarcinoma A549 cells. The corresponding recombinant UGTs were examined for their kinetic constants and product profile using B[a]P-7,8-catechol as a substrate. B[a]P-7,8-dione was reduced to B[a]P-7,8-catechol by dithiothreitol under anaerobic conditions and then further glucuronidated by the UGTs in the presence of uridine-5'-diphosphoglucuronic acid as a glucuronic acid group donor. UGT1A1 catalyzed the glucuronidation of B[a]P-7,8-catechol and generated two isomeric O-monoglucuronsyl-B[a]P-7,8-catechol products that were identified by RP-HPLC and by LC-MS/MS. By contrast, UGT1A3 and 2B7 catalyzed the formation of only one monoglucuronide, which was identical to that formed in A549 cells. The kinetic profiles of three UGTs followed Michaelis-Menten kinetics. On the basis of the expression levels of UGT1A3 and UGT2B7 and the observation that a single monoglucuronide was produced in A549 cells, we suggest that the major UGT isoforms in A549 cells that can intercept B[a]P-7,8-catechol are UGT1A3 and 2B7.

  18. Side chain conformational averaging in human dihydrofolate reductase.

    PubMed

    Tuttle, Lisa M; Dyson, H Jane; Wright, Peter E

    2014-02-25

    The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ1 rotamer populations derived from measurements of (3)JCγCO and (3)JCγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as

  19. 5α-Reductase Type 3 Expression in Human Benign and Malignant Tissues: A Comparative Analysis During Prostate Cancer Progression

    PubMed Central

    Godoy, Alejandro; Kawinski, Elzbieta; Li, Yun; Oka, Daizo; Alexiev, Borislav; Azzouni, Faris; Titus, Mark A.; Mohler, James L.

    2015-01-01

    BACKGROUND A third isozyme of human 5α-steroid reductase, 5α-reductase-3, was identified in prostate tissue at the mRNA level. However, the levels of 5α-reductase-3 protein expression and its cellular localization in human tissues remain unknown. METHODS A specific monoclonal antibody was developed, validated, and used to characterize for the first time the expression of 5α-reductase-3 protein in 18 benign and 26 malignant human tissue types using immunostaining analyses. RESULTS AND CONCLUSIONS In benign tissues, 5α-reductase-3 immunostaining was high in conventional androgen-regulated human tissues, such as skeletal muscle and prostate. However, high levels of expression also were observed in non-conventional androgen-regulated tissues, which suggest either multiples target tissues for androgens or different functions of 5α-reductase-3 among human tissues. In malignant tissues, 5α-reductase-3 immunostaining was ubiquitous but particularly over-expressed in some cancers compared to their benign counterparts, which suggests a potential role for 5α-reductase-3 as a biomarker of malignancy. In benign prostate, 5α-reductase-3 immunostaining was localized to basal epithelial cells, with no immunostaining observed in secretory/luminal epithelial cells. In high-grade prostatic intraepithelial neoplasia (HGPIN), 5α-reductase-3 immunostaining was localized in both basal epithelial cells and neoplastic epithelial cells characteristic of HGPIN. In androgen-stimulated and castration-recurrent prostate cancer (CaP), 5α-reductase-3 immunostaining was present in most epithelial cells and at similar levels, and at levels higher than observed in benign prostate. Analyses of expression and functionality of 5α-reductase-3 in human tissues may prove useful for development of treatment for benign prostatic enlargement and prevention and treatment of CaP. PMID:21557268

  20. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  1. Plant progesterone 5beta-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5betaR from Digitalis purpurea.

    PubMed

    Gavidia, Isabel; Tarrío, Rosa; Rodríguez-Trelles, Francisco; Pérez-Bermúdez, Pedro; Seitz, H Ulrich

    2007-03-01

    Plants of the genus Digitalis produce cardiac glycosides, i.e. digoxin, which are widely used for congestive heart failure. Progesterone 5beta-reductase (P5betaR) is a key enzyme in the biosynthesis of these natural products. Here, we have carried out the purification and partial amino acid sequencing of the native P5betaR from foxglove (Digitalis purpurea), and isolated a cDNA encoding this enzyme. Similarly to other steroid 5beta-reductases, the recombinant P5betaR catalyzes the stereospecific reduction of the Delta(4)-double bond of several steroids with a 3-oxo,Delta(4,5) structure. The gene encoding P5betaR is expressed in all plant organs, and maximally transcribed in leaves and mature flowers. P5betaR belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, bearing no structural homology to its mammalian counterpart, which is a member of the aldo-keto reductase (AKR) superfamily. A similar situation occurs with 3beta-hydroxy-Delta(5)-steroid dehydrogenase (3betaHSD), the gene immediately preceding P5betaR in the cardenolide pathway, which suggests that the entire route has evolved independently in animals and plants. P5betaR is retained only in plants, where it is ubiquitous, and a few distantly related bacterial lineages after its diversification from the last universal common ancestor. Evolutionary conserved changes in its putative active site suggest that plant P5betaR is a member of a novel subfamily of extended SDRs, or a new SDR family.

  2. Crustacean oxi-reductases protein sequences derived from a functional genomic project potentially involved in ecdysteroid hormones metabolism - a starting point for function examination.

    PubMed

    Tom, Moshe; Manfrin, Chiara; Giulianini, Piero G; Pallavicini, Alberto

    2013-12-01

    A transcriptomic assembly originated from hypodermis and Y organ of the crustacean Pontastacus leptodactylus is used here for in silico characterization of oxi-reductase enzymes potentially involved in the metabolism of ecdysteroid molting hormones. RNA samples were extracted from male Y organ and its neighboring hypodermis in all stages of the molt cycle. An equimolar RNA mix from all stages was sequenced using next generation sequencing technologies and de novo assembled, resulting with 74,877 unique contigs. These transcript sequences were annotated by examining their resemblance to all GenBank translated transcripts, determining their Gene Ontology terms and their characterizing domains. Based on the present knowledge of arthropod ecdysteroid metabolism and more generally on steroid metabolism in other taxa, transcripts potentially related to ecdysteroid metabolism were identified and their longest possible conceptual protein sequences were constructed in two stages, correct reading frame was deduced from BLASTX resemblances, followed by elongation of the protein sequence by identifying the correct translation frame of the original transcript. The analyzed genes belonged to several oxi-reductase superfamilies including the Rieske non heme iron oxygenases, cytochrome P450s, short-chained hydroxysteroid oxi-reductases, aldo/keto oxireductases, lamin B receptor/sterol reductases and glucose-methanol-cholin oxi-reductatses. A total of 68 proteins were characterized and the most probable participants in the ecdysteroid metabolism where indicated. The study provides transcript and protein structural information, a starting point for further functional studies, using a variety of gene-specific methods to demonstrate or disprove the roles of these proteins in relation to ecdysteroid metabolism in P. leptodactylus.

  3. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds

    PubMed Central

    MacLeod, A.Kenneth; McMahon, Michael; Plummer, Simon M.; Higgins, Larry G.; Penning, Trevor M.; Igarashi, Kazuhiko; Hayes, John D.

    2009-01-01

    To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome microarray revealed that knockdown of KEAP1 resulted in 23 messenger RNAs (mRNAs) being up-regulated ≥2.0-fold. mRNA for aldo-keto reductase (AKR) 1B10, AKR1C1, AKR1C2 and AKR1C3 were induced to the greatest extent, showing increases of between 12- and 16-fold, whereas mRNA for glutamate-cysteine ligase catalytic and modifier subunits, NAD(P)H:quinone oxidoreductase-1 and haem oxygenase-1 (HMOX1) were induced between 2.0- and 4.8-fold. Knockdown of BACH1 increased HMOX1 135-fold but induced the other genes examined to a maximum of only 2.7-fold. Activation of NRF2, by KEAP1 knockdown, caused a 75% increase in the amount of glutathione in HaCaT cells and a 1.4- to 1.6-fold increase in their resistance to the electrophiles acrolein, chlorambucil and cumene hydroperoxide (CuOOH), as well as the redox-cycling agent menadione. Inhibition of glutathione synthesis during KEAP1 knockdown, by treatment with buthionine sulfoximine, abrogated resistance to acrolein, chlorambucil and CuOOH, but not to menadione. In contrast, knockdown of BACH1 did not increase glutathione levels or resistance to xenobiotics. Knockdown of NRF2 in HaCaT cells decreased glutathione to ∼80% of normal homeostatic levels and similarly reduced their tolerance of electrophiles. Thus, the KEAP1–NRF2 pathway determines resistance to electrophiles and redox-cycling compounds in human keratinocytes through glutathione-dependent and glutathione-independent mechanisms. This study also shows that AKR1B10, AKR1C1 and AKR1C2 proteins have potential utility as biomarkers for NRF2 activation in the human. PMID:19608619

  4. Molecular cloning and expression of the human delta7-sterol reductase.

    PubMed

    Moebius, F F; Fitzky, B U; Lee, J N; Paik, Y K; Glossmann, H

    1998-02-17

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Delta7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith-Lemli-Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Delta7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7-8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 microM), BM15766 (IC50 1.2 microM), and triparanol (IC50 14 microM). Our work paves the way to clarify whether a defect in the delta7-sterol reductase gene underlies the Smith-Lemli-Opitz syndrome. PMID:9465114

  5. Molecular cloning and expression of the human Δ7-sterol reductase

    PubMed Central

    Moebius, Fabian F.; Fitzky, Barbara U.; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut

    1998-01-01

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Δ7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith–Lemli–Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Δ7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7–8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 μM), BM15766 (IC50 1.2 μM), and triparanol (IC50 14 μM). Our work paves the way to clarify whether a defect in the Δ7-sterol reductase gene underlies the Smith–Lemli–Opitz syndrome. PMID:9465114

  6. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes.

    PubMed

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J; Gathercole, Laura L; Tomlinson, Jeremy W

    2015-08-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux. PMID:25974403

  7. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes

    PubMed Central

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P.; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J.; Gathercole, Laura L.

    2015-01-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux. PMID:25974403

  8. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes.

    PubMed

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J; Gathercole, Laura L; Tomlinson, Jeremy W

    2015-08-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux.

  9. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans

    PubMed Central

    Liu, C. Tony; Hanoian, Philip; French, Jarrod B.; Pringle, Thomas H.; Hammes-Schiffer, Sharon; Benkovic, Stephen J.

    2013-01-01

    With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme’s binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415–385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes. PMID:23733948

  10. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  11. Human leukemia and normal leukocytes contain a species of immunoreactive but nonfunctional dihydrofolate reductase.

    PubMed Central

    Rothenberg, S P; Iqbal, M P

    1982-01-01

    A quantitative radioimmunoassay has been developed for human dihydrofolate reductase (tetrahydrofolate dehydrogenase; 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) by using antiserum raised in rabbits against the active enzyme purified from calf liver. An immunoreactive protein could be identified in the cytoplasm of chronic myelogenous leukemia cells, which contained no functional dihydrofolate reductase activity. Its concentration was stoichiometric to the volume of cytoplasm assayed and paralleled the standard curve obtained with purified enzyme, indicating that this protein in the human cells is antigenically similar to the homologous antigen. The concentration of this immunoreactive protein in the cytoplasm of human leukemia and normal leukocytes in all instances greatly exceeded the concentration of functional dihydrofolate reductase, which was measured by the binding of [3H]methotrexate. This nonfunctional immunoreactive protein in the cytoplasm and cytosol from two different samples of chronic myelogenous leukemia cells analyzed by gel filtration had an apparent molecular weight of 41,000, which is twice the molecular weight of the functional enzyme. Images PMID:6952216

  12. Cloning, Overexpression, and Mutagenesis of the Sporobolomyces salmonicolor AKU4429 Gene Encoding a New Aldehyde Reductase, Which Catalyzes the Stereoselective Reduction of Ethyl 4-Chloro-3-Oxobutanoate to Ethyl (S)-4-Chloro-3-Hydroxybutanoate

    PubMed Central

    Kita, Keiko; Fukura, Takanobu; Nakase, Koh-Ichi; Okamoto, Kenji; Yanase, Hideshi; Kataoka, Michihiko; Shimizu, Sakayu

    1999-01-01

    We cloned and sequenced the gene encoding an NADPH-dependent aldehyde reductase (ARII) in Sporobolomyces salmonicolor AKU4429, which reduces ethyl 4-chloro-3-oxobutanoate (4-COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate. The ARII gene is 1,032 bp long, is interrupted by four introns, and encodes a 37,315-Da polypeptide. The deduced amino acid sequence exhibited significant levels of similarity to the amino acid sequences of members of the mammalian 3β-hydroxysteroid dehydrogenase–plant dihydroflavonol 4-reductase superfamily but not to the amino acid sequences of members of the aldo-keto reductase superfamily or to the amino acid sequence of an aldehyde reductase previously isolated from the same organism (K. Kita, K. Matsuzaki, T. Hashimoto, H. Yanase, N. Kato, M. C.-M. Chung, M. Kataoka, and S. Shimizu, Appl. Environ. Microbiol. 62:2303–2310, 1996). The ARII protein was overproduced in Escherichia coli about 2,000-fold compared to the production in the original yeast cells. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as ARII purified from S. salmonicolor. To examine the contribution of the dinucleotide-binding motif G19-X-X-G22-X-X-A25, which is located in the N-terminal region, during ARII catalysis, we replaced three amino acid residues in the motif and purified the resulting mutant enzymes. Substrate inhibition of the G19→A and G22→A mutant enzymes by 4-COBE did not occur. The A25→G mutant enzyme could reduce 4-COBE when NADPH was replaced by an equimolar concentration of NADH. PMID:10583966

  13. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  14. Insights into the redox cycle of human quinone reductase 2.

    PubMed

    Reybier, Karine; Perio, Pierre; Ferry, Gilles; Bouajila, Jalloul; Delagrange, Philippe; Boutin, Jean A; Nepveu, Françoise

    2011-10-01

    NRH:quinone oxidoreductase 2 (QR2) is a cytosolic enzyme that catalyzes the reduction of quinones, such as menadione and co-enzymes Q. With the aim of understanding better the mechanisms of action of QR2, we approached this enzyme catalysis via electron paramagnetic resonance (EPR) measurements of the by-products of the QR2 redox cycle. The variation in the production of oxidative species such as H(2)O(2), and subsequent hydroxyl radical generation, was measured during the course of QR2 activity under aerobic conditions and using pure human enzyme. The effects on the activity of the following were compared: (i) synthetic (N-benzyldihydronicotinamide, BNAH) or natural (nicotinamide riboside, NRH) co-substrates; (ii) synthetic (menadione) or natural (co-enzyme Q0, Q2) substrates; (iii) QR2 modulators and inhibitors (melatonin, resveratrol and S29434); (iv) a pro-drug activated via a redox cycle [CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide]. The results were also compared with those obtained with human QR1. The production of hydroxyl radicals is: (i) observed whatever the substrate/co-substrate used; ii) quenched by adding catalase; (iii) not observed with the specific QR2 inhibitor S29434; (iv) observed with the pro-drug CB1954. While QR2 produced free radicals with this pro-drug, QR1 gave no EPR signal showing the strong reducing capacity of QR2. In conclusion, EPR analysis of QR2 enzyme activity through free radical production enables modulators and effective inhibitors to be distinguished. PMID:21762045

  15. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.

    PubMed

    Tinguely, J N; Wermuth, B

    1999-02-01

    Carbonyl reductase is highly susceptible to inactivation by organomercurials suggesting the presence of a reactive cysteine residue in, or close to, the active site. This residue is also close to a site which binds glutathione. Structurally, carbonyl reductase belongs to the short-chain dehydrogenase/reductase family and contains five cysteine residues, none of which is conserved within the family. In order to identify the reactive residue and investigate its possible role in glutathione binding, alanine was substituted for each cysteine residue of human carbonyl reductase by site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli and purified to homogeneity. Four of the five mutants (C26A, C122A C150A and C226A) exhibited wild-type-like enzyme activity, although K(m) values of C226A for three structurally different substrates were increased threefold to 10-fold. The fifth mutant, C227A, showed a 10-15-fold decrease in kcat and a threefold to 40-fold increase in K(m), resulting in a 30-500-fold drop in kcat/K(m). NaCl (300 mM) increased the activity of C227A 16-fold, whereas the activity of the wild-type enzyme was only doubled. Substitution of serine rather than alanine for Cys227 similarly affected the kinetic constants with the exception that NaCl did not activate the enzyme. Both C227A and C227S mutants were insensitive to inactivation by 4-hydroxymercuribenzoate. Unlike the parent carbonyl compounds, the glutathione adducts of menadione and prostaglandin A1 were better substrates for the C227A and C227S mutants than the wild-type enzyme. Conversely, the binding of free glutathione to both mutants was reduced. Our findings indicate that Cys227 is the reactive residue and suggest that it is involved in the binding of both substrate and glutathione. PMID:10091578

  16. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes.

    PubMed

    Li, Dan; Wu, Kun; Howie, A Forbes; Beckett, Geoffrey J; Wang, Wei; Bao, Yongping

    2008-09-01

    Dietary isothiocyanates and selenium (Se) can up-regulate thioredoxin reductase 1 (TR1) in cultured human HepG2 and MCF-7 cells [Zhang et al. (2003). Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis, 24, 497-503; Wang et al. (2005). Sulforaphane, erucin and iberin up-regulate thioredoxin reductase expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry, 53, 1417-1421] at both the protein and mRNA levels. In this study, broccoli sprout extract (a rich source of the isothiocyanates sulforaphane and iberin) and Se interacted synergistically to induce TR1 in immortalised human hepatocytes. Broccoli sprout extracts containing 1.6, 4 and 8μM isothiocyanates were tested for their ability to induce TR1 at the protein and mRNA level. Although induction of TR1 mRNA by broccoli sprout extract (1.6-8μM) was only 1.7-2.2-fold, co-treatment with Se (0.2-1μM) enhanced the expression of TR1 mRNA (3.0-3.3-fold). Moreover, broccoli sprout extract induced the cellular concentration of TR1 and TR enzymatic activity, an induction that was augmented by Se addition. Thus, broccoli sprout extract (8μM) and Se induced cellular TR1 concentration and enzymatic activity 3.7- and 5-fold respectively, whereas, Se or broccoli sprout extract alone produced an induction of only approximately 2-fold. These data suggest that dietary isothiocyanates from broccoli sprouts and Se are important agents in the regulation of redox status in human liver cells. The synergistic effect between isothiocyanates and Se at physiologically-relevant concentrations on the induction of TR1 may play an important role in protection against oxidative stress.

  17. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  18. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours.

    PubMed Central

    Marín, A.; López de Cerain, A.; Hamilton, E.; Lewis, A. D.; Martinez-Peñuela, J. M.; Idoate, M. A.; Bello, J.

    1997-01-01

    The level of expression of enzymes that can activate or detoxify bioreductive agents within tumours has emerged as an important feature in the development of these anti-tumour compounds. The levels of two such reductase enzymes have been determined in 19 human non-small-cell lung tumours and 20 human breast tumours, together with the corresponding normal tissue. DT-diaphorase (DTD) enzyme levels (both expression and activity) were determined in these samples. Cytochrome b5 reductase (Cytb5R) activity was also assessed. With the exception of six patients, the levels of DTD activity were below 45 nmol min(-1) mg(-1) in the normal tissues assayed. DTD tumour activity was extremely variable, distinguishing two different groups of patients, one with DTD activity above 79 nmol min(-1) mg(-1) and the other with levels that were in the same range as found for the normal tissues. In 53% of the lung tumour samples, DTD activity was increased with respect to the normal tissue by a factor of 2.4-90.3 (range 79-965 nmol min[-1] mg[-1]). In 70% of the breast tumour samples, DTD activity was over 80 nmol min(-1) mg(-1) (range 83-267 nmol min[-1] mg[-1]). DTD expression measured by Western blot correlated well with the enzyme activity measured in both tumour and normal tissues. The levels of the other reductase enzyme, Cytb5R, were not as variable as those for DTD, being in the same range in both tumour and normal tissue or slightly higher in the normal tissues. The heterogeneous nature of DTD activity and expression reinforces the need to measure enzyme levels in individual patients before therapy with DTD-activated bioreductive drugs. Images Figure 1 Figure 2 PMID:9328153

  19. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  20. Up-Regulation of Carbonyl Reductase 1 Renders Development of Doxorubicin Resistance in Human Gastrointestinal Cancers.

    PubMed

    Matsunaga, Toshiyuki; Kezuka, Chihiro; Morikawa, Yoshifumi; Suzuki, Ayaka; Endo, Satoshi; Iguchi, Kazuhiro; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2015-01-01

    Doxorubicin (DOX) is widely used for the treatment of a wide range of cancers such as breast and lung cancers, and malignant lymphomas, but is generally less efficacious in gastrointestinal cancers. The most accepted explanation for the DOX refractoriness is its resistance development. Here, we established DOX-resistant phenotypes of human gastric MKN45 and colon LoVo cells by continuous exposure to incremental concentrations of the drug. While the parental MKN45 and LoVo cells expressed carbonyl reductase 1 (CBR1) highly and moderately, respectively, the gain of DOX resistance further elevated the CBR1 expression. Additionally, the DOX-elicited cytotoxicity was lowered by overexpression of CBR1 and inversely strengthened by knockdown of the enzyme using small interfering RNA or pretreating with the specific inhibitor quercetin, which also reduced the DOX refractoriness of the two resistant cells. These suggest that CBR1 is a key enzyme responsible for the DOX resistance of gastrointestinal cancer cells and that its inhibitor is useful in the adjuvant therapy. Although CBR1 is known to metabolize DOX to a less toxic anticancer metabolite doxorubicinol, its overexpression in the parental cells hardly show significant reductase activity toward low concentration of DOX. In contrast, the overexpression of CBR1 increased the reductase activity toward an oxidative stress-derived cytotoxic aldehyde 4-oxo-2-nonenal. The sensitivity of the DOX-resistant cells to 4-oxo-2-nonenal was lower than that of the parental cells, and the resistance-elicited hyposensitivity was almost completely ameliorated by addition of the CBR1 inhibitor. Thus, CBR1 may promote development of DOX resistance through detoxification of cytotoxic aldehydes, rather than the drug's metabolism. PMID:26328486

  1. 5α-reductase-2 Deficiency’s Effect on Human Fertility

    PubMed Central

    Kang, Hey-Joo; Imperato-McGinley, Julianne; Zhu, Yuan-Shan; Rosenwaks, Zev

    2014-01-01

    A most interesting and intriguing male disorder of sexual differentiation is due to 5α-reductase-2 isoenzyme deficiency. These males are born with ambiguous external genitalia due to a deficiency in their ability to catalyze the conversion of testosterone to dihydrotestosterone (DHT). DHT is a potent androgen responsible for differentiation of the urogenital sinus and genital tubercle into the external genitalia, urethra and prostate. Affected males are born with a clitoral-like phallus, bifid scrotum, hypospadias, blind shallow vaginal pouch from incomplete closure of the urogenital sinus and a rudimentary prostate. At puberty, the surge in mainly testosterone production prompts virilization, causing most to choose gender reassignment to male. Fertility is a challenge for affected men for several reasons. Uncorrected cryptorchidism is associated with low sperm production, and there is evidence of defective transformation of spermatogonia into spermatocytes. The underdeveloped prostate and consequent low semen volumes affect sperm transport. Additionally, semen may not liquefy due to a lack of prostate-specific antigen. In this review, we discuss the 5α-reductase-2 deficiency syndrome and its impact on human fertility. PMID:24412121

  2. Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

    PubMed Central

    John, Arun; Krishnakumar, Subramanian

    2015-01-01

    Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and β-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and β-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains. PMID:25873848

  3. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  4. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    SciTech Connect

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H. ); Appleman, J.R.; Blakley, R.L. ); Sheridan, R.P.; Venkataraghavan, R. )

    1990-09-04

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2{prime}-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K{sub m} values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K{sub m} and k{sub cat} values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K{sub m}(NADH)/K{sub m}(NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2{prime}-phosphate, makes a major contribution in terms of binding energy and differentiation of K{sub m} values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme.

  5. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase.

    PubMed

    Jaenecke, Frank; Friedrich-Epler, Beatrice; Parthier, Christoph; Stubbs, Milton T

    2015-10-27

    Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.

  6. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells.

    PubMed Central

    Henry, D N; Del Monte, M; Greene, D A; Killen, P D

    1993-01-01

    Aldose reductase (AR2), a putative "hypertonicity stress protein" whose gene is induced by hyperosmolarity, protects renal medullary cells against the interstitial hyperosmolarity of antidiuresis by catalyzing the synthesis of millimolar concentrations of intracellular sorbitol from glucose. Although AR2 gene induction has been noted in a variety of renal and nonrenal cells subjected to hypertonic stress in vitro, the functional significance of AR2 gene expression in cells not normally exposed to a hyperosmolar milieu is not fully understood. The physiological impact of basal AR2 expression in such cells may be limited to hyperglycemic states in which AR2 promotes pathological polyol accumulation, a mechanism invoked in the pathogenesis of diabetic complications. Since AR2 overexpression in the retinal pigment epithelium has been associated with diabetic retinopathy, the regulation of AR2 gene expression and associated changes in sorbitol and myo-inositol were studied in human retinal pigment epithelial cells in culture. The relative abundance of aldehyde reductase (AR1) and AR2 mRNA was quantitated by filter hybridization of RNA from several human retinal pigment epithelial cell lines exposed to hyperglycemic and hyperosmolar conditions in vitro. AR2 but not AR1 mRNA was significantly increased some 11- to 18-fold by hyperosmolarity in several retinal pigment epithelial cell lines. A single cell line with a 15-fold higher basal level of AR2 mRNA than other cell lines tested demonstrated no significant increase in AR2 mRNA in response to hypertonic stress. This cell line demonstrated accelerated and exaggerated production of sorbitol and depletion of myo-inositol upon exposure to 20 mM glucose. Therefore, abnormal AR2 expression may enhance the sensitivity of cells to the biochemical consequences of hyperglycemia potentiating the development of diabetic complications. Images PMID:8349800

  7. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies.

    PubMed

    Gallwitz, H; Bonse, S; Martinez-Cruz, A; Schlichting, I; Schumacher, K; Krauth-Siegel, R L

    1999-02-11

    Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), a garlic-derived natural compound, is a covalent inhibitor as well as a substrate of human glutathione reductase (GR) and Trypanosoma cruzi trypanothione reductase (TR). The 2.1-A resolution crystal structure of GR inhibited by (E)-ajoene revealed a mixed disulfide between the active site Cys58 and the CH2=CH-CH2-SO-CH2-CH=CH-S moiety of ajoene. The modified enzyme has a markedly increased oxidase activity when compared to free GR. GR reduces (Z)-ajoene with a kcat/Km of 6.8 x 10(3) M-1 s-1 yielding 4,5,9-trithiadodeca-1, 6,11-triene (deoxyajoene) and 4,8,9,13-tetrathiahexadeca-1,6,10, 15-tetraene as stable reaction products. The reaction leads also to the formation of single-electron reduced products and concomitantly superoxide anion radicals as shown by coupling the reaction to the reduction of cytochrome c. The interactions between the flavoenzymes and ajoene are expected to increase the oxidative stress of the respective cell. The antiparasitic and cytostatic actions of ajoene may at least in part be due to the multiple effects on key enzymes of the antioxidant thiol metabolism.

  8. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  9. A docking model of human ribonucleotide reductase with flavin and phenosafranine

    PubMed Central

    Priya, Panneerselvam Lakshmi; Shanmughavel, Piramanayagam

    2009-01-01

    Ribonucleotide Reductase (RNR) is an enzyme responsible for the reduction of ribonucleotides to their corresponding Deoxyribonucleotides (DNA), which is a building block for DNA replication and repair mechanisms. The key role of RNR in DNA synthesis and control in cell growth has made this an important target for anticancer therapy. Increased RNR activity has been associated with malignant transformation and tumor cell growth. In recent years, several RNR inhibitors, including Triapine, Gemcitabine and GTI-2040, have entered the clinical trials. Our current work focuses on an attempted to dock this inhibitors Flavin and Phenosafranine to curtail the action of human RNR2. The docked inhibitor Flavin and Phenosafranine binds at the active site with THR176, which are essential for free radical formation. The inhibitor must be a radical scavenger to destroy the tyrosyl radical or iron metal scavenger. The iron or radical site of R2 protein can react with one-electron reductants, whereby the tyrosyl radical is converted to a normal tyrosine residue. However, compounds such as Flavin and Phenosafranine were used in most of the cases to reduce the radical activity. The docking study was performed for the crystal structure of human RNR with the radical scavengers Flavin and Phenosafranine to inhibit the human RNR2. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. PMID:20198185

  10. A docking model of human ribonucleotide reductase with flavin and phenosafranine.

    PubMed

    Priya, Panneerselvam Lakshmi; Shanmughavel, Piramanayagam

    2009-09-30

    Ribonucleotide Reductase (RNR) is an enzyme responsible for the reduction of ribonucleotides to their corresponding Deoxyribonucleotides (DNA), which is a building block for DNA replication and repair mechanisms. The key role of RNR in DNA synthesis and control in cell growth has made this an important target for anticancer therapy. Increased RNR activity has been associated with malignant transformation and tumor cell growth. In recent years, several RNR inhibitors, including Triapine, Gemcitabine and GTI-2040, have entered the clinical trials. Our current work focuses on an attempted to dock this inhibitors Flavin and Phenosafranine to curtail the action of human RNR2. The docked inhibitor Flavin and Phenosafranine binds at the active site with THR176, which are essential for free radical formation. The inhibitor must be a radical scavenger to destroy the tyrosyl radical or iron metal scavenger. The iron or radical site of R2 protein can react with one-electron reductants, whereby the tyrosyl radical is converted to a normal tyrosine residue. However, compounds such as Flavin and Phenosafranine were used in most of the cases to reduce the radical activity. The docking study was performed for the crystal structure of human RNR with the radical scavengers Flavin and Phenosafranine to inhibit the human RNR2. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2.

  11. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings.

    PubMed

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A phylogenetic tree is constructed from different plant and human DHFR domain using the Neighbour - Joining method in MEGA 5.05. Conservation score is performed by using PARALINE. Result suggests that folate binding domain of dihydrofolare reductase is conserved (score 8.06) and excepting some minor variations the basic structure of the domain in both plant species and human being is rather similar. Human DHFR domain contains PEKN sequence near active site, though proline is common for all the selected organisms but the other sequences are different in plants. The plant domain is always associated with TS (Thymidylate synthase). Plant based system is predicted to be an effective model for assessment of MTX (Methotrexate) and other antifolate drugs.

  12. Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases.

    PubMed

    Zhou, Huina; Brock, Joseph; Liu, Dan; Board, Philip G; Oakley, Aaron J

    2012-07-13

    The reduction of dehydroascorbate (DHA) to ascorbic acid (AA) is a vital cellular function. The omega-class glutathione transferases (GSTs) catalyze several reductive reactions in cellular biochemistry, including DHA reduction. In humans, two isozymes (GSTO1-1 and GSTO2-2) with significant DHA reductase (DHAR) activity are found, sharing 64% sequence identity. While the activity of GSTO2-2 is higher, it is significantly more unstable in vitro. We report the first crystal structures of human GSTO2-2, stabilized through site-directed mutagenesis and determined at 1.9 Å resolution in the presence and absence of glutathione (GSH). The structure of a human GSTO1-1 has been determined at 1.7 Å resolution in complex with the reaction product AA, which unexpectedly binds in the G-site, where the glutamyl moiety of GSH binds. The structure suggests a similar mode of ascorbate binding in GSTO2-2. This is the first time that a non-GSH-based reaction product has been observed in the G-site of any GST. AA stacks against a conserved aromatic residue, F34 (equivalent to Y34 in GSTO2-2). Mutation of Y34 to alanine in GSTO2-2 eliminates DHAR activity. From these structures and other biochemical data, we propose a mechanism of substrate binding and catalysis of DHAR activity.

  13. Codon 89 polymorphism in the human 5 α -reductase gene in primary breast cancer

    PubMed Central

    Scorilas, A; Bharaj, B; Giai, M; Diamandis, E P

    2001-01-01

    The enzyme human steroid 5-α reductase type II (SRD5A2) and androgen receptor (AR) are critical mediators of androgen action, suggesting a potential role in hormonally related cancers. The SRD5A2 gene harbours two frequent polymorphic sites, one in the coding region, at codon 89 of exon 1, where valine is substituted by leucine (V89L) and the other in the 3′ untranslated region (3′ UTR) where a variable number of dinucleotide TA repeat lengths exists. The V89L polymorphism is known to alter the activity of this enzyme. In the present study we examined 144 sporadic breast tumours from Italian patients for the V89L and TA polymorphisms by sequence and fragment analysis, respectively. Tumour extract prostate specific antigen (PSA) concentration as well as a number of well-established clinical and pathological parameters were evaluated. The results show that 53% of the tumours were homozygous for VV alleles, 37% were heterozygous for VL alleles and 10% were homozygous for LL alleles. TA(0) repeats were found in tumours with VV, LL and VL genotypes. TA(9) repeats were only found in VV homozygotes and were totally absent from either LL homozygotes or VL heterozygotes. PSA expression was significantly elevated in tumours with VV genotype. The presence of LL alleles in breast tumours is associated with earlier onset and shorter disease-free (RR = 2.65;P = 0.013) and overall survival (RR = 3.06;P = 0.014) rates. The VV genotype is associated with a more favourable prognosis. Our study suggests that the polymorphism in codon 89 of exon 1 of the human 5α-reductase gene is related with TA repeat genotypes, PSA expression and breast cancer prognosis. More specifically, we found that the LL genotype is also associated with earlier onset and more aggressive forms of breast cancer. Long-term-outcome studies are needed to investigate the relevance of this polymorphism to breast cancer susceptibility. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11259089

  14. Metabolism of Benzo[a]pyrene in Human Bronchoalveolar H358 Cells Using Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Jiang, Hao; Gelhaus, Stacy L.; Mangal, Dipti; Harvey, Ronald G.; Blair, Ian A.; Penning, Trevor M.

    2008-01-01

    Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH), is metabolically activated by three enzymatic pathways; by peroxidases (e.g. cytochrome P450-peroxidase) to yield radical cations; by P4501A1/1B1 monoxygenation plus epoxide hydrolase to yield diol-epoxides; and by P4501A1/1B1 monoxygenation, epoxide hydrolase plus aldo-keto reductases (AKRs) to yield o-quinones. In humans, a major exposure site for environmental and tobacco smoke PAH is the lung, however, the profile of B[a]P metabolites formed at this site has not been well characterized. In this study, human bronchoalveolar H358 cells were exposed to B[a]P, and metabolites generated by peroxidase (B[a]P-1,6- and B[a]P-3,6-diones), from cytochrome P4501A1/1B1 monooxygenation (3-hydroxyl-B[a]P, B[a]P-7,8- and 9,10-trans-dihydrodiols, and B[a]P -r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P -tetrol-1)), and from AKRs (B[a]P-7,8-dione) were detected and quantified by RP-HPLC-with in line photo-diode array and radiometric detection, and identified by LC-MS. Progress curves showed a lag-phase in the formation of 3-hydroxy-B[a]P, B[a]P-7,8-trans-dihydrodiol, B[a]P-tetraol-1 and B[a]P-7,8-dione over 24 h. Northern blot analysis showed that B[a]P induced P4501B1 and AKR1C isoforms in H358 cells in a time-dependent manner providing an explanation for the lag-phase. Pretreatment of H358 cells with 10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin, (TCDD) eliminated this lag-phase, but did not alter the levels of the individual metabolites observed, suggesting that both B[a]P and TCDD induction ultimately yield the same B[a]P-metabolic profile. The one exception was B[a]P-3,6-dione which was formed without a lag-phase in the absence and presence of TCDD, suggesting that the peroxidase responsible for its formation was neither P4501A1 nor 1B1. Candidate peroxidases that remain include PGH synthases and uninduced P450 isoforms. This study shows that the P4501A1/1B1 and AKR pathways are inducible in human lung

  15. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization.

    PubMed

    Fu, Yuan; Lin, Hong-Yu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon

    2014-11-24

    Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation.

  16. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    SciTech Connect

    Liu, Zhen-Bo; Shen, Xun

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  17. Aldose Reductase Inhibition Alleviates Hyperglycemic Effects on Human Retinal Pigment Epithelial Cells

    PubMed Central

    Chang, Kun-Che; Snow, Anson; LaBarbera, Daniel V.; Petrash, J. Mark

    2014-01-01

    Chronic hyperglycemia is an important risk factor involved in the onset and progression of diabetic retinopathy (DR). Among other effectors, aldose reductase (AR) has been linked to the pathogenesis of this degenerative disease. The purpose of this study was to investigate whether the novel AR inhibitor, beta-glucogallin (BGG), can offer protection against various hyperglycemia-induced abnormalities in human adult retinal pigment epithelia (ARPE-19) cells. AR is an enzyme that contributes to cellular stress by production of reactive oxygen species (ROS) under high glucose conditions. A marked decrease in cell viability (from 100% to 78%) following long-term exposure (4 days) of RPE cells to high glucose (HG) was largely prevented by siRNA-mediated knockdown of AR gene expression (from 79% to 97%) or inhibition using sorbinil (from 66% to 86%). In HG, BGG decreased sorbitol accumulation (44%), ROS production (27%) as well as ER stress (22%). Additionally, we demonstrated that BGG prevented loss of mitochondrial membrane potential (MMP) under HG exposure. We also showed that AR inhibitor pretreatment reduced retinal microglia-induced apoptosis in APRE-19 cells. These results suggest that BGG may be useful as a therapeutic agent against retinal degeneration in the diabetic eye by preventing RPE cell death. PMID:25451566

  18. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane.

    PubMed

    Tang, Wai Ho; Stitham, Jeremiah; Gleim, Scott; Di Febbo, Concetta; Porreca, Ettore; Fava, Cristiano; Tacconelli, Stefania; Capone, Marta; Evangelista, Virgilio; Levantesi, Giacomo; Wen, Li; Martin, Kathleen; Minuz, Pietro; Rade, Jeffrey; Patrignani, Paola; Hwa, John

    2011-11-01

    Diabetes mellitus is associated with platelet hyperactivity, which leads to increased morbidity and mortality from cardiovascular disease. This is coupled with enhanced levels of thromboxane (TX), an eicosanoid that facilitates platelet aggregation. Although intensely studied, the mechanism underlying the relationship among hyperglycemia, TX generation, and platelet hyperactivity remains unclear. We sought to identify key signaling components that connect high levels of glucose to TX generation and to examine their clinical relevance. In human platelets, aldose reductase synergistically modulated platelet response to both hyperglycemia and collagen exposure through a pathway involving ROS/PLCγ2/PKC/p38α MAPK. In clinical patients with platelet activation (deep vein thrombosis; saphenous vein graft occlusion after coronary bypass surgery), and particularly those with diabetes, urinary levels of a major enzymatic metabolite of TX (11-dehydro-TXB2 [TX-M]) were substantially increased. Elevated TX-M persisted in diabetic patients taking low-dose aspirin (acetylsalicylic acid, ASA), suggesting that such patients may have underlying endothelial damage, collagen exposure, and thrombovascular disease. Thus, our study has identified multiple potential signaling targets for designing combination chemotherapies that could inhibit the synergistic activation of platelets by hyperglycemia and collagen exposure. PMID:22005299

  19. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  20. Structural Basis for Allosteric Regulation of Human Ribonucleotide Reductase by Nucleotide-induced Oligomerization

    SciTech Connect

    J Fairman; S Wijerathna; M Ahmad; H Xu; R nakano; S jha; J Prendergast; R Welin; S Flodin; et al.

    2011-12-31

    Ribonucleotide reductase (RR) is an {alpha}{sub n}{beta}{sub n} (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the {alpha}{sub 6}-{beta}{beta}'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.

  1. Oxadiazole 2-oxides are toxic to the human hookworm, Ancylostoma ceylanicum, however glutathione reductase is not the primary target

    PubMed Central

    Treger, Rebecca S.; Cook, Aaron; Rai, Ganesha; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit; Thomas, Craig J.; Williams, David L.; Cappello, Michael; Vermeire, Jon J.

    2012-01-01

    Hookworm disease, characterized by severe anemia and cognitive and growth delays, currently affects an estimated 740 million people worldwide. Despite the prevalence of this parasitic disease, few effective drug therapies are in use today, and the heavy reliance upon benzimidazoles highlights the need for the development of novel chemotherapies. Recent work with the trematode parasite Schistosoma mansoni has identified oxadiazole 2-oxides as effective antischistosomal compounds that function by targeting and inhibiting the antioxidant enzyme, thioredoxin glutathione reductase. In this study, a related enzyme, glutathione reductase, from the human hookworm Ancylostoma ceylanicum was identified and characterized, and its in vitro activity in the presence of the oxadiazole 2-oxides was analyzed. Ex vivo worm killing assays were also conducted to establish the relationship between a given compound’s effect upon worm survival and inhibition of recombinant glutathione reductase (rAceGR). Finally, the in vivo anthelminthic efficacy of furoxan (Fx) was assessed in the hamster model of hookworm infection. The predicted amino acid sequence of AceGR contained a prototypical glutathione reductase active site sequence, but no thioredoxin reductase consensus sequences, suggesting that the glutathione and thioredoxin pathways of A. ceylanicum are distinct. Although 10 of the 42 oxadiazole 2-oxides tested inhibited rAceGR activity by at least 50%, and 15 compounds were toxic to parasites ex vivo, little overlap existed between these two results. We therefore suggest that AceGR is not the primary target of the oxadiazole 2-oxides in effecting parasite death. Lastly, oral treatment of A. ceylanicum infected hamsters with furoxan resulted in significantly improved weight gains and reduced intestinal worm burdens compared to vehicle treated controls, supporting continued development of this molecule as a novel anthelminthic. PMID:22844653

  2. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase.

    PubMed

    Nýdlová, Erika; Vrbová, Martina; Cesla, Petr; Jankovičová, Barbora; Ventura, Karel; Roušar, Tomáš

    2014-09-01

    Acetaminophen overdose is the most frequent cause of acute liver injury. The main mechanism of acetaminophen toxicity has been attributed to oxidation of acetaminophen. The oxidation product is very reactive and reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). Although this conjugate has been recognized to be generally nontoxic, we have found recently that APAP-SG could produce a toxic effect. Therefore, the aim of our study was to estimate the toxicity of purified APAP-SG by characterizing the inhibitory effect in human glutathione reductase (GR) and comparing that to the inhibitory effect of the natural inhibitor reduced glutathione. We used two types of human GR: recombinant and freshly purified from red blood cells. Our results show that GR was significantly inhibited in the presence of both APAP-SG and reduced glutathione. For example, the enzyme activity of recombinant and purified GR was reduced in the presence of 4 mm APAP-SG (with 0.5 mm glutathione disulfide) by 28% and 22%, respectively. The type of enzyme inhibition was observed to be competitive in the cases of both APAP-SG and glutathione. As glutathione inhibits GR activity in cells under physiological conditions, the rate of enzyme inhibition ought to be weaker in the case of glutathione depletion that is typical of acetaminophen overdose. Notably, however, enzyme activity likely remains inhibited due to the presence of APAP-SG, which might enhance the pro-oxidative status in the cell. We conclude that our finding could reflect some other pathological mechanism that may contribute to the toxicity of acetaminophen.

  3. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial. PMID:25677991

  4. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  5. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  6. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5.

    PubMed

    Kurian, Joseph R; Chin, Nathaniel A; Longlais, Brett J; Hayes, Kristie L; Trepanier, Lauren A

    2006-10-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of interindividual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. On the basis of our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxification of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56-346-fold higher in the purified system as compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (K(m) values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM ( approximately 1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of

  7. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    PubMed

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.

  8. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b/sub 5/ reductase

    SciTech Connect

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-06-01

    A cDNA coding for human liver NADH-cytochrome b/sub 5/ reductase was cloned from a human liver cDNA library constructed in phage lambdagt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b/sub 5/ reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb/sub 5/R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb/sub 5/R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  9. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-01

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  10. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    SciTech Connect

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D

    2009-01-01

    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  11. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.

    PubMed

    Kratzer, Regina; Kavanagh, Kathryn L; Wilson, David K; Nidetzky, Bernd

    2004-05-01

    Xylose reductase from the yeast Candida tenuis (CtXR) is a family 2 member of the aldo-keto reductase (AKR) superfamily of proteins and enzymes. Active site His-113 is conserved among AKRs, but a unified mechanism of how it affects catalytic activity is outstanding. We have replaced His-113 by alanine using site-directed mutagenesis, determined a 2.2 A structure of H113A mutant bound to NADP(+), and compared catalytic reaction profiles of NADH-dependent reduction of different aldehydes catalyzed by the wild type and the mutant. Deuterium kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m xylose) show that, relative to the wild type, the hydride transfer rate constant (k(7) approximately 0.16 s(-1)) has decreased about 1000-fold in H113A whereas xylose binding was not strongly affected. No solvent isotope effect was seen on k(cat) and k(cat)/K(m xylose) for H113A, suggesting that proton transfer has not become rate-limiting as a result of the mutation. The pH profiles of log(k(cat)/K(m xylose)) for the wild type and H113A decreased above apparent pK(a) values of 8.85 and 7.63, respectively. The DeltapK(a) of -1.2 pH units likely reflects a proximally disruptive character of the mutation, affecting the position of Asp-50. A steady-state kinetic analysis for H113A-catalyzed reduction of a homologous series of meta-substituted benzaldehyde derivatives was carried out, and quantitative structure-reactivity correlations were used to factor the observed kinetic substituent effect on k(cat) and k(cat)/K(m aldehyde) into an electronic effect and bonding effects (which are lacking in the wild type). Using the Hammett sigma scale, electronic parameter coefficients (rho) of +0.64 (k(cat)) and +0.78 (k(cat)/K(m aldehyde)) were calculated and clearly differ from rho(k(cat)/K(aldehyde)) and rho(k(cat)) values of +1.67 and approximately 0.0, respectively, for the wild-type enzyme. Hydride transfer rate constants of H113A, calculated from kinetic parameters and KIE data

  12. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome.

    PubMed Central

    Wassif, C A; Maslen, C; Kachilele-Linjewile, S; Lin, D; Linck, L M; Connor, W E; Steiner, R D; Porter, F D

    1998-01-01

    The Smith-Lemli-Opitz syndrome (SLOS; also known as "RSH syndrome" [MIM 270400]) is an autosomal recessive multiple malformation syndrome due to a defect in cholesterol biosynthesis. Children with SLOS have elevated serum 7-dehydrocholesterol (7-DHC) levels and typically have low serum cholesterol levels. On the basis of this biochemical abnormality, it has been proposed that mutations in the human sterol Delta7-reductase (7-DHC reductase; E.C.1.3.1.21) gene cause SLOS. However, one could also propose a defect in a gene that encodes a protein necessary for either the expression or normal function of sterol Delta7-reductase. We cloned cDNA encoding a human sterol Delta7-reductase (DHCR7) on the basis of its homology with the sterol Delta7-reductase from Arabidopsis thaliana, and we confirmed the enzymatic function of the human gene product by expression in SLOS fibroblasts. SLOS fibroblasts transfected with human sterol Delta7-reductase cDNA showed a significant reduction in 7-DHC levels, compared with those in SLOS fibroblasts transfected with the vector alone. Using radiation-hybrid mapping, we show that the DHCR7 gene is encoded at chromosome 11q12-13. To establish that defects in this gene cause SLOS, we sequenced cDNA clones from SLOS patients. In three unrelated patients we have identified four different mutant alleles. Our results demonstrate both that the cDNA that we have identified encodes the human sterol Delta7-reductase and that mutations in DHCR7 are responsible for at least some cases of SLOS. PMID:9634533

  13. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.

  14. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation. PMID:27243445

  15. Human adrenodoxin reductase: Two mRNAs encoded by a single gene on chromosome 17cen yields q25 are expressed in steroidogenic tissues

    SciTech Connect

    Solish, S.B.; Picado-Leonard, J.; Morel, Y.; Kuhn, R.W.; Mohandas, T.K.; Hanukoglu, I.; Miller, W.L. )

    1988-10-01

    Adrenodoxin reductase is a mitochondrial flavoprotein that receives electrons from NADPH, thus initiating the electron-transport chain serving mitochondrial cytochromes P450. The authors have cloned and sequenced two human adrenodoxin reductase cDNAs that differ by the presence of six additional codons in the middle of one clone. The sequence in this region indicates that these six extra codons arise by alternative splicing of the pre-mRNA. Southern blot hybridization patterns of human genomic DNA cut with four restriction enzymes indicate that the human genome has only one gene for adrenodoxin reductase. Analysis of a panel of mouse-human somatic cell hybrids localized this gene to chromosome 17cen {yields} q25. The alternatively spliced mRNA containing the six extra codons represents 10-20% of all adrenodoxin reductase mRNA. The expression of the adrenodoxin reductase gene may be stimulated by pituitary tropic hormones acting through cAMP, but its response is quantitatively much less than the responses of P450scc and adrenodoxin.

  16. Human adrenodoxin reductase: two mRNAs encoded by a single gene on chromosome 17cen----q25 are expressed in steroidogenic tissues.

    PubMed

    Solish, S B; Picado-Leonard, J; Morel, Y; Kuhn, R W; Mohandas, T K; Hanukoglu, I; Miller, W L

    1988-10-01

    Adrenodoxin reductase is a mitochondrial flavoprotein that receives electrons from NADPH, thus initiating the electron-transport chain serving mitochondrial cytochromes P450. We have cloned and sequenced two human adrenodoxin reductase cDNAs that differ by the presence of six additional codons in the middle of one clone. The sequence in this region indicates that these six extra codons arise by alternative splicing of the pre-mRNA. Southern blot hybridization patterns of human genomic DNA cut with four restriction enzymes indicate that the human genome has only one gene for adrenodoxin reductase. Analysis of a panel of mouse-human somatic cell hybrids localized this gene to chromosome 17cen----q25. The alternatively spliced mRNA containing the six extra codons represents 10-20% of all adrenodoxin reductase mRNA. The expression of the adrenodoxin reductase gene may be stimulated by pituitary tropic hormones acting through cAMP, but its response is quantitatively much less than the responses of P450scc and adrenodoxin.

  17. Human adrenodoxin reductase: two mRNAs encoded by a single gene on chromosome 17cen----q25 are expressed in steroidogenic tissues.

    PubMed Central

    Solish, S B; Picado-Leonard, J; Morel, Y; Kuhn, R W; Mohandas, T K; Hanukoglu, I; Miller, W L

    1988-01-01

    Adrenodoxin reductase is a mitochondrial flavoprotein that receives electrons from NADPH, thus initiating the electron-transport chain serving mitochondrial cytochromes P450. We have cloned and sequenced two human adrenodoxin reductase cDNAs that differ by the presence of six additional codons in the middle of one clone. The sequence in this region indicates that these six extra codons arise by alternative splicing of the pre-mRNA. Southern blot hybridization patterns of human genomic DNA cut with four restriction enzymes indicate that the human genome has only one gene for adrenodoxin reductase. Analysis of a panel of mouse-human somatic cell hybrids localized this gene to chromosome 17cen----q25. The alternatively spliced mRNA containing the six extra codons represents 10-20% of all adrenodoxin reductase mRNA. The expression of the adrenodoxin reductase gene may be stimulated by pituitary tropic hormones acting through cAMP, but its response is quantitatively much less than the responses of P450scc and adrenodoxin. Images PMID:2845396

  18. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders

    PubMed Central

    Auchus, Richard J.

    2011-01-01

    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590

  19. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    PubMed Central

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. PMID:26170618

  20. Human Heme Oxygenase-1 Efficiently Catabolizes Heme in the Absence of Biliverdin Reductase

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2010-01-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR. PMID:20679134

  1. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  2. Model of the catalytic mechanism of human aldose reductase based on quantum chemical calculations.

    SciTech Connect

    Cachau, R. C.; Howard, E. H.; Barth, P. B.; Mitschler, A. M.; Chevrier, B. C.; Lamour, V.; Joachimiak, A.; Sanishvili, R.; Van Zandt, M.; Sibley, E.; Moras, D.; Podjarny, A.; UPR de Biologie Structurale; National Cancer Inst.; Univ. Louis Pasteur; Inst. for Diabetes Discovery, Inc.

    2000-01-01

    Aldose Reductase is an enzyme involved in diabetic complications, thoroughly studied for the purpose of inhibitor development. The structure of an enzyme-inhibitor complex solved at sub-atomic resolution has been used to develop a model for the catalytic mechanism. This model has been refined using a combination of Molecular Dynamics and Quantum calculations. It shows that the proton donation, the subject of previous controversies, is the combined effect of three residues: Lys 77, Tyr 48 and His 110. Lys 77 polarises the Tyr 48 OH group, which donates the proton to His 110, which becomes doubly protonated. His 110 then moves and donates the proton to the substrate. The key information from the sub-atomic resolution structure is the orientation of the ring and the single protonafion of the His 110 in the enzyme-inhibitor complex. This model is in full agreement with all available experimental data.

  3. In vitro induction of the anticarcinogenic marker enzyme, quinone reductase, in human hepatoma cells by food extracts.

    PubMed

    Hashimoto, Kei; Kawamata, Shinsuke; Usui, Naomi; Tanaka, Ayako; Uda, Yasushi

    2002-06-01

    The effect of vegetable extracts on the activity of the anticarcinogenic phase II marker enzyme, quinone reductase (QR), was investigated by using human Hep G2 cells as the model system. Hep G2 cells were less sensitive than murine Hepa1c1c7 cells to QR-inducible compounds such as tert-butylhydroquinone which have been widely used to examine the QR-inducing activity of the compounds. However, among 45 different vegetable samples, an extract of ashitaba clearly induced QR activity in Hep G2 cells. Ashitaba is therefore considered to have contained certain substances that could induce QR activity, and such induction may play a role in the anticarcinogenic action of vegetables.

  4. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    PubMed Central

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor. PMID:25374450

  5. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) - an in silico approach.

    PubMed

    Ebert, Bettina; Kisiela, Michael; Maser, Edmund

    2016-05-01

    Numerous physiological functions of the body are controlled by endogenous (e.g. steroids, retinoids, lipid mediators) or exogenous molecules (e.g. drugs, xenobiotics) that bind to transcription factors (TF). The biosynthesis and catabolism of these signaling molecules depend, apart from CYPs, on enzymes belonging to the short-chain dehydrogenase/reductase (SDR) superfamily. Moreover, the contribution of SDRs to the metabolism of therapeutic drugs and xenobiotics is increasingly recognized. However, only scarce information exists regarding the transcriptional regulation of most SDR proteins. This work aims to illustrate the role of nuclear receptors (NR) and TF related to oxidative stress, inflammation, hypoxia, and xenobiotics in the regulation of selected human and murine SDRs that play crucial roles in steroid, retinoid, eicosanoid, fatty acid, and xenobiotic metabolism. These include, for example, 17β-hydroxysteroid dehydrogenases, retinol dehydrogenases, and carbonyl reductases. Because existing experimental data are limited, an in silico analysis (TRANSFAC(®) Professional database) of the 5'-upstream sequences for putative response elements was performed. Experimental and in silico data suggest that pharmaceutical, environmental, or dietary NR ligands may alter SDR-mediated retinoid, steroid, and xenobiotic metabolism, likely affecting basic cellular events like energy expenditure, cell proliferation/differentiation, or aging processes. Also, some SDRs are possibly induced by their own substrates. Further experimental work is urgently needed to fully understand the NR-mediated transcriptional regulation of SDRs. This is essential for deducing their possible involvement in drug side effects and will help to identify new substrates and further physiological functions of these SDRs. PMID:27362327

  6. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    EPA Science Inventory

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  7. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  8. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    EPA Science Inventory

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  9. Investigation of the effects of some drugs and phenolic compounds on human dihydrofolate reductase activity.

    PubMed

    Aslan, Erdem; Adem, Sevki

    2015-03-01

    Dihydrofolate reductase (DHFR) plays a fundamental role in cellular metabolism and cell growth. Inhibition of this enzyme will cause a decrease in the amount of folate that occurs in many metabolic processes, and the deficiency of which may cause various diseases. This study investigated the effects of some drugs and phenolic compounds on DHFR activity in vitro. To determine the inhibitory effect of compounds, enzyme activity was measured with a final concentration of an inhibitor ranging from 10 μM to 51 mM. DHFR was inhibited effectively by naringin, ferulic acid, and levofloxacin with IC50 values under 660 μM. Syringic acid, cefepime, ceftizoxime, cefazolin, ceftriaxone, and ceftazidime exhibited inhibitory effects on the enzyme activity with IC50 values in the range of 3.840-30.224 mM. K(i) constants were calculated using the Cheng-Prusoff equation. K(i) constants calculated in the range of 0.009-2.024 mM with respect to nicotinamide adenine dinucleotide phosphate oxidase (NADPH) and in the range of 0.060-5.830 mM about FH2.

  10. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  11. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  12. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins.

    PubMed

    Wu, Peng-Fei; Xie, Na; Zhang, Juan-Juan; Guan, Xin-Lei; Zhou, Jun; Long, Li-Hong; Li, Yuan-Long; Xiong, Qiu-Ju; Zeng, Jian-Hua; Wang, Fang; Chen, Jian-Guo

    2013-06-01

    Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function.

  13. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    PubMed Central

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  14. Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase.

    PubMed

    Fu, Yuan; Long, Marcus J C; Rigney, Mike; Parvez, Saba; Blessing, William A; Aye, Yimon

    2013-10-01

    An N-terminal-domain (NTD) and adjacent catalytic body (CB) make up subunit-α of ribonucleotide reductase (RNR), the rate-limiting enzyme for de novo dNTP biosynthesis. A strong linkage exists between ligand binding at the NTD and oligomerization-coupled RNR inhibition, inducible by both dATP and nucleotide chemotherapeutics. These observations have distinguished the NTD as an oligomeric regulation domain dictating the assembly of inactive RNR oligomers. Inactive states of RNR differ between eukaryotes and prokaryotes (α6 in human versus α4β4 in Escherichia coli , wherein β is RNR's other subunit); however, the NTD structurally interconnects individual α2 or α2 and β2 dimeric motifs within the respective α6 or α4β4 complexes. To elucidate the influence of NTD ligand binding on RNR allosteric and oligomeric regulation, we engineered a human- E. coli hybrid enzyme (HE) where human-NTD is fused to E. coli -CB. Both the NTD and the CB of the HE bind dATP. The HE specifically partners with E. coli -β to form an active holocomplex. However, although the NTD is the sole physical tether to support α2 and/or β2 associations in the dATP-bound α6 or α4β4 fully inhibited RNR complexes, the binding of dATP to the HE NTD only partially suppresses HE activity and fully precludes formation of higher-order HE oligomers. We postulate that oligomeric regulation is the ultimate mechanism for potent RNR inhibition, requiring species-specific NTD-CB interactions. Such interdomain cooperativity in RNR oligomerization is unexpected from structural studies alone or biochemical studies of point mutants.

  15. Ribonucleotide reductase inhibitors hydroxyurea, didox, and trimidox inhibit human cytomegalovirus replication in vitro and synergize with ganciclovir

    PubMed Central

    Bhave, Sukhada; Elford, Howard; McVoy, Michael A.

    2013-01-01

    Ganciclovir (GCV) is a deoxyguanosine analog that is effective in inhibiting human cytomegalovirus (HCMV) replication. In infected cells GCV is converted to GCV-triphosphate which competes with dGTP for incorporation into the growing DNA strand by the viral DNA polymerase. Incorporated GCV promotes chain termination as it is an inefficient substrate for elongation. Because viral DNA synthesis also relies on cellular ribonucleotide reductase (RR) to synthesize deoxynucleotides, RR inhibitors are predicted to inhibit HCMV replication. Moreover, as dGTP competes with GCV-triphosphate for incorporation, RR inhibitors may also synergize with GCV by reducing intracellular dGTP levels and there by promoting increased GCV-triphosphate utilization by DNA polymerase. To investigate potential of RR inhibitors as anti-HCMV agents both alone and in combination with GCV, HCMV-inhibitory activities of three RR inhibitors, hydroxyurea, didox, and trimidox, were determined. In both spread inhibition and yield reduction assays RR inhibitors had modest anti-HCMV activity with 50% inhibitory concentrations ranging from 36 ± 1.7 to 221 ± 52 µM. However, all three showed significant synergy with GCV at concentrations below their 50% inhibitory and 50% toxic concentrations. These results suggest that combining GCV with relatively low doses of RR inhibitors could significantly potentiate the anti-HCMV activity of GCV in vivo and could improve clinical response to therapy. PMID:23933116

  16. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.

    PubMed Central

    Kaufman, R J; Wasley, L C; Spiliotes, A J; Gossels, S D; Latt, S A; Larsen, G R; Kay, R M

    1985-01-01

    Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported. Images PMID:4040603

  17. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  18. Crystal Structures of Δ1-Pyrroline-5-carboxylate Reductase from Human Pathogens Neisseria meningitides and Streptococcus pyogenes

    PubMed Central

    Nocek, B.; Chang, C.; Li, H.; Lezondra, L.; Holzle, D.; Collart, F.; Joachimiak, A.

    2009-01-01

    L-Proline is an amino acid that plays an important role in proteins uniquely contributing to protein folding, structure, and stability, and this amino acid serves as a sequence-recognition motif. Proline biosynthesis can occur via two pathways, one from glutamate and the other from arginine. In both pathways, the last step of biosynthesis, the conversion of Δ1-pyrroline-5-carboxylate (P5C) to L-proline, is catalyzed by Δ1-pyrroline-5-carboxylate reductase (P5CR) using NAD(P)H as a cofactor. We have determined the first crystal structure of P5CR from two human pathogens, Neisseria meningitides and Streptococcus pyogenes, at 2.0Å and 2.15Å resolution, respectively. The catalytic unit of P5CR is a dimer composed of two domains, but the biological unit seems to be species-specific. The N-terminal domain of P5CR is an α/β/α sandwich, a Rossmann fold. The C-terminal dimerization domain is rich in α-helices and shows domain swapping. Comparison of the native structure of P5CR to structures complexed with L-proline and NADP+ in two quite different primary sequence backgrounds provides unique information about key functional features: the active site and the catalytic mechanism. The inhibitory L-proline has been observed in the crystal structure. PMID:16233902

  19. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  20. Design and synthesis of polyhydroxy steroids as selective inhibitors against AKR1B10 and molecular docking.

    PubMed

    Chen, Wenli; Chen, Xinying; Zhou, Shujia; Zhang, Hong; Wang, Ling; Xu, Jun; Hu, Xiaopeng; Yin, Wei; Yan, Guangmei; Zhang, Jingxia

    2016-06-01

    AKR1B10 is a member of the human aldo-keto reductase superfamily which is highly expressed in several types of cancers, and has been regarded as a promising cancer therapeutic target. In this paper, a series of polyhydroxy steroids were designed and synthesized to selectively inhibit AKR1B10 activity. The most selective compound, novel compound 6, has an IC50 of 0.83±0.07μM and a selectivity of more than 120-fold for AKR1B10/AKR1B1. Structure-activity relation analyses indicate that hydroxyl at C-19 can significantly improve the selective inhibition of AKR1B10. The binding mode of AKR1B10 and its inhibitors were studied.

  1. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver.

    PubMed

    Kelly, V P; Ellis, E M; Manson, M M; Chanas, S A; Moffat, G J; McLeod, R; Judah, D J; Neal, G E; Hayes, J D

    2000-02-15

    Structurally diverse compounds can confer resistance to aflatoxin B1 (AFB1) hepatocarcinogenesis in the rat. Treatment with either phytochemicals [benzyl isothiocyanate, coumarin (CMRN), or indole-3-carbinol] or synthetic antioxidants and other drugs (butylated hydroxyanisole, diethyl maleate, ethoxyquin, beta-naphthoflavone, oltipraz, phenobarbital, or trans-stilbene oxide) has been found to increase hepatic aldo-keto reductase activity toward AFB1-dialdehyde and glutathione S-transferase (GST) activity toward AFB1-8,9-epoxide in both male and female rats. Under the conditions used, the natural benzopyrone CMRN was a major inducer of the AFB1 aldehyde reductase (AFAR) and the aflatoxin-conjugating class-alpha GST A5 subunit in rat liver, causing elevations of between 25- and 35-fold in hepatic levels of these proteins. Induction was not limited to AFAR and GSTA5: treatment with CMRN caused similar increases in the amount of the class-pi GST P1 subunit and NAD(P)H: quinone oxidoreductase in rat liver. Immunohistochemistry demonstrated that the overexpression of AFAR, GSTA5, GSTP1, and NAD(P)H:quinone oxidoreductase affected by CMRN is restricted to the centrilobular (periacinar) zone of the lobule, sometimes extending almost as far as the portal tract. This pattern of induction was also observed with ethoxyquin, oltipraz, and trans-stilbene oxide. By contrast, induction of these proteins by beta-naphthoflavone and diethyl maleate was predominantly periportal. Northern blotting showed that induction of these phase II drug-metabolizing enzymes by CMRN was accompanied by similar increases in the levels of their mRNAs. To assess the biological significance of enzyme induction by dietary CMRN, two intervention studies were performed in which the ability of the benzopyrone to inhibit either AFB1-initiated preneoplastic nodules (at 13 weeks) or AFB1-initiated liver tumors (at 50 weeks) was investigated. Animals pretreated with CMRN for 2 weeks prior to administration of

  2. Control of 3-Hydroxy-3-Methylglutaryl-CoA Reductase Activity in Cultured Human Fibroblasts by Very Low Density Lipoproteins of Subjects with Hypertriglyceridemia

    PubMed Central

    Gianturco, Sandra H.; Gotto, Antonio M.; Jackson, Richard L.; Patsch, Josef R.; Sybers, Harley D.; Taunton, O. David; Yeshurun, Daniel L.; Smith, Louis C.

    1978-01-01

    Very low density lipoproteins (VLDL) and low density lipoproteins (LDL) from human normolipemic plasma, and the VLDL, the intermediate density lipoprotein (IDL), and LDL from patients with Type III hyperlipoproteinemic plasma were tested for their abilities to suppress the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in cultured human fibroblasts from normal subjects and a Type III patient. Regulation of cholesterol synthesis in the fibroblasts of a patient with Type III hyperlipoproteinemia appears to be normal. VLDL from normal subjects, isolated by angle head ultracentrifugation (d < 1.006) or by gel filtration on BioGel A-5m, were about 5 times less effective than LDL in suppressing HMG-CoA reductase activity, based on protein content, in agreement with previous reports with normal fibroblasts. Zonal centrifugation of normal VLDL isolated by both methods showed that the VLDL contained IDL. Normal VLDL from the angle head rotor, refractionated by the zonal method, had little, if any, ability to suppress the HMG-CoA reductase activity in either normal or Type III fibroblasts. VLDL, IDL, and LDL fractionated by zonal ultracentrifugation from Type III plasma gave half-maximum inhibition at 0.2-0.5 μg of protein/ml, indistinguishable from the suppression caused by normal LDL. Type III VLDL did not suppress HMG-CoA reductase in mutant LDL receptor-negative fibroblasts. Zonally isolated VLDL obtained from one Type IV and one Type V patient gave half-maximal suppression at 5 and 0.5 μg of protein/ml, respectively. Molecular diameters and apoprotein compositions of the zonally isolated normal and Type III VLDL were similar; the major difference in composition was that Type III VLDL contained more cholesteryl esters and less triglyceride than did normal VLDL. The compositions and diameters of the Type IV and Type V VLDL were similar to normal VLDL. These findings show that the basic defect in Type III hyperlipoproteinemia is qualitatively

  3. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    SciTech Connect

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr. )

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed the presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.

  4. Molecular cloning and sequencing of zeta-crystallin/quinone reductase cDNA from human liver.

    PubMed

    Gonzalez, P; Rao, P V; Zigler, J S

    1993-03-31

    Zeta-crystallin is an enzyme-crystallin highly expressed in the lens of some hystricomorph rodents and camels. It has been shown to have a novel NADPH: quinone oxidoreductase activity and is present at enzymatic levels in a variety of tissues from various mammals. We report here the cDNA cloning of zeta-crystallin from a human liver library. One clone with the complete open reading frame was obtained. Ten nucleotides of the 5' and 796 of the 3' nontranslated regions are present in the clone including two possible polyadenylation signals. The deduced amino acid sequence is 328 residues long with a calculated molecular mass of 34910 daltons and isoelectric point of 8.73. It shows 84% identity with the guinea pig protein.

  5. Is the Peroxiredoxin 2/Thioredoxin/Thioredoxin Reductase system in human erythrocytes designed for redox signaling?

    PubMed

    Benfeitas, Rui; Selvaggio, Gianluca; Antunes, Fernando; Coelho, Pedro; Salvador, Armindo

    2014-10-01

    In human erythrocytes H2O2 is mainly consumed by glutathione peroxidase, catalase and peroxiredoxin 2 (Prx2). Our previous analyses indicate that Prx2's peroxidase activity is subjected to a strong but quickly reversible inhibition (see companion abstract). If this activity is inhibited then the main role of Prx2 cannot be to eliminate H2O2. What functional advantages could then such an inhibition confer?We set up and validated a kinetic model of H2O2 metabolism human erythrocytes that shows quantitative agreement with extensive experimental observations. We then applied it to analyze the behavior of Prx2 and Trx under the H2O2 exposure dynamics that erythrocytes face in circulation. The significance of Prx2 inhibition was assessed by comparing the behavior of this model with that of an otherwise identical model lacking inhibition.Our analysis shows that Prx2 inhibition leads to 25-40% lower NADPH consumption under low to moderately high H2O2 supply (<0.8µM H2O2/s). Further, the inhibition extends the range where the concentrations of potential redox signaling readouts - H2O2, Prx2 sulfenic acid, Prx2 disulfide and Trx disulfide- show a proportional response to changes in H2O2 supply, covering practically the whole physiological range of the latter. This is desirable for analogic signal transduction and allows the Prx2/Trx/TrxR system to reliably transduce changes in H2O2 supply as changes in thiol oxidation. Finally, the inhibition allows other less abundant peroxiredoxins in the erythrocyte to be oxidized by H2O2 at physiological H2O2 supplies.Altogether, these results suggest that the postulated reversible inhibition of Prx2's peroxidase facilitates signal transduction by the peroxiredoxins and spares NADPH.We acknowledge: fellowship SFRH/BD/51199/2010, grants PEst-C/SAU/LA0001/2013-2014, PEst-OE/QUI/UI0612/2013, PEst-OE/QUI/UI0313/2014, and FCOMP-01-0124-FEDER-020978 co-financed by FEDER through the COMPETE program and by FCT (project PTDC/QUI-BIQ/119657/2010).

  6. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2)

    PubMed Central

    Winger, Jonathan A; Hantschel, Oliver; Superti-Furga, Giulio; Kuriyan, John

    2009-01-01

    Background Imatinib represents the first in a class of drugs targeted against chronic myelogenous leukemia to enter the clinic, showing excellent efficacy and specificity for Abl, Kit, and PDGFR kinases. Recent screens carried out to find off-target proteins that bind to imatinib identified the oxidoreductase NQO2, a flavoprotein that is phosphorylated in a chronic myelogenous leukemia cell line. Results We examined the inhibition of NQO2 activity by the Abl kinase inhibitors imatinib, nilotinib, and dasatinib, and obtained IC50 values of 80 nM, 380 nM, and >100 μM, respectively. Using electronic absorption spectroscopy, we show that imatinib binding results in a perturbation of the protein environment around the flavin prosthetic group in NQO2. We have determined the crystal structure of the complex of imatinib with human NQO2 at 1.75 Å resolution, which reveals that imatinib binds in the enzyme active site, adjacent to the flavin isoalloxazine ring. We find that phosphorylation of NQO2 has little effect on enzyme activity and is therefore likely to regulate other aspects of NQO2 function. Conclusion The structure of the imatinib-NQO2 complex demonstrates that imatinib inhibits NQO2 activity by competing with substrate for the active site. The overall conformation of imatinib when bound to NQO2 resembles the folded conformation observed in some kinase complexes. Interactions made by imatinib with residues at the rim of the active site provide an explanation for the binding selectivity of NQO2 for imatinib, nilotinib, and dasatinib. These interactions also provide a rationale for the lack of inhibition of the related oxidoreductase NQO1 by these compounds. Taken together, these studies provide insight into the mechanism of NQO2 inhibition by imatinib, with potential implications for drug design and treatment of chronic myelogenous leukemia in patients. PMID:19236722

  7. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  8. Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues.

    PubMed

    Gutierrez, Aldo; Munro, Andrew W; Grunau, Alex; Wolf, C Roland; Scrutton, Nigel S; Roberts, Gordon C K

    2003-06-01

    The role of coenzyme binding in regulating interflavin electron transfer in human cytochrome P450 reductase (CPR) has been studied using temperature-jump spectroscopy. Previous studies [Gutierrez, A., Paine, M., Wolf, C.R., Scrutton, N.S., & Roberts, G.C.K. Biochemistry (2002) 41, 4626-4637] have shown that the observed rate, 1/tau, of interflavin electron transfer (FADsq - FMNsq-->FADox - FMNhq) in CPR reduced at the two-electron level with NADPH is 55 +/- 2 s-1, whereas with dithionite-reduced enzyme the observed rate is 11 +/- 0.5 s-1, suggesting that NADPH (or NADP+) binding has an important role in controlling the rate of internal electron transfer. In relaxation experiments performed with CPR reduced at the two-electron level with NADH, the observed rate of internal electron transfer (1/tau = 18 +/- 0.7 s-1) is intermediate in value between those seen with dithionite-reduced and NADPH-reduced enzyme, indicating that the presence of the 2'-phosphate is important for enhancing internal electron transfer. To investigate this further, temperature jump experiments were performed with dithionite-reduced enzyme in the presence of 2',5'-ADP and 2'-AMP. These two ligands increase the observed rate of interflavin electron transfer in two-electron reduced CPR from 1/tau = 11 s-1 to 35 +/- 0.2 s-1 and 32 +/- 0.6 s-1, respectively. Reduction of CPR at the two-electron level by NADPH, NADH or dithionite generates the same spectral species, consistent with an electron distribution that is equivalent regardless of reductant at the initiation of the temperature jump. Spectroelectrochemical experiments establish that the redox potentials of the flavins of CPR are unchanged on binding 2',5'-ADP, supporting the view that enhanced rates of interdomain electron transfer have their origin in a conformational change produced by binding NADPH or its fragments. Addition of 2',5'-ADP either to the isolated FAD-domain or to full-length CPR (in their oxidized and reduced forms) leads to

  9. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH.

    PubMed

    Meiering, E M; Wagner, G

    1995-03-24

    The locations of long-lived bound water molecules in the binary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and the ternary complex of hDHFR with MTX and NADPH have been investigated using 15N-resolved, three-dimensional ROESY-HMQC and NOESY-HSQC spectra acquired at 25 degrees C and 8 degrees C. NOEs with NH groups of the protein are detected for five bound water molecules in the binary complex and six bound water molecules in the ternary complex. Inspection of crystal structures of hDHFR reveals that the bound water molecules perform structural and functional roles in the complexes. Two water molecules located outside the active site, WatA and WatB, have similar NOEs in the binary and ternary complexes. These water molecules from multiple hydrogen bonds bridging loops and/or secondary structural elements in crystal structures of hDHFR and so stabilize the tertiary fold of the enzyme. Two water molecules in the active site, WatC and WatD, also have similar NOEs in both complexes. In crystal structures of hDHFR, WatC is involved in MTX binding by forming hydrogen bonds to the ligand and protein, while WatD stabilizes WatC by hydrogen bonding to it and the protein. A third active-site water molecule, WatE, has a markedly stronger NOE in the ternary complex than in the binary complex. Differences in the binding of WatE in the binary and ternary complexes are important for understanding the mechanism of DHFR, since this water molecule is believed to be involved in substrate protonation. Although the increased NOE intensity for WatE could be caused by a change in the position of water molecule, it may also be caused by an increase in its lifetime, since structural fluctuations in the active site are decreased upon cofactor binding. NOEs for one other water molecule, WatF, may be observed in the ternary complex but not the binary complex. WatF forms hydrogen bonds bridging the cofactor and the protein in crystal structures of hDHFR.

  10. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia

    PubMed Central

    Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A.; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J.; Cox, Jonathan; White, Nicholas J.; Cheng, Qin; Yeo, Tsin W.; Auburn, Sarah; Anstey, Nicholas M.

    2016-01-01

    Background Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. Methods The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Results Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Conclusion Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug

  11. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  12. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Paine, Mark J; Ladbury, John E; Gutierrez, Aldo

    2006-02-01

    The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez

  13. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  14. Augmentation of CFTR maturation by S-nitrosoglutathione reductase.

    PubMed

    Zaman, Khalequz; Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J; Lewis, Stephen J; Gaston, Benjamin

    2016-02-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o(-)) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o(-) cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.

  15. Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties.

    PubMed

    Lundová, Tereza; Štambergová, Hana; Zemanová, Lucie; Svobodová, Markéta; Havránková, Jana; Šafr, Miroslav; Wsól, Vladimír

    2016-01-01

    Dehydrogenase/reductase (SDR family) member 8 (DHRS8, SDR16C2) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, one of the largest enzyme groups. In addition to the well-known members which participate in the metabolism of important eobiotics and xenobiotics, this superfamily contains many poorly characterized proteins. DHRS8 is a member of the Multisubstrate NADP(H)-dependent SDR16C family, which generally contains insufficiently described enzymes. Despite the limited knowledge about DHRS8, preliminary indicators have emerged regarding its significant function in the modulation of steroidal activity, at least in the case of 3α-adiol, lipid metabolism and detoxification. The aim of this study was to describe additional biochemical properties of DHRS8 and to unify knowledge about this enzyme. The DHRS8 was prepared in recombinant form and its membrane topology in the endoplasmic reticulum as an integral protein with cytosolic orientation was demonstrated. The enzyme participates in the NAD(+)-dependent oxidation of steroid hormones as β-estradiol and testosterone in vitro; apparent K m and V max values were 39.86 µM and 0.80 nmol × mg(-1) × min(-1) for β-estradiol and 1207.29 µM and 3.45 nmol × mg(-1) × min(-1) for testosterone. Moreover, synthetic steroids (methyltestosterone and nandrolone) used as anabolics as well as all-trans-retinol were for the first time identified as substrates of DHRS8. This knowledge of its in vitro activity together with a newly described expression pattern at the protein level in tissues involved in steroidogenesis (adrenal gland and testis) and detoxification (liver, lung, kidney and small intestine) could suggest a potential role of DHRS8 in vivo. PMID:26472732

  16. 5,10-Methylenetetrahydrofolate reductase polymorphisms and pharmacogenetics: a new role of single nucleotide polymorphisms in the folate metabolic pathway in human health and disease.

    PubMed

    Kim, Young-In

    2005-11-01

    Knowledge about the role of folate, a water-soluble B vitamin, and single nucleotide polymorphisms (SNPs) in the folate metabolic pathway in human health and disease has been rapidly expanding. Recently, functionally significant SNPs in 5,10-methylenetetrahydrofolate reductase (MTHFR), a critical enzyme for intracellular folate homeostasis and metabolism, have been identified and characterized. An emerging body of in vitro and clinical evidence suggests that these MTHFR SNPs may be an important pharmacogenetic determinant of predicting response to and toxicity of methotrexate and 5-fluorouracil-based cancer and anti-inflammatory treatments because of their well-defined and highly relevant biochemical effects on intracellular folate composition and one-carbon transfer reactions.

  17. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth.

    PubMed

    Bessoff, Kovi; Sateriale, Adam; Lee, K Kyungae; Huston, Christopher D

    2013-04-01

    Cryptosporidiosis, a diarrheal disease usually caused by Cryptosporidium parvum or Cryptosporidium hominis in humans, can result in fulminant diarrhea and death in AIDS patients and chronic infection and stunting in children. Nitazoxanide, the current standard of care, has limited efficacy in children and is no more effective than placebo in patients with advanced AIDS. Unfortunately, the lack of financial incentives and the technical difficulties associated with working with Cryptosporidium parasites have crippled efforts to develop effective treatments. In order to address these obstacles, we developed and validated (Z' score = 0.21 to 0.47) a cell-based high-throughput assay and screened a library of drug repurposing candidates (the NIH Clinical Collections), with the hopes of identifying safe, FDA-approved drugs to treat cryptosporidiosis. Our screen yielded 21 compounds with confirmed activity against C. parvum growth at concentrations of <10 μM, many of which had well-defined mechanisms of action, making them useful tools to study basic biology in addition to being potential therapeutics. Additional work, including structure-activity relationship studies, identified the human 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor itavastatin as a potent inhibitor of C. parvum growth (50% inhibitory concentration [IC(50)] = 0.62 μM). Bioinformatic analysis of the Cryptosporidium genomes indicated that the parasites lack all known enzymes required for the synthesis of isoprenoid precursors. Additionally, itavastatin-induced growth inhibition of C. parvum was partially reversed by the addition of exogenous isopentenyl pyrophosphate, suggesting that itavastatin reduces Cryptosporidium growth via on-target inhibition of host HMG-CoA reductase and that the parasite is dependent on the host cell for synthesis of isoprenoid precursors.

  18. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12

    SciTech Connect

    Pahl, P.; Berger, R.; Hart, I. |

    1995-04-10

    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases. 33 refs., 2 figs., 1 tab.

  19. The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions

    PubMed Central

    Bresson, Eva; Lacroix-Pépin, Nicolas; Boucher-Kovalik, Sofia; Chapdelaine, Pierre; Fortier, Michel A.

    2012-01-01

    Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs), lead us to the discovery that AKR1B5 and later AKR1B1were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2/EP2 and PGF2α/FP may constitute a functional dyad with physiological relevance comparable to the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231) also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate, and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region containing two putative antioxidant response elements adjacent to TonE and AP1. We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors like alrestatin, Statil (ponalrestat), and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human pathologies. PMID:22654757

  20. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  1. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-01

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function.

  2. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    PubMed

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  3. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells.

    PubMed

    Shao, Fang-Yuan; Wang, Sheng; Li, Hong-Yu; Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-02-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  4. Identification of a 57-kilodalton selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling pathway.

    PubMed

    Howie, A F; Arthur, J R; Nicol, F; Walker, S W; Beech, S G; Beckett, G J

    1998-06-01

    Human thyrocytes incubated with the phorbol ester, phorbol 12-myristate 13-acetate (PMA; 10(-5)-10(-8) mol/L) and the calcium ionophore A23187 (10(-5)-10(-8) mol/L) showed a marked increase in the expression of a 57-kDa selenoprotein identified as thioredoxin reductase (TR). After the addition of A23187 with PMA, a significant induction in TR expression was observed after 6 h, with maximal induction occurring by 24 h. The addition of 8-bromo-cAMP (10(-4) mol/L) or TSH (10 U/L) alone had no effect on TR expression, nor did these agents influence the induction of TR brought about by the addition of A23187 and PMA. These data show that the calcium-phosphoinositol second messenger cascade that controls hydrogen peroxide generation in the human thyrocyte is also an important stimulator of TR expression. The role of TR in the thyrocyte is unclear, but the selenoenzyme has a high capacity to detoxify compounds, such as hydrogen peroxide and lipid hydroperoxides, that are produced in high concentration during thyroid hormone synthesis.

  5. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM.

  6. 2,4-Diamino-5-(2′-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition

    PubMed Central

    Algul, Oztekin; Paulsen, Janet L.; Anderson, Amy C.

    2010-01-01

    Dihydrofolate reductase (DHFR) has been a well-recognized target for the development of therapeutics for human cancers for several decades. Classical inhibitors of DHFR use an active transport mechanism to gain access to the cell; disabling this mechanism creates a pathway for resistance. In response, recent research focuses on nonclassical lipid-soluble DHFR inhibitors that are designed to passively diffuse through the membrane. Here, a new series of propargyl-linked antifolates are investigated as potential nonclassical human DHFR inhibitors. Several of these compounds exhibit potent enzyme inhibition with 50% inhibition concentration values under 500 nM. Molecular docking investigations show that the compounds maintain conserved hydrogen bonds between the pyrimidine ring and the enzyme as well as form van der Waals interactions with critical residues in the active site. Interestingly, the most potent compound, 2,4-diamino-5-(3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (compound 35), is 3,500-fold more potent than trimethoprim, a potent inhibitor of bacterial DHFR but weak inhibitor of human DHFR. The two structural differences between compound 35 and trimethoprim show that the propargyl linkage and the substitution at C6 of the pyrimidine ring are critical to the formation of contacts with Thr 56, Ser 59, Ile 60, Leu 22, Phe 31 and Phe 34 and hence, to enhancing potency. The propargyl-linked antifolates are efficient ligands with a high ratio of potency to the number of non-hydrogen atoms and represent a potentially fruitful avenue for future development of antineoplastic agents. PMID:21146434

  7. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer.

    PubMed

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  8. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer

    PubMed Central

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2′-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  9. Intratumoral hemorrhage-related differences in the expression of vascular endothelial growth factor, basic fibroblast growth factor and thioredoxin reductase 1 in human glioblastoma

    PubMed Central

    Kaya, Bulent; Çiçek, Onur; Erdi, Fatih; Findik, Siddika; Karatas, Yasar; Esen, Hasan; Keskin, Fatih; Kalkan, Erdal

    2016-01-01

    The present study was designed to evaluate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and thioredoxin reductase 1 (TrxR1) in glioblastoma multiforme (GBM) with and without intratumoral hemorrhage. Surgically resected human GBM samples from 20 patients who underwent surgery at our institute were extracted from the histopathological specimens and divided into two groups. A total of 10 samples from each type of GBM (World Health Organization grade IV, intratumoral hemorrhage-positive or -negative) were included in each group. VEGF, bFGF and TrxR1 expression was analyzed using immunohistochemistry and the results were compared between groups. VEGF and bFGF immunoreactivity was significantly higher in GBMs containing intratumoral hemorrhage. Furthermore, VEGF, bFGF and TrxR1 immunointensity was significantly higher in GBMs containing intratumoral hemorrhage. Thus, the present study demonstrated a higher VEGF, bFGF and TrxR1 expression in GBMs contain intratumoral hemorrhage, indicatiogn a role of VEGF, bFGF and TrxR1 expression in the promotion of tumoral angiogenesis and tumoral growth by complex mechanisms that require further elucidation.

  10. Protection against aflatoxin B1-induced cytotoxicity by expression of the cloned aflatoxin B1-aldehyde reductases rat AKR7A1 and human AKR7A3.

    PubMed

    Bodreddigari, Sridevi; Jones, Laundette Knight; Egner, Patricia A; Groopman, John D; Sutter, Carrie Hayes; Roebuck, Bill D; Guengerich, F Peter; Kensler, Thomas W; Sutter, Thomas R

    2008-05-01

    The reduction of the aflatoxin B 1 (AFB 1) dialdehyde metabolite to its corresponding mono and dialcohols, catalyzed by aflatoxin B 1-aldehyde reductase (AFAR, rat AKR7A1, and human AKR7A3), is greatly increased in livers of rats treated with numerous chemoprotective agents. Recombinant human AKR7A3 has been shown to reduce the AFB 1-dialdehyde at rates greater than those of the rat AKR7A1. The activity of AKR7A1 or AKR7A3 may detoxify the AFB 1-dialdehyde, which reacts with proteins, and thereby inhibits AFB 1-induced toxicity; however, direct experimental evidence of this hypothesis was lacking. Two human B lymphoblastoid cell lines, designated pMF6/1A2/AKR7A1 and pMF6/1A2, were genetically engineered to stably express AKR7A1 and/or cytochrome P4501A2 (1A2). The pMF6/1A2/AKR7A1 cells were refractory to the cytotoxic effects of 3 ng/mL AFB 1, in comparison to pM6/1A2 cells, which were more sensitive. Diminished protection occurred at higher concentrations of AFB 1 in pMF6/1A2/AKR7A1 cells, suggesting that additional factors were influencing cell survival. COS-7 cells were transfected with either vector control, rat AKR7A1, or human AKR7A3, and the cells were treated with AFB 1-dialdehyde. There was a 6-fold increase in the dialdehyde LC 50, from 66 microM in vector-transfected cells to 400 microM in AKR7A1-transfected cells, and an 8.5-fold increase from 35 microM in vector-transfected cells to 300 microM in AKR7A3-transfected cells. In both cases, this protective effect of the AFAR enzyme was accompanied by a marked decrease in protein adducts. Fractionation of the cellular protein showed that the mitochondria/nuclei and microsomal fractions contained the highest concentration of protein adducts. The levels of human AKR7A3 and AKR7A2 were measured in 12 human liver samples. The expression of AKR7A3 was detectable in all livers and lower than those of AKR7A2 in 11 of the 12 samples. Overall, these results provide the first direct evidence of a role for rat AKR7A1

  11. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  12. The HMG-CoA reductase inhibitor rosuvastatin inhibits plasminogen activator inhibitor-1 expression and secretion in human adipocytes.

    PubMed

    Laumen, Helmut; Skurk, Thomas; Hauner, Hans

    2008-02-01

    Human preadipocytes and adipocytes are known to produce the proatherogenic factor PAI-1 and proinflammatory cytokines, and obesity was found to be state of increased adipose production of these factors. In the present study, we investigated the effect of rosuvastatin on the regulation of PAI-1 gene expression in human adipocytes. Human preadipocytes, adipocytes in primary culture and the SGBS cell line were used as cell models. Cells were transfected using various constructs and promoter activity was measured as luciferase activity. PAI-1 expression was measured by quantitative RT-PCR and ELISA. Rosuvastatin inhibited PAI-1 mRNA expression and secretion of the protein in a concentration-dependent manner. This effect was reversed by isoprenoids. Addition of MEK-inhibitors and NFkappaB inhibitors also reduced PAI-1 expression and PAI-1 promoter luciferase activity. Further experiments revealed that rosuvastatin down-regulated the MEKK-1 mediated activation of the PAI-1 promoter. In conclusion our data suggest that rosuvastatin inhibits PAI-1 expression and release from human adipocytes via a MEKK-1-dependent but not a NFkappaB-dependent mechanism.

  13. Potent increased risk of the initiation of DNA replication in human prostate cancer with the use of 5α-reductase inhibitors.

    PubMed

    Kosaka, Takeo; Yasumizu, Yota; Miyazaki, Yasumasa; Miyajima, Akira; Kikuchi, Eiji; Oya, Mototsugu

    2014-01-01

    Recent clinical studies have raised the clinically important question of the relationship between dihydrotestosterone (DHT) and prostate cancer (PCa) progression. The significance of DHT or 5α-reductase inhibitors (5ARI) in PCa development and progression has not yet been fully characterized. The aim of this study was to determine whether the initiation of DNA replication was influenced by DHT in PCa. Three cell lines were used. LNCaP: a human PCa cell line that exhibits androgen-dependent proliferation, C4-2: a human PCa cell line that exhibits androgen-independent proliferation, and C4-2AT6: a castration resistant prostate cancer cell line. Two 5ARIs, finasteride and dutasteride, were used. We examined the mRNA expression of the components of pre-replication complex (Pre-RC), CDC6, CDT1, and MCM2-7. DHT induced cell proliferation of LNCaP accompanied by significantly increased CDC6, CDT1, and MCM2-7 expression. In contrast to LNCaP, DHT inhibited cell proliferation in C4-2AT6 cells accompanied by decreased expression of CDC6, CDT1, and MCM2-7. These reverse effects resemble the effects of 5ARIs in Pre-RC. Treatment with finasteride or dutasteride inhibited CDC6 expression in LNCaP, but both 5ARIs induced CDC6 expression in C4-2 and C4-2AT6 cells.These results indicate that DHT showed reversal effects on PCa cell proliferation among prostate cancer cells based on androgen-dependence, accompanied by regulation of the initiation of DNA replication. 5ARIs may modulate the DNA replication system in someaggressive PCa through up-regulation of CDC6 expression. PMID:25374915

  14. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  15. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations. PMID:23280489

  16. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  17. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy. PMID:26439985

  18. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  19. Crystal structure determination at 2.3 A of recombinant human dihydrofolate reductase ternary complex with NADPH and methotrexate-gamma-tetrazole.

    PubMed

    Cody, V; Luft, J R; Ciszak, E; Kalman, T I; Freisheim, J H

    1992-12-01

    The crystal structure of the methotrexate-gamma-tetrazole (MTXT)-NADPH ternary complex with recombinant human dihydrofolate reductase (DHFR) has been determined and refined to R = 15.9% for 7003 data from 10.0 to 2.3 A resolution for the R3 lattice. Interpretation of difference Fourier electron density maps revealed that the cofactor NADPH is bound in an extended conformation, and the closest contact between cofactor and inhibitor is 3.1 A, between N(5) of the MTXT pteridine ring and the nicotinamide C(4) which transfers a hydride during the enzyme-catalyzed reaction. As in other DHFR complexes, MTXT is interpreted as protonated at N(1) by Glu-30, and the 2-amino group is hydrogen bonded to a structurally conserved water which also interacts with Glu-30 and Thr-136. The 4-amino group of MTXT hydrogen bonds to the carbonyl of Ile-7 and the phenolic hydroxyl of Tyr-121, and the alpha-carboxylate forms a salt bridge with the conserved Arg-70. In this structure, the amide carbonyl forms two hydrogen bonds with Asn-64 and a water molecule, whereas the gamma-tetrazole ring does not interact directly with the enzyme. The largest changes in the secondary structure on formation of the ternary complex involve the fold of a flexible loop near residues 40-46, and to a lesser extent the helical region near residues 102-109 and the beta-sheet regions near residues 71-75 and 157-159.

  20. Methionine Sulfoxide Reductases B1, B2, and B3 Are Present in the Human Lens and Confer Oxidative Stress Resistance to Lens Cells

    PubMed Central

    Marchetti, Maria A.; Pizarro, Gresin O.; Sagher, Daphna; DeAmicis, Candida; Brot, Nathan; Hejtmancik, J. Fielding; Weissbach, Herbert; Kantorow, Marc

    2005-01-01

    Purpose Methionine-sulfoxide reductases are unique, in that their ability to repair oxidized proteins and MsrA, which reduces S-methionine sulfoxide, can protect lens cells against oxidative stress damage. To date, the roles of MsrB1, -B2 and -B3 which reduce R-methionine sulfoxide have not been established for any mammalian system. The present study was undertaken to identify those MsrBs expressed by the lens and to evaluate the enzyme activities, expression patterns, and abilities of the identified genes to defend lens cells against oxidative stress damage. Methods Enzyme activities were determined with bovine lens extracts. The identities and spatial expression patterns of MsrB1, -B2, and -B3 transcripts were examined by RT-PCR in human lens and 21 other tissues. Oxidative stress resistance was measured using short interfering (si)RNA–mediated gene-silencing in conjunction with exposure to tert-butyl hydroperoxide (tBHP) and MTS viability measurements in SRA04/01 human lens epithelial cells. Results. Forty percent of the Msr enzyme activity present in the lens was MsrB, whereas the remaining enzyme activity was MsrA. MsrB1 (selenoprotein R, localized in the cytosol and nucleus), MsrB2 (CBS-1, localized in the mitochondria), and MsrB3 (localized in the endoplasmic reticulum and mitochondria) were all expressed by the lens. These genes exhibit asymmetric expression patterns between different human tissues and different lens sublocations, including lens fibers. All three genes are required for lens cell viability, and their silencing in lens cells results in increased oxidative-stress–induced cell death. Conclusions. The present data suggest important roles for both MsrA and -Bs in lens cell viability and oxidative stress protection. The differential tissue distribution and lens expression patterns of these genes, coupled with increased oxidative-stress–induced cell death on their deletion provides evidence that they are important for lens cell function

  1. Benzo[c]quinolizin-3-ones: a novel class of potent and selective nonsteroidal inhibitors of human steroid 5alpha-reductase 1.

    PubMed

    Guarna, A; Machetti, F; Occhiato, E G; Scarpi, D; Comerci, A; Danza, G; Mancina, R; Serio, M; Hardy, K

    2000-10-01

    The synthesis and biological evaluation of a series of novel, selective inhibitors of isoenzyme 1 of human 5alpha-reductase (5alphaR) (EC 1.3.99.5) are reported. The inhibitors are 4aH- (19-29) or 1H-tetrahydrobenzo[c]quinolizin-3-ones (35-47) bearing at positions 1, 4, 5, and 6 a methyl group and at position 8 a hydrogen, methyl group, or chlorine atom. All these compounds were tested toward 5alphaR-1 and 5alphaR-2 expressed in CHO cells (CHO 1827 and CHO 1829, respectively) resulting in selective inhibitors of the type 1 isoenzyme, with inhibitory potencies (IC(50)) ranging from 7.6 to 9100 nM. The inhibitors of the 4aH-series, having a double bond at position 1,2, were generally less active than the corresponding inhibitors of the 1H-series having the double bond at position 4,4a on the A ring. The presence of a methyl group at position 4 (as in compounds 39-40 and 45-47), associated with a substituent at position 8, determined the highest inhibition potency (IC(50) from 7.6 to 20 nM). Compounds 39 and 40, having K(i) values of 5.8+/-1.8 and 2.7+/-0.6 nM, respectively, toward 5alphaR-1 expressed in CHO cells, were also tested toward native 5alphaR-1 in human scalp and 5alphaR-2 in human prostate homogenates, in comparison with finasteride and the known 5alphaR-1-selective inhibitor LY191704, and their mechanism of inhibition was determined. They both inhibited the enzyme through a reversible competitive mechanism and again were selective inhibitors of 5alphaR-1 with IC(50) values of 41 nM. These specific features make these inhibitors suitable candidates for further development as drugs in the treatment of DHT-dependent disorders such as acne and androgenic alopecia in men and hirsutism in women. PMID:11020287

  2. Analysis of three crystal structure determinations of a 5-methyl-6-N-methylanilino pyridopyrimidine antifolate complex with human dihydrofolate reductase.

    PubMed

    Cody, Vivian; Luft, Joseph R; Pangborn, Walter; Gangjee, Aleem

    2003-09-01

    Structural data are reported for the first example of the potent antifolate inhibitor 2,4-diamino-5-methyl-6-[(3',4',5'-trimethoxy-N-methylanilino)methyl]pyrido[2,3-d]pyrimidine (1) in complex with human dihydrofolate reductase (hDHFR) and NADPH. Small differences in crystallization conditions resulted in the growth of two different forms of a binary complex. The structure determination of an additional crystal of a ternary complex of hDHFR with NADPH and (1) grown under similar conditions is also reported. Diffraction data were collected to 2.1 A resolution for an R3 lattice from a hDHFR ternary complex with NADPH and (1) and to 2.2 A resolution from a binary complex. Data were also collected to 2.1 A resolution from a binary complex with hDHFR and (1) in the first example of a tetragonal P4(3)2(1)2 lattice. Comparison of the intermolecular contacts among these structures reveals differences in the backbone conformation (1.9-3.2 A) for flexible loop regions (residues 40-46, 77-83 and 103-107) that reflect differences in the packing environment between the rhombohedral and tetragonal space groups. Analysis of the packing environments shows that the tetragonal lattice is more tightly packed, as reflected in its smaller V(M) value and lower solvent content. The conformation of the inhibitor (1) is similar in all structures and is also similar to that observed for TMQ, the parent quinazoline compound. The activity profile for this series of 5-deaza N-substituted non-classical trimethoxybenzyl antifolates shows that the N10-CH(3) substituted (1) has the greatest potency and selectivity for Toxoplasma gondii DHFR (tgDHFR) compared with its N-H or N-CHO analogs. Models of the tgDHFR active site indicate preferential contacts with (1) that are not present in either the human or Pneumocystis carinii DHFR structures. Differences in the acidic residue (Glu30 versus Asp for tgDHFR) affect the precise positioning of the diaminopyridopyrimidine ring, while changes in other

  3. Kinetic and Structural Analysis for Potent Antifolate Inhibition of Pneumocystis jirovecii, Pneumocystis carinii, and Human Dihydrofolate Reductases and Their Active-Site Variants

    PubMed Central

    Cody, Vivian; Pace, Jim; Adair, Ona O.; Gangjee, Aleem

    2013-01-01

    A major concern of immunocompromised patients, in particular those with AIDS, is susceptibility to infection caused by opportunistic pathogens such as Pneumocystis jirovecii, which is a leading cause of pneumonia in immunocompromised patients. We report the first kinetic and structural data for 2,4-diamino-6-[(2′,5′-dichloro anilino)methyl]pyrido[2,3-d]pyrimidine (OAAG324), a potent inhibitor of dihydrofolate reductase (DHFR) from P. jirovecii (pjDHFR), and also for trimethoprim (TMP) and methotrexate (MTX) with pjDHFR, Pneumocystis carinii DHFR (pcDHFR), and human DHFR (hDHFR). OAAG324 shows a 9.0-fold selectivity for pjDHFR (Ki, 2.7 nM) compared to its selectivity for hDHFR (Ki, 24.4 nM), whereas there is only a 2.3-fold selectivity for pcDHFR (Ki, 6.3 nM). In order to understand the determinants of inhibitory potency, active-site mutations of pj-, pc-, and hDHFR were explored to make these enzymes more like each other. The most unexpected observations were that the variant pcDHFR forms with K37Q and K37Q/F69N mutations, which made the enzyme more like the human form, also made these enzymes more sensitive to the inhibitory activity of OAAG324, with Ki values of 0.26 and 0.71 nM, respectively. A similar gain in sensitivity was also observed for the hDHFR N64F variant, which showed a lower Ki value (0.58 nM) than native hDHFR, pcDHFR, or pjDHFR. Structural data are reported for complexes of OAAG324 with hDHFR and its Q35K and Q35S/N64F variants and for the complex of the K37S/F69N variant of pcDHFR with TMP. These results provide useful insight into the role of these residues in the optimization of highly selective inhibitors of DHFR against the opportunistic pathogen P. jirovecii. PMID:23545530

  4. Human type 3 5α-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride.

    PubMed

    Yamana, Kazutoshi; Labrie, Fernand; Luu-The, Van

    2010-08-01

    5α-Reductases are crucial enzymes involved in the biosynthesis of dihydrotestosterone, the most potent natural androgen. To date, three types of 5α-reductases, chronologically named types 1, 2 and 3 5α-reductases (SRD5a-1, 2 and 3) have been described. In the present paper, we characterized the activity and compared the mRNA expression levels of SRD5a-3 with those of SRD5a-1 and 2 in various human tissues, and determined its sensitivity to finasteride and dutasteride. We have established HEK-293 cell line that stably expressed SRD5a-3 for studying its activity and the inhibitory effect of finasteride, using [14C]labeled steroids. mRNA expression levels were quantified using real-time PCR in many male and female human tissues including the prostate, adipose tissue, mammary gland, as well as breast and prostate cancer cell lines. Incubation of HEK-SRD5a-3 cells with [14C]4-androstenedione and [14C]testosterone allowed us to show that SRD5a-3 can catalyze very efficiently both substrates 4-androstenedione and testosterone into 5α-androstanedione and dihydrotestosterone, respectively. We observed that the affinity of the enzyme for 4-androstenedione is higher than for testosterone. The activity of SRD5a-3 and SRD5a-2 are similarly sensitive to finasteride, whereas dutasteride is a much more potent inhibitor of SRD5a-3 than SRD5a-2. Tissue distribution analysis shows that SRD5a-3 mRNA expression levels are higher than those of SRD5a-1 and SRD5a-2 in 20 analyzed tissues. In particular, it is highly expressed in the skin, brain, mammary gland and breast cancer cell lines, thus suggesting that SRD5a-3 could play an important role in the production of androgens in these and other peripheral tissues. PMID:25961201

  5. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT. PMID:26923074

  6. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT.

  7. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  8. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    PubMed

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  9. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  10. Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines

    PubMed Central

    Itoh, Shinji; Taketomi, Akinobu; Harimoto, Norifumi; Tsujita, Eiji; Rikimaru, Tatsuya; Shirabe, Ken; Shimada, Mitsuo; Maehara, Yoshihiko

    2010-01-01

    The aim of this study was to investigate the effect and the mechanism of gamma linolenic acid (GLA) treatment on human hepatocellular (HCC) cell lines. The human HCC cell line HuH7 was exposed to GLA. Cell proliferation and reactive oxygen species (ROS) generation including lipid peroxidation and apoptosis were compared. We then used a cDNA microarray analysis to investigate the molecular changes induced by GLA. GLA treatment significantly reduced cell proliferation, generated ROS, and induced apoptosis. After 24 h exposure of Huh7 cells to GLA, we identified several genes encoding the antioxidant proteins to be upregulated: heme oxygenase-1 (HO-1), aldo-keto reductase 1 family C1 (AKR1C1), C4 (AKR1C4), and thioredoxin (Trx). The HO-1 protein levels were overexpressed in Huh7 cells after GLA exposure using a Western blot analysis. Furthermore, chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated GLA cytotoxicity. GLA treatment has induced cell growth inhibition, ROS generation including lipid peroxidation, and HO-1 production for antioxidant protection against oxidative stress caused by GLA in Huh7 cells. GLA treatment should be considered as a therapeutic modality in patients with advanced HCC. PMID:20664735

  11. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose.

    PubMed

    Du, Yatao; Zhang, Huihui; Lu, Jun; Holmgren, Arne

    2012-11-01

    Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin.

  12. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  13. New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line.

    PubMed

    Amaral, Cristina; Varela, Carla; Correia-da-Silva, Georgina; Tavares da Silva, Elisiário; Carvalho, Rui A; Costa, Saul C P; Cunha, Sara C; Fernandes, José O; Teixeira, Natércia; Roleira, Fernanda M F

    2013-11-01

    The androgens testosterone (T) and dihydrotestosterone (DHT), besides playing an important role in prostate development and growth, are also responsible for the development and progression of benign prostate hyperplasia (BPH) and prostate cancer. Therefore, the actions of these hormones can be antagonized by preventing the irreversible conversion of T into DHT by inhibiting 5α-reductase (5α-R). This has been a useful therapeutic approach for the referred diseases and can be achieved by using 5α-reductase inhibitors (RIs). Steroidal RIs, finasteride and dutasteride, are used in clinic for BPH treatment and were also proposed for chemoprevention of prostate cancer. Nevertheless, due to the increase in bone and muscle loss, impotency and occurrence of high-grade prostate tumours, it is important to seek for other potent and specific molecules with lower side effects. In the present work, we designed and synthesized steroids with the 3-keto-Δ(4) moiety in the A-ring, as in the 5α-R substrate T, and with carboxamide, carboxyester or carboxylic acid functions at the C-17β position. The inhibitory 5α-R activity, in human prostate microsomes, as well as the anti-proliferative effects of the most potent compounds, in a human androgen-responsive prostate cancer cell line (LNCaP cells), were investigated. Our results showed that steroids 3, 4 and 5 are good RIs, which suggest that C-17β lipophylic amides favour 5α-R inhibition. Moreover, these steroids induce a decrease in cell viability of stimulated LNCaP cells, in a 5α-R dependent-manner, similarly to finasteride. PMID:23933094

  14. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  15. Induction of a Unique Isoform of the NCOA7 Oxidation Resistance Gene by Interferon β-1b

    PubMed Central

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D.; Tran, Tiffany; Reder, Anthony T.; Litvak, Vladimir

    2015-01-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  16. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b.

    PubMed

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D; Tran, Tiffany; Reder, Anthony T; Litvak, Vladimir; Volkert, Michael R

    2015-03-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  17. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b.

    PubMed

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D; Tran, Tiffany; Reder, Anthony T; Litvak, Vladimir; Volkert, Michael R

    2015-03-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress.

  18. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery.

    PubMed

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M; Buonaguro, Luigi

    2016-07-08

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely "HCC-associated" and "HCC-specific". Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy.

  19. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery

    PubMed Central

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M.; Buonaguro, Luigi

    2016-01-01

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely “HCC-associated” and “HCC-specific”. Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy. PMID:27387388

  20. Role of 5 alpha-reductase in health and disease.

    PubMed

    Randall, V A

    1994-04-01

    The mechanism of androgen action varies in different tissues, but in the majority of androgen target tissues either testosterone or 5 alpha-dihydrotestosterone (DHT) binds to a specific androgen receptor to form a complex that can regulate gene expression. Testosterone is metabolized to DHT by the enzyme 5 alpha-reductase. The autosomal recessive genetic disorder of 5 alpha-reductase deficiency has clearly shown that the requirement for DHT formation varies with different tissues. In this syndrome genetic males contain normal male internal structures including testes, but exhibit ambiguous or female external genitalia at birth; at puberty they undergo partial virilization which includes development of a male gender identity even if brought up as females. Their development suggests that testosterone itself is able to stimulate psychosexual behaviour, development of the embryonic wolffian duct, muscle development, voice deepening, spermatogenesis, and axillary and pubic hair growth; DHT seems to be essential for prostate development and growth, the development of the external genitalia and male patterns of facial and body hair growth or male-pattern baldness. How different hormones operate to regulate genes via the same receptor is currently unknown, but appears to involve cell-specific factors. The 5-alpha-reductase enzyme has proved difficult to isolate biochemically, but recently at least two human isoenzymes have been identified using molecular biological methods. All the various 5 alpha-reductase-deficient kindreds have been shown to have mutations in 5 alpha-reductase 2, the predominant form in the prostate. The biological role of 5 alpha-reductase 1 has not yet been ascertained, but at present it cannot be ruled out that some of the actions ascribed to testosterone are indeed in cells producing DHT via this enzyme. The activity of 5 alpha-reductase is also implicated in benign prostatic hypertrophy, hirsutism and possibly male-pattern baldness; recent evidence

  1. Comparison of in vivo effect of inorganic lead and cadmium on glutathione reductase system and delta-aminolevulinate dehydratase in human erythrocytes.

    PubMed Central

    Roels, H A; Buchet, J P; Lauwerys, R R; Sonnet, J

    1975-01-01

    The activity of delta-aminolevulinate dehydratase (ALAD) of erythrocytes, the lead (Pb-B) and cadmium (Cd-B) concentration in whole blood, the content of reduced glutathion (GSH) in erythrocytes, and the regeneration rate of GSH by intact erythrocytes were measured during an epidemiological survey of 84 men employed in a Belgian cadmium and lead producing plant. A control group of 26 persons (students and laboratory staff) was also examined. The logarithm of the ALAD activity is highly inversely correlated with log Pb-B (r = -0.760) but no correlation was found with log Cd-B. There exists a significant negative correlation between GSH and log Pb-B (r = -0.423) but not between GSH AND LOG Cd-B. The apparently good relationship between log ALAD and GSH disappeared completely by holding log Pb-B constant, but log ALAD remained highly inversely correlated with log Pb-B when standardized for GSH concentration (r = -0.748). In vivo investigation of the GSH regeneration rate of intact erythrocytes demonstrated clearly that the overall activity of the glutathione oxidation-reduction pathways is not impaired in Pb and Cd-exposed workers with significantly increased Pb-B and Cd-B, since their initial GSH regeneration rate (first 15 minutes) was identical with that of the control group. Results of similar in vitro experiments in which control whole blood was incubated before-hand with Pb2+ or Cd2+, or both, reinforce this conclusion. Since increased Cd-B and Pb-B do not influence the glutathione reductase system of erythrocytes, and since endogenous erythrocyte GSH is not correlated with Cd-B, the moderate decrease in endogenous erythrocyte Gsh found in Pb-exposed workers might result from a Pb-induced impairment for the erythrocyte mechanism for glutathione synthesis. PMID:1156566

  2. Prostates, pates, and pimples. The potential medical uses of steroid 5 alpha-reductase inhibitors.

    PubMed

    Tenover, J S

    1991-12-01

    The steroid 5 alpha-reductase enzyme is responsible for the formation of DHT from testosterone. DHT has been the major androgen implicated in the pathogenesis of benign prostatic hyperplasia, male pattern baldness, acne, and idiopathic female hirsutism. Although specific inhibitors of 5 alpha-reductase are not yet generally available for human use, it is expected that they will become available within the next several years. Based on biochemical, histologic, and anatomic information from animals given 5 alpha-reductase inhibitors, preliminary data on their use in humans, and knowledge gained from men with the inherited 5 alpha-reductase deficiency, it is expected that these 5 alpha-reductase inhibitors may have a major role in the medical management of benign prostatic hyperplasia. In addition, it is possible that these compounds will hold promise for the prevention of male pattern baldness and for the treatment of resistant acne and idiopathic hirsutism. PMID:1723383

  3. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  4. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  5. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  6. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  10. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... gene provides instructions for making an enzyme called steroid 5-alpha reductase 2. This enzyme is involved ... external genitalia. Mutations in the SRD5A2 gene prevent steroid 5-alpha reductase 2 from effectively converting testosterone ...

  11. The model homologue of the partially defective human 5,10-methylenetetrahydrofolate reductase, considered as a risk factor for stroke due to increased homocysteine level, can be protected and reactivated by heat shock proteins.

    PubMed

    Grabowski, Michał; Banecki, Bogdan; Kadziński, Leszek; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Banecka-Majkutewicz, Zyta

    2016-10-01

    The A222 V substitution in the human MTHFR gene product (5,10-methylenetetrahydrofolate reductase) is responsible for a decreased activity of this enzyme. This may cause an increased homocysteine level, considered as a risk factor for arteriosclerosis and stroke. The bacterial homologue of the human enzyme, MetF, has been found to be a useful model in genetic and biochemical studies. The similarity of Escherichia coli MetF and human MTHFR proteins is so high that particular mutations in the corresponding human gene can be reflected by the bacterial mutants. For example, the A222 V substitution in MTHFR (caused by the C667T substitution in the MTHFR gene) can be ascribed to the A117 V substitution in MetF. Here, it is reported that a temperature-sensitive MetF117 (A117 V) protein can be partially protected from a thermal inactivation by the heat shock proteins from the Hsp70/100 systems. Moreover, activity of the thermally denatured enzyme can be partially restored by the same heat shock proteins. High temperature protein G (HtpG) had no effect on MetF117 activity in both experimental systems. The presented results indicate that functions of heat shock proteins may be required for maintenance of the MetF117 function. This may have implications for the mechanisms of arteriosclerosis and stroke, especially in the light of previous findings that the A222 V MTHFR polymorphism may be a risk factor for stroke, as well as recently published results which demonstrated the increased levels of antibodies against heat shock proteins in stroke patients. PMID:27234992

  12. Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2.

    PubMed

    Chang, Emily Yun-Chia; Chang, Yi-Cheng; Shun, Chia-Tung; Tien, Yu-Wen; Tsai, Shu-Huei; Hee, Siow-Wey; Chen, Ing-Jung; Chuang, Lee-Ming

    2016-01-01

    Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer.

  13. Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2

    PubMed Central

    Chang, Emily Yun-Chia; Chang, Yi-Cheng; Shun, Chia-Tung; Tien, Yu-Wen; Tsai, Shu-Huei; Hee, Siow-Wey; Chen, Ing-Jung; Chuang, Lee-Ming

    2016-01-01

    Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer. PMID:26820738

  14. 20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Yu, Hongshan; Zhang, Chunzhi; Jin, Fengxie; Shimizu, Kuniyoshi

    2014-09-15

    The root of Panax ginseng C. A. Meyer (Araliaceae) is a well-known herbal medicine in East Asia. The major bioactive metabolites in this root are commonly identified as ginsenosides. A series of ginsenosides were determined for in vitro human recombinant aldose reductase. This Letter aims to clarify the structural requirement for aldose reductase inhibition. We discovered that only ginsenoside 20(S)-Rh2 showed potent against aldose reductase, with an IC50 of 147.3 μM. These results implied that the stereochemistry of the hydroxyl group at C-20 may play an important role in aldose reductase inhibition. An understanding of these requirements is considered necessary in order to develop a new type of aldose reductase inhibitor. Furthermore, P. ginseng might be an important herbal medicine in preventing diabetic complications.

  15. Biliverdin reductase: a target for cancer therapy?

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Maines, Mahin D.

    2015-01-01

    Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation. PMID:26089799

  16. Some physical and immunological properties of ox kidney biliverdin reductase.

    PubMed Central

    Rigney, E M; Phillips, O; Mantle, T J

    1988-01-01

    The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3060109

  17. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH.

    PubMed

    Cody, Vivian; Luft, Joe R; Pangborn, Walt

    2005-02-01

    Structural data are reported to 2.5 A resolution for the first full analysis of the methotrexate-resistant Leu22Arg (L22R) variant of mouse dihydrofolate reductase (mDHFR) crystallized as a ternary complex with methotrexate (MTX) and the cofactor NADPH. These results are compared with the MTX and NADPH ternary complexes of L22R human DHFR (hDHFR) and those of mouse and human wild-type DHFR enzymes. The conformation of mDHFR Arg22 is such that it makes hydrogen-bonding contacts with Asp21, Trp24 and a structural water molecule, observations which were not made in the L22R hDHFR ternary complex. These data show that there is little difference between the structures of the wild type and L22R variant for either mouse or human DHFR; however, there are significant differences between the species. Comparison of these structures reveals that the active site of mDHFR is larger than that in the hDHFR structure. In mDHFR, the position of MTX is shifted 0.6 A toward helix C (residues 59-65), which in turn is shifted 1.2 A away from the active site relative to that observed in the hDHFR ternary complexes. In the L22R variant mDHFR structure, MTX makes shorter contacts to the conserved residues Ile7, Val115 and Tyr121 than in the L22R variant human DHFR structure. These contacts are comparable in both wild-type enzymes. The unexpected results from this comparison of the mouse and human DHFR complexes bound with the same ligand and cofactor illustrate the importance of detailed study of several species of enzyme, even when there is a high sequence homology between them. These data suggest that the differences in binding interactions of the L22R variant are in agreement with the weaker binding affinity for MTX in the variant enzymes; the larger size of the binding site in mDHFR supports the observation that the binding affinity of MTX for L22R mDHFR is significantly weaker than that of the L22R hDHFR enzyme.

  18. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA contents in human hepatoma cell line Hep G2 by distinct classes of mevalonate-derived metabolites.

    PubMed Central

    Cohen, L H; Griffioen, M

    1988-01-01

    Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL. Images Fig. 1. PMID:2848511

  19. Ribonucleotide Reductase-- a Radical Enzyme

    NASA Astrophysics Data System (ADS)

    Reichard, Peter; Ehrenberg, Anders

    1983-08-01

    Ribonucleotide reductases catalyze the enzymatic formation of deoxyribonucleotides, an obligatory step in DNA synthesis. The native form of the enzyme from Escherichia coli or from mammalian sources contains as part of its polypeptide structure a free tyrosyl radical, stabilized by an iron center. The radical participates in all probability in the catalytic process during the substitution of the hydroxyl group at C-2 of ribose by a hydrogen atom. A second, inactive form of the E. coli reductase lacks the tyrosyl radical. Extracts from E. coli contain activities that interconvert the two forms. The tyrosyl radical is introduced in the presence of oxygen, while anaerobiosis favors its removal, suggesting a regulatory role in DNA synthesis for oxygen.

  20. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  1. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype.

    PubMed

    McCammon, Karen M; Panda, Satya P; Xia, Chuanwu; Kim, Jung-Ja P; Moutinho, Daniela; Kranendonk, Michel; Auchus, Richard J; Lafer, Eileen M; Ghosh, Debashis; Martasek, Pavel; Kar, Rekha; Masters, Bettie Sue; Roman, Linda J

    2016-09-23

    Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect.

  2. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype.

    PubMed

    McCammon, Karen M; Panda, Satya P; Xia, Chuanwu; Kim, Jung-Ja P; Moutinho, Daniela; Kranendonk, Michel; Auchus, Richard J; Lafer, Eileen M; Ghosh, Debashis; Martasek, Pavel; Kar, Rekha; Masters, Bettie Sue; Roman, Linda J

    2016-09-23

    Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect. PMID:27496950

  3. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  4. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  5. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    PubMed

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  6. Structural analysis of human dihydrofolate reductase as a binary complex with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine reveals an unusual binding mode.

    PubMed

    Cody, Vivian; Pace, Jim; Nowak, Jessica

    2011-10-01

    In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structure of the binary complex of human dihydrofolate reductase (hDHFR) with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine (PT684) was determined to 1.8 Å resolution. These data revealed that the carboxylate side chain of PT684 occupies two alternate positions, neither of which interacts with the conserved Arg70 in the active-site pocket, which in turn hydrogen bonds to water. These observations are in contrast to those reported for the ternary complex of mouse DHFR (mDHFR) with NADPH [Cody et al. (2008), Acta Cryst. D64, 977-984], in which the 3-carboxypropyl side chain of PT684 was hydrolyzed to its hydroxyl derivative, PT684a. The crystallization conditions differed for the human and mouse DHFR crystals (100 mM K2HPO4 pH 6.9, 30% ammonium sulfate for hDHFR; 15 mM Tris pH 8.3, 75 mM sodium cacodylate, PEG 4K for mDHFR). Additionally, the side chains of Phe31 and Gln35 in the hDHFR complex have a single conformation, whereas in the mDHFR complex they occupied two alternative conformations. These data show that the hDHFR complex has a decreased active-site volume compared with the mDHFR complex, as reflected in a relative shift of helix C (residues 59-64) of 1.2 Å, and a shift of 1.5 Å compared with the ternary complex of Pneumocystis carinii DHFR (pcDHFR) with the parent dibenz[b,f]azepine PT653. These data suggest that the greater inhibitory potency of PT684 against pcDHFR is consistent with the larger active-site volume of pcDHFR and the predicted interactions of the carboxylate side chain with Arg75.

  7. Structural similarity of bovine lung prostaglandin F synthase to lens epsilon-crystallin of the European common frog.

    PubMed Central

    Watanabe, K; Fujii, Y; Nakayama, K; Ohkubo, H; Kuramitsu, S; Kagamiyama, H; Nakanishi, S; Hayaishi, O

    1988-01-01

    Cloned cDNA sequences specific for prostaglandin F (PGF) synthase have been isolated from a cDNA library of bovine lung mRNA sequences. Nucleotide-sequence analyses of cloned cDNA inserts have revealed that PGF synthase consists of a 969-base pair open reading frame coding for a 323-amino acid polypeptide with a Mr of 36,666. The sequence analysis indicates that bovine lung PGF synthase shows 62% identical plus conservative substitutions compared with human liver aldehyde reductase [Wermuth, B., Omar, A., Forster, A., Francesco, C., Wolf, M., Wartburg, J.P., Bullock, B. & Gabbay, K.H. (1987) in Enzymology and Molecular Biology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase, eds. Weiner, H. & Flynn, T.G. (Liss, New York), pp. 297-307], which is similar to PGF synthase in molecular weight and substrate specificity. However, comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base reveals that the sequences of 225 amino acids from C termini of epsilon-crystallin of the European common frog (Rana temporaria) [Tomarev, S.I., Zinovieva, R.D., Dolgilevich, S.M., Luchin, S.V., Krayev, A.S., Skryabin, K.G. & Gause, G.G. (1984) FEBS Lett. 171, 297-302] and of PGF synthase show 77% identical and conservative substitutions without deletions/additions. The result suggests that European common frog lens epsilon-crystallin is identical to bovine lung PGF synthase. Images PMID:2829166

  8. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  9. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.

    PubMed

    Penning, Trevor M

    2016-07-01

    Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily.

  10. Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer.

    PubMed

    Nakarai, Chiaki; Osawa, Kayo; Akiyama, Minami; Matsubara, Nagahide; Ikeuchi, Hiroki; Yamano, Tomoki; Hirota, Seiichi; Tomita, Naohiro; Usami, Makoto; Kido, Yoshiaki

    2015-08-01

    The aim of the study was to identify a set of discriminating genes that could be used for the prediction of Lymph node (LN) metastasis in human colorectal cancer (CRC), and for this, we compared the whole genome profiles of two CRC cell lines (the primary cell line SW480 and its LN metastatic variant, SW620) and identified eight genes [S100 calcium-binding protein P; aldo-keto reductase family 1(AKR1), member B1 (aldose reductase; AKR1B1); AKR1, member C3 (AKR1C3); calponin 3, acidic; metastasis associated in colon cancer 1; hemoglobin, epsilon 1; trefoil factor 3; and FGGY carbohydrate kinase domain containing]. These genes were examined by quantitative RT-PCR in tissues and LNs in 14 CRC patients and 11 control patients. The level of AKR1C3 mRNA expression was significantly different between the Dukes' stage A, B, and C groups and the control group (p < 0.05, p < 0.001, and p < 0.001) and was also significantly different between Dukes' stage C and A or B groups (p < 0.05 and p < 0.001, respectively). The expression of CNN3 was significantly different between the Dukes' stage C and B or control groups (p < 0.001 and p < 0.01, respectively). There were significant correlations between the expression levels of AKR1C3 and CNN3. AKR1C3 and CNN3 expressions are more accurate and suitable markers for the diagnosis of LN metastasis than the other six genes examined in this study.

  11. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    PubMed

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  12. Relationship between liver and low rumen pH in goat.

    PubMed

    Xie, Z; Jiang, X; Ye, P; Zhang, Y; Ni, Y; Zhuang, S; Shen, X

    2015-01-01

    The aim of this study was to analyze the response of dry goat liver to sub-acute ruminal acidosis induced by a highly concentrated diet. Non-pregnant, non-lactating female Poll-goats (N = 12) were randomly assigned to either a high-concentrate (HG) or a low-concentrate (LG) diet. Low rumen pH was successfully induced with HG (more than 3 h with rumen pH < 5.8). The plasma lipopolysaccharide concentration was significantly decreased in the HG compared with LG group (P < 0.05). Proteomic analysis showed that aldehyde dehydrogenases and microsomal glutathione S-transferase was downregulated in the HG group, whereas aldo-keto reductase was upregulated compared in the LG group. The abundance of mRNA for these proteins were also correspondingly increased (aldehyde dehydrogenases and microsomal glutathione-S-transferase) or decreased (aldo-keto reductase) in the HG group. Malondialdehyde content in the liver was decreased in the HG group compared to the LG group. These data indicate that the expression of hepatic proteins alters the regulation of endogenous lipopolysaccharide during low rumen pH in dry dairy goats. In particular, the protective effect of the liver may occur through inhibition of aldehyde and/or peroxide formation.

  13. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  14. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  15. Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy.

    PubMed

    Meiering, E M; Li, H; Delcamp, T J; Freisheim, J H; Wagner, G

    1995-03-24

    Previous NMR studies on the ternary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and NADPH detected six long-lived bound water molecules. Two of the water molecules, WatA and WatB, stabilize the structure of the protein while the other four, WatC, WatD, WatE and WatF, are involved in substrate binding and specificity. WatE may also act as a proton shuttle during catalysis. Here, the contributions of individual residues to the binding of these water molecules are investigated by performing NMR experiments on ternary complexes of mutant enzymes, W24F, E30A and E30Q. W24 and E30 are conserved residues that form hydrogen bonds with WatE in crystal structures of DHFR. Nuclear Overhauser effects (NOEs) are detected between WatE and the protein in all the mutant complexes, hence WatE still has a long lifetime bound to the complex when one of its hydrogen-bonding partners is deleted or altered by mutagenesis. The NOEs for WatE are much weaker, however, in the mutants than in wild-type. The NOEs for the other water molecules in and near the active site, WatA, WatC, WatD and WatF, also tend to be weaker in the mutant complexes. Little or no change is apparent in the NOEs for WatB, which is located outside the active site, farthest from the mutated residues. The decreased NOE intensities for the bound water molecules could be caused by changes in the positions and/or lifetimes of the water molecules. Chemical shift and NOE data indicate that the mutants have structures very similar to that of wild-type hDHFR, with possible conformational changes occurring only near the mutated residues. Based on the lack of structural change in the protein and evidence for increased structural fluctuations in the active sites of the mutant enzymes, it is likely that the NOE changes are caused, at least in part, by decreases in the lifetimes of the bound water molecules.

  16. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    PubMed

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  17. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  18. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  19. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae.

    PubMed

    Jirschitzka, Jan; Schmidt, Gregor W; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John Charles

    2012-06-26

    The pharmacologically important tropane alkaloids have a scattered distribution among angiosperm families, like many other groups of secondary metabolites. To determine whether tropane alkaloids have evolved repeatedly in different lineages or arise from an ancestral pathway that has been lost in most lines, we investigated the tropinone-reduction step of their biosynthesis. In species of the Solanaceae, which produce compounds such as atropine and scopolamine, this reaction is known to be catalyzed by enzymes of the short-chain dehydrogenase/reductase family. However, in Erythroxylum coca (Erythroxylaceae), which accumulates cocaine and other tropane alkaloids, no proteins of the short-chain dehydrogenase/reductase family were found that could catalyze this reaction. Instead, purification of E. coca tropinone-reduction activity and cloning of the corresponding gene revealed that a protein of the aldo-keto reductase family carries out this reaction in E. coca. This protein, designated methylecgonone reductase, converts methylecgonone to methylecgonine, the penultimate step in cocaine biosynthesis. The protein has highest sequence similarity to other aldo-keto reductases, such as chalcone reductase, an enzyme of flavonoid biosynthesis, and codeinone reductase, an enzyme of morphine alkaloid biosynthesis. Methylecgonone reductase reduces methylecgonone (2-carbomethoxy-3-tropinone) stereospecifically to 2-carbomethoxy-3β-tropine (methylecgonine), and has its highest activity, protein level, and gene transcript level in young, expanding leaves of E. coca. This enzyme is not found at all in root tissues, which are the site of tropane alkaloid biosynthesis in the Solanaceae. This evidence supports the theory that the ability to produce tropane alkaloids has arisen more than once during the evolution of the angiosperms.

  20. Biliverdin reductase isozymes in metabolism.

    PubMed

    O'Brien, Luke; Hosick, Peter A; John, Kezia; Stec, David E; Hinds, Terry D

    2015-04-01

    The biliverdin reductase (BVR) isozymes BVRA and BVRB are cell surface membrane receptors with pleiotropic functions. This review compares, for the first time, the structural and functional differences between the isozymes. They reduce biliverdin, a byproduct of heme catabolism, to bilirubin, display kinase activity, and BVRA, but not BVRB, can act as a transcription factor. The binding motifs present in the BVR isozymes allow a wide range of interactions with components of metabolically important signaling pathways such as the insulin receptor kinase cascades, protein kinases (PKs), and inflammatory mediators. In addition, serum bilirubin levels have been negatively associated with abdominal obesity and hypertriglyceridemia. We discuss the roles of the BVR isozymes in metabolism and their potential as therapeutic targets. PMID:25726384

  1. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  2. Identification of Up- and Down-Regulated Proteins in Pemetrexed-Resistant Human Lung Adenocarcinoma: Flavin Reductase and Calreticulin Play Key Roles in the Development of Pemetrexed-Associated Resistance.

    PubMed

    Chou, Hsiu-Chuan; Chen, Jing-Yi; Lin, Dai-Ying; Wen, Yueh-Feng; Lin, Chi-Chen; Lin, Sheng-Hao; Lin, Ching-Hsiung; Chung, Ting-Wen; Liao, En-Chi; Chen, Ying-Jen; Wei, Yu-Shan; Tsai, Yi-Ting; Chan, Hong-Lin

    2015-11-01

    Drug resistance is one of the major causes of cancer chemotherapy failure. In the current study, we used a pair of lung adenocarcinoma cell lines, A549 and the pemetrexed-resistant A549/PEM cells, as a model to monitor resistance-dependent cellular responses and identify potential therapeutic targets. By means of 2D differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), we investigated the global protein expression alterations induced by pemetrexed treatment and resistance. The proteomic result revealed that pemetrexed exposure obviously altered the expression of 81 proteins in the A549 cells, whereas no significant response was observed in the similarly treated A549/PEM cells, hence implying an association between these proteins and the drug-specific response. Moreover, 72 proteins including flavin reductase and calreticulin demonstrated differential expression between the A549 and A549/PEM cells, indicating baseline resistance. Additional tests employed siRNA silencing, protein overexpression, cell viability analysis, and analysis of apoptosis to examine and confirm the potency of flavin reductase and calreticulin proteins in the development of pemetrexed resistance. In summary, by using a proteomic approach, we identified numerous proteins, including flavin reductase and calreticulin, involved in pemetrexed drug resistance-developing mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for pemetrexed-resistant lung cancer treatment.

  3. 5 alpha-reductase deficiency without hypospadias.

    PubMed Central

    Ng, W K; Taylor, N F; Hughes, I A; Taylor, J; Ransley, P G; Grant, D B

    1990-01-01

    A boy aged 4 with penoscrotal hypospadias and his brother aged 12 with micropenis had typical changes of homozygous 5 alpha-reductase deficiency. After three injections of chorionic gonadotrophin there was a trivial rise in plasma dihydrotestosterone with a normal increase in plasma testosterone. Urine steroid chromatography showed abnormally high 5 beta: 5 alpha ratios and 5 alpha-reductase activity was appreciably reduced in genital skin fibroblasts. The results indicate that 5 alpha-reductase deficiency is not invariably associated with genital ambiguity. PMID:2248513

  4. Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene.

    PubMed Central

    Waterham, H R; Wijburg, F A; Hennekam, R C; Vreken, P; Poll-The, B T; Dorland, L; Duran, M; Jira, P E; Smeitink, J A; Wevers, R A; Wanders, R J

    1998-01-01

    Smith-Lemli-Opitz syndrome is a frequently occurring autosomal recessive developmental disorder characterized by facial dysmorphisms, mental retardation, and multiple congenital anomalies. Biochemically, the disorder is caused by deficient activity of 7-dehydrocholesterol reductase, which catalyzes the final step in the cholesterol-biosynthesis pathway-that is, the reduction of the Delta7 double bond of 7-dehydrocholesterol to produce cholesterol. We identified a partial transcript coding for human 7-dehydrocholesterol reductase by searching the database of expressed sequence tags with the amino acid sequence for the Arabidopsis thaliana sterol Delta7-reductase and isolated the remaining 5' sequence by the "rapid amplification of cDNA ends" method, or 5'-RACE. The cDNA has an open reading frame of 1,425 bp coding for a polypeptide of 475 amino acids with a calculated molecular weight of 54.5 kD. Heterologous expression of the cDNA in the yeast Saccharomyces cerevisiae confirmed that it codes for 7-dehydrocholesterol reductase. Chromosomal mapping experiments localized the gene to chromosome 11q13. Sequence analysis of fibroblast 7-dehydrocholesterol reductase cDNA from three patients with Smith-Lemli-Opitz syndrome revealed distinct mutations, including a 134-bp insertion and three different point mutations, each of which was heterozygous in cDNA from the respective parents. Our data demonstrate that Smith-Lemli-Opitz syndrome is caused by mutations in the gene coding for 7-dehydrocholesterol reductase. PMID:9683613

  5. Aldose reductase inhibitory activity of compounds from Zea mays L.

    PubMed

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1-7) and 5 anthocyanins (compound 8-12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC(50), 4.78 μ M). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  6. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling

    PubMed Central

    Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo

    2015-01-01

    Aim: Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. Methods: The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. Results: The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Conclusion: Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors. PMID:26051108

  7. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy.

    PubMed

    Mowday, Alexandra M; Ashoorzadeh, Amir; Williams, Elsie M; Copp, Janine N; Silva, Shevan; Bull, Matthew R; Abbattista, Maria R; Anderson, Robert F; Flanagan, Jack U; Guise, Christopher P; Ackerley, David F; Smaill, Jeff B; Patterson, Adam V

    2016-09-15

    The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors.

  8. Effect of 2 corpora lutea on blood perfusion, peripheral progesterone, and hepatic steroid-inactivating enzymes in dairy cattle.

    PubMed

    Voelz, B E; Cline, G F; Hart, C G; Lemley, C O; Larson, J E

    2015-01-01

    The luteal structure that develops postovulation is critical to the facilitation and maintenance of pregnancy in dairy cattle. The objectives of this experiment were to determine if the induction of an accessory corpus luteum (CL), via human chorionic gonadotropin, altered blood perfusion of CL, peripheral concentrations of progesterone, or hepatic steroid-inactivating enzymes. Twenty-eight late-lactation Holstein cows were synchronized using the Ovsynch protocol and randomly assigned to 1 of 2 treatment groups. Cows received either an injection of human chorionic gonadotropin (1,000IU, i.m.) to induce an accessory CL (cows had exactly 2CL in 1 ovary) or no treatment (cows had exactly 1CL). Corpora lutea were examined daily from d 10 to 18 (d 0 was induced ovulation) via Doppler ultrasonography and a blood sample was collected. Volume of the CL was recorded, as well as images and videos of each CL, which were analyzed for blood perfusion. On d 13, a liver biopsy was performed to analyze hepatic steroid-inactivating enzymes. Cows with 1 or 2CL had similar peripheral concentrations of progesterone. Cows with 2CL had similar luteal volumes to cows with 1CL but cows with 2CL had greater total luteal blood perfusion. Hepatic enzyme [cytochrome P450 (CYP) 1A, 3A, and 2C, aldo-keto reductase 1C, and uridine diphosphate glucuronosyltransferase] activities did not differ between cows with 1 and 2CL. Overall, the observed increase in total luteal blood perfusion in cows with 2CL did not correspond to differences in peripheral concentrations of progesterone or clearance of progesterone measured by the hepatic enzyme activity. This could indicate that induction of an accessory CL would not affect concentrations of progesterone necessary to maintain pregnancy.

  9. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy.

    PubMed

    Mowday, Alexandra M; Ashoorzadeh, Amir; Williams, Elsie M; Copp, Janine N; Silva, Shevan; Bull, Matthew R; Abbattista, Maria R; Anderson, Robert F; Flanagan, Jack U; Guise, Christopher P; Ackerley, David F; Smaill, Jeff B; Patterson, Adam V

    2016-09-15

    The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors. PMID:27453434

  10. Genetics Home Reference: sepiapterin reductase deficiency

    MedlinePlus

    ... reductase enzyme. This enzyme is involved in the production of a molecule called tetrahydrobiopterin (also known as ... is responsible for the last step in the production of tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks ...

  11. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  12. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  13. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death

    PubMed Central

    Zhou, Dianrong; Lou, Xiaomin; Xu, Yang; Liu, Siqi; Zhao, Xiaohang

    2016-01-01

    The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC. PMID:26934124

  14. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2012-04-01

    Methylglyoxal (MG) is a potent protein glycating agent. Glycation is directed to guanidino groups of arginine residues forming mainly hydroimidazolone N (δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) residues. MG-H1 formation is damaging to the proteome as modification is often directed to functionally important arginine residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis tandem mass spectrometry and also by immunoblotting with specific monoclonal antibodies. MG-glycated proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation endproduct in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and ageing. Glyoxalase 1 and aldo-keto reductase 1B1 metabolise >99% MG to innocuous products and thereby protect the proteome, providing an enzymatic defence against MG-mediated glycation. Proteins susceptible to MG modification with related functional impairment are called the "dicarbonyl proteome" (DCP). DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and other proteins. DCP component proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative stress, dyslipidemia, cell detachment and anoikis and apoptosis. Biochemical and physiological susceptibility of a protein to modification by MG and sensitivity of biochemical pathways and physiological systems to related functional impairment under challenge of physiologically relevant increases in MG exposure are key concepts. Improved understanding of the DCP will likely have profound importance for human health, longevity and treatment of disease.

  15. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis.

    PubMed

    Huebbers, Christian Ulrich; Preuss, Simon Florian; Kolligs, Jutta; Vent, Julia; Stenner, Markus; Wieland, Ulrike; Silling, Steffi; Drebber, Uta; Speel, Ernst-Jan M; Klussmann, Jens Peter

    2013-01-01

    Juvenile-onset recurrent respiratory papillomatosis (RRP) is associated with low risk human papillomavirus (HPV) types 6 and 11. Malignant transformation has been reported solely for HPV11-associated RRP in 2-4% of all RRP-cases, but not for HPV6. The molecular mechanisms in the carcinogenesis of low risk HPV-associated cancers are to date unknown. We report of a female patient, who presented with a laryngeal carcinoma at the age of 24 years. She had a history of juvenile-onset RRP with an onset at the age of three and subsequently several hundred surgical interventions due to multiple recurrences of RRP. Polymerase chain reaction (PCR) or bead-based hybridization followed by direct sequencing identified HPV6 in tissue sections of previous papilloma and the carcinoma. P16(INK4A), p53 and pRb immunostainings were negative in all lesions. HPV6 specific fluorescence in situ hybridization (FISH) revealed nuclear staining suggesting episomal virus in the papilloma and a single integration site in the carcinoma. Integration-specific amplification of papillomavirus oncogene transcripts PCR (APOT-PCR) showed integration in the aldo-keto reductase 1C3 gene (AKR1C3) on chromosome 10p15.1. ArrayCGH detected loss of the other gene copy as part of a deletion at 10p14-p15.2. Western blot analysis and immunohistochemistry of the protein AKR1C3 showed a marked reduction of its expression in the carcinoma. In conclusion, we identified a novel molecular mechanism underlying a first case of HPV6-associated laryngeal carcinoma in juvenile-onset RRP, i.e. that HPV6 integration in the AKR1C3 gene resulted in loss of its expression. Alterations of AKR1C gene expression have previously been implicated in the tumorigenesis of other (HPV-related) malignancies. PMID:23437342

  16. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  17. Analysis of the anticancer activity of curcuminoids, thiotryptophan and 4-phenoxyphenol derivatives.

    PubMed

    Parsai, Shireen; Keck, Rick; Skrzypczak-Jankun, Ewa; Jankun, Jerzy

    2014-01-01

    Curcumin, a non-nutritive yellow pigment derived from the rhizome of Curcuma longa (turmeric), is considered to be an established nutraceutical with anticancer activity. Turmeric contains three principal components, curcumin, demethoxycurcumin and bisdemethoxycurcumin, of which curcumin is most abundant and potent. The concurrence of a high consumption of turmeric and a low incidence of prostate cancer in Asian countries may suggest a role for curcumin in chemoprevention. Curcumin has been identified to exhibit anti-inflammatory, anti-oxidative and anticarcinogenic properties. Since the compound does not exhibit side effects, curcumin has been designated for several clinical trials as a treatment for human cancers. The pro-apototic, antioxidant and anti-inflammatory characteristics of curcumin are implicated in its anticancer activity, yet the mechanism of action of curcumin remains unknown. To achieve an effective pharmacological outcome, curcumin must reach and sustain appropriate levels at the site of action. However, the main disadvantage of curcumin is its high metabolic instability and poor aqueous solubility that limits its systemic bioavailability. To overcome this difficulty, the present study tested the anticancer activity of new curcumin-like compounds (E21cH and Q012095H). Also, the use of new medicaments requires an understanding of their pharmacokinetic profiles and targets. Thus, molecular modeling methods were used to identify the targets of curcumin and curcumin-like compounds compared with other anticancer drugs (Q012138 and Q012169AT), which were used as the controls. The present study identified several enzymes that are targeted by curcumin, aldo-keto reductase family 1 member B10 (AKR1B10), serine/threonine-protein kinase, protein kinase C, matrix metalloproteinase (MMP), cyclooxygenase and epidermal growth factor receptor, which were tested as targets for these anticancer chemicals. All the examined small compounds demonstrated anticancer

  18. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2012-04-01

    Methylglyoxal (MG) is a potent protein glycating agent. Glycation is directed to guanidino groups of arginine residues forming mainly hydroimidazolone N (δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) residues. MG-H1 formation is damaging to the proteome as modification is often directed to functionally important arginine residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis tandem mass spectrometry and also by immunoblotting with specific monoclonal antibodies. MG-glycated proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation endproduct in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and ageing. Glyoxalase 1 and aldo-keto reductase 1B1 metabolise >99% MG to innocuous products and thereby protect the proteome, providing an enzymatic defence against MG-mediated glycation. Proteins susceptible to MG modification with related functional impairment are called the "dicarbonyl proteome" (DCP). DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and other proteins. DCP component proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative stress, dyslipidemia, cell detachment and anoikis and apoptosis. Biochemical and physiological susceptibility of a protein to modification by MG and sensitivity of biochemical pathways and physiological systems to related functional impairment under challenge of physiologically relevant increases in MG exposure are key concepts. Improved understanding of the DCP will likely have profound importance for human health, longevity and treatment of disease. PMID:20963454

  19. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries

    PubMed Central

    2013-01-01

    Background Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions. Results Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions. Conclusion Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important

  20. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    PubMed

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. PMID:22226661

  1. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  2. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  3. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  4. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    SciTech Connect

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  7. Structure of Physarum polycephalum cytochrome b 5 reductase at 1.56 Å resolution

    PubMed Central

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-01-01

    Physarum polycephalum cytochrome b 5 reductase catalyzes the reduction of cytochrome b 5 by NADH. The structure of P. polycephalum cytochrome b 5 reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b 5 reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data. PMID:17401193

  8. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  9. Defining the Role of the NADH-Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System.

    PubMed

    Plitzko, Birte; Havemeyer, Antje; Bork, Bettina; Bittner, Florian; Mendel, Ralf; Clement, Bernd

    2016-10-01

    The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.

  10. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin.

    PubMed Central

    Correll, C. C.; Ludwig, M. L.; Bruns, C. M.; Karplus, P. A.

    1993-01-01

    The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel beta-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753-3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2' phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe-2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant

  11. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  12. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  13. Synthesis of Nitrate Reductase in Chlorella

    PubMed Central

    Funkhouser, Edward A.; Shen, Teh-Chien; Ackermann, Renate

    1980-01-01

    Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically. PMID:16661310

  14. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  15. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  16. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  17. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency.

    PubMed

    Percy, Melanie J; Lappin, Terry R

    2008-05-01

    Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r. PMID:18318771

  18. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  19. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  20. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  1. Structure of aldose reductase from Giardia lamblia

    PubMed Central

    Ferrell, M.; Abendroth, J.; Zhang, Y.; Sankaran, B.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.

    2011-01-01

    Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 Å resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP+-binding site located within the eight β-strands of the interior. PMID:21904059

  2. Steroid 5α-reductase 2 deficiency.

    PubMed

    Mendonca, Berenice B; Batista, Rafael Loch; Domenice, Sorahia; Costa, Elaine M F; Arnhold, Ivo J P; Russell, David W; Wilson, Jean D

    2016-10-01

    Dihydrotestosterone is a potent androgen metabolite formed from testosterone by action of 5α-reductase isoenzymes. Mutations in the type 2 isoenzyme cause a disorder of 46,XY sex development, termed 5α-reductase type 2 deficiency and that was described forty years ago. Many mutations in the encoding gene have been reported in different ethnic groups. In affected 46,XY individuals, female external genitalia are common, but Mullerian ducts regress, and the internal urogenital tract is male. Most affected males are raised as females, but virilization occurs at puberty, and male social sex develops thereafter with high frequency. Fertility can be achieved in some affected males with assisted reproduction techniques, and adults with male social sex report a more satisfactory sex life and quality of life as compared to affected individuals with female social sex. PMID:27224879

  3. Discovery of pinoresinol reductase genes in sphingomonads.

    PubMed

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E

    2013-01-10

    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  4. New inhibitors of the Kvβ2 subunit from mammalian Kv1 potassium channels.

    PubMed

    Alka, Kumari; Dolly, J Oliver; Ryan, Barry J; Henehan, Gary T M

    2014-10-01

    The role of the redox state of Kvβ subunits in the modulation of Kv1 potassium channels has been well documented over the past few years. It has been suggested that a molecule that binds to or inhibits the aldo-keto reductase activity of Kvβ might affect the modulation of channel properties. Previous studies of possible modulators of channel activity have shown that cortisone and some related compounds are able to physically dissociate the channel components by binding to a site at the interface between α and β subunits. Herein, we describe some new inhibitors of rat brain Kvβ2, identified using an assay based on multiple substrate turnover. This approach allows one to focus on molecules that specifically block NADPH oxidation. These studies showed that, at 0.5mM, 3,4-dihydroxphenylacetic acid (DOPAC) was an inhibitor of Kvβ2 turnover yielding a ∼ 40-50% reduction in the aldehyde reductase activity of this subunit. Other significant inhibitors include the bioflavinoid, rutin and the polyphenol resveratrol; some of the known cardioprotective effects of these molecules may be attributable to Kv1 channel modulation. Cortisone or catechol caused moderate inhibition of Kvβ2 turnover, and the aldo-keto reductases inhibitor valproate had an even smaller effect. Despite the importance of the Kv1 channels in a number of disease states, there have been few Kvβ2 inhibitors reported. While the ones identified in this study are only effective at high concentrations, they could serve as tools to decipher the role of Kvβ2 in vivo and, eventually, inform the development of novel therapeutics.

  5. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  6. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.

    PubMed

    Wei, Yifeng; Li, Bin; Prakash, Divya; Ferry, James G; Elliott, Sean J; Stubbe, JoAnne

    2015-12-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism.

  7. Role of the Dinitrogenase Reductase Arginine 101 Residue in Dinitrogenase Reductase ADP-Ribosyltransferase Binding, NAD Binding, and Cleavage

    PubMed Central

    Ma, Yan; Ludden, Paul W.

    2001-01-01

    Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding. PMID:11114923

  8. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  9. Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis.

    PubMed

    Calabrese, V; Raffaele, R; Cosentino, E; Rizza, V

    1994-01-01

    The chemical composition of human cerebrospinal fluid (CSF) is considered to reflect brain metabolism. In this study we measured malondialdehyde (MDA) levels and the activity of enzymes involved in antioxidative processes, glutathione reductase and glutathione peroxidase, in human cerebrospinal fluid of multiple-sclerosis (MS) patients and normal healthy volunteers. Our results indicated that the cerebrospinal fluid in MS showed significantly higher endogenous levels of MDA than the control, as well as a much greater resistance to in-vitro stimulation test. In addition, we found the activity of GSH reductase significantly increased, about twice the control values, whereas the activity of glutathione peroxidase was markedly decreased as compared to control values. Our findings suggest that in MS the activity of antioxidant enzymes is modified, and indicates the conceivable possibility of a pathogenic role of oxidative stress in the determinism of the disease. PMID:7607784

  10. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    PubMed Central

    Fujii, Junichi; Iuchi, Yoshihito; Okada, Futoshi

    2005-01-01

    Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems. PMID:16137335

  11. Crystallization and preliminary X-ray diffraction analysis of mouse prostaglandin F2α synthase, AKR1B3

    PubMed Central

    Takashima, Yasuhide; Hatanaka, Seika; Mizohata, Eiichi; Nagata, Nanae; Fukunishi, Yoshifumi; Matsumura, Hiroyoshi; Urade, Yoshihiro; Inoue, Tsuyoshi

    2011-01-01

    Aldo-keto reductase 1B3 (AKR1B3) catalyzes the NADPH-dependent reduction of prostaglandin H2 (PGH2), which is a common intermediate of various prostanoids, to form PGF2α. AKR1B3 also reduces PGH2 to PGD2 in the absence of NADPH. AKR1B3 produced in Escherichia coli was crystallized in complex with NADPH by the sitting-drop vapour-diffusion method. The crystal was tetragonal, belonging to space group P41212 or P43212, with unit-cell parameters a = b = 107.62, c = 120.76 Å. X-ray diffraction data were collected to 2.4 Å resolution at 100 K using a synchrotron-radiation source. PMID:22139184

  12. Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines.

    PubMed

    Verma, Kshitij; Zang, Tianzhu; Gupta, Nehal; Penning, Trevor M; Trippier, Paul C

    2016-08-11

    We report the design, synthesis, and evaluation of potent and selective inhibitors of aldo-keto reductase 1C3 (AKR1C3), an important enzyme in the regulatory pathway controlling proliferation, differentiation, and apoptosis in myeloid cells. Combination treatment with the nontoxic AKR1C3 inhibitors and etoposide or daunorubicin in acute myeloid leukemia cell lines, elicits a potent adjuvant effect, potentiating the cytotoxicity of etoposide by up to 6.25-fold and the cytotoxicity of daunorubicin by >10-fold. The results validate AKR1C3 inhibition as a common adjuvant target across multiple AML subtypes. These compounds in coadministration with chemotherapeutics in clinical use enhance therapeutic index and may avail chemotherapy as a treatment option to the pediatric and geriatric population currently unable to tolerate the side effects of cancer drug regimens. PMID:27563402

  13. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    PubMed

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.

  14. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata).

    PubMed

    Zhang, Can-kui; Lang, Ping; Dane, Fenny; Ebel, Robert C; Singh, Narendra K; Locy, Robert D; Dozier, William A

    2005-03-01

    Commercial citrus varieties are sensitive to low temperature. Poncirus trifoliata is a close relative of Citrus species and has been widely used as a cold-hardy rootstock for citrus production in low-temperature environments. mRNA differential display-reverse transcription (DDRT)-PCR and quantitative relative-RT-PCR were used to study gene expression of P. trifoliata under a gradual cold-acclimation temperature regime. Eight up-regulated cDNA fragments were isolated and sequenced. These fragments showed high similarities at the amino acid level to the following genes with known functions: betaine/proline transporter, water channel protein, aldo-keto reductase, early light-induced protein, nitrate transporter, tetratricopeptide-repeat protein, F-box protein, and ribosomal protein L15. These cold-acclimation up-regulated genes in P. trifoliata are also regulated by osmotic and photo-oxidative signals in other plants.

  15. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    PubMed

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production. PMID:26113639

  16. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  17. New 5alpha-reductase inhibitors: in vitro and in vivo effects.

    PubMed

    Pérez-Ornelas, Víctor; Cabeza, Marisa; Bratoeff, Eugene; Heuze, Ivonne; Sánchez, Mauricio; Ramírez, Elena; Naranjo-Rodríguez, Elia

    2005-03-01

    The enzyme 5alpha-reductase is responsible for the conversion of testosterone (T) to its more potent androgen dihydrotestosterone (DHT). This steroid had been implicated in androgen-dependent diseases such as: benign prostatic hyperplasia, prostate cancer, acne and androgenic alopecia. The inhibition of 5alpha-reductase enzyme offers a potentially useful treatment for these diseases. In this study, we report the synthesis and pharmacological evaluation of several new 3-substituted pregna-4, 16-diene-6, 20-dione derivatives. These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological activity of the new steroidal derivatives was determined in vivo as well as in vitro experiments. In vivo experiments, the anti-androgenic effect of the steroids was demonstrated by the decrease of the weight of the prostate gland of gonadectomized hamster treated with T plus finasteride or the new steroids. The IC50 value of these steroids was determined by measuring the conversion of radio labeled T to DHT. The results of this study carried out with 5alpha-reductase enzyme from hamster and human prostate showed that four of the six steroidal derivatives (5, 7, 9, 10) exhibited much higher 5alpha-reductase inhibitory activity, as indicated by the IC50 values than the presently used Proscar 3 (finasteride). The comparison of the weight of the hamster's prostate gland indicated that compound 5 had a comparable weight decrease as finasteride. The overall data of this study showed very clearly those compounds 5, 7, 9, 10 are good inhibitors for the 5alpha-reductase enzyme. PMID:15763601

  18. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  19. Radical scavengers as ribonucleotide reductase inhibitors.

    PubMed

    Basu, Arijit; Sinha, Barij Nayan

    2012-01-01

    This paper compiled all the previous reports on radical scavengers, an interesting class of ribonucleotide reductase inhibitors. We have highlighted three key research areas: chemical classification of radical scavengers, structural and functional aspects of the radical site, and progress in drug designing for radical scavengers. Under the chemical classification section, we have recorded the discovery of hydroxyurea followed by discussions on hydroxamic acids, amidoximes, hydroxyguanidines, and phenolic compounds. In the next section, we have compiled the structural information for the radical site obtained from different crystallographic and theoretical studies. Finally, we have included the reported ligand based and structure based drug-designing studies.

  20. Finasteride: the first 5 alpha-reductase inhibitor.

    PubMed

    Sudduth, S L; Koronkowski, M J

    1993-01-01

    Finasteride is a synthetic 4-azasteroid that is a specific competitive inhibitor of 5 alpha-reductase, an intracellular enzyme that converts testosterone to dihydrotestosterone (DHT). It has no binding affinity for androgen receptor sites and itself possesses no androgenic, antiandrogenic, or other steroid hormone-related properties. It is well absorbed after oral administration, with absolute bioavailability in humans of 63% (range 34-108%). The mean time to maximum concentration is 1-2 hours, and it is approximately 90% plasma protein bound. The elimination half-life averages 6-8 hours. The agent is metabolized to a series of five metabolites, of which two are active and possess less than 20% of the 5 alpha-reductase activity of finasteride. Little is known about potential drug interactions, although they appear to be minimal and not clinically relevant. The drug is indicated for the treatment of symptomatic benign prostatic hyperplasia. Its efficacy in regression of prostate gland enlargement is rapid and predictable, although correlation with subsequent improvement in urinary flow and symptoms is highly variable. Dosages of 0.5-100 mg/day regress prostate enlargement; the recommended dosage is 5 mg once/day. Finasteride may hold promise for other DHT-mediated disorders such as acne, facial hirsutism, frontal lobe alopecia, and prostate cancer, but its use in these conditions remains investigational. The frequency of adverse drug events is low, with the most common side effects being impotence, decreased libido, and decreased volume of ejaculate. No reports of intentional overdose have been reported, and dosages of up to 80 mg/day for 3 months have been taken without adverse effect. PMID:7689728

  1. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications

    PubMed Central

    Wang, Kai; Fan, Dong-Dong; Jin, Song; Xing, Nian-Zeng; Niu, Yi-Nong

    2014-01-01

    The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T) and dihydrotestosterone (DHT). T is converted to DHT by 5-alpha reductase (5-AR) isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI) are commonly used for the treatment of benign prostatic hyperplasia (BPH) and were once promoted as chemopreventive agents for prostate cancer (PCa). This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa. PMID:24457841

  2. Proscar (Finasteride) inhibits 5 alpha-reductase activity in the ovaries and testes of Lytechinus variegatus Lamarck (Echinodermata: Echinoidea).

    PubMed

    Wasson, K M; Watts, S A

    1998-10-01

    Recent investigations into the steroid metabolic pathway in the echinoid Lytechinus variegatus demonstrated the capacity of the gonads to convert androstenedione, the classical mammalian precursor to bioactive androgens, into testosterone and a variety of 5 alpha-reduced androgens including 5 alpha-androstane-3 beta, 17 beta-diol and 5 alpha-androstane-3 alpha, 17 beta-diol. The synthesis of these steroids, which requires 5 alpha-reductase activity, varies with sex and reproductive state in L. variegatus, suggesting that these steroids may be involved in reproductive processes. The classical method of castration followed by steroid replacement therapy to determine the biological role of steroids in the gonads of higher vertebrates is not possible in echinoids. Therefore, this study was designed to determine the efficacy of finasteride, a selective 5 alpha-reductase inhibitor in the mammalian prostate gland, on 5 alpha-reductase activity in the gonads of L. variegatus. Finasteride inhibits echinoid 5 alpha-reductase in a dose-dependent manner with IC50 approximately 2.7 microM for both ovaries and testes. These echinoid IC50s are significantly higher than those reported for humans and rats. In addition, oral administration of finasteride to the echinoids appeared to inhibit 5 alpha-reductase with no apparent stress (no spine loss) to the animals. These data suggest that finasteride may be used to selectively and chemically ablate 5 alpha-reduced androgen synthesis in the gonads of L. variegatus. PMID:9827060

  3. Ageing of glutathione reductase in the lens.

    PubMed

    Zhang, W Z; Augusteyn, R C

    1994-07-01

    The distribution of glutathione reductase activity in concentric layers from the lens has been determined as a function of age for 16 species. Primate lenses have almost ten times the level of glutathione reductase found in other species. Comparison with the activity of hexokinase revealed that this is not due to a higher overall rate of metabolism in these lenses. By contrast, the higher activity found in bird and fish lenses reflects a higher metabolic activity in these tissues. In all species, a gradient of activity was observed with the highest specific activity in the outermost cortical fibres, decreasing to virtually no activity in the inner parts of the tissue. No alterations were found in this gradient with increasing age, other than an increase in the amount of nuclear tissue essentially devoid of activity. The maximum activity in the outer cortical fibres was the same, regardless of the age of the lens. The time taken, in different species, for the specific activity to decrease by half, was estimated from the rate of protein accumulation. This time was found to vary from a few days to several years, indicating that the decrease in activity is not due to ageing but rather, it is related to the maturation of fibre cells. These observations are discussed in terms of current concepts of lens ageing and cataract formation. PMID:7835401

  4. NADP(+)-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification.

    PubMed

    Moschini, Roberta; Peroni, Eleonora; Rotondo, Rossella; Renzone, Giovanni; Melck, Dominique; Cappiello, Mario; Srebot, Massimo; Napolitano, Elio; Motta, Andrea; Scaloni, Andrea; Mura, Umberto; Del-Corso, Antonella

    2015-06-01

    An NADP(+)-dependent dehydrogenase activity on 3-glutathionyl-4-hydroxynonanal (GSHNE) was purified to electrophoretic homogeneity from a line of human astrocytoma cells (ADF). Proteomic analysis identified this enzymatic activity as associated with carbonyl reductase 1 (EC 1.1.1.184). The enzyme is highly efficient at catalyzing the oxidation of GSHNE (KM 33 µM, kcat 405 min(-1)), as it is practically inactive toward trans-4-hydroxy-2-nonenal (HNE) and other HNE-adducted thiol-containing amino acid derivatives. Combined mass spectrometry and nuclear magnetic resonance spectroscopy analysis of the reaction products revealed that carbonyl reductase oxidizes the hydroxyl group of GSHNE in its hemiacetal form, with the formation of the corresponding 3-glutathionylnonanoic-δ-lactone. The relevance of this new reaction catalyzed by carbonyl reductase 1 is discussed in terms of HNE detoxification and the recovery of reducing power.

  5. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells.

    PubMed Central

    Fernández, Carlos; Suárez, Yajaira; Ferruelo, Antonio J; Gómez-Coronado, Diego; Lasunción, Miguel A

    2002-01-01

    Dietary phytosterols are cholesterol-lowering agents that interfere with the intestinal absorption of cholesterol. In the present study, we have studied their effects on cholesterol biosynthesis in human cells, particularly in the sterol-conversion pathway. For this, both Caco-2 (intestinal mucosa) and HL-60 (promyelocytic) human cell lines were incubated with [(14)C]acetate, and the incorporation of radioactivity into sterols was determined using HPLC and radioactivity detection online. Sterols containing a double bond at C-22 in the side chain (stigmasterol, brassicasterol and ergosterol) dramatically inhibited the activity of sterol Delta(24)-reductase, as indicated by the decrease in radioactivity incorporation into cholesterol and the accumulation of its precursors (mainly desmosterol). Phytosterols with the saturated side chain (beta-sitosterol and campesterol) were inactive in this regard. The inhibition of sterol (24)-reductase was confirmed in rat liver microsomes by using (14)C-labelled desmosterol as the substrate. The (22)-unsaturated phytosterols acted as competitive inhibitors of sterol (24)-reductase, with K(i) values (41.1, 42.7 and 36.8 microM for stigmasterol, brassicasterol and ergosterol respectively) similar to the estimated K(m) for desmosterol (26.3 microM). The sterol 5,22-cholestedien-3beta-ol, an unusual desmosterol isomer that lacks the alkyl groups characteristic of phytosterols, acted as a much stronger inhibitor of (24)-reductase (K(i)=3.34 microM). The usually low intracellular concentrations of the physiological substrates of (24)-reductase explains the strong inhibition of cholesterol biosynthesis that these compounds exert in cells. Given that inhibition of sterol (24)-reductase was achieved at physiologically relevant concentrations, it may represent an additional mechanism for the cholesterol-lowering action of phytosterols, and opens up the possibility of using certain (22)-unsaturated sterols as effective hypocholesterolaemic

  6. Regulation of androgen receptor and 5 alpha-reductase in the skin of normal and hirsute women.

    PubMed

    Mauvais-Jarvis, P

    1986-05-01

    The hormonal activity of androgens is mediated in target cells, particularly in human skin, by two kinds of proteins: the androgen receptor and the enzyme 5 alpha-reductase. In well differentiated androgen target cells, 5 alpha-reductase achieves the transformation of testosterone (T) into dihydrotestosterone (DHT), a more active androgen than T, because of its higher affinity for the receptor. In other words, 5 alpha-reductase acts as an amplifier of the androgen signal but is not absolutely required for androgen action. Regarding the regulation of the androgen receptor, minimal information is available. However, in genital skin, the receptor seems to be predominantly localized in the cytosolic compartment before puberty in males and in the nuclear compartment after puberty. In hirsute patients, recent data on genital skin fibroblasts do not show significant differences between the binding capacity of fibroblasts from normal and hirsute women whereas there is no difference between normal men and women. 5 alpha-Reductase activity seems to be a very important step in the processes involved in androgen action. While 5 alpha-reductase activity present in the skin of external genitalia does not seem to be androgen dependent, this is not the case for the enzyme located in pubic skin. In this area, a sex difference between males and females may be observed both in skin homogenates and in cultured fibroblasts. In addition DHT added to a medium of pubic skin fibroblasts is capable of increasing 5 alpha-reductase activity. This increase is not observed when cyproterone acetate is added to the medium and in patients with testicular feminization syndrome without receptors. Pubic 5 alpha-reductase activity is an androgen receptor mediated phenomenon. In patients with hirsutism, and particularly idiopathic hirsutism, 5 alpha-reductase activity is high without an increase in circulating androgens. This may be observed both in pubic skin homogenates and in cultured fibroblasts

  7. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  8. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  9. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  10. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  11. Autoimmunity in Membranous Nephropathy Targets Aldose Reductase and SOD2

    PubMed Central

    Prunotto, Marco; Carnevali, Maria Luisa; Candiano, Giovanni; Murtas, Corrado; Bruschi, Maurizio; Corradini, Emilia; Trivelli, Antonella; Magnasco, Alberto; Petretto, Andrea; Santucci, Laura; Mattei, Silvia; Gatti, Rita; Scolari, Francesco; Kador, Peter; Allegri, Landino

    2010-01-01

    Glomerular targets of autoimmunity in human membranous nephropathy are poorly understood. Here, we used a combined proteomic approach to identify specific antibodies against podocyte proteins in both serum and glomeruli of patients with membranous nephropathy (MN). We detected specific anti–aldose reductase (AR) and anti–manganese superoxide dismutase (SOD2) IgG4 in sera of patients with MN. We also eluted high titers of anti-AR and anti-SOD2 IgG4 from microdissected glomeruli of three biopsies of MN kidneys but not from biopsies of other glomerulonephritides characterized by IgG deposition (five lupus nephritis and two membranoproliferative glomerulonephritis). We identified both antigens in MN biopsies but not in other renal pathologies or normal kidney. Confocal and immunoelectron microscopy (IEM) showed co-localization of anti-AR and anti-SOD2 with IgG4 and C5b-9 in electron-dense podocyte immune deposits. Preliminary in vitro experiments showed an increase of SOD2 expression on podocyte plasma membrane after treatment with hydrogen peroxide. In conclusion, our data support AR and SOD2 as renal antigens of human MN and suggest that oxidative stress may drive glomerular SOD2 expression. PMID:20150532

  12. Inhibition of Aldose Reductase by Gentiana lutea Extracts

    PubMed Central

    Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J. Mark; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications. PMID:22844269

  13. Inhibition of aldose reductase by Gentiana lutea extracts.

    PubMed

    Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J Mark; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.

  14. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.

    PubMed

    Testa, Fabrizio; Mastronicola, Daniela; Cabelli, Diane E; Bordi, Eugenio; Pucillo, Leopoldo P; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro; Teixeira, Miguel

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  15. Ribonucleotide reductases: essential enzymes for bacterial life

    PubMed Central

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  16. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  17. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.

  18. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target.

  19. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  20. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.

  1. Nitrate Reductase-Deficient Mutants in Barley 1

    PubMed Central

    Somers, David A.; Kuo, Tsung-Min; Kleinhofs, Andris; Warner, Robert L.

    1983-01-01

    Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate. Images Fig. 1 Fig. 3 PMID:16662774

  2. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  3. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo.

    PubMed

    Kato, Atsushi; Higuchi, Yasuko; Goto, Hirozo; Kizu, Haruhisa; Okamoto, Tadashi; Asano, Naoki; Hollinshead, Jackie; Nash, Robert J; Adachi, Isao

    2006-09-01

    Ginger (Zingiber officinale Roscoe) continues to be used as an important cooking spice and herbal medicine around the world. Scientific research has gradually verified the antidiabetic effects of ginger. Especially gingerols, which are the major components of ginger, are known to improve diabetes including the effect of enhancement against insulin-sensitivity. Aldose reductase inhibitors have considerable potential for the treatment of diabetes, without increased risk of hypoglycemia. The assay for aldose reductase inhibitors in ginger led to the isolation of five active compounds including 2-(4-hydroxy-3-methoxyphenyl)ethanol (2) and 2-(4-hydroxy-3-methoxyphenyl)ethanoic acid (3). Compounds 2 and 3 were good inhibitors of recombinant human aldose reductase, with IC50 values of 19.2 +/- 1.9 and 18.5 +/- 1.1 microM, respectively. Furthermore, these compounds significantly suppressed not only sorbitol accumulation in human erythrocytes but also lens galactitol accumulation in 30% of galactose-fed cataract rat model. A structure-activity relationship study revealed that the applicable side alkyl chain length and the presence of a C3 OCH3 group in the aromatic ring are essential features for enzyme recognition and binding. These results suggested that it would contribute to the protection against or improvement of diabetic complications for a dietary supplement of ginger or its extract containing aldose reductase inhibitors. PMID:16939321

  4. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  5. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  6. Substrate induction of nitrate reductase in barley aleurone layers.

    PubMed

    Ferrari, T E; Varner, J E

    1969-01-01

    Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of alpha-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce alpha-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of alpha-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.

  7. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase.

    PubMed

    Smutná, Tamara; Gonçalves, Vera L; Saraiva, Lígia M; Tachezy, Jan; Teixeira, Miguel; Hrdy, Ivan

    2009-01-01

    Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen. PMID:19011120

  8. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth. PMID:22954684

  9. Preferential selection of isomer binding from chiral mixtures: alternate binding modes observed for the E and Z isomers of a series of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines as ternary complexes with NADPH and human dihydrofolate reductase

    SciTech Connect

    Cody, Vivian; Piraino, Jennifer; Pace, Jim; Li, Wei; Gangjee, Aleem

    2010-12-01

    The structures of six chirally mixed E/Z-isomers of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines reveals only one isomer is bound in the active site of human DHFR. The configuration of all but one C9-analogue is observed as the E-isomer. The crystal structures of six human dihydrofolate reductase (hDHFR) ternary complexes with NADPH and a series of mixed E/Z isomers of 5-substituted 5-[2-(2-methoxyphenyl)-prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines substituted at the C9 position with propyl, isopropyl, cyclopropyl, butyl, isobutyl and sec-butyl (E2–E7, Z3) were determined and the results were compared with the resolved E and Z isomers of the C9-methyl parent compound. The configuration of all of the inhibitors, save one, was observed as the E isomer, in which the binding of the furopyrimidine ring is flipped such that the 4-amino group binds in the 4-oxo site of folate. The Z3 isomer of the C9-isopropyl analog has the normal 2,4-diaminopyrimidine ring binding geometry, with the furo oxygen near Glu30 and the 4-amino group interacting near the cofactor nicotinamide ring. Electron-density maps for these structures revealed the binding of only one isomer to hDHFR, despite the fact that chiral mixtures (E:Z ratios of 2:1, 3:1 and 3:2) of the inhibitors were incubated with hDHFR prior to crystallization. Superposition of the hDHFR complexes with E2 and Z3 shows that the 2′-methoxyphenyl ring of E2 is perpendicular to that of Z3. The most potent inhibitor in this series is the isopropyl analog Z3 and the least potent is the isobutyl analog E6, consistent with data that show that the Z isomer makes the most favorable interactions with the active-site residues. The isobutyl moiety of E6 is observed in two orientations and the resultant steric crowding of the E6 analog is consistent with its weaker activity. The alternative binding modes observed for the furopyrimidine ring in these E/Z isomers suggest that new templates can be designed to probe these binding

  10. Up regulation of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is associated with intestinal epithelial cells apoptosis in TNBS-induced experimental colitis.

    PubMed

    Zong, Chunyan; Nie, Xiaoke; Zhang, Dongmei; Ji, Qianqian; Qin, Yongwei; Wang, Liang; Jiang, Dawei; Gong, Chen; Liu, Yifei; Zhou, Guoxiong

    2016-05-01

    Glyoxylate reductase/hydroxypyruvate reductase (GRHPR), which exists mainly in the liver, is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the formation of primary hyperoxaluria type 2 (PH2). Here, we investigated GRHPR expression and its potential role in both human Crohn's disease (CD) and experimental colitis. Murine experimental colitis models were established by administration of trinitrobenzenesulphonic acid (TNBS). As shown by Western blot, significant up-regulation of GRHPR was found in TNBS-treated mice as compared with normal controls. Immunohistochemistry (IHC) also showed increased GRHPR expression, and the molecule was located in intestinal epithelial cells (IECs). This phenomenon also occurred in patients with Crohn's disease. Besides, in an in vitro study, human IEC line HT-29 cells cultured with tumor necrosis factor α (TNF-α) were used to evaluate the changes in expression of GRHPR. Moreover, overexpression of GRHPR was accompanied by active caspase-3 and cleaved poly ADP-ribose polymerase (PARP) accumulation. Furthermore, knock-down GRHPR could inhibit the accumulation of active caspase-3 and cleaved PARP as shown by Western blot in TNF-α treated HT-29 cells. Flow cytometry assay indicated that interference of GRHPR led to increasing apoptosis of IECs. These data suggested that GRHPR might exert its pro-apoptosis function in IECs. Thus, GRHPR might play an important role in regulating IECs apoptosis, and might be a potential therapeutic target for CD. PMID:26997491

  11. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  12. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome

    PubMed Central

    Bondareva, Alla A.; Capecchi, Mario R.; Iverson, Sonya V.; Li, Yan; Lopez, Nathan I.; Lucas, Olivier; Merrill, Gary F.; Prigge, Justin R.; Siders, Ashley M.; Wakamiya, Maki; Wallin, Stephanie L.; Schmidt, Edward E.

    2007-01-01

    Thioredoxin reductases (Txnrd)1 maintain intracellular redox homeostasis in most organisms. Metazoans Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1−/− cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd−/− and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells. PMID:17697936

  13. Aldose Reductase, Oxidative Stress, and Diabetic Mellitus

    PubMed Central

    Tang, Wai Ho; Martin, Kathleen A.; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  14. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  15. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. PMID:27033597

  16. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy.

  17. Comparison of regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in hepatoma cells grown in vivo and in vitro.

    PubMed Central

    Beirne, O R; Watson, J A

    1976-01-01

    Unlike the normal liver, numerous transplantable rodent and human hepatomas are unable to alter their rate of sterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-GoA) reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34] activity in response to a dietary cholesterol challenge. It has been suggested that this metabolic defect is linked to the process of malignant transformation. Hepatoma 7288C "lacks" feedback regulation of cholesterol synthesis when grown in vivo but expresses this regulatory property when grown in vitro (then called HTC). Therefore, it was used as a model system to answer whether an established hepatoma cell line that modulates its rate of cholesterol synthesis in vitro can express this property when grown in vivo, and whether cells reisolated from the tumor mass have the same regulatory phenotype as before transplantation. Our results show that long-term growth of hepatoma 7288C in tissue culture has not caused a biotransformation that permits feedback regulation of HMG-CoA reductase when the cells are transplanted back into host animals. In addition, HTC cells reisolated from the tumor mass and established in tissue culture continue to have the ability to regulate HMG-CoA reductase activity. Therefore, malignant transformation is not categorically linked to the loss of the cellular components necessary to regulate sterol synthesis and HMG-CoA reductase activity. Images PMID:183207

  18. Short-chain dehydrogenases/reductases in cyanobacteria.

    PubMed

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria. PMID:22251568

  19. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase.

    PubMed

    Lancaster, C Roy D

    2003-11-27

    The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.

  20. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  1. Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh.

    PubMed

    Ueda, H; Kuroiwa, E; Tachibana, Y; Kawanishi, K; Ayala, F; Moriyasu, M

    2004-11-01

    Ellagic acid (1) and its two derivatives, 4-O-methylellagic acid (2) and 4-(alpha-rhamnopyranosyl)ellagic acid (3) were isolated as inhibitors of aldose reductase (AR) from Myrciaria dubia (H. B. & K.) McVaugh. Compound 2 was the first isolated from the nature. Compound 3 showed the strongest inhibition against human recombinant AR (HRAR) and rat lens AR (RLAR). Inhibitory activity of compound 3 against HRAR (IC50 value = 4.1 x 10(-8) M) was 60 times more than that of quercetin (2.5 x 10(-6) M). The type of inhibition against HRAR was uncompetitive. PMID:15636180

  2. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  3. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies.

  4. DNA damage induction of ribonucleotide reductase.

    PubMed

    Elledge, S J; Davis, R W

    1989-11-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. PMID:2513480

  5. Disturbed expression of ribonucleotide reductase and cytokeratin polypeptides in focal epithelial hyperplasia. An immunohistochemical study using monoclonal antibodies.

    PubMed

    Rozell, B; Stenman, G; Magnusson, B; Lekholm, U; Nagle, R B; Hansson, H A

    1986-05-01

    Four cases of focal epithelial hyperplasia (FEH) were studied immunohistochemically, using monoclonal antibodies against the M1 subunit of ribonucleotide reductase and different cytokeratin polypeptides. The FEH lesions showed, compared to normal oral mucosa, extensive alterations in their staining patterns. This included ectopic suprabasal M1 staining and the novel expression of cytokeratin polypeptides differing from those previously reported for other HPV infections. The results are discussed in relation to the causative agent, human papillomavirus, and its expression in focal epithelial hyperplasia.

  6. Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase gene.

    PubMed

    Lin, H K; Penning, T M

    1995-09-15

    Rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase (3 alpha-HSD/DD) is a member of the aldo-keto reductase gene superfamily. It displays high constitutive expression and inactivates circulating steroid hormones and suppresses the formation of polycyclic aromatic hydrocarbon anti- and syn-diol-epoxides (ultimate carcinogens). To elucidate mechanisms responsible for constitutive expression of the 3 alpha-HSD/DD gene a rat genomic library obtained from adult Sprague-Dawley female liver (HaeIII partial digest) was screened, using a probe corresponding to the 5'-end of the cDNA (-15 to +250), and a 15.8-kb genomic clone was isolated. Sequencing revealed that 6.3 kb contained exon 1 (+16 to +138 bp) plus additional introns and exons. The transcription start site (+1) was located by primer extension analysis, and the initiation codon, ATG, was located at +55 bp. The remaining 9.5 kb represented the 5'-flanking region of the rat 3 alpha-HSD/DD gene. A 1.6-kb fragment of this region was sequenced. A TATTTAA sequence (TATA box) was found at 33 bp upstream from the major transcription start site. cis-acting elements responsible for the constitutive expression of the rat 3 alpha-HSD/DD gene were located on the 5'-flanking region by transient transfection of reporter-gene (chloramphenicol acetyl transferase, CAT) constructs into human hepatoma cells (HepG2). CAT assays identified the basal promoter between (-199 and +55 bp), the presence of a proximal enhancer (-498 to -199 bp) which stimulated CAT activity 6-fold, the existence of a powerful silencer (-755 to -498 bp), and a strong distal enhancer (-4.0 to -2.0 kb) which increased CAT activity by 20-40-fold. A computer search of available consensus sequences for trans-acting factors revealed that a cluster of Oct-sites were uniquely located in the silencer region. Using the negative response element (-797 to -498 bp) as a probe and nuclear extracts from HepG2 cells, three bands were identified by gel mobility shift

  7. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein.

  8. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane.

    PubMed

    Kihara, Akio; Igarashi, Yasuyuki

    2004-11-19

    Sphingolipids are essential membrane components of eukaryotic cells. Their synthesis is initiated with the condensation of l-serine with palmitoyl-CoA, producing 3-ketodihydrosphingosine (KDS), followed by a reduction to dihydrosphingosine by KDS reductase. Until now, only yeast TSC10 has been identified as a KDS reductase gene. Here, we provide evidence that the human FVT-1 (hFVT-1) and mouse FVT-1 (mFVT-1) are functional mammalian KDS reductases. The forced expression of hFVT-1 or mFVT-1 in TSC10-null yeast cells suppressed growth defects, and hFVT-1 overproduced in cultured cells exhibited KDS reductase activity in vitro. Moreover, purified recombinant hFVT-1 protein exhibited NADPH-dependent KDS reductase activity. The identification of the FVT-1 genes enabled us to characterize the mammalian KDS reductase at the molecular level. Northern blot analyses demonstrated that both hFVT-1 and mFVT-1 mRNAs are ubiquitously expressed, suggesting that FVT-1 is a major KDS reductase. We also found the presence of hFVT-1 variants, which were differentially expressed among tissues. Immunofluorescence microscopic analysis revealed that hFVT-1 is localized at the endoplasmic reticulum. Moreover, a proteinase K digestion assay revealed that the large hydrophilic domain of hFVT-1, which contains putative active site residues, faces the cytosol. These results suggest that KDS is converted to dihydrosphingosine in the cytosolic side of the endoplasmic reticulum membrane. Moreover, the topology studies provide insight into the spatial organization of the sphingolipid biosynthetic pathway.

  9. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  10. 5 alpha-reductase inhibitors and prostatic disease.

    PubMed

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7522999

  11. 5 alpha-reductase deficiency in patients with micropenis.

    PubMed

    Gad, Y Z; Nasr, H; Mazen, I; Salah, N; el-Ridi, R

    1997-03-01

    The enzyme 5 alpha-reductase (5 alpha R), by virtue of its peripheral 5 alpha-reduction of testosterone (T) to dihydrotestosterone (DHT), is believed to play a major role in the differentiation and the subsequent growth of the penis. However, recent studies have reported 5 alpha R deficiency (5 alpha RD) in patients with isolated micropenis and hypothesized that 5 alpha RD is not invariably associated with genital ambiguity. In Egypt, 5 alpha RD has been reported frequently among intersex patients. The aim of this study was to assess the role of 5 alpha RD in the development of micropenis among Egyptian patients with abnormal sexual development. The study included 29 patients who were categorized into three groups (isolated micropenis, 9 patients; microphallus with genital ambiguity, 11 patients; genital ambiguity with normal-sized phallus, 9 patients). Activity of 5 alpha R was assessed by estimating T/DHT ratios in the basal state in pubertal subjects and following human chorionic gonadotropin (HCG) stimulation test in prepubertals. The results showed that the incidence of 5 alpha RD was much higher in cases of ambiguous genitalia with micropenis (5 families out of 10, 50%) than in those with isolated microphallus (1/9, 11.1%) or those with ambiguous genitalia and normal-sized phallus (1/8, 12.5%). In conclusion, the study showed that isolated micropenis is a heterogeneous disorder and that 5 alpha RD, despite its relative prevalence in Egypt, has a minimal role in the aetiology. On the other hand, 5 alpha RD seems to correlate with penile length in intersex cases.

  12. Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family.

    PubMed

    Sugishima, Masakazu; Kitamori, Yuka; Noguchi, Masato; Kohchi, Takayuki; Fukuyama, Keiichi

    2009-06-01

    The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 A resolution. RCCR forms a homodimer, in which each subunit folds in an alpha/beta/alpha sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the alpha-helices near the edge of the beta-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis.

  13. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    PubMed

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  14. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  15. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  16. Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana.

    PubMed

    Kim, Jin Kyu; Lee, Yeon Sil; Kim, Seon Ha; Bae, Young Soo; Lim, Soon Sung

    2011-01-01

    Aldose reductase (AR) inhibitors have considerable therapeutic potential against diabetic complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of the 70% acetone extract obtained from Paulownia coreana seeds, phenylpropanoid glycosides (compounds 1-4) and 5 phenolic compounds were isolated (compounds 5-9). Their structures were determined on the basis of spectroscopic analysis and comparison with reported data. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against recombinant human aldose reductase (rhAR) and sorbitol formation in human erythrocytes. Phenylethanoid glycosides showed more effective than the phenolic compounds in inhibiting rhAR. Among the compounds, isocampneoside II (3) was found to significantly inhibit rhAR with an IC(50) value of 9.72 µM. In kinetic analyses performed using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, isocampneoside II (3) showed uncompetitive inhibition against rhAR. Furthermore, it inhibited sorbitol formation in a rat lens incubated with a high concentration of glucose; this finding indicated that isocampneoside II (3) may effectively prevent osmotic stress in hyperglycemia. Thus, the P. coreana-derived phenylethanoid glycoside isocampneoside II (3) may have a potential therapeutics against diabetic complications. PMID:21212537

  17. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  18. POLYPRENOL REDUCTASE2 Deficiency Is Lethal in Arabidopsis Due to Male Sterility[OPEN

    PubMed Central

    Gutkowska, Malgorzata; Buczkowska, Anna; Lichocka, Malgorzata; Nowakowska, Julita

    2015-01-01

    Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible. PMID:26628744

  19. Functional expression and characterization of recombinant NADPH-P450 reductase from Malassezia globosa.

    PubMed

    Lee, Hwayoun; Park, Hyoung-Goo; Lim, Young-Ran; Lee, Im-Soon; Kim, Beom Joon; Seong, Cheul-Hun; Chun, Young-Jin; Kim, Donghak

    2012-01-01

    Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa. PMID:22297231

  20. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    DOE PAGESBeta

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to usemore » in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  1. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    PubMed Central

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-01-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC50 values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands. PMID:21538647

  2. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  3. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    SciTech Connect

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D.

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  4. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    PubMed Central

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-01-01

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes. PMID:26284087

  5. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

    PubMed Central

    Ding, Bo; Gibbs, Peter E. M.; Brookes, Paul S.; Maines, Mahin D.

    2011-01-01

    HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca2-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC281 and KYCCSRK296, respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.—Ding, B., Gibbs, P. E. M., Brookes, P. S., Maines, M. D. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival; a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

  6. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  7. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  8. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  9. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  10. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  11. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  12. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  13. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  14. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  15. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  16. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  17. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  18. Development of a CART Model to Predict the Synthesis of Cardiotoxic Daunorubicinol in Heart Tissue Samples From Donors With and Without Down Syndrome.

    PubMed

    Hoefer, Carrie C; Blair, Rachael Hageman; Blanco, Javier G

    2016-06-01

    Daunorubicin (DAUN) and doxorubicin (DOX) are used to treat a variety of cancers. The use of DAUN and DOX is hampered by the development of cardiotoxicity. Clinical evidence suggests that patients with leukemia and Down syndrome are at increased risk for anthracycline-related cardiotoxicity. Carbonyl reductases and aldo-keto reductases (AKRs) catalyze the reduction of DAUN and DOX into cardiotoxic C-13 alcohol metabolites. Anthracyclines also exert cardiotoxicity by triggering mitochondrial dysfunction. In recent studies, a collection of heart samples from donors with and without Down syndrome was used to investigate determinants for anthracycline-related cardiotoxicity including cardiac daunorubicin reductase activity (DA), carbonyl reductase/AKRs protein expression, mitochondrial DNA content (mtDNA), and AKR7A2 DNA methylation status. In this study, the available demographic, biochemical, genetic, and epigenetic data were integrated through classification and regression trees analysis with the aim of pinpointing the most relevant variables for the synthesis of cardiotoxic daunorubicinol (i.e., DA). Seventeen variables were considered as potential predictors. Leave-one-out-cross-validation was performed for model selection and to estimate the generalization error. The classification and regression trees analysis model and variable importance measures suggest that cardiac mtDNA content, mtDNA(4977) deletion frequency, and AKR7A2 protein content are the most important variables in determining DA. PMID:27112290

  19. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  20. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus).

    PubMed

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R

    1992-04-01

    3-Oxoacyl-[ACP] reductase (E.C. 1.1.1.100, alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  1. Response to Arsenate Treatment in Schizosaccharomyces pombe and the Role of Its Arsenate Reductase Activity

    PubMed Central

    Matia-González, Ana M.; Sotelo, Jael; Zarco-Fernández, Sonia; Muñoz-Olivas, Riansares; Cámara, Carmen; Rodríguez-Gabriel, Miguel A.

    2012-01-01

    Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast. PMID:22912829

  2. 2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase.

    PubMed

    Pez, Didier; Leal, Isabel; Zuccotto, Fabio; Boussard, Cyrille; Brun, Reto; Croft, Simon L; Yardley, Vanessa; Ruiz Perez, Luis M; Gonzalez Pacanowska, Dolores; Gilbert, Ian H

    2003-11-01

    This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity. PMID:14556785

  3. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  4. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase.

    PubMed

    Dinkova-Kostova, A T; Gang, D R; Davin, L B; Bedgar, D L; Chu, A; Lewis, N G

    1996-11-15

    Lignans are a widely distributed class of natural products, whose functions and distribution suggest that they are one of the earliest forms of defense to have evolved in vascular plants; some, such as podophyllotoxin and enterodiol, have important roles in cancer chemotherapy and prevention, respectively. Entry into lignan enzymology has been gained by the approximately 3000-fold purification of two isoforms of (+)-pinoresinol/(+)-lariciresinol reductase, a pivotal branchpoint enzyme in lignan biosynthesis. Both have comparable ( approximately 34.9 kDa) molecular mass and kinetic (Vmax/Km) properties and catalyze sequential, NADPH-dependent, stereospecific, hydride transfers where the incoming hydride takes up the pro-R position. The gene encoding (+)-pinoresinol/(+)-lariciresinol reductase has been cloned and the recombinant protein heterologously expressed as a functional beta-galactosidase fusion protein. Its amino acid sequence reveals a strong homology to isoflavone reductase, a key branchpoint enzyme in isoflavonoid metabolism and primarily found in the Fabaceae (angiosperms). This is of great evolutionary significance since both lignans and isoflavonoids have comparable plant defense properties, as well as similar roles as phytoestrogens. Given that lignans are widespread from primitive plants onwards, whereas the isoflavone reductase-derived isoflavonoids are mainly restricted to the Fabaceae, it is tempting to speculate that this branch of the isoflavonoid pathway arose via evolutionary divergence from that giving the lignans.

  5. New drug target in protozoan parasites: the role of thioredoxin reductase

    PubMed Central

    Andrade, Rosa M.; Reed, Sharon L.

    2015-01-01

    Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden. PMID:26483758

  6. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    PubMed

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter. PMID:27040904

  7. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase.

    PubMed

    Blumenstiel, K; Schöneck, R; Yardley, V; Croft, S L; Krauth-Siegel, R L

    1999-12-01

    Lipoamide dehydrogenase (LipDH), trypanothione reductase (TR), and glutathione reductase (GR) catalyze the NAD(P)H-dependent reduction of disulfide substrates. TR occurs exclusively in trypanosomatids which lack a GR. Besides their physiological reactions, the flavoenzymes catalyze the single-electron reduction of nitrofurans with the concomitant generation of superoxide anions. Here, we report on the interaction of clinically used antimicrobial nitrofurans with LipDH and TR from Trypanosoma cruzi, the causative agent of Chagas' disease (South American trypanosomiasis), in comparison to mammalian LipDH and GR. The compounds were studied as inhibitors and as subversive substrates of the enzymes. None of the nitrofurans inhibited LipDH, although they did interfere with the disulfide reduction of TR and GR. When the compounds were studied as substrates, T. cruzi LipDH showed a high rate of nitrofuran reduction and was even more efficient than its mammalian counterpart. Several derivatives were also effective subversive substrates of TR, but the respective reaction with human GR was negligible. Nifuroxazide, nifuroxime, and nifurprazine proved to be the most promising derivatives since they were redox-cycled by both T. cruzi LipDH and TR and had pronounced antiparasitic effects in cultures of T. cruzi and Trypanosoma brucei. The results suggest that those nitrofuran derivatives which interact with both parasite flavoenzymes should be revisited as trypanocidal drugs. PMID:10571254

  8. Enhanced Degradation of Dihydrofolate Reductase through Inhibition of NAD Kinase by Nicotinamide Analogs

    PubMed Central

    Hsieh, Yi-Ching; Tedeschi, Philip; AdeBisi Lawal, Rialnat; Banerjee, Debabrata; Scotto, Kathleen; Kerrigan, John E.; Lee, Kuo-Chieh; Johnson-Farley, Nadine; Bertino, Joseph R.

    2013-01-01

    Dihydrofolate reductase (DHFR), because of its essential role in DNA synthesis, has been targeted for the treatment of a wide variety of human diseases, including cancer, autoimmune diseases, and infectious diseases. Methotrexate (MTX), a tight binding inhibitor of DHFR, is one of the most widely used drugs in cancer treatment and is especially effective in the treatment of acute lymphocytic leukemia, non-Hodgkin’s lymphoma, and osteosarcoma. Limitations to its use in cancer include natural resistance and acquired resistance due to decreased cellular uptake and decreased retention due to impaired polyglutamylate formation and toxicity at higher doses. Here, we describe a novel mechanism to induce DHFR degradation through cofactor depletion in neoplastic cells by inhibition of NAD kinase, the only enzyme responsible for generating NADP, which is rapidly converted to NADPH by dehydrogenases/reductases. We identified an inhibitor of NAD kinase, thionicotinamide adenine dinucleotide phosphate (NADPS), which led to accelerated degradation of DHFR and to inhibition of cancer cell growth. Of importance, combination treatment of NADPS with MTX displayed significant synergy in a metastatic colon cancer cell line and was effective in a MTX-transport resistant leukemic cell line. We suggest that NAD kinase is a valid target for further inhibitor development for cancer treatment. PMID:23197646

  9. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  10. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  11. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  12. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  13. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  14. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  15. Aldose reductase expression as a risk factor for cataract

    PubMed Central

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G. Bhanuprakesh; Petrash, J. Mark

    2015-01-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  16. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  17. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.

    PubMed

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M; Zhao, Fang-Jie; Salt, David E

    2014-12-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  18. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants

    PubMed Central

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M.; Zhao, Fang-Jie; Salt, David E.

    2014-01-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previou