Science.gov

Sample records for human aldo-keto reductase

  1. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol

    PubMed Central

    Endo, Satoshi; Matsunaga, Toshiyuki; Ohta, Chisato; Soda, Midori; Kanamori, Ayano; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH. PMID:21187079

  2. Human Aldo-Keto Reductases: Function, Gene Regulation, and Single Nucleotide Polymorphisms

    PubMed Central

    Penning, Trevor M.; Drury, Jason E.

    2007-01-01

    Aldo-Keto Reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases that are generally monomeric 34- 37 kDa proteins present in all phyla. The superfamily consists of 15 families, which contains 151 members (www.med.upenn.edu/akr). Thirteen human AKRs exist that use endogenous substrates (sugar and lipid aldehydes, prostaglandins, retinals and steroid hormones), and in many instances they regulate nuclear receptor signaling. Exogenous substrates include metabolites implicated in chemical carcinogenesis: NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), polycyclic aromatic hydrocarbon trans-dihydrodiols, and aflatoxin dialdehyde. Promoter analysis of the human genes identifies common elements involved in their regulation which include osmotic response elements, antioxidant response elements, xenobiotic response elements, AP-1 sites and steroid response elements. The human AKRs are highly polymorphic, and in some instances single nucleotide polymorphisms (SNPs) of high penetrance exist. This suggests that there will be inter-individual variation in endogenous and xenobiotic metabolism which in turn affect susceptibility to nuclear receptor signaling and chemical carcinogenesis. PMID:17537398

  3. Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily.

    PubMed

    Ruiz, F Xavier; Porté, Sergio; Gallego, Oriol; Moro, Armando; Ardèvol, Albert; Del Río-Espínola, Alberto; Rovira, Carme; Farrés, Jaume; Parés, Xavier

    2011-12-15

    Human AKR (aldo-keto reductase) 1C proteins (AKR1C1-AKR1C4) exhibit relevant activity with steroids, regulating hormone signalling at the pre-receptor level. In the present study, investigate the activity of the four human AKR1C enzymes with retinol and retinaldehyde. All of the enzymes except AKR1C2 showed retinaldehyde reductase activity with low Km values (~1 μM). The kcat values were also low (0.18-0.6 min-1), except for AKR1C3 reduction of 9-cis-retinaldehyde whose kcat was remarkably higher (13 min-1). Structural modelling of the AKR1C complexes with 9-cis-retinaldehyde indicated a distinct conformation of Trp227, caused by changes in residue 226 that may contribute to the activity differences observed. This was partially supported by the kinetics of the AKR1C3 R226P mutant. Retinol/retinaldehyde conversion, combined with the use of the inhibitor flufenamic acid, indicated a relevant role for endogenous AKR1Cs in retinaldehyde reduction in MCF-7 breast cancer cells. Overexpression of AKR1C proteins depleted RA (retinoic acid) transactivation in HeLa cells treated with retinol. Thus AKR1Cs may decrease RA levels in vivo. Finally, by using lithocholic acid as an AKR1C3 inhibitor and UVI2024 as an RA receptor antagonist, we provide evidence that the pro-proliferative action of AKR1C3 in HL-60 cells involves the RA signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3.

  4. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    2015-01-01

    Aldo-keto reductases (AKRs) are promiscuous NAD(P)(H) dependent oxidoreductases implicated in the metabolic activation of polycyclic aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen species (ROS). The PAH o-quinones are Michael acceptors and can form adducts but are also redox-active and enter into futile redox cycles to amplify ROS formation. Evidence exists to support this metabolic pathway in humans. The human recombinant AKR1A1 and AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating ROS formation. Moreover, this pathway of PAH activation occurs in a panel of human lung cell lines, resulting in the production of ROS and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine. Using stable-isotope dilution liquid chromatography tandem mass spectrometry, this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide pathway to the activation of this human carcinogen in human lung cells. Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on p53 showed that the o-quinone produced by AKRs was the more potent mutagen, provided that it was permitted to redox cycle, and that the mutations observed were G to T transversions, reminiscent of those observed in human lung cancer. It is concluded that there is sufficient evidence to support the role of human AKRs in the metabolic activation of PAH in human lung cell lines and that they may contribute to the causation of human lung cancer. PMID:25279998

  5. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  6. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-05

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  7. Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases.

    PubMed

    Calam, Eduard; Porté, Sergio; Fernández, M Rosario; Farrés, Jaume; Parés, Xavier; Biosca, Josep A

    2013-02-25

    The α-hydroxy ketones are used as building blocks for compounds of pharmaceutical interest (such as antidepressants, HIV-protease inhibitors and antitumorals). They can be obtained by the action of enzymes or whole cells on selected substrates, such as diketones. We have studied the enantiospecificities of several fungal (AKR3C1, AKR5F and AKR5G) and human (AKR1B1 and AKR1B10) aldo-keto reductases in the production of α-hydroxy ketones and diols from vicinal diketones. The reactions have been carried out with pure enzymes and with an NADPH-regenerating system consisting of glucose-6-phosphate and glucose-6-phosphate dehydrogenase. To ascertain the regio and stereoselectivity of the reduction reactions catalyzed by the AKRs, we have separated and characterized the reaction products by means of a gas chromatograph equipped with a chiral column and coupled to a mass spectrometer as a detector. According to the regioselectivity and stereoselectivity, the AKRs studied can be divided in two groups: one of them showed preference for the reduction of the proximal keto group, resulting in the S-enantiomer of the corresponding α-hydroxy ketones. The other group favored the reduction of the distal keto group and yielded the corresponding R-enantiomer. Three of the AKRs used (AKR1B1, AKR1B10 and AKR3C1) could produce 2,3-butanediol from acetoin. We have explored the structure/function relationships in the reactivity between several yeast and human AKRs and various diketones and acetoin. In addition, we have demonstrated the utility of these AKRs in the synthesis of selected α-hydroxy ketones and diols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Oxidation of PAH trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10

    PubMed Central

    Quinn, Amy M.; Harvey, Ronald G.; Penning, Trevor M.

    2009-01-01

    AKR1B10 has been identified as a potential biomarker for human non-small cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro, and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (−)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols. PMID:18788756

  9. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  10. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  11. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  12. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  13. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase

    PubMed Central

    Giménez-Dejoz, Joan; Kolář, Michal H.; Ruiz, Francesc X.; Crespo, Isidro; Cousido-Siah, Alexandra; Podjarny, Alberto; Barski, Oleg A.; Fanfrlík, Jindřich; Parés, Xavier; Farrés, Jaume; Porté, Sergio

    2015-01-01

    Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15. PMID:26222439

  14. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase.

    PubMed

    Giménez-Dejoz, Joan; Kolář, Michal H; Ruiz, Francesc X; Crespo, Isidro; Cousido-Siah, Alexandra; Podjarny, Alberto; Barski, Oleg A; Fanfrlík, Jindřich; Parés, Xavier; Farrés, Jaume; Porté, Sergio

    2015-01-01

    Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.

  15. Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases.

    PubMed

    Rosemond, M Jane Cox; St John-Williams, Lisa; Yamaguchi, Toshiro; Fujishita, Toshio; Walsh, John S

    2004-03-15

    S-1360, a 1,3-diketone derivative, was the first HIV integrase inhibitor to enter human trials. Clinical data suggested involvement of non-cytochrome P450 clearance pathways, including reduction and glucuronidation. Reduction of S-1360 generates a key metabolite in humans, designated HP1, and constitutes a major clearance pathway. For characterization of subcellular location and cofactor dependence of HP1 formation, [(14)C]-S-1360 was incubated with commercially available pooled human liver fractions, including microsomes, cytosol, and mitochondria, followed by HPLC analysis with radiochemical detection. Incubations were performed in the presence and absence of the cofactors NADH or NADPH. Results showed that the enzyme system responsible for generation of HP1 in vitro is cytosolic and NADPH-dependent, implicating aldo-keto reductases (AKRs) and/or short-chain dehydrogenases/reductases (SDRs). A validated LC/MS/MS method was developed for investigating the reduction of S-1360 in detail. The reduction reaction exhibited sigmoidal kinetics with a K(m,app) of 2 microM and a Hill coefficient of 2. The ratio of V(max)/K(m) was approximately 1 ml/(min mg cytosolic protein). The S-1360 kinetic data were consistent with positive cooperativity and a single enzyme system. The relative contributions of AKRs and SDRs were examined through the use of chemical inhibitors. For these experiments, non-radiolabeled S-1360 was incubated with pooled human liver cytosol and NADPH in the presence of inhibitors, followed by quantitation of HP1 by LC/MS/MS. Quercetin and menadione produced approximately 30% inhibition at a concentration of 100 microM. Enzymes sensitive to these inhibitors include the carbonyl reductases (CRs), a subset of the SDR enzyme family predominantly located in the cytosol. Flufenamic acid and phenolphthalein were the most potent inhibitors, with > 67% inhibition at a concentration of 20 microM, implicating the AKR enzyme family. The cofactor dependence

  16. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins.

    PubMed

    Beranič, Nataša; Brožič, Petra; Brus, Boris; Sosič, Izidor; Gobec, Stanislav; Lanišnik Rižner, Tea

    2012-05-01

    The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied.

  17. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  18. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds.

    PubMed

    Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang

    2011-05-30

    Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells.

    PubMed

    Lyon, Robert C; Li, Dan; McGarvie, Gail; Ellis, Elizabeth M

    2013-01-01

    Reactive aldehydes including methyl glyoxal, acrolein and 4-hydroxy-2-nonenal (4-HNE) have been implicated in the progression of neurodegenerative diseases. The reduction of aldehydes to alcohols by the aldo-keto reductase (AKR) family of enzymes may represent an important detoxication route within neuronal cells. In this study, the ability of AKR enzymes to protect human neuroblastoma SH-SY5Y cells against reactive aldehydes was assessed. Using gene-specific RNA interference (RNAi), we report that AKR7A2 makes a significant contribution to the reduction of methyl glyoxal in SH-SY5Y cells, with its knockdown altering the IC(50) from 410 to 25.8μM, and that AKR1C3 contributes to 4-HNE reduction, with its knockdown lowering the IC(50) from 1.25 to 0.58μM. In addition, we have shown that pretreatment of cells with sub-lethal concentrations of 4-HNE or methyl glyoxal leads to a significant increase in IC(50) when cells are exposed to higher concentrations of the toxic aldehyde. The IC(50) for methyl glyoxal increased from 410μM to 1.9mM, and the IC(50) for 4-HNE increased from 120 to 690nM. To investigate this protection, we show that pretreatment of cells with the AKR inhibitor sorbinil lead to decreased resistance to aldehydes. We show that AKR1C can be induced 8-fold in SH-SY5Y cells by treatment with sub-lethal concentrations of methyl glyoxal, and 5-fold by 4-HNE treatment. AKR1B is not induced by methyl glyoxal but is induced 10-fold by 4-HNE treatment. Furthermore, we have shown that this adaptive response can also be induced using the chemoprotective agent tert-butyl hydroquinone (t-BHQ), and that this also evokes an increase in the expression and activity of AKR1B and AKR1C. These findings highlight the potential for the interventional upregulation of AKR via non-toxic derivatives or natural compounds as a novel therapeutic approach towards the detoxication of aldehydes, with the aim of halting the progression of aldehyde-dependent neurodegenerative

  20. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  1. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Crystallographic analysis of a novel aldo-keto reductase from Thermotoga maritima in complex with NADP+

    PubMed Central

    Hou, Hai; Li, Ruiying; Wang, Xiaoyan; Yuan, Zhen; Liu, Xuemeng; Chen, Zhenmin; Xu, Xiaoling

    2015-01-01

    Aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-dependent oxidoreductases that catalyse the asymmetric reduction of aldehydes and ketones to chiral alcohols in various organisms. The novel aldo-keto reductase Tm1743 from Thermotoga maritima was identified to have a broad substrate specificity and high thermostability, serving as an important enzyme in biocatalysis and fine-chemical synthesis. In this study, Tm1743 was overexpressed in Escherichia coli BL21(DE3) cells with an N-terminal His6 tag and was purified by Ni2+-chelating affinity and size-exclusion chromatography. Purified recombinant enzyme was incubated with its cofactor NADP+ and its substrate ethyl 2-oxo-4-phenylbutyrate (EOPB) for crystallization. Two X-ray diffraction data sets were collected at 2.0 and 1.7 Å resolution from dodecahedral crystals grown from samples containing Tm1743–NADP+–EOPB and Tm1743–NADP+, respectively. Both crystals belonged to space group P3121, with similar unit-cell parameters. However, in the refined structure model only NADP+ was observed in the active site of the full-length Tm1743 enzyme. Degradation of the N-terminal vector-derived amino acids during crystallization was confirmed by Western blot and mass-spectrometric analyses. PMID:26144229

  3. Aldo-keto Reductase 1B15 (AKR1B15)

    PubMed Central

    Weber, Susanne; Salabei, Joshua K.; Möller, Gabriele; Kremmer, Elisabeth; Bhatnagar, Aruni; Adamski, Jerzy; Barski, Oleg A.

    2015-01-01

    Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues. PMID:25577493

  4. Structure and Promoter Characterization of Aldo-Keto Reductase Family 1 B10 Gene

    PubMed Central

    Liu, Ziwen; Zhong, Linlin; Krishack, Paulette A; Robbins, Sarah; Cao, Julia X; Zhao, Yupei; Chung, Stephen; Cao, Deliang

    2009-01-01

    Aldo-keto reductase family 1 member B10 (AKR1B10) is overexpressed in human hepatocellular carcinoma, lung squamous carcinoma, and lung adenocarcinoma in smokers. Our recent studies have showed that AKR1B10 plays a critical role in the growth and proliferation of cancer cells by detoxifying reactive carbonyls and regulating fatty acid biosynthesis. However, little is known about the regulatory mechanisms of AKR1B10 expression. In this study, we determined the structure of AKR1B10 gene and characterized its promoter. The results demonstrated that AKR1B10 consists of 10 exons and 9 introns, stretching approximately 13.8 kb. A 5′-RACE study determined the transcriptional start site of AKR1B10 at 320 bp upstream of the ATG translational start codon. A TATA-like (TAATAA) and a CAAT box are present from −145 to −140 bp and −193 to −190 bp upstream of the transcriptional start site, respectively. Motif analysis recognized multiple putative oncogenic and tumor suppressor protein binding sites in the AKR1B10 promoter, including c-Ets-1, C/EBP, AP-1, and p53, but osmolytic response elements were not found. A -4,091 bp of the 5′-flanking fragment of the AKR1B10 gene was capable of driving GFP and luciferase reporter gene expression in HepG2 cells derived from human hepatocellular carcinoma; progressive 5′-deletions revealed that a −255 bp fragment possesses full promoter activity. PMID:19236911

  5. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.

    PubMed

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira

    2012-02-01

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.

  6. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes

    PubMed Central

    Spite, Matthew; Baba, Shahid P.; Ahmed, Yonis; Barski, Oleg A.; Nijhawan, Kanchan; Petrash, J. Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-01-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  7. Lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products

    DOEpatents

    Scharf, Michael; Sethi, Amit

    2016-09-13

    Termites have specialized digestive systems that overcome the lignin barrier in wood to release fermentable simple sugars. Using the termite Reticulitermes flavipes and its gut symbionts, high-throughput titanium pyrosequencing and proteomics approaches experimentally compared the effects of lignin-containing diets on host-symbiont digestome composition. Proteomic investigations and functional digestive studies with recombinant lignocellulases conducted in parallel provided strong evidence of congruence at the transcription and translational levels and provide enzymatic strategies for overcoming recalcitrant lignin barriers in biofuel feedstocks. Briefly described, therefore, the disclosure provides a system for generating a fermentable product from a lignified plant material, the system comprising a cooperating series of at least two catalytically active polypeptides, where said catalytically active polypeptides are selected from the group consisting of: cellulase Cell-1, .beta.-glu cellulase, an aldo-keto-reductase, a catalase, a laccase, and an endo-xylanase.

  8. Enzymatic detection of γ-hydroxybutyrate using aldo-keto reductase 7A2.

    PubMed

    Bendinskas, Kestutis; Sattelberg, Patricia; Crossett, Daniel; Banyikwa, Andrew; Dempsey, Daniel; MacKenzie, James A

    2011-05-01

    Gamma-hydroxybutyrate (GHB) is a prescribed medication as well as a drug of abuse. Its detection in various matrices for in-field forensic scientists remains a challenge. We have developed an assay that uses aldo-keto reductase 7A2 (AKR7A2) for the specific determination of GHB in various drinks. AKR7A2 was purified using Ni-affinity chromatography. The Michaelis-Menten constant for the GHB oxidation reaction was 10 mM, and the minimum detection limit was 4 mM. Ethanol was not a substrate for AKR7A2. In a coupled reaction with NADP(+), phenazine methosulfate (PMS), and 2,6-dichlorophenolindophenol, various beverages (orange juice, milk, soda, and numerous alcoholic drinks) containing GHB turned from blue to light yellow. In a second coupled reaction where diaphorase replaced PMS, the presence of GHB also caused the expected change of color in various beers.

  9. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells.

    PubMed

    Tian, Yuantong; Zhao, Lijing; Wang, Ye; Zhang, Haitao; Xu, Duo; Zhao, Xuejian; Li, Yi; Li, Jing

    2016-01-01

    Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form p-p interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound.

  10. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism

    PubMed Central

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J. B.

    2016-01-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  11. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.

  12. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    PubMed

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Udayakumar, M

    2016-09-09

    In recent years, concerns about the use of glyphosate-resistant (GR) crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an Aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologs in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedlings growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1 or OsAKRI expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. This article is protected by copyright. All rights reserved.

  13. Conversion of Methylglyoxal to Acetol by Escherichia coli Aldo-Keto Reductases

    PubMed Central

    Ko, Junsang; Kim, Insook; Yoo, Seokho; Min, Bumchan; Kim, Kyungmin; Park, Chankyu

    2005-01-01

    Methylglyoxal (MG) is a toxic metabolite known to accumulate in various cell types. We detected in vivo conversion of MG to acetol in MG-accumulating Escherichia coli cells by use of 1H nuclear magnetic resonance (1H-NMR) spectroscopy. A search for homologs of the mammalian aldo-keto reductases (AKRs), which are known to exhibit activity to MG, revealed nine open reading frames from the E. coli genome. Based on both sequence similarities and preliminary characterization with 1H-NMR for crude extracts of the corresponding mutant strains, we chose five genes, yafB, yqhE, yeaE, yghZ, and yajO, for further study. Quantitative assessment of the metabolites produced in vitro from the crude extracts of these mutants and biochemical study with purified AKRs indicated that the yafB, yqhE, yeaE, and yghZ genes are involved in the conversion of MG to acetol in the presence of NADPH. When we assessed their in vivo catalytic activities by creating double mutants, all of these genes except for yqhE exhibited further sensitivities to MG in a glyoxalase-deficient strain. The results imply that the glutathione-independent detoxification of MG can occur through multiple pathways, consisting of yafB, yqhE, yeaE, and yghZ genes, leading to the generation of acetol. PMID:16077126

  14. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    PubMed

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-09-07

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. This article is protected by copyright. All rights reserved. © 2017 John Wiley & Sons Ltd.

  15. Genomic Rearrangements Leading to Overexpression of Aldo-Keto Reductase YafB of Escherichia coli Confer Resistance to Glyoxal

    PubMed Central

    Kwon, Minsuk; Lee, Junghoon; Lee, Changhan

    2012-01-01

    Glyoxal is toxic and mutagenic α-oxoaldehyde generated in vivo as an oxidation by-product of sugar metabolism. We selected glyoxal-resistant mutants from an Escherichia coli strain lacking major glyoxal-detoxifying genes, gloA and yqhD, by growing cells in medium containing a lethal concentration of glyoxal. The mutants carried diverse genomic rearrangements, such as multibase deletions and recombination, in the upstream region of the yafB gene, encoding an aldo-keto reductase. Since these genomic lesions create transcriptional fusions of the yafB gene to the upstream rrn regulon or eliminate a negative regulatory site, the mutants generally enhanced an expression of the yafB gene. Glyoxal resistances of the mutants are correlated with the levels of yafB transcripts as well as the activities of aldo-keto reductase. An overproduction of YafB in the glyoxal-resistant mutant lacking the putative NsrR-binding site provides evidence that the yafB gene is negatively regulated by this protein. We also observed that the expression of yafB is enhanced with an increased concentration of glyoxal as well as a mutation in the fnr gene, encoding a putative regulator. The bindings of NsrR and Fnr to the yafB promoter were also demonstrated by gel mobility shift assays. PMID:22328670

  16. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-07

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.

  17. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.

    PubMed Central

    Chouinard, S W; Wilson, G F; Schlimgen, A K; Ganetzky, B

    1995-01-01

    Genetic and physiological studies of the Drosophila Hyperkinetic (Hk) mutant revealed defects in the function or regulation of K+ channels encoded by the Shaker (Sh) locus. The Hk polypeptide, determined from analysis of cDNA clones, is a homologue of mammalian K+ channel beta subunits (Kv beta). Coexpression of Hk with Sh in Xenopus oocytes increases current amplitudes and changes the voltage dependence and kinetics of activation and inactivation, consistent with predicted functions of Hk in vivo. Sequence alignments show that Hk, together with mammalian Kv beta, represents an additional branch of the aldo-keto reductase superfamily. These results are relevant to understanding the function and evolutionary origin of Kv beta. PMID:7542775

  18. The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion.

    PubMed

    Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin

    2013-03-01

    On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.

  19. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors.

    PubMed

    Penning, Trevor M; Steckelbroeck, Stephan; Bauman, David R; Miller, Meredith W; Jin, Yi; Peehl, Donna M; Fung, Kar-Ming; Lin, Hseuh-Kung

    2006-03-27

    Human aldo-keto reductases (AKR) of the 1A, 1B, 1C and 1D subfamilies are involved in the pre-receptor regulation of nuclear (steroid hormone and orphan) receptors by regulating the local concentrations of their lipophilic ligands. AKR1C3 is one of the most interesting isoforms. It was cloned from human prostate and the recombinant protein was found to function as a 3-, 17- and 20-ketosteroid reductase with a preference for the conversion of Delta4-androstene-3,17-dione to testosterone implicating this enzyme in the local production of active androgens within the prostate. Using a validated isoform specific real-time RT-PCR procedure the AKR1C3 transcript was shown to be more abundant in primary cultures of epithelial cells than stromal cells, and its expression in stromal cells increased with benign and malignant disease. Using a validated isoform specific monoclonal Ab, AKR1C3 protein expression was also detected in prostate epithelial cells by immunoblot analysis. Immunohistochemical staining of prostate tissue showed that AKR1C3 was expressed in adenocarcinoma and surprisingly high expression was observed in the endothelial cells. These cells are a rich source of prostaglandin G/H synthase 2 (COX-2) and vasoactive prostaglandins (PG) and thus the ability of recombinant AKR1C enzymes to act as PGF synthases was compared. AKR1C3 had the highest catalytic efficiency (kcat/Km) for the 11-ketoreduction of PGD2 to yield 9alpha,11beta-PGF2 raising the prospect that AKR1C3 may govern ligand access to peroxisome proliferator activated receptor (PPARgamma). Activation of PPARgamma is often a pro-apoptotic signal and/or leads to terminal differentiation, while 9alpha,11beta-PGF2 is a pro-proliferative signal. AKR1C3 is potently inhibited by non-steroidal anti-inflammatory drugs suggesting that the cancer chemopreventive properties of these agents may be mediated either by inhibition of AKR1C3 or COX. To discriminate between these effects we developed potent AKR1C

  20. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    PubMed

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Low expression of Aldo-keto reductase 1B10 is a novel independent prognostic indicator for nasopharyngeal carcinoma.

    PubMed

    Guo, Yuanwei; Luo, Weihao; Hu, Zheng; Li, Jia; Li, Xiaojie; Cao, Huiqiu; Li, Jun; Wen, Bo; Zhang, Jian; Cheng, Hao; Guo, Wangyuan; Tan, Tan; Luo, Dixian

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is one of the most common human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. Because of its nonspecific symptoms, the early diagnosis of NPC is very difficult. The 5-year survival rate is not ideal in spite of great innovations in radiation and chemotherapy treatments. Highly sensitive and specific prognostic biomarkers are eager for NPC clinical diagnosis. To find specific target molecules is very important for individualized treatment. Aldo-keto reductase B10 (AKR1B10) is closely related to tumorigenesis and tumor development, and however, its expression level in NPC tissues is not clear. AKR1B10 expression levels were validated in benign, para-cancerous nasopharyngeal and NPC tissues by immunohistochemical evaluation. AKR1B10 was positively expressed in 42 (82.4 %) of 51 benign specimens, and 235 (98.7 %) of 238 para-carcinoma specimens. This percentage was significantly higher than 44.5 % (133/299) in nasopharyngeal carcinoma tissue (p < 0.01). AKR1B10 mRNA quantitative levels detected by real-time quantitative RT-PCR in 90 NPC tissue samples (0.10 ± 0.21) were significantly lower than that in 15 benign tissue samples (1.03 ± 1.12) (p < 0.01). AKR1B10 expression levels in NPC were correlated negatively with T-classification, lymph node metastasis (p < 0.05). We established nasopharyngeal cancer monoclonal cells CNE-2/AKR1B10 with AKR1B10 stable expression and CNE-2/vector cells without AKR1B10 expression by using a modified lentivirus-mediated method, and found that AKR1B10 inhibited the proliferation of CNE-2/AKR1B10 cells by using MTT assay and flow cytometry, and cell migration by in vitro scratch test. Taken together, our data suggest that low expression of AKR1B10 is an independent prognostic indicator in nasopharyngeal carcinoma, and that AKR1B10 may be involved in regulating the proliferation and migration of nasopharyngeal cancer cells.

  2. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  3. Gene expression and promoter analysis of a novel tomato aldo-keto reductase in response to environmental stresses.

    PubMed

    Suekawa, Marina; Fujikawa, Yukichi; Inada, Shuhei; Murano, Asako; Esaka, Muneharu

    2016-08-01

    The functional role of an uncharacterized tomato (Solanum lycopersicum) aldo-keto reductase 4B, denoted as SlAKR4B, was investigated. The gene expression of tomato SlAKR4B was detected at a high level in the senescent leaves and the ripening fruits of tomato. Although d-galacturonic acid reductase activities tended to be higher in tomato SlAKR4B-overexpressing transgenic tobacco BY-2 cell lines than those in control cell lines, SlAKR4B gene expression was not well correlated with l-ascorbic acid content among the cell lines. The analysis of the transgenic cell lines showed that tomato SlAKR4B has enzyme activities toward d-galacturonic acid as well as glyceraldehyde and glyoxal, suggesting that the SlAKR4B gene encodes a functional enzyme in tomato. Gene expression of SlAKR4B was induced by NaCl, H2O2, and plant hormones such as salicylic acid and jasmonic acid, suggesting that SlAKR4B is involved in the stress response. The transient expression assay using protoplasts showed the promoter activity of the SlAKR4B gene was as high as that of the cauliflower mosaic virus 35S promoter. Also, the promoter region of the SlAKR4B gene was suggested to contain cis-element(s) for abiotic stress-inducible expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  5. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  6. Selective Inhibitors of Aldo-Keto Reductases AKR1C1 and AKR1C3 Discovered by Virtual Screening of a Fragment Library

    PubMed Central

    Brožič, Petra; Turk, Samo; Adeniji, Adegoke O.; Konc, Janez; Janežič, Dušanka; Penning, Trevor M.; Rižner, Tea Lanišnik; Gobec, Stanislav

    2012-01-01

    Human aldo-keto reductases 1C1-1C4 (AKR1C1-AKR1C4) function in vivo as 3-keto-, 17-keto- and 20- ketosteroid reductases, and regulate the activity of androgens, estrogens and progesterone and the occupancy and transactivation of their corresponding receptors. Aberrant expression and action of AKR1C enzymes can lead to different pathophysiological conditions. AKR1C enzymes thus represent important targets for development of new drugs. We performed a virtual high-throughput screen of a fragment library that was followed by biochemical evaluation on AKR1C1-AKR1C4 enzymes. Twenty-four structurally diverse compounds were discovered with low μM Ki values for AKR1C1, AKR1C3, or both. Two structural series included the salicylates and the N-phenylanthranilic acids and additionally a series of inhibitors with completely novel scaffolds was discovered. Two of the best selective AKR1C3 inhibitors had Ki values of 0.1 μM and 2.7 μM, exceeding expected activity for fragments. The compounds identified represent an excellent starting point for further hit-to-lead development. PMID:22881866

  7. Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Yoshida, Kazuhiko; Tanino, Mishie; Kimura, Taichi; Nishihara, Hiroshi; Abe, Takashige; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2016-01-01

    In treating bladder cancer, determining the molecular mechanisms of tumor invasion, metastasis, and drug resistance are urgent to improving long-term patient survival. One of the metabolic enzymes, aldo-keto reductase 1C1 (AKR1C1), plays an essential role in cancer invasion/metastasis and chemoresistance. In orthotopic xenograft models of a human bladder cancer cell line, UM-UC-3, metastatic sublines were established from tumors in the liver, lung, and bone. These cells possessed elevated levels of EMT-associated markers, such as Snail, Slug, or CD44, and exhibited enhanced invasion. By microarray analysis, AKR1C1 was found to be up-regulated in metastatic lesions, which was verified in metastatic human bladder cancer specimens. Decreased invasion caused by AKR1C1 knockdown suggests a novel role of AKR1C1 in cancer invasion, which is probably due to the regulation of Rac1, Src, or Akt. An inflammatory cytokine, interleukin-1β, was found to increase AKR1C1 in bladder cancer cell lines. One particular non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic sublines. These data uncover the crucial role of AKR1C1 in regulating both metastasis and drug resistance; as a result, AKR1C1 should be a potent molecular target in invasive bladder cancer treatment. PMID:27698389

  8. Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling

    PubMed Central

    Lin, Eugene E.; Pentz, Ellen S.; Sequeira-Lopez, Maria Luisa S.

    2015-01-01

    We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression—together with renin—is progressively restricted in the kidney arteries toward the glomerulus. Subsequently, when formerly renin-expressing cells reacquire renin expression, AKR1B7 is reexpressed as well. This pattern of coexpression persists in extreme pathological situations, such as deletion of the genes for aldosterone synthase or Dicer. However, the two proteins do not colocalize within the same organelles: renin is found in the secretory granules, whereas AKR1B7 localizes to the endoplasmic reticulum. Interestingly, upon deletion of the renin gene, AKR1B7 expression is maintained in a pattern mimicking the embryonic expression of renin, while ablation of renin cells resulted in complete abolition of AKR1B7 expression. Finally, we demonstrate that AKR1B7 transcription is controlled by cAMP. Cultured cells of the renin lineage reacquire the ability to express both renin and AKR1B7 upon elevation of intracellular cAMP. In vivo, deleting elements of the cAMP-response pathway (CBP/P300) results in a stark decrease in AKR1B7- and renin-positive cells. In summary, AKR1B7 is expressed within the renin cell throughout development and perturbations to homeostasis, and AKR1B7 is regulated by cAMP levels within the renin cell. PMID:26180185

  9. Expression of Aldo-keto Reductase 1C23 in the Equine Corpus Luteum in Different Luteal Phases

    PubMed Central

    KOZAI, Keisuke; HOJO, Takuo; TOKUYAMA, Shota; SZÓSTEK, Anna Z; TAKAHASHI, Masashi; SAKATANI, Miki; NAMBO, Yasuo; SKARZYNSKI, Dariusz J; OKUDA, Kiyoshi

    2014-01-01

    Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P4) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20α-hydroxysteroid dehydrogenase (20α-HSD) catabolizes P4 into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20α-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P4 concentration and levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3β-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20α-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P4 by AKR1C23 is one of the processes contributing to functional luteolysis in mares. PMID:24492656

  10. Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3.

    PubMed

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2'-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Structural and mutational studies on an aldo-keto reductase AKR5C3 from Gluconobacter oxydans

    PubMed Central

    Liu, Xu; Wang, Chao; Zhang, Lujia; Yao, Zhiqiang; Cui, Dongbing; Wu, Liang; Lin, Jinping; Yuan, Yu-Ren Adam; Wei, Dongzhi

    2014-01-01

    An aldo-keto reductase AKR5C3 from Gluconobacter oxydans (designated as Gox0644) is a useful enzyme with various substrates, including aldehydes, diacetyl, keto esters, and α-ketocarbonyl compounds. The crystal structures of AKR5C3 in apoform in complex with NADPH and the D53A mutant (AKR5C3-D53A) in complex with NADPH are presented herein. Structure comparison and site-directed mutagenesis combined with biochemical kinetics analysis reveal that the conserved Asp53 in the AKR5C3 catalytic tetrad has a crucial role in securing active pocket conformation. The gain-of-function Asp53 to Ala mutation triggers conformational changes on the Trp30 and Trp191 side chains, improving NADPH affinity to AKR5C3, which helps increase catalytic efficiency. The highly conserved Trp30 and Trp191 residues interact with the nicotinamide moiety of NADPH and help form the NADPH-binding pocket. The AKR5C3-W30A and AKR5C3-W191Y mutants show decreased activities, confirming that both residues facilitate catalysis. Residue Trp191 is in the loop structure, and the AKR5C3-W191Y mutant does not react with benzaldehyde, which might also determine substrate recognition. Arg192, which is involved in the substrate binding, is another important residue. The introduction of R192G increases substrate-binding affinity by improving hydrophobicity in the substrate-binding pocket. These results not only supplement the AKRs superfamily with crystal structures but also provide useful information for understanding the catalytic properties of AKR5C3 and guiding further engineering of this enzyme. PMID:25131535

  12. Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance.

    PubMed

    Matsunaga, Toshiyuki; Saito, Haruhi; Endo, Satoshi; Iguchi, Kazuhiro; Soda, Midori; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-12-01

    Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.

  13. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    SciTech Connect

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 {mu}M, 4-hydroxynonenal (HNE) at 0.10 {mu}M, trans-2-hexanal at 0.10 {mu}M, and trans-2,4-hexadienal at 0.05 {mu}M, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 {mu}M (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  14. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels.

    PubMed

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 microM, 4-hydroxynonenal (HNE) at 0.10 microM, trans-2-hexanal at 0.10 microM, and trans-2,4-hexadienal at 0.05 microM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 microM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  15. Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization

    PubMed Central

    2012-01-01

    Background Since proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients. Methods To investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes. Results Of 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the “hit list” was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected. Conclusions These findings demonstrate the utility of using curated pharmacokinetic and

  16. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  17. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily.

    PubMed Central

    Hoog, S S; Pawlowski, J E; Alzari, P M; Penning, T M; Lewis, M

    1994-01-01

    The 3.0-A-resolution x-ray structure of rat liver 3 alpha-hydroxysteroid dehydrogenase/dihydrodiol dehydrogenase (3 alpha-HSD, EC 1.1.1.50) was determined by molecular replacement using human placental aldose reductase as the search model. The protein folds into an alpha/beta or triose-phosphate isomerase barrel and lacks a canonical Rossmann fold for binding pyridine nucleotide. The structure contains a concentration of hydrophobic amino acids that lie in a cavity near the top of the barrel and that are presumed to be involved in binding hydrophobic substrates (steroids, prostaglandins, and polycyclic aromatic hydrocarbons) and inhibitors (nonsteroidal antiinflammatory drugs). At the distal end of this cavity lie three residues in close proximity that have been implicated in catalysis by site-directed mutagenesis--Tyr-55, Asp-50, and Lys-84. Tyr-55 is postulated to act as the general acid. 3 alpha-HSD shares significant sequence identity with other HSDs that belong to the aldo-keto reductase superfamily and these may show similar architecture. Other members of this family include prostaglandin F synthase and rho-crystallin. By contrast, 3 alpha-HSD shares no sequence identity with HSDs that are members of the short-chain alcohol dehydrogenase family but does contain the Tyr-Xaa-Xaa-Xaa-Lys consensus sequence implicated in catalysis in this family. In the 3 alpha-HSD structure these residues are on the periphery of the barrel and are unlikely to participate in catalysis. Images PMID:8146147

  18. Heightened aggressive behavior in mice deficient in aldo-keto reductase 1a (Akr1a).

    PubMed

    Homma, Takujiro; Akihara, Ryusuke; Okano, Satoshi; Shichiri, Mototada; Yoshida, Yasukazu; Yamada, Ken-Ichi; Miyata, Satoshi; Nakajima, Osamu; Fujii, Junichi

    2017-02-15

    Aldehyde reductase (Akr1a) is involved in the synthesis of ascorbic acid (AsA) which may play a role in social behavior. In the current study, we performed analyses on Akr1a-deficient (Akr1a(-/-)) mice that synthesize about 10% as much AsA as wild-type mice from the viewpoint of intermale aggression. The use of the resident-intruder test revealed that the Akr1a(-/-) mice exhibited more aggressive phenotypes than wild-type control mice. Unexpectedly, however, the oral administration of additional AsA failed to reduce the aggressive behavior of Akr1a(-/-) mice, suggesting that the heightened aggression was independent of AsA biosynthesis. The findings also show that the plasma levels of corticosterone, but not serotonin and testosterone, were increased in the absence of Akr1a in mice, suggesting that the mice were highly stressed. These results suggest that Akr1a might be involved in the metabolism of steroids and other carbonyl-containing compounds and, hence, the absence of Akr1a results in heightened aggression via a malfunction in a metabolic pathway.

  19. Aldo-Keto Reductase (AKR) 1C3 inhibitors: a patent review.

    PubMed

    Penning, Trevor M

    2017-09-19

    AKR1C3 is a drug target in hormonal and hormonal independent malignancies and acts as a major peripheral 17β-hydroxysteroid dehydrogenase to yield the potent androgens testosterone and dihydrotestosterone, and as a prostaglandin (PG) F synthase to produce proliferative ligands for the PG FP receptor. AKR1C3 inhibitors may have distinct advantages over existing therapeutics for the treatment of castration resistant prostate cancer, breast cancer and acute myeloid leukemia. Area covered: This article reviews the patent literature on AKR1C3 inhibitors using SciFinder which identified inhibitors in the following chemical classes: N-phenylsulfonyl-indoles, N-(benzimidazoylylcarbonyl)- N-(indoylylcarbonyl)- and N-(pyridinepyrrolyl)- piperidines, N-benzimidazoles and N-benzindoles, repurposed nonsteroidal antiinflammatory drugs (indole acetic acids, N-phenylanthranilates and aryl propionic acids), isoquinolines, and nitrogen and sulfur substituted estrenes. The article evaluates inhibitor AKR potency, specificity, efficacy in cell-based and xenograft models and clinical utility. The advantage of bifunctional compounds that either competitively inhibit AKR1C3 and block its androgen receptor (AR) coactivator function or act as AKR1C3 inhibitors and direct acting AR antagonists are discussed. Expert opinion: A large number of potent and selective inhibitors of AKR1C3 have been described however, preclinical optimization, is required before their benefit in human disease can be assessed.

  20. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease.

    PubMed

    Jumper, Natalie; Hodgkinson, Tom; Arscott, Guyan; Har-Shai, Yaron; Paus, Ralf; Bayat, Ardeshir

    2016-07-01

    Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells.

    PubMed

    Ma, Jun; Yan, Ruilan; Zu, Xuyu; Cheng, Ji-Ming; Rao, Krishna; Liao, Duan-Fang; Cao, Deliang

    2008-02-08

    Recent studies have demonstrated that aldo-keto reductase family 1 B10 (AKR1B10), a novel protein overexpressed in human hepatocellular carcinoma and non-small cell lung carcinoma, may facilitate cancer cell growth by detoxifying intracellular reactive carbonyls. This study presents a novel function of AKR1B10 in tumorigenic mammary epithelial cells (RAO-3), regulating fatty acid synthesis. In RAO-3 cells, Sephacryl-S 300 gel filtration and DEAE-Sepharose ion exchange chromatography demonstrated that AKR1B10 exists in two distinct forms, monomers (approximately 40 kDa) bound to DEAE-Sepharose column and protein complexes (approximately 300 kDa) remaining in flow-through. Co-immunoprecipitation with AKR1B10 antibody and protein mass spectrometry analysis identified that AKR1B10 associates with acetyl-CoA carboxylase-alpha (ACCA), a rate-limiting enzyme of de novo fatty acid synthesis. This association between AKR1B10 and ACCA proteins was further confirmed by co-immunoprecipitation with ACCA antibody and pulldown assays with recombinant AKR1B10 protein. Intracellular fluorescent studies showed that AKR1B10 and ACCA proteins co-localize in the cytoplasm of RAO-3 cells. More interestingly, small interfering RNA-mediated AKR1B10 knock down increased ACCA degradation through ubiquitination-proteasome pathway and resulted in >50% decrease of fatty acid synthesis in RAO-3 cells. These data suggest that AKR1B10 is a novel regulator of the biosynthesis of fatty acid, an essential component of the cell membrane, in breast cancer cells.

  2. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies.

    PubMed

    Kim, Taeho; Flick, Robert; Brunzelle, Joseph; Singer, Alex; Evdokimova, Elena; Brown, Greg; Joo, Jeong Chan; Minasov, George A; Anderson, Wayne F; Mahadevan, Radhakrishnan; Savchenko, Alexei; Yakunin, Alexander F

    2017-04-01

    The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 from Pseudomonas aeruginosa showed the highest activity and was selected for comparative studies with STM2406 from Salmonella enterica serovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase in kcat/Km Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates.IMPORTANCE In this study, we identified several aldo-keto reductases with significant activity in reducing 3-hydroxybutanal to 1,3-butanediol (1,3-BDO), an important commodity chemical. Biochemical and structural studies of these enzymes revealed the key catalytic and substrate-binding residues, including the two structural

  3. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies

    PubMed Central

    Kim, Taeho; Flick, Robert; Brunzelle, Joseph; Singer, Alex; Evdokimova, Elena; Brown, Greg; Joo, Jeong Chan; Minasov, George A.; Anderson, Wayne F.; Mahadevan, Radhakrishnan; Savchenko, Alexei

    2017-01-01

    ABSTRACT The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 from Pseudomonas aeruginosa showed the highest activity and was selected for comparative studies with STM2406 from Salmonella enterica serovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase in kcat/Km. Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates. IMPORTANCE In this study, we identified several aldo-keto reductases with significant activity in reducing 3-hydroxybutanal to 1,3-butanediol (1,3-BDO), an important commodity chemical. Biochemical and structural studies of these enzymes revealed the key catalytic and substrate-binding residues, including the two

  4. Bioequivalence studies of tibolone in premenopausal women and effects on expression of the tibolone-metabolizing enzyme AKR1C (aldo-keto reductase) family caused by estradiol.

    PubMed

    Kang, Keon W; Kim, Yoon G

    2008-12-01

    This study aimed to investigate the bioequivalence of a test formulation of tibolone with the marketed reference formulation in 24 young healthy female volunteers. Tibolone is a synthetic steroid hormone for menopausal women. Volunteers were treated with the 2 formulations of tibolone (total dose of active ingredient 2.5 mg) according to a 2 x 2 crossover design with a 1-week washout period. Plasma concentrations of 3alpha- and 3beta-hydroxytibolone, which are major metabolites of tibolone, were assayed in timed samples over a 24-hour period with a validated gas chromatography/mass spectrometry (GC/MS) method that had a lower limit of quantification of 0.5 ng/mL. The reference and test formulations gave a mean 3alpha-hydroxytibolone C(max) of 5.0 and 5.2 ng/mL, respectively, and a mean 3beta-hydroxytibolone C(max) of 16.4 and 16.5 ng/mL, respectively. The mean AUC(t) of 3alpha-hydroxytibolone was 24.7 and 24.3 ng h/mL, whereas the mean AUC(t) of 3beta-hydroxytibolone was 57.6 and 54.8 ng h/mL for the test and reference formulations, respectively. The authors did not find significant differences in pharmacokinetic parameters between the 2 formulations, but metabolite formation was different from reports in postmenopausal women. The authors therefore measured the effects of estradiol on the expression of the tibolone-metabolizing enzymes, from the aldo-keto reductase (AKR1C) family, using HepG2 cell (human hepatoma cells) and MCF-7 cell (human breast cancer cells). Estradiol increased mRNA levels of AKR1C1, AKR1C2, and AKR1C3 and protein levels of total AKR1C in HepG2 cells. Estradiol selectively enhanced levels of AKR1C2 mRNA in MCF-7 cells. Thus, changes in the major metabolites of tibolone might result from changes in AKR1C family expression by patient estrogen status.

  5. Knockdown or inhibition of aldo-keto reductase 1B10 inhibits pancreatic carcinoma growth via modulating Kras-E-cadherin pathway.

    PubMed

    Zhang, Wanying; Li, Haonan; Yang, Yihe; Liao, Jie; Yang, Guang-Yu

    2014-12-28

    Aldo-keto reductase 1B10 (AKR1B10) has relatively specific lipid substrates including carbonyls, retinal and farnesal/geranylgeranial. Metabolizing these lipid substrates appears crucial to carcinogenesis, particularly for farnesal/geranylgeranial that involves protein prenylation. Mutant Kras is a most common active oncogene in pancreatic cancer, and its activation requires protein prenylation. To directly determine the role of AKR1B10 in pancreatic carcinogenesis, we knocked down AKR1B10 in CD18 human pancreatic carcinoma cells using shRNA approach. Silencing AKR1B10 resulted in a significant inhibition of anchor-dependent growth (knockdown cells vs. vector-control cells: 67 ± 9.5 colonies/HPF vs. 170 ± 3.7 colonies/HPF, p < 0.01), invasion index (0.27 vs. 1.00, p < 0.05), and cell migration (at 16 hours 9.2 ± 1.2% vs. 14.0 ± 1.8%, at 24 hours 21.0 ± 1.1% vs. 30.5 ± 3.5%, and at 48 hours 51.9 ± 5.7% vs. 88.9 ± 3.0%, p < 0.01). Inhibition of AKR1B10 by oleanolic acid (OA) showed a dose-dependent inhibition of cell growth with IC50 at 30 µM. Kras pull-down and Western blot analysis revealed a significant down-regulation of active form Kras and phosphorylated C-Raf, and Erk, as well as an up-regulation of E-cadherin. A significant reduction of in vivo tumor growth was observed in nude mice implanted with the CD18 pancreatic carcinoma cells with AKR1B10 knockdown (tumor weight: 0.25 ± 0.06 g vs. 0.52 ± 0.07 g, p = 0.01), and with OA treatment (tumor weight: 0.35 ± 0.05 g vs. 0.52 ± 0.07 g, p = 0.05). Our findings indicate AKR1B10 is a unique enzyme involved in pancreatic carcinogenesis via modulation of the Kras-E-cadherin pathway.

  6. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Arai, Yuki; Ikari, Akira; Tajima, Kazuo; El-Kabbani, Ossama; Yamano, Shigeru; Hara, Akira; Kitade, Yukio

    2014-04-01

    Multiple forms of reductases for several drug ketones were isolated from rabbit liver, but their interrelationship and physiologic roles remain unknown. We isolated cDNAs for four aldo-keto reductases (AKR1C30, AKR1C31, AKR1C32, and AKR1C33), which share high amino acid sequence identity with the partial sequences of two rabbit naloxone reductases. The four recombinant enzymes reduced a variety of carbonyl compounds, including endogenous α-dicarbonyls (e.g., isatin and diacetyl), aldehydes (e.g., farnesal and 4-oxo-2-nonenal), and ketosteroids. They differed in specificity for drug ketones and ketosteroids. Although daunorubicin and befunolol were common substrates of all of the enzymes, AKR enzymes specifically reduced naloxone (AKR1C30, AKR1C32, and AKR1C33), metyrapone (AKR1C32 and AKR1C33), loxoprofen (AKR1C31 and AKR1C32), ketotifen (AKR1C30), and naltrexone and fenofibric acid (AKR1C33). AKR1C30 reduced only 17-keto-5β-androstanes, whereas the other enzymes were active toward 3-, 17-, and 20-ketosteroids, and AKR1C33 further reduced 3-keto groups of bile acids and 7α-hydroxy-5β-cholestanes. In addition, AKR1C30, AKR1C31, AKR1C32, and AKR1C33 were selectively inhibited by carbenoxolone, baccharin, phenolphthalein, and zearalenone, respectively. The mRNAs for the four enzymes were ubiquitously expressed in male rabbit tissues, in which highly expressed tissues were the brain, heart, liver, kidney, intestine, colon, and testis (for AKR1C30 and AKR1C31); brain, heart, liver, kidney, testis, lung, and adrenal gland (for AKR1C32); and liver and intestine (for AKR1C33). Thus, the four enzymes correspond to the multiple drug ketone reductases, and may function in the metabolisms of steroids, isatin and reactive carbonyl compounds, and bile acid synthesis.

  7. A comparative structural analysis reveals distinctive features of co-factor binding and substrate specificity in plant aldo-keto reductases.

    PubMed

    Giuseppe, Priscila Oliveira de; Santos, Marcelo Leite Dos; Sousa, Sylvia Morais de; Koch, Karen E; Yunes, José Andrés; Aparicio, Ricardo; Murakami, Mario Tyago

    2016-06-10

    Plant aldo-keto reductases of the AKR4C subfamily play key roles during stress and are attractive targets for developing stress-tolerant crops. However, these AKR4Cs show little to no activity with previously-envisioned sugar substrates. We hypothesized a structural basis for the distinctive cofactor binding and substrate specificity of these plant enzymes. To test this, we solved the crystal structure of a novel AKR4C subfamily member, the AKR4C7 from maize, in the apo form and in complex with NADP(+). The binary complex revealed an intermediate state of cofactor binding that preceded closure of Loop B, and also indicated that conformational changes upon substrate binding are required to induce a catalytically-favorable conformation of the active-site pocket. Comparative structural analyses of homologues (AKR1B1, AKR4C8 and AKR4C9) showed that evolutionary redesign of plant AKR4Cs weakened interactions that stabilize the closed conformation of Loop B. This in turn decreased cofactor affinity and altered configuration of the substrate-binding site. We propose that these structural modifications contribute to impairment of sugar reductase activity in favor of other substrates in the plant AKR4C subgroup, and that catalysis involves a three-step process relevant to other AKRs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    PubMed

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.

  9. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

    PubMed Central

    MacLeod, A Kenneth; Acosta-Jimenez, Lourdes; Coates, Philip J; McMahon, Michael; Carey, Frank A; Honda, Tadashi; Henderson, Colin J; Wolf, C Roland

    2016-01-01

    Background: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. Methods: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. Results: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. Conclusions: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses. PMID:27824809

  10. Cloning of a novel aldo-keto reductase gene from Klebsiella sp. strain F51-1-2 and its functional expression in Escherichia coli.

    PubMed

    Jiang, Hong; Yang, Chao; Qu, Hong; Liu, Zheng; Fu, Q S; Qiao, Chuanling

    2007-08-01

    A soil bacterium capable of metabolizing organophosphorus compounds by reducing the P S group in the molecules was taxonomically identified as Klebsiella sp. strain F51-1-2. The gene involved in the reduction of organophosphorus compounds was cloned from this strain by the shotgun technique, and the deduced protein (named AKR5F1) showed homology to members of the aldo-keto reductase (AKR) superfamily. The intact coding region for AKR5F1 was subcloned into vector pET28a and overexpressed in Escherichia coli BL21(DE3). Recombinant His(6)-tagged AKR5F1 was purified in one step using Ni-nitrilotriacetic acid affinity chromatography. Assays for cofactor specificity indicated that reductive transformation of organophosphorus compounds by the recombinant AKR5F1 specifically required NADH. The kinetic constants of the purified recombinant AKR5F1 toward six thion organophosphorus compounds were determined. For example, the K(m) and k(cat) values of reductive transformation of malathion by the purified recombinant AKR5F1 are 269.5 +/- 47.0 microM and 25.7 +/- 1.7 min(-1), respectively. Furthermore, the reductive transformation of organophosphorus compounds can be largely explained by structural modeling.

  11. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    PubMed Central

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  12. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Reduction of lipid peroxidation products and advanced glycation end-product precursors by cyanobacterial aldo-keto reductase AKR3G1—a founding member of the AKR3G subfamily.

    PubMed

    Hintzpeter, Jan; Martin, Hans-Joerg; Maser, Edmund

    2015-01-01

    The purpose of this study was to investigate the origin and function of the aldo-keto reductase (AKR) superfamily as enzymes involved in the detoxification of xenobiotics. We used the cyanobacterium Synechocystis sp. PCC 6803 as a model organism and sequence alignments to find bacterial AKRs with highest identity to human enzymes. Disappearance of NADPH was monitored spectrophotometrically to calculate enzymatic activity. The molecular weight of the native protein was determined by size exclusion chromatography. Substrate docking was performed by SwissDock. Sequence alignments identified the NADPH-dependent AKR3G1 having 41.5 and 40% identity with the human enzymes AKR1B1 and AKR1B10, respectively. Highest enzymatic efficiency was observed with 4-oxonon-2-enal (4-ONE; k(cat)/K(m), 561 s(-1) mM(-1)) and 4-hydroxynonenal (k(cat)/K(m), 26.5 s(-1) mM(-1)), respectively. P74308 is the most efficient enzyme for 4-ONE discovered until now. Cooperativity of this monomeric enzyme was observed with some substrates. Enzyme inactivation or oligomerization as possible explanations for nonhyperbolic enzyme kinetics were ruled out by Selwyn's test and gel filtration. The role of the little investigated carbonyl-reducing enzymes in detoxification seems to be in fact a very old process with rarely observed nonhyperbolic enzyme kinetics as an adaptation mechanism to higher concentrations of reactive oxygen species.

  14. Crystal Structures of Three Classes of Non-Steroidal Anti-Inflammatory Drugs in Complex with Aldo-Keto Reductase 1C3

    PubMed Central

    Flanagan, Jack U.; Yosaatmadja, Yuliana; Teague, Rebecca M.; Chai, Matilda Z. L.; Turnbull, Andrew P.; Squire, Christopher J.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3) catalyses the NADPH dependent reduction of carbonyl groups in a number of important steroid and prostanoid molecules. The enzyme is also over-expressed in prostate and breast cancer and its expression is correlated with the aggressiveness of the disease. The steroid products of AKR1C3 catalysis are important in proliferative signalling of hormone-responsive cells, while the prostanoid products promote prostaglandin-dependent proliferative pathways. In these ways, AKR1C3 contributes to tumour development and maintenance, and suggest that inhibition of AKR1C3 activity is an attractive target for the development of new anti-cancer therapies. Non-steroidal anti-inflammatory drugs (NSAIDs) are one well-known class of compounds that inhibits AKR1C3, yet crystal structures have only been determined for this enzyme with flufenamic acid, indomethacin, and closely related analogues bound. While the flufenamic acid and indomethacin structures have been used to design novel inhibitors, they provide only limited coverage of the NSAIDs that inhibit AKR1C3 and that may be used for the development of new AKR1C3 targeted drugs. To understand how other NSAIDs bind to AKR1C3, we have determined ten crystal structures of AKR1C3 complexes that cover three different classes of NSAID, N-phenylanthranilic acids (meclofenamic acid, mefenamic acid), arylpropionic acids (flurbiprofen, ibuprofen, naproxen), and indomethacin analogues (indomethacin, sulindac, zomepirac). The N-phenylanthranilic and arylpropionic acids bind to common sites including the enzyme catalytic centre and a constitutive active site pocket, with the arylpropionic acids probing the constitutive pocket more effectively. By contrast, indomethacin and the indomethacin analogues sulindac and zomepirac, display three distinctly different binding modes that explain their relative inhibition of the AKR1C family members. This new data from ten crystal structures greatly broadens the base of

  15. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  16. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase.

    PubMed

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-12-01

    Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  17. The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases.

    PubMed

    Shi, Liang; Wang, Yuan; Tu, Shuyang; Li, Xiaolei; Sun, Maomao; Srivastava, Sanjay; Xu, Ningzhi; Bhatnagar, Aruni; Liu, Siqi

    2008-08-01

    A large body of evidence supports the view that mitochondria are a primary target of alcohol stress. Changes in mitochondrial proteins due to moderate ethanol intake, however, have not been broadly and accurately estimated. For this study, rats were fed low doses of ethanol and the mitochondria were isolated from heart, kidney, and liver, using ultracentrifugation with Nycodenz density gradient. The mitochondrial proteins were well resolved upon two-dimensional electrophoresis (2DE), and the alcohol-responsive 2DE spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Compared with the control group, the proteins extracted from liver mitochondria of ethanol-fed rats exhibited the significant changes on 2DE images, whereas the 2DE images obtained from the kidney and the heart mitochondria remained almost unchanged by ethanol feeding. Significantly, over 50% of the alcohol-responsive proteins in liver mitochondria were members of aldo-keto reductase family (AKR), which were usually present in cytoplasm. The organelle distributions of AKR proteins in liver mitochondria were further confirmed by Western blot analysis as well as by confocal microscopy. In addition, translocations of AKR were examined in the CHANG cell line, which was cultured with and without ethanol. The results of Western blot strongly suggested that the abundances of AKR proteins in the mitochondria were greatly reduced by the presence of ethanol in culture medium. The results of this study show that, even with moderate ethanol feeding, the mitochondrial proteome in rat liver was more sensitive to alcohol stress than that of either the kidney or the heart. The translocation of AKR proteins may be involved in the detoxification of liver cells.

  18. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    PubMed

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  19. Aldo-keto reductases AKR1C1, AKR1C2 and AKR1C3 may enhance progesterone metabolism in ovarian endometriosis.

    PubMed

    Hevir, N; Vouk, K; Sinkovec, J; Ribič-Pucelj, M; Rižner, T Lanišnik

    2011-05-30

    Endometriosis is a very common disease that is characterized by increased formation of estradiol and disturbed progesterone action. This latter is usually explained by a lack of progesterone receptor B (PR-B) expression, while the role of pre-receptor metabolism of progesterone is not yet fully understood. In normal endometrium, progesterone is metabolized by reductive 20α-hydroxysteroid dehydrogenases (20α-HSDs), 3α/β-HSDs and 5α/β-reductases. The aldo-keto reductases 1C1 and 1C3 (AKR1C1 and AKR1C3) are the major reductive 20α-HSDs, while the oxidative reaction is catalyzed by 17β-HSD type 2 (HSD17B2). Also, 3α-HSD and 3β-HSD activities have been associated with the AKR1C isozymes. Additionally, 5α-reductase types 1 and 2 (SRD5A1, SRD5A2) and 5β-reductase (AKR1D1) are responsible for the formation of 5α- and 5β-reduced pregnanes. In this study, we examined the expression of PR-AB and the progesterone metabolizing enzymes in 31 specimens of ovarian endometriosis and 28 specimens of normal endometrium. Real-time PCR analysis revealed significantly decreased mRNA levels of PR-AB, HSD17B2 and SRD5A2, significantly increased mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1, and negligible mRNA levels of AKR1D1. Immunohistochemistry staining of endometriotic tissue compared to control endometrium showed significantly lower PR-B levels in epithelial cells and no significant differences in stromal cells, there were no significant differences in the expression of AKR1C3 and significantly higher AKR1C2 levels were seen only in stromal cells. Our expression analysis data at the mRNA level and partially at the cellular level thus suggest enhanced metabolism of progesterone by SRD5A1 and the 20α-HSD and 3α/β-HSD activities of AKR1C1, AKR1C2 and AKR1C3.

  20. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    SciTech Connect

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  1. Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds.

    PubMed

    Vemanna, Ramu S; Babitha, K C; Solanki, Jayant K; Amarnatha Reddy, V; Sarangi, S K; Udayakumar, M

    2017-04-01

    Cytotoxic compounds like reactive carbonyl compounds such as methylglyoxal (MG), melandialdehyde (MDA), besides the ROS accumulate significantly at higher levels under salinity stress conditions and affect lipids and proteins that inhibit plant growth and productivity. The detoxification of these cytotoxic compounds by overexpression of NADPH-dependent Aldo-ketoreductase (AKR1) enzyme enhances the salinity stress tolerance in tobacco. The PsAKR1 overexpression plants showed higher survival and chlorophyll content and reduced MDA, H2O2, and MG levels under NaCl stress. The transgenic plants showed reduced levels of Na(+) levels in both root and shoot due to reduced reactive carbonyl compounds (RCCs) and showed enhanced membrane stability resulted in higher root growth and biomass. The increased levels of antioxidant glutathione and enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) suggest AKR1 could protect these enzymes from the RCC induced protein carbonylation by detoxification process. The transgenics also showed higher activity of delta 1-pyrroline-5- carboxylate synthase (P5CS) enzyme resulted in increasedproline levels to maintain osmotic homeostasis. The results demonstrates that the AKR1 protects proteins or enzymes that are involved in scavenging of cytotoxic compounds by detoxifying RCCs generated under salinity stress.

  2. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    PubMed

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  3. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10)

    PubMed Central

    Li, Haonan; Yang, Allison L.; Yang, Guang-Yu

    2013-01-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice (Pankras/p53 mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan–Meier survival analysis showed that average animal survival in Pankras/p53 mice was 143.7±8.8 days, and average survival with sulindac was increased to 168.0±8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pankras/p53 mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10. PMID:23689354

  4. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  5. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  6. Crystal Structure of Perakine Reductase, Founding Member of a Novel Aldo-Keto Reductase (AKR) Subfamily That Undergoes Unique Conformational Changes during NADPH Binding*

    PubMed Central

    Sun, Lianli; Chen, Yixin; Rajendran, Chitra; Mueller, Uwe; Panjikar, Santosh; Wang, Meitian; Mindnich, Rebekka; Rosenthal, Cindy; Penning, Trevor M.; Stöckigt, Joachim

    2012-01-01

    Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His6-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His6-PR-A213W complex with NADPH was determined at 1.77 Å. Overall, PR folds in an unusual α8/β6 barrel that has not been observed in any other AKR protein to date. NADPH binds in an extended pocket, but the nicotinamide riboside moiety is disordered. Upon NADPH binding, dramatic conformational changes and movements were observed: two additional β-strands in the C terminus become ordered to form one α-helix, and a movement of up to 24 Å occurs. This conformational change creates a large space that allows the binding of substrates of variable size for PR and enhances the enzyme activity; as a result cooperative kinetics are observed as NADPH is varied. As the founding member of the new AKR13D subfamily, PR also provides a structural template and model of cofactor binding for the AKR13 family. PMID:22334702

  7. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Ikari, Akira; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio

    2015-03-01

    In rabbit tissues, hydroxysteroid dehydrogenase belonging to the aldo-keto reductase (AKR) superfamily exists in six isoforms (AKRs: 1C5 and 1C29-1C33), sharing >73% amino acid sequence identity. AKR1C33 is strictly NADPH-specific, in contrast to dual NADPH/NADH specificity of the other isoforms. All coenzyme-binding residues of the structurally elucidated AKR1C5 are conserved in other isoforms, except that S217 (interacting with the pyrophosphate moiety) and T273 (interacting with the 2'-phosphate moiety) are replaced with F217 and N272, respectively, in AKR1C33. To explore the determinants for the NADPH specificity of AKR1C33, we prepared its F217S and N272T mutant enzymes. The mutation of F217S, but not N272T, converted AKR1C33 into a dually coenzyme-specific form that showed similar kcat values for NAD(P)H to those of AKR1C32. The reverse mutation (S217F) in dually coenzyme-specific AKR1C32 produced a strictly NADPH-specific form. The F217S mutation also abolished the activity towards 3-keto-5β-cholestanes that are substrates specific to AKR1C33, and markedly decreased the sensitivity to 4-pregnenes (such as deoxycorticosterone and medroxyprogesterone acetate) that were found to be potent mixed-type inhibitors of the wild-type enzyme. The results indicate the important role of F217 in the strict NADPH-dependency, as well as its involvement in the unique catalytic properties of AKR1C33.

  8. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  9. Quality of life effects of androgen deprivation therapy in a prostate cancer cohort in New Zealand: can we minimize effects using a stratification based on the aldo-keto reductase family 1, member C3 rs12529 gene polymorphism?

    PubMed

    Karunasinghe, Nishi; Zhu, Yifei; Han, Dug Yeo; Lange, Katja; Zhu, Shuotun; Wang, Alice; Ellett, Stephanie; Masters, Jonathan; Goudie, Megan; Keogh, Justin; Benjamin, Benji; Holmes, Michael; Ferguson, Lynnette R

    2016-08-02

    Androgen deprivation therapy (ADT) is an effective palliation treatment in men with advanced prostate cancer (PC). However, ADT has well documented side effects that could alter the patient's health-related quality of life (HRQoL). The current study aims to test whether a genetic stratification could provide better knowledge for optimising ADT options to minimize HRQoL effects. A cohort of 206 PC survivors (75 treated with and 131 without ADT) was recruited with written consent to collect patient characteristics, clinical data and HRQoL data related to PC management. The primary outcomes were the percentage scores under each HRQoL subscale assessed using the European Organisation for Research and Treatment of Cancer Quality of Life questionnaires (QLQ-C30 and PR25) and the Depression Anxiety Stress Scales developed by the University of Melbourne, Australia. Genotyping of these men was carried out for the aldo-keto reductase family 1, member C3 (AKR1C3) rs12529 single nucleotide polymorphism (SNP). Analysis of HRQoL scores were carried out against ADT duration and in association with the AKR1C3 rs12529 SNP using the generalised linear model. P-values <0 · 05 were considered significant, and were further tested for restriction with Bonferroni correction. Increase in hormone treatment-related effects were recorded with long-term ADT compared to no ADT. The C and G allele frequencies of the AKR1C3rs12529 SNP were 53·4 % and 46·6 % respectively. Hormone treatment-related symptoms showed an increase with ADT when associated with the AKR1C3 rs12529 G allele. Meanwhile, decreasing trends on cancer-specific symptoms and increased sexual interest were recorded with no ADT when associated with the AKR1C3 rs12529 G allele and reverse trends with the C allele. As higher incidence of cancer-specific symptoms relate to cancer retention it is possible that associated with the C allele there could be higher incidence of unresolved cancers under no ADT options. If these

  10. Synergistic Suppression of Early Phase of Adipogenesis by Microsomal PGE Synthase-1 (PTGES1)-Produced PGE2 and Aldo-Keto Reductase 1B3-Produced PGF2α

    PubMed Central

    Fujimori, Ko; Yano, Mutsumi; Ueno, Toshiyuki

    2012-01-01

    We recently reported that aldo-keto reductase 1B3-produced prostaglandin (PG) F2α suppressed the early phase of adipogenesis. PGE2 is also known to suppress adipogenesis. In this study, we found that microsomal PGE2 synthase (PGES)-1 (mPGES-1; PTGES1) acted as the PGES in adipocytes and that PGE2 and PGF2α synergistically suppressed the early phase of adipogenesis. PGE2 production was detected in preadipocytes and transiently enhanced at 3 h after the initiation of adipogenesis of mouse adipocytic 3T3-L1 cells, followed by a quick decrease; and its production profile was similar to the expression of the cyclooxygenase-2 (PTGS2) gene. When 3T3-L1 cells were transfected with siRNAs for any one of the three major PTGESs, i.e., PTGES1, PTGES2 (mPGES-2), and PTGES3 (cytosolic PGES), only PTGES1 siRNA suppressed PGE2 production and enhanced the expression of adipogenic genes. AE1-329, a PTGER4 (EP4) receptor agonist, increased the expression of the Ptgs2 gene with a peak at 1 h after the initiation of adipogenesis. PGE2-mediated enhancement of the PTGS2 expression was suppressed by the co-treatment with L-161982, a PTGER4 receptor antagonist. Moreover, AE1-329 enhanced the expression of the Ptgs2 gene by binding of the cyclic AMP response element (CRE)-binding protein to the CRE of the Ptgs2 promoter; and its binding was suppressed by co-treatment with L-161982, which was demonstrated by promoter luciferase and chromatin immunoprecipitation assays. Furthermore, when 3T3-L1 cells were caused to differentiate into adipocytes in medium containing both PGE2 and PGF2α, the expression of the adipogenic genes and the intracellular triglyceride level were decreased to a greater extent than in medium containing either of them, revealing that PGE2 and PGF2α independently suppressed adipogenesis. These results indicate that PGE2 was synthesized by PTGES1 in adipocytes and synergistically suppressed the early phase of adipogenesis of 3T3-L1 cells in cooperation with PGF2

  11. Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells

    SciTech Connect

    Lemieux, N. ); Malfoy, B. ); Forrest, G.L. )

    1993-01-01

    Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

  12. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP +

    SciTech Connect

    Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.; Nidetzky, Bernd

    2005-01-11

    Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+ were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP+-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contacts of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P)+ in the wild-type remains partly disordered in the NADP+-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.

  13. Overexpression of Aldo-Keto Reductase 1C3 (AKR1C3) in LNCaP Cells Diverts Androgen Metabolism towards Testosterone Resulting in Resistance to the 5α-Reductase Inhibitor Finasteride

    PubMed Central

    Byrns, Michael C.; Mindnich, Rebekka; Duan, Ling; Penning, Trevor M.

    2012-01-01

    Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ4-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signalling. To test this hypothesis, we developed an LNCaP prostate cancer cell line overexpressing AKR1C3 (LNCaP-AKR1C3) and compared its metabolic and proliferative responses to Δ4-Adione treatment with that of the parental, AKR1C3 negative LNCaP cells. In LNCaP and LNCaP-AKR1C3 cells, metabolism proceeded via 5α-reduction to form 5α-androstane-3,17-dione and then (epi)androsterone-3-glucuronide. LNCaP-AKR1C3 cells made significantly higher amounts of testosterone-17β-glucuronide. When 5α-reductase was inhibited by finasteride, the production of testosterone-17β-glucuronide was further elevated in LNCaP-AKR1C3 cells. When AKR1C3 activity was inhibited with indomethacin the production of testosterone-17β-glucuronide was significantly decreased. Δ4-Adione treatment stimulated cell proliferation in both cell lines. Finasteride inhibited LNCaP cell proliferation, consistent with 5α-androstane-3,17-dione acting as the major metabolite that stimulates growth by binding to the mutated AR. However, LNCaP-AKR1C3 cells were resistant to the growth inhibitory properties of finasteride, consistent with the diversion of Δ4-Adione metabolism from 5α-reduced androgens to increased formation of testosterone. Indomethacin did not result in differences in Δ4-Adione induced proliferation since this treatment led to the same metabolic profile in LNCaP and LNCaP-AKR1C3 cells. We conclude that AKR1C3 overexpression diverts androgen metabolism to testosterone

  14. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism.

    PubMed

    Crosas, Bernat; Hyndman, David J; Gallego, Oriol; Martras, Sílvia; Parés, Xavier; Flynn, T Geoffrey; Farrés, Jaume

    2003-08-01

    Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all- trans -, 9- cis - and 13- cis -retinal ( k (cat)/ K (m)=1100-10300 mM(-1).min(-1)), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor ( K (i)=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All- trans -retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from beta-carotene and the control of retinal bioavailability.

  15. Localization of multiple human dihydrodiol dehydrogenase (DDH1 and DDH2) and chlordecone reductase (CHDR) genes in chromosome 10 by the polymerase chain reaction and fluorescence in situ hybridization

    SciTech Connect

    Khanna, M.; Qin, K.N.; Belkin, S.

    1995-01-20

    Multiple human dihydrodiol dehydrogenases and human chlordecone reductase belong to the aldo-keto reductase superfamily. These two enzymes are involved in the metabolism of xenobiotics, such as polycyclic aromatic hydrocarbons and pesticides. Recently we have isolated three closely related genes encoding two dihydrodiol dehydrogenases (DDH1 and DDH2) and the chlordecone reductase (CHDR). Mapping of the location of the genes was performed using the polymerase chain reaction using gene-specific primers to amplify gene sequences in human/hamster hybrid DNA. All three genes were found to be located on chromosome 10. In situ hybridization using a lambda clone as the probe further confirmed regional localization at 10p14-p15. 13 refs., 2 figs.

  16. Aldo-keto Reductase Family 1 B10 as a Novel Target for Breast Cancer Treatment

    DTIC Science & Technology

    2010-08-01

    1Department of Medical Microbiology , Immunology, & Cell Biology, SimmonsCooper Cancer Institute and 2Division of Statistics and Research Consulting, Southern...University, Beijing 100084,People’s Republic of China. ¥To whom requests reprints: Deliang Cao, Department of Medical Microbiology , Immunology, & Cell

  17. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  18. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).

    PubMed

    Chen, Mo; Penning, Trevor M

    2014-05-01

    5β-Reduced steroids are non-planar steroids that have a 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ(4)-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldo-keto reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19-C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency.

  19. Induction and inhibition of NAD(P)H: quinone reductase in murine and human skin.

    PubMed

    Merk, H; Jugert, F; Bonnekoh, B; Mahrle, G

    1991-01-01

    The purpose of this study was to characterize the human cutaneous NAD(P)H: quinone reductase (NQR) activity by known inhibitors of different reductases and to compare it with the murine skin and liver NQR activity. This enzyme plays a major role in the defence of cells against oxygen stress because it inhibits the 1-electron reduction of quinones to semiquinones and their subsequent oxidation to quinones termed as quinone redox cycle. It belongs to the aromatic hydrocarbon-responsive (Ah) battery. This gene battery includes Cyp1a1 (cytochrome P-450 IA1), Cyp1a2 (cytochrome P-450 IA2) and Nmo-1 [NAD(P)H: quinone reductase]. In the skin cytochrome P-450 IA1-dependent activity is about 1-5% compared to the corresponding activity in the liver, whereas NQR has the same activity in skin and liver. NQR was determined in the cytoplasm of murine skin, liver, and human keratinocytes using 2,6-dichlorophenolindophenol as the substrate. The Ah-receptor binding compounds, such as coal tar constituents, or 3-methylcholanthrene induce cytochrome P-450-dependent activities such as aryl hydrocarbon hydroxylase or 7-ethoxyresorufin-O-de-ethylase and NQR, whereas butyl hydroxytoluol, which does not bind to the Ah receptor, induces only NQR. For inhibition studies several known inhibitors of dihydrodiol dehydrogenase, aldo-keto and carbonyl reductase activities were used. There was a similar pattern of inhibition of the basal and induced activity in all tissues investigated. Pyrazole, progesterone and phenobarbital did not inhibit, whereas dicoumarol, rutin and indomethacin inhibited NQR activity in murine skin and liver as well as in human keratinocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  1. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    part of our AKR1C3 drug discovery efforts, I identified 3-((4-nitronaphthalen- 1-yl)amino) benzoic acid (BMT 4-158), a “first-in-class”, dual acting...target for the treatment of CRPC. We report continuing pharmacological characterization of 3-((4-nitronaphthalen-1-yl)amino) benzoic acid (BMT 4-158), a

  2. Reduction of doxorubicin and oracin and induction of carbonyl reductase in human breast carcinoma MCF-7 cells.

    PubMed

    Gavelová, Martina; Hladíková, Jana; Vildová, Lenka; Novotná, Romana; Vondrácek, Jan; Krcmár, Pavel; Machala, Miroslav; Skálová, Lenka

    2008-10-22

    In cancer cells, the drug-metabolizing enzymes may deactivate cytostatics, thus contributing to their survival. Moreover, the induction of these enzymes may also contribute to development of drug-resistance through acceleration of cytostatics deactivation. However, the principal metabolic pathways contributing to deactivation of many cytostatics still remain poorly defined. The main aims of the present study were: (i) to compare the reductive deactivation of cytostatic drugs doxorubicin (DOX) and oracin (ORC) in human breast cancer MCF-7 cells; (ii) to identify major enzyme(s) involved in the carbonyl reduction; and iii) to evaluate the activities and expression of selected carbonyl reducing enzymes in MCF-7 cells upon a short-term (48 h) exposure to either DOX or ORC. We found that MCF-7 cells were able to effectively metabolize both DOX and ORC through reduction of their carbonyl groups. The reduction of ORC was stereospecific, with a preferential formation of + enantiomer of dihydrooracin (DHO). The cytosolic carbonyl reductase CBR1 seemed to be a principal enzyme reducing both drugs, while cytosolic aldo-keto reductase AKR1C3 or microsomal reductases probably did not play important role in metabolism of either DOX or ORC. The exposure of MCF-7 cells to low (nanomolar) concentrations of DOX or ORC caused a significant elevation of reduction rates of both cytostatics, accompanied with an increase of CBR1 protein levels. Taken together, the present results seem to suggest that the accelerated metabolic deactivation of ORC or DOX might contribute to the survival of breast cancer cells during exposure to these cytostatics.

  3. Human hydroxysteroid dehydrogenases and pre-receptor regulation: Insights into inhibitor design and evaluation

    PubMed Central

    Penning, Trevor M.

    2011-01-01

    Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases: e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. PMID:21272640

  4. Metabolic regulation of aldose reductase activity by nitric oxide donors.

    PubMed

    Dixit, B L; Ramana, K V; Chandra, D; Jackson, E B; Srivastava, S; Bhatnagar, A; Srivastava, S K

    2001-01-30

    Regulation of aldose reductase (AR), a member of the aldo-keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(beta-D-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37 degrees C led to approximately 71% decrease in the enzyme activity with DL-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).

  5. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2014-03-01

    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  6. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure.

    PubMed

    Mir, Sartaj Ahmad; Pinto, Sneha M; Paul, Somnath; Raja, Remya; Nanjappa, Vishalakshi; Syed, Nazia; Advani, Jayshree; Renuse, Santosh; Sahasrabuddhe, Nandini A; Prasad, T S Keshava; Giri, Ashok K; Gowda, Harsha; Chatterjee, Aditi

    2017-03-01

    Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin.

  7. Conversion of Human Steroid 5β-Reductase (AKR1D1) into 3β-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H

    PubMed Central

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-01-01

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ4-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ4-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ4-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference. PMID:22437839

  8. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  9. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  10. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  11. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution.

    PubMed

    Khurana, S; Powers, D B; Anderson, S; Blaber, M

    1998-06-09

    The three-dimensional structure of Corynebacterium 2, 5-diketo-D-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-A resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-D-gluconate (2,5-DKG) to 2-keto-L-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo-keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of L-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-L-gulonate from D-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.

  12. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

  13. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes.

    PubMed

    Gibson, Douglas A; Simitsidellis, Ioannis; Cousins, Fiona L; Critchley, Hilary O D; Saunders, Philippa T K

    2016-01-28

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1-8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment.

  14. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes

    PubMed Central

    Gibson, Douglas A.; Simitsidellis, Ioannis; Cousins, Fiona L.; Critchley, Hilary O. D.; Saunders, Philippa T. K.

    2016-01-01

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1–8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment. PMID:26817618

  15. The human kidney is a progesterone-metabolizing and androgen-producing organ.

    PubMed

    Quinkler, M; Bumke-Vogt, C; Meyer, B; Bähr, V; Oelkers, W; Diederich, S

    2003-06-01

    Progesterone (P) is a potent antagonist of the human mineralocorticoid receptor (MR) in vitro. We have previously demonstrated effective downstream metabolism of P in the kidney. This mechanism potentially protects the MR from P action. Here, we have investigated the expression and functional activity of steroidogenic enzymes in human kidney. RT-PCR analysis demonstrated the expression of 5 alpha-reductase type 1, 5 beta-reductase, aldo-keto-reductase (AKR) 1C1, AKR1C2, AKR1C3, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) type 2, and 17 alpha-hydroxylase/17,20-lyase (P450c17). The presence of 3 beta-HSD type 2 and P450c17 indicated that conversion of pregnenolone to dehydroepiandrosterone (DHEA) and to androstenedione may take place effectively in kidney. To investigate this further, we incubated kidney subcellular fractions with radiolabeled pregnenolone. This resulted in efficient formation of DHEA from pregnenolone, indicating both 17 alpha-hydroxylase and 17,20-lyase activities exerted by P450c17. Radiolabeled DHEA was converted via androstenedione, androstenediol, and testosterone, indicating both 3 beta-HSD type 2 activity and 17 beta-HSD activity. In addition, the conversion of testosterone to 5 alpha-dihydrotestosterone was detectable, indicating 5 alpha-reductase activity. In conclusion, we verified the expression and functional activity of several enzymes involved in downstream metabolism of P and androgen synthesis in human kidney. These findings may be critical to the understanding of water balance during the menstrual cycle and pregnancy and of sex differences in hypertension.

  16. Characterization of human platelet glutathione reductase.

    PubMed

    Moroff, G; Kosow, D P

    1978-12-08

    Glutathione reductase (NAD(P)h:oxidized glutathione oxidoreductase, EC 1.6.4.2) has been purified 1000-fold from the cytoplasmic fraction of human platelets. Salts, including the heretofore unreported effect of sodium citrate, activate the NADPH-dependent reduction of oxidized glutathione. Sodium citrate and monovalent salt activation appears to involve multiple sites having different binding affinities. At sub-saturating sodium phosphate, non-linear double reciprocal plots indicative of substrate activation by oxidized glutathione were observed. Initial velocity double reciprocal plots at sub-saturating and saturating concentrations of phosphate generate a family of converging lines. NADP+ is a partial inhibitor, indicating that the reduction of oxidized glutathione can proceed by more than one pathway. FMN, FAD, and riboflavin inhibit platelet glutathione reductase by influencing only the V while nitrofurantoin inhibition is associated with an increase Koxidized glutathione and a decreased V.

  17. AKR1B1 — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: This gene encodes a member of the aldo/keto reductase superfamily, which consists of more than 40 known enzymes and proteins. This member catalyzes the reduction of a number of aldehydes, including the aldehyde form of glucose, and is thereby implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. Multiple pseudogenes have been identified for this gene. The nomenclature system used by the HUGO Gene Nomenclature Committee to define human aldo-keto reductase family members is known to differ from that used by the Mouse Genome Informatics database. [provided by RefSeq, Feb 2009

  18. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    PubMed

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction.

  19. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  20. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids

    PubMed Central

    Valanejad, Leila; Nadolny, Christina; Shiffka, Stephanie; Chen, Yuan; You, Sangmin; Deng, Ruitang

    2017-01-01

    Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism. PMID:28125709

  1. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    PubMed

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  2. Metabolism and disposition of a potent and selective JNK inhibitor [14C]tanzisertib following oral administration to rats, dogs and humans.

    PubMed

    Atsriku, Christian; Hoffmann, Matthew; Ye, Ying; Kumar, Gondi; Surapaneni, Sekhar

    2015-05-01

    1. The disposition of tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, orally active c-Jun amino-terminal kinase inhibitor intended for treatment of fibrotic diseases was studied in rats, dogs and humans following a single oral dose of [(14)C]tanzisertib (Independent Investigational Review Board Inc., Plantation, FL). 2. Administered dose was quantitatively recovered in all species and feces/bile was the major route of elimination. Tanzisertib was rapidly absorbed (Tmax: 1-2 h) across all species with unchanged tanzisertib representing >83% of plasma radioactivity in dogs and humans, whereas <34% was observed in rats. Variable amounts of unchanged tanzisertib (1.5-32% of dose) was recovered in urine/feces across all species, the highest in human feces. 3. Metabolic profiling revealed that tanzisertib was primarily metabolized via oxidation and conjugation pathways, but extensively metabolized in rats relative to dogs/humans. CC-418424 (S-cis isomer of tanzisertib) was the major plasma metabolite in rats (38.4-46.4% of plasma radioactivity), while the predominant plasma metabolite in humans and dogs was M18 (tanzisertib-/CC-418424 glucuronide), representing 7.7 and 3.2% of plasma radioactivity, respectively. Prevalent biliary metabolite in rats and dogs, M18 represented 16.8 and 17.1% of dose, respectively. 4. In vitro studies using liver subcellular fractions and expressed enzymes characterized involvement of novel human aldo-keto reductases for oxido-reduction and UDP-glucuronosyltransferases for conjugation pathways.

  3. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metabolism of Ginger Component [6]-Shogaol in Liver Microsomes from Mouse, Rat, Dog, Monkey, and Human

    PubMed Central

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-01-01

    Scope There are limited data on the metabolism of [6]-shogaol, a major bioactive component of ginger. This study demonstrates metabolism of [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Methods and results The in vitro metabolism of [6]-shogaol was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with [6]-shogaol, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E, 4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than [6]-shogaol. Conclusion We conclude that [6]-shogaol is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning pre-clinical trials towards [6]-shogaol chemoprevention. PMID:23322474

  5. GST-M1 is transcribed moreso than AKR7A2 in AFB₁-exposed human monocytes and lymphocytes.

    PubMed

    Bahari, Abbas; Mehrzad, Jalil; Mahmoudi, Mahmoud; Bassami, Mohammad Reza; Dehghani, Hesam

    2015-01-01

    Glutathione-S-transferases (GST) and aldo-keto reductases (AKR) are key aflatoxin (AF)-detoxifying enzymes. In this study, the expression of GST-M1, GST-T1, AKR-7A2, and AKR-7A3 genes in human monocytes and lymphocytes was analyzed after in vitro exposure to 10 or 100 ng AFB1/ml for 2 h. Unlike in pilot studies that showed that all four examined genes were present in HepG2 cells, in lymphocytes and monocytes, only GST-M1 and AKR-7A2 were detected. In fact, the induced expression of both GST-M1 and AKR-7A2 genes in human monocytes was moreso than that seen in AFB1-exposed lymphocytes. In addition, analyses of the effects of the exposures on cell cycle status were performed as, in cells lacking adequate detoxification capacities, it would be expected the cells would arrest at checkpoints in the cell cycle or progress to apoptotic/necrotic states. The results here indicated that only the high dose of AFB1 led to a change in cell cycle profiles and only in the monocytes (i.e. cells in S phase were significantly reduced). In general, the results here strongly suggest that human immune cell lineages appear to be able to increase their expression of AFB1-detoxifying enzymes (albeit to differing degrees) and, as a result, are able to counter potential toxicities from AFB1 and (likely) its metabolites.

  6. Enhanced 4-Hydroxynonenal Resistance in KEAP1 Silenced Human Colon Cancer Cells

    PubMed Central

    Jung, Kyeong-Ah; Kwak, Mi-Kyoung

    2013-01-01

    Nuclear factor erythroid 2-related factor 2 (NRF2) is the transcription factor that regulates an array of antioxidant/detoxifying genes for cellular defense. The conformational changes of Kelch-like ECH-associated protein 1 (KEAP1), a cytosolic repressor protein of NRF2, by various stimuli result in NRF2 liberation and accumulation in the nucleus. In the present study, we aimed to investigate the effect of KEAP1 knockdown on NRF2 target gene expression and its toxicological implication using human colon cancer cells. The stable KEAP1-knockdown HT29 cells exhibit elevated levels of NRF2 and its target gene expressions. In particular, the mRNA levels of aldo-keto reductases (AKR1C1, 1C2, 1C3, 1B1, and 1B10) were substantially increased in KEAP1 silenced HT29 cells. These differential AKRs expressions appear to contribute to protection against oxidative stress. The KEAP1-knockdown cells were relatively more resistant to hydrogen peroxide (H2O2) and 4-hydroxynonenal (4HNE) compared to the control cells. Accordantly, we observed accumulation of 4HNE protein adducts in H2O2- or 4HNE-treated control cells, whereas KEAP1-knockdown cells did not increase adduct formation. The treatment of KEAP1-silenced cells with AKR1C inhibitor flufenamic acid increased 4HNE-induced cellular toxicity and protein adduct formation. Taken together, these results indicate that AKRs, which are NRF2-dependent highly inducible gene clusters, play a role in NRF2-mediated cytoprotection against lipid peroxide toxicity. PMID:23766854

  7. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  8. Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A

    PubMed Central

    Erzinger, Melanie M.; Bovet, Cédric; Hecht, Katrin M.; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W.; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J.

    2016-01-01

    The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues. PMID:26950072

  9. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.

    PubMed Central

    Mayr, Peter; Nidetzky, Bernd

    2002-01-01

    Kinetic substituent effects have been used to examine the catalytic reaction profile of xylose reductase from the yeast Candida tenuis, a representative aldo/keto reductase of primary carbohydrate metabolism. Michaelis-Menten parameters (k(cat) and K(m)) for NADH-dependent enzymic aldehyde reductions have been determined using a homologous series of benzaldehyde derivatives in which substituents in meta and para positions were employed to systematically perturb the properties of the reactive carbonyl group. Kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m) for enzymic reactions with meta-substituted benzaldehydes have been obtained by using NADH (2)H-labelled in the pro-R C4-H position, and equilibrium constants for the conversion of these aldehydes into the corresponding alcohols (K(eq)) have been measured in the presence of NAD(H) and enzyme. Aldehyde dissociation constants (K(d)) and the hydride transfer rate constant (k(7)) have been calculated from steady-state rate and KIE data. Quantitative structure-activity relationship analysis was used to factor the observed substituent dependence of k(cat)/K(m) into a major electronic effect and a productive positional effect of the para substituent. k(cat)/K(m) (after correction for substituent position) and K(eq) obeyed log-linear correlations over the substituent parameter, Hammett sigma, giving identical slope values (rho) of +1.4 to +1.7, whereas the same Hammett plot for logK(d) yielded rho=-1.5. This leads to the conclusion that electron-withdrawing substituents facilitate the reaction and increase binding to about the same extent. KIE values for k(cat) (1.8) and k(cat)/K(m) (2.7), and likewise k(7), showed no substituent dependence. Therefore, irrespective of the observed changes in reactivity over the substrate series studied no shift in the character of the rate-limiting transition state of hydride transfer occurred. The signs and magnitudes of rho values suggest this transition state to be product

  10. Cloning, expression and characterization of a putative 2,5-diketo-D-gluconic acid reductase in Comamonas testosteroni.

    PubMed

    Chen, Yuanan; Ji, Wei; Zhang, Hao; Zhang, Xiao; Yu, Yuanhua

    2015-06-05

    Aldo-keto reductases (AKRs) are a superfamily of soluble NAD(P)(H) oxidoreductases. The function of the enzymes is to reduce aldehydes and ketones into primary and secondary alcohols. We have cloned a 2,5-diketo-D-gluconic acid reductase (2,5DKGR) gene from Comamonas testosteroni (C. testosteroni) ATCC11996 (a Gram-negative bacterium which can use steroids as carbon and energy source) into plasmid pET-15b and over expressed in Escherichia coli BL21 (DE3). The protein was purified by His-tag Metal chelating affinity chromatography column. The 2,5-diketo-D-gluconic acid reductase (2,5DKGR) gene contains 1062 bp and could be translated into a protein of 353 amino acid residues. Three consensus sequences of the AKR superfamily are found as GxxxxDxAxxY, LxxxGxxxPxxGxG and LxxxxxxxxxDxxxxH. GxxxxDxAxxY is the active site, LxxxGxxxPxxGxG is the Cofactor-binding site for NAD(P)(H), LxxxxxxxxxDxxxxH is used for supporting the 3D structure. 2,5-diketo-D-gluconic acid reductase gene of C. testosteroni was knocked out and a mutant M-AKR was obtained. Compared to wild type C. testosteroni, degradations of testosterone, estradiol, oestrone and methyltestosterone in mutant M-AKR were decreased. Therefore, 2,5-diketo-D-gluconic acid reductase in C. testosteroni is involved in steroid degradation.

  11. Diesel Exhaust Influences Carcinogenic PAH-Induced Genotoxicity and Gene Expression in Human Breast Epithelial Cells in Culture

    PubMed Central

    Courter, Lauren A.; Pereira, Cliff; Baird, William M.

    2009-01-01

    The carcinogenic polycyclic aromatic hydrocarbon ns (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are widespread environmental pollutants, however their toxicological effects within a mixture is not established. We investigated the influence of diesel exhaust (DE) on B[a]P and DB[a,l]P-induced PAH-DNA adduct formation, metabolic activation, gene expression and 8-oxo-dG adduct levels in human breast epithelial cells (MCF-10A) in culture. Following 24 and 48 h, cells co-exposed to DE plus B[a]P exhibited a significant decrease in PAH-DNA adduct levels, compared with B[a]P alone, as determined by 33P-postlabeling combined with reversed-phase high performance liquid chromatography (HPLC). Cytochrome P450 (CYP) enzyme activity, as measured by the ethoxyresorufin O-deethylase (EROD) assay and CYP1B1 expression, significantly increased with co-exposure of DE plus DB[a,l]P, compared with DB[a,l]P alone. Aldo keto-reductase (AKR)1C1, AKR1C2,and AKR1C3 expression also significantly increased in cells exposed to DE plus PAH, compared with PAH exposure alone. Cell populations exhibiting 8-oxo-dG adducts significantly increased in response to exposure to B[a]P or DE plus B[a]P for 24 h, compared with vehicle control, as quantified by flow cytometry. These results suggest that complex mixtures may modify the carcinogenic potency of PAH by shifting the metabolic activation pathway from the production of PAH diol-epoxides to AKR pathway-derived metabolites. PMID:17612574

  12. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.

    PubMed

    Khusnutdinova, Anna N; Flick, Robert; Popovic, Ana; Brown, Greg; Tchigvintsev, Anatoli; Nocek, Boguslaw; Correia, Kevin; Joo, Jeong C; Mahadevan, Radhakrishnan; Yakunin, Alexander F

    2017-08-01

    Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  14. Identification of a newly isolated erythritol-producing yeast and cloning of its erythrose [corrected] reductase genes.

    PubMed

    Deng, Huihui; Han, Ye; Liu, Yuanyuan; Jia, Wei; Zhou, Zhijiang

    2012-11-01

    A new erythritol-producing yeast (strain BH010) was isolated in this study. Analysis of the D1/D2 domain of the 26S rDNA sequence, the ITS/5.8S rDNA sequence [corrected] and the 18S rDNA sequence allowed the taxonomic position of strain BH010 to be discussed, [corrected] and it was identified and named Moniliella sp. BH010. Physiological characteristics were described. Scanning electron micrography clearly indicated that the cells were cylindrical to elliptical with an average size of 5 × 10 μm when growing in liquid medium [corrected] and that pseudohyphae and blastoconidia were observed when cultivated in agar plates. The erythrose [corrected] reductase genes were cloned, sequenced, and analyzed. BLAST analysis and multiple sequence alignment demonstrated that erythrose [corrected] reductase genes of Moniliella sp. BH010 shared very high homology with that of Trichosporonoides megachiliensis SNG-42 except for the presence of introns. The deduced amino acid sequences showed high homology to the aldo-keto reductase superfamily.

  15. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  16. Hic-5’s Regulatory Role in TGFB Signaling in Prostate Stroma

    DTIC Science & Technology

    2012-06-01

    of cancer. Expert Opin Investig Drugs , 2005. 14(6): p. 629-43. 10. Ayala, G., et al., Reactive stroma as a predictor of biochemical-free recurrence...584-95. 37. Bauman, D.R., et al., Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto...reductase isoforms: potential antineoplastic agents that work independently of cyclooxygenase isozymes. Mol Pharmacol, 2005. 67(1): p. 60-8. 38

  17. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A.

    PubMed

    Banta, Scott; Swanson, Barbara A; Wu, Shan; Jarnagin, Alisha; Anderson, Stephen

    2002-02-01

    The NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme is a required component in some novel biosynthetic vitamin C production processes. This enzyme catalyzes the conversion of 2,5-DKG to 2-keto-L-gulonic acid, which is an immediate precursor to L-ascorbic acid. Forty unique site-directed mutations were made at five residues in the cofactor-binding pocket of 2,5-DKG reductase A in an attempt to improve its ability to use NADH as a cofactor. NADH is more stable, less expensive and more prevalent in the cell than is NADPH. To the best of our knowledge, this is the first focused attempt to alter the cofactor specificity of a member of the aldo-keto reductase superfamily by engineering improved activity with NADH into the enzyme. Activity of the mutants with NADH or NADPH was assayed using activity-stained native polyacrylamide gels. Eight of the mutants at three different sites were identified as having improved activity with NADH. These mutants were purified and subjected to a kinetic characterization with NADH as a cofactor. The best mutant obtained, R238H, produced an almost 7-fold improvement in catalysis with NADH compared with the wild-type enzyme. Surprisingly, most of this catalytic improvement appeared to be due to an improvement in the apparent kcat for the reaction rather than a large improvement in the affinity of the enzyme for NADH.

  18. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators

    DOE PAGES

    Ahmad, Md. Faiz; Huff, Sarah E.; Pink, John; ...

    2015-10-21

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibitionmore » determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Finally, together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.« less

  19. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators

    SciTech Connect

    Ahmad, Md. Faiz; Huff, Sarah E.; Pink, John; Alam, Intekhab; Zhang, Andrew; Perry, Kay; Harris, Michael E.; Misko, Tessianna; Porwal, Suheel K.; Oleinick, Nancy L.; Miyagi, Masaru; Viswanathan, Rajesh; Dealwis, Chris Godfrey

    2015-10-21

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Finally, together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.

  20. Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis.

    PubMed

    Ziegler, Jörg; Voigtländer, Susan; Schmidt, Jürgen; Kramell, Robert; Miersch, Otto; Ammer, Christian; Gesell, Andreas; Kutchan, Toni M

    2006-10-01

    Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7-epi-salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.

  1. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  2. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    DTIC Science & Technology

    2006-05-01

    Pathol, 162: 1037-1042, 2003. 27. Praml, C., Savelyeva, L., Perri, P., and Schwab, M. Cloning of the human aflatoxin B1- aldehyde reductase gene at...reductase family 7, member A2 ( aflatoxin aldehyde reductase) 1.2 NBL1c neuroblastoma, suppression of tumorigenicity 1 1.1 1p36.21-1p36.12b...29 AKR7A2c aldo-keto reductase family 7, member A2 ( aflatoxin aldehyde reductase) 1.7 CAPZB capping protein (actin filament) muscle Z

  3. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.

  4. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  5. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  6. NADPH-dependent reductases and polyol formation in human leukemia cell lines.

    PubMed

    Sato, Sanai; Secchi, E Filippo; Sakurai, Shinichi; Ohta, Nobuo; Fukase, Shigeru; Lizak, Martin J

    2003-02-01

    Because of the limited availability of human tissues, leukemia cell lines are often utilized as the models for human leukocytes. In this study, we investigated the NADPH-dependent reductases and polyol pathway in commonly utilized human leukemia cell lines. The relative amounts of aldose and aldehyde reductases were estimated by separating two enzymes with chromatofocusing. The flux of glucose through the polyol pathway was examined by 19F-NMR using 3-fluoro-3-deoxy-D-glucose (3FG) as substrate. Sugar alcohol analysis was conducted by gas chromatography. In myelocytic leukemia cells, the major reductase was aldehyde reductase, and levels of aldose reductase were extremely low. Although lymphocytic cells also contained both aldose and aldehyde reductases, the levels of aldose reductase appeared to be higher in lymphocytic cells than myeolcytic cells. In two lymphocytic cells MOLT-4 and SKW6.4, aldose reductase is clearly dominant. When incubated in medium containing D-galactose, all cell lines quickly accumulated galactitol. There was correlation between galactitol levels and aldose reductase levels. The aldose reductase inhibitor FK 366 significantly reduced the formation of galactitol. 19F-NMR of the cells cultured with 3FG as substrate demonstrated the formation of 3-fluoro-3-dexoy-sorbitol in all the cell lines examined in this study. The relative amounts of sorbitol and fructose varied significantly among the cells. The data confirm that the polyol pathway is present in both myelocytic and lymphocytic leukemia cell lines. However, there is a large variation among the cell lines in the levels of enzymes and flux of glucose through the polyol pathway.

  7. Catalytic cycle of human glutathione reductase near 1 Å resolution

    PubMed Central

    Berkholz, Donald S.; Faber, H. Richard; Savvides, Savvas N.; Karplus, P. Andrew

    2008-01-01

    Summary Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity, a net deviation of 53° across 5 residues. But this apparent strain is not a factor in catalysis as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds. PMID:18638483

  8. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2015-04-01

    The human mitochondrial outer membrane protein mitoNEET is a newly discovered target of the type 2 diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane α helix tethered to the mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox-active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, the specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase from reducing the mitoNEET [2Fe-2S] clusters, indicating that the redox-active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2015-01-01

    Human mitochondrial outer membrane protein mitoNEET is a newly discovered target of type II diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane alpha helix tethered to mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters, indicating that the redox active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. PMID:25645953

  10. NADPH-dependent Reductases Involved in the Detoxification of Reactive Carbonyls in Plants*

    PubMed Central

    Yamauchi, Yasuo; Hasegawa, Ayaka; Taninaka, Ai; Mizutani, Masaharu; Sugimoto, Yukihiro

    2011-01-01

    Reactive carbonyls, especially α,β-unsaturated carbonyls produced through lipid peroxidation, damage biomolecules such as proteins and nucleotides; elimination of these carbonyls is therefore essential for maintaining cellular homeostasis. In this study, we focused on an NADPH-dependent detoxification of reactive carbonyls in plants and explored the enzyme system involved in this detoxification process. Using acrolein (CH2 = CHCHO) as a model α,β-unsaturated carbonyl, we purified a predominant NADPH-dependent acrolein-reducing enzyme from cucumber leaves, and we identified the enzyme as an alkenal/one oxidoreductase (AOR) catalyzing reduction of an α,β-unsaturated bond. Cloning of cDNA encoding AORs revealed that cucumber contains two distinct AORs, chloroplastic AOR and cytosolic AOR. Homologs of cucumber AORs were found among various plant species, including Arabidopsis, and we confirmed that a homolog of Arabidopsis (At1g23740) also had AOR activity. Phylogenetic analysis showed that these AORs belong to a novel class of AORs. They preferentially reduced α,β-unsaturated ketones rather than α,β-unsaturated aldehydes. Furthermore, we selected candidates of other classes of enzymes involved in NADPH-dependent reduction of carbonyls based on the bioinformatic information, and we found that an aldo-keto reductase (At2g37770) and aldehyde reductases (At1g54870 and At3g04000) were implicated in the reduction of an aldehyde group of saturated aldehydes and methylglyoxal as well as α,β-unsaturated aldehydes in chloroplasts. These results suggest that different classes of NADPH-dependent reductases cooperatively contribute to the detoxification of reactive carbonyls. PMID:21169366

  11. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.

    PubMed

    Zhang, Min; Jiang, Shao-tong; Zheng, Zhi; Li, Xing-jiang; Luo, Shui-zhong; Wu, Xue-feng

    2015-07-01

    Rhizopus oryzae is valuable as a producer of organic acids via lignocellulose catalysis. R. oryzae metabolizes xylose, which is one component of lignocellulose hydrolysate. In this study, a novel NADPH-dependent xylose reductase gene from R. oryzae AS 3.819 (Roxr) was cloned and expressed in Pichia pastoris GS115. Homology alignment suggested that the 320-residue protein contained domains and active sites belonging to the aldo/keto reductase family. SDS-PAGE demonstrated that the recombinant xylose reductase has a molecular weight of approximately 37 kDa. The optimal catalytic pH and temperature of the purified recombinant protein were 5.8 and 50 °C, respectively. The recombinant protein was stable from pH 4.4 to 6.5 and at temperatures below 42 °C. The recombinant enzyme has bias for D-xylose and L-arabinose as substrates and NADPH as its coenzyme. Real-time quantitative reverse transcription PCR tests suggested that native Roxr expression is regulated by a carbon catabolite repression mechanism. Site-directed mutagenesis at two possible key sites involved in coenzyme binding, Thr(226)  → Glu(226) and Val(274)  → Asn(274), were performed, respectively. The coenzyme specificity constants of the resulted RoXR(T226E) and RoXR(V274N) for NADH increased 18.2-fold and 2.4-fold, which suggested possibility to improve the NADH preference of this enzyme through genetic modification.

  12. Detoxication of benzo[a]pyrene-7,8-dione by sulfotransferases (SULTs) in human lung cells.

    PubMed

    Zhang, Li; Huang, Meng; Blair, Ian A; Penning, Trevor M

    2012-08-24

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.

  13. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal.

    PubMed

    Doorn, Jonathan A; Maser, Edmund; Blum, Andreas; Claffey, David J; Petersen, Dennis R

    2004-10-19

    4-Oxonon-2-enal (4ONE) was demonstrated to be a product of lipid peroxidation, and previous studies found that it was highly reactive toward DNA and protein. The present study sought to determine whether carbonyl reductase (CR) catalyzes reduction of 4ONE, representing a potential pathway for metabolism of the lipid peroxidation product. Recombinant CR was cloned from a human liver cDNA library, expressed in Escherichia coli, and purified by metal chelate chromatography. Both 4ONE and its glutathione conjugate were found to be substrates for CR, and kinetic parameters were calculated. TLC analysis of reaction products revealed the presence of three compounds, two of which were identified as 4-hydroxynon-2-enal (4HNE) and 1-hydroxynon-2-en-4-one (1HNO). GC/MS analysis confirmed 4HNE and 1HNO and identified the unknown reaction product as 4-oxononanal (4ONA). Analysis of oxime derivatives of the reaction products via LC/MS confirmed the unknown as 4ONA. The time course for CR-mediated, NADPH-dependent 4ONE reduction and appearance of 4HNE and 1HNO was determined using HPLC, demonstrating 4HNE to be a major product and 1HNO and 4ONA to be minor products. Simulated structures of 4ONE in the active site of CR/NADPH calculated via docking experiments predict the ketone positioned as primary hydride acceptor. Results of the present study demonstrate that 4ONE is a substrate for CR/NADPH and the enzyme may represent a pathway for biotransformation of the lipid. Furthermore, these findings reveal that CR catalyzes hydride transfer selectively to the ketone but also to the aldehyde and C=C of 4ONE, resulting in 4HNE, 1HNO, and 4ONA, respectively.

  14. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  15. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols.

    PubMed

    Zhang, Li; Jin, Yi; Chen, Mo; Huang, Meng; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2011-07-22

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.

  16. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  17. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  18. Structural and biochemical properties of cloned and expressed human and rat steroid 5. alpha. -reductases

    SciTech Connect

    Andersson, S.; Russell, D.W. )

    1990-05-01

    The microsomal enzyme steroid 5{alpha}-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5{alpha}-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5{alpha}-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5{alpha}-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5{alpha}-reductases.

  19. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase

    PubMed Central

    Sanli, Gulsah; Banta, Scott; Anderson, Stephen; Blaber, Michael

    2004-01-01

    Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified. PMID:14718658

  20. Quantitation of Benzo[a]pyrene Metabolic Profiles in Human Bronchoalveolar H358) Cells by Stable Isotope Dilution Liquid Chromatography-Atmospheric Chemical Ionization Mass Spectrometry

    PubMed Central

    Lu, Ding; Harvey, Ronald G.; Blair, Ian A.; Penning, Trevor M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1) and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [13C4]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500 fold increased sensitivity compared with a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall

  1. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    PubMed

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R(2)=0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors.

  2. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    PubMed

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  3. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells

    PubMed Central

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    Background The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. Objectives This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. Materials and Methods RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5’ functional deletion analysis and site-directed mutagenesis. Results In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5’functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. Conclusions In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC. PMID:24003325

  4. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct.

    PubMed

    Huang, Meng; Liu, Xiaojing; Basu, Sankha S; Zhang, Li; Kushman, Mary E; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2012-05-21

    Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.

  5. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.

    PubMed

    Bando, M; Obazawa, H

    1995-12-01

    Major and minor ascorbate free radical (AFR) reductases, with diaphorase activity, and three other diaphorases were separated from the human lens soluble fraction by DEAE-cellulose ion-exchange column chromatography. They were characterized for adsorptivity to ion-exchange and 5'AMP-Sepharose 4B affinity columns, kinetic properties, and substrate specificity. The latter diaphorases were closely correlated with NADH-cytochrome beta 5 reductase. The major and minor AFR reductases were regarded as a major diaphorase group different from two ubiquitous diaphorases, i.e., NADH-cytochrome beta 5 reductase and DT-diaphorase. A major AFR reductase was partially purified approximately 50 fold over the lens soluble fraction by ion-exchange, affinity, and gel filtration (Sephacryl S-200 HR) column chromatography. From the partially purified enzyme, 2 bands, one sharp and one diffuse, were obtained by native polyacrylamide gel electrophoresis. Two proteins, of 20 and 24 kDa, were identified in the active enzyme bands by SDS-polyacrylamide gel electrophoresis. This suggests that the 20 and/or 24 kDa proteins may be components of the major AFR reductase.

  6. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds.

    PubMed

    MacLeod, A Kenneth; McMahon, Michael; Plummer, Simon M; Higgins, Larry G; Penning, Trevor M; Igarashi, Kazuhiko; Hayes, John D

    2009-09-01

    To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome microarray revealed that knockdown of KEAP1 resulted in 23 messenger RNAs (mRNAs) being up-regulated > or = 2.0-fold. mRNA for aldo-keto reductase (AKR) 1B10, AKR1C1, AKR1C2 and AKR1C3 were induced to the greatest extent, showing increases of between 12- and 16-fold, whereas mRNA for glutamate-cysteine ligase catalytic and modifier subunits, NAD(P)H:quinone oxidoreductase-1 and haem oxygenase-1 (HMOX1) were induced between 2.0- and 4.8-fold. Knockdown of BACH1 increased HMOX1 135-fold but induced the other genes examined to a maximum of only 2.7-fold. Activation of NRF2, by KEAP1 knockdown, caused a 75% increase in the amount of glutathione in HaCaT cells and a 1.4- to 1.6-fold increase in their resistance to the electrophiles acrolein, chlorambucil and cumene hydroperoxide (CuOOH), as well as the redox-cycling agent menadione. Inhibition of glutathione synthesis during KEAP1 knockdown, by treatment with buthionine sulfoximine, abrogated resistance to acrolein, chlorambucil and CuOOH, but not to menadione. In contrast, knockdown of BACH1 did not increase glutathione levels or resistance to xenobiotics. Knockdown of NRF2 in HaCaT cells decreased glutathione to approximately 80% of normal homeostatic levels and similarly reduced their tolerance of electrophiles. Thus, the KEAP1-NRF2 pathway determines resistance to electrophiles and redox-cycling compounds in human keratinocytes through glutathione-dependent and glutathione-independent mechanisms. This study also shows that AKR1B10, AKR1C1 and AKR1C2 proteins have potential utility as biomarkers for NRF2 activation in the human.

  7. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  8. Crustacean oxi-reductases protein sequences derived from a functional genomic project potentially involved in ecdysteroid hormones metabolism - a starting point for function examination.

    PubMed

    Tom, Moshe; Manfrin, Chiara; Giulianini, Piero G; Pallavicini, Alberto

    2013-12-01

    A transcriptomic assembly originated from hypodermis and Y organ of the crustacean Pontastacus leptodactylus is used here for in silico characterization of oxi-reductase enzymes potentially involved in the metabolism of ecdysteroid molting hormones. RNA samples were extracted from male Y organ and its neighboring hypodermis in all stages of the molt cycle. An equimolar RNA mix from all stages was sequenced using next generation sequencing technologies and de novo assembled, resulting with 74,877 unique contigs. These transcript sequences were annotated by examining their resemblance to all GenBank translated transcripts, determining their Gene Ontology terms and their characterizing domains. Based on the present knowledge of arthropod ecdysteroid metabolism and more generally on steroid metabolism in other taxa, transcripts potentially related to ecdysteroid metabolism were identified and their longest possible conceptual protein sequences were constructed in two stages, correct reading frame was deduced from BLASTX resemblances, followed by elongation of the protein sequence by identifying the correct translation frame of the original transcript. The analyzed genes belonged to several oxi-reductase superfamilies including the Rieske non heme iron oxygenases, cytochrome P450s, short-chained hydroxysteroid oxi-reductases, aldo/keto oxireductases, lamin B receptor/sterol reductases and glucose-methanol-cholin oxi-reductatses. A total of 68 proteins were characterized and the most probable participants in the ecdysteroid metabolism where indicated. The study provides transcript and protein structural information, a starting point for further functional studies, using a variety of gene-specific methods to demonstrate or disprove the roles of these proteins in relation to ecdysteroid metabolism in P. leptodactylus.

  9. Plant progesterone 5beta-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5betaR from Digitalis purpurea.

    PubMed

    Gavidia, Isabel; Tarrío, Rosa; Rodríguez-Trelles, Francisco; Pérez-Bermúdez, Pedro; Seitz, H Ulrich

    2007-03-01

    Plants of the genus Digitalis produce cardiac glycosides, i.e. digoxin, which are widely used for congestive heart failure. Progesterone 5beta-reductase (P5betaR) is a key enzyme in the biosynthesis of these natural products. Here, we have carried out the purification and partial amino acid sequencing of the native P5betaR from foxglove (Digitalis purpurea), and isolated a cDNA encoding this enzyme. Similarly to other steroid 5beta-reductases, the recombinant P5betaR catalyzes the stereospecific reduction of the Delta(4)-double bond of several steroids with a 3-oxo,Delta(4,5) structure. The gene encoding P5betaR is expressed in all plant organs, and maximally transcribed in leaves and mature flowers. P5betaR belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, bearing no structural homology to its mammalian counterpart, which is a member of the aldo-keto reductase (AKR) superfamily. A similar situation occurs with 3beta-hydroxy-Delta(5)-steroid dehydrogenase (3betaHSD), the gene immediately preceding P5betaR in the cardenolide pathway, which suggests that the entire route has evolved independently in animals and plants. P5betaR is retained only in plants, where it is ubiquitous, and a few distantly related bacterial lineages after its diversification from the last universal common ancestor. Evolutionary conserved changes in its putative active site suggest that plant P5betaR is a member of a novel subfamily of extended SDRs, or a new SDR family.

  10. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  11. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine.

  12. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.

    PubMed

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K; Nidetzky, Bernd

    2006-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo-keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/K(m)) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 A (1 A=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8-9 kJ/mol.

  13. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.

  14. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans.

    PubMed

    Liu, C Tony; Hanoian, Philip; French, Jarrod B; Pringle, Thomas H; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2013-06-18

    With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.

  15. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  16. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Matsumoto, Atsuko; Arai, Yuki; Ohno, Satoshi; El-Kabbani, Ossama; Tajima, Kazuo; Bunai, Yasuo; Yamano, Shigeru; Hara, Akira; Kitade, Yukio

    2013-11-01

    3-Hydroxyhexobarbital dehydrogenase (3HBD) catalyzes NAD(P)⁺-linked oxidation of 3-hydroxyhexobarbital into 3-oxohexobarbital. The enzyme has been thought to act as a dehydrogenase for xenobiotic alcohols and some hydroxysteroids, but its physiological function remains unknown. We have purified rabbit 3HBD, isolated its cDNA, and examined its specificity for coenzymes and substrates, reaction directionality and tissue distribution. 3HBD is a member (AKR1C29) of the aldo-keto reductase (AKR) superfamily, and exhibited high preference for NADP(H) over NAD(H) at a physiological pH of 7.4. In the NADPH-linked reduction, 3HBD showed broad substrate specificity for a variety of quinones, ketones and aldehydes, including 3-, 17- and 20-ketosteroids and prostaglandin D₂, which were converted to 3α-, 17β- and 20α-hydroxysteroids and 9α,11β-prostaglandin F₂, respectively. Especially, α-diketones (such as isatin and diacetyl) and lipid peroxidation-derived aldehydes (such as 4-oxo- and 4-hydroxy-2-nonenals) were excellent substrates showing low K(m) values (0.1-5.9 μM). In 3HBD-overexpressed cells, 3-oxohexobarbital and 5β-androstan-3α-ol-17-one were metabolized into 3-hydroxyhexobarbital and 5β-androstane-3α,17β-diol, respectively, but the reverse reactions did not proceed. The overexpression of the enzyme in the cells decreased the cytotoxicity of 4-oxo-2-nonenal. The mRNA for 3HBD was ubiquitously expressed in rabbit tissues. The results suggest that 3HBD is an NADPH-preferring reductase, and plays roles in the metabolisms of steroids, prostaglandin D₂, carbohydrates and xenobiotics, as well as a defense system, protecting against reactive carbonyl compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  18. Self-organizing molecular field analysis on pregnane derivatives as human steroidal 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-06-01

    Normal growth and development of human prostate is regulated by the androgens which balances cell proliferation and apoptosis. Testosterone (T) and dihydrotestosterone (DHT) are the two key androgens that stimulate most of the androgen action in prostate. Testosterone is converted to DHT by the membrane bound NADPH-dependent 5alpha-reductase enzyme. As a consequence of the important observation that progesterone and deoxycortisone inhibits the synthesis of DHT by competing with 4-en-3-one function of the testosterone for the 5alpha-reductase enzyme a number of pregnane derivatives were synthesized and have been reported as inhibitors of human 5alpha-reductase enzyme. Due to lack of information on the crystal structure of human 5alpha-reductase, ligand-based 3D-QSAR study has been performed on pregnane derivatives using self-organizing molecular field analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(cv)(2) (0.881), non-cross-validated r(2) (0.893) and F-test value (175.527), showed satisfied predictive ability r(pred)(2) (0.777). Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of steroidal structure as novel human 5alpha-reductase inhibitors.

  19. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes.

    PubMed

    Li, Dan; Wu, Kun; Howie, A Forbes; Beckett, Geoffrey J; Wang, Wei; Bao, Yongping

    2008-09-01

    Dietary isothiocyanates and selenium (Se) can up-regulate thioredoxin reductase 1 (TR1) in cultured human HepG2 and MCF-7 cells [Zhang et al. (2003). Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis, 24, 497-503; Wang et al. (2005). Sulforaphane, erucin and iberin up-regulate thioredoxin reductase expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry, 53, 1417-1421] at both the protein and mRNA levels. In this study, broccoli sprout extract (a rich source of the isothiocyanates sulforaphane and iberin) and Se interacted synergistically to induce TR1 in immortalised human hepatocytes. Broccoli sprout extracts containing 1.6, 4 and 8μM isothiocyanates were tested for their ability to induce TR1 at the protein and mRNA level. Although induction of TR1 mRNA by broccoli sprout extract (1.6-8μM) was only 1.7-2.2-fold, co-treatment with Se (0.2-1μM) enhanced the expression of TR1 mRNA (3.0-3.3-fold). Moreover, broccoli sprout extract induced the cellular concentration of TR1 and TR enzymatic activity, an induction that was augmented by Se addition. Thus, broccoli sprout extract (8μM) and Se induced cellular TR1 concentration and enzymatic activity 3.7- and 5-fold respectively, whereas, Se or broccoli sprout extract alone produced an induction of only approximately 2-fold. These data suggest that dietary isothiocyanates from broccoli sprouts and Se are important agents in the regulation of redox status in human liver cells. The synergistic effect between isothiocyanates and Se at physiologically-relevant concentrations on the induction of TR1 may play an important role in protection against oxidative stress.

  20. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glutathione reductase activity.

    PubMed

    Sahin, Ali; Senturk, Murat; Akkemik, Ebru; Ciftci, Mehmet

    2012-01-01

    The aim of the study was to evaluate the inhibitory effects of thallium-201 ((201)Tl) solution on human erythrocyte glutathione reductase (GR) activity. Erythrocyte GR was initially purified by 2',5'-adenosine diphosphate Sepharose-4B affinity and Sephadex G-200 gel filtration chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the (201)Tl solution including Tl(+), Fe(+3) and Cu(+2) metals and the in vitro effects of the radiation effect of the (201)Tl solution and nonradioactive Tl(+), Fe(+3) and Cu(+2) metals on human erythrocyte GR enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at (+)4 °C. Glutathione reductase was purified 2033-fold at a yield of 28.17%. (201)Tl solution and radiation exposure had inhibitory effects on the enzyme activity. Besides, effects of nonradioactive Tl(+), Fe(+3) and Cu(+2) were studied on enzyme activity in vitro. Furthermore, seven human patients were also used for in vivo studies of (201)Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte GR enzyme is inhibited due to the radiation effect of (201)Tl solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  2. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary.

    PubMed

    Bray, James E; Marsden, Brian D; Oppermann, Udo

    2009-03-16

    The short-chain dehydrogenase/reductase (SDR) superfamily represents one of the largest protein superfamilies known to date. Enzymes of this family usually catalyse NAD(P)(H) dependent reactions with a substrate spectrum ranging from polyols, retinoids, steroids and fatty acid derivatives to xenobiotics. We have currently identified 73 SDR superfamily members within the human genome. A status report of the human SDR superfamily is provided in terms of 3D structure determination, co-factor preferences, subcellular localisation and functional annotation. A simple scoring system for measuring structural and functional information (SFS score) has also been introduced to monitor the status of 5 key metrics. Currently there are 17 SDR members with an SFS score of zero indicating that almost a quarter of the human SDR superfamily lacks substantial functional annotation.

  3. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  4. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  5. Molecular cloning and characterization of a novel Dehydrogenase/reductase (SDR family) member 1 genea from human fetal brain.

    PubMed

    Wu, Q; Xu, M; Cheng, C; Zhou, Z; Huang, Y; Zhao, W; Zeng, L; Xu, J; Fu, X; Ying, K; Xie, Y; Mao, Y

    2001-01-01

    Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.

  6. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy.

    PubMed

    Lou, Meng; Liu, Qian; Ren, Guoping; Zeng, Jiling; Xiang, Xueping; Ding, Yongfeng; Lin, Qinghui; Zhong, Tingting; Liu, Xia; Zhu, Lijun; Qi, Hongyan; Shen, Jing; Li, Haoran; Shao, Jimin

    2017-04-14

    Ribonucleotide reductase (RR) is the rate-limiting enzyme in DNA synthesis by catalyzing the reduction of ribonucleotides to deoxyribonucleotides. During each enzymatic turnover, reduction of the active site disulfide in the catalytic large subunit is performed by a pair of shuttle cysteine residues in its C-terminal tail. Thioredoxin (Trx) and Glutaredoxin (Grx) are ubiquitous redox proteins, catalyzing thiol-disulfide exchange reactions. Here, immunohistochemical examination of clinical colorectal cancer (CRC) specimens revealed that human thioredoxin1 (hTrx1), but not human glutaredoxin1 (hGrx1), was upregulated along with human RR large subunit (RRM1) in cancer tissues, and the expression levels of both proteins were correlated with cancer malignancy stage. Ectopically expressed hTrx1 significantly increased RR activity, DNA synthesis, and cell proliferation and migration. Importantly, inhibition of both hTrx1 and RRM1 produced a synergistic anti-cancer effect in CRC cells and xenograft mice. Furthermore, hTrx1 rather than hGrx1 was the efficient reductase for RRM1 regeneration. We also observed a direct protein-protein interaction between RRM1 and hTrx1 in CRC cells. Interestingly, besides the known two conserved cysteines, a third one (Cys779) in the RRM1 C-terminus was essential for RRM1 regeneration and binding to hTrx1, while both Cys32 and Cys35 in hTrx1 played a counterpart role. Our findings suggest that the upregulated RRM1 and hTrx1 in CRC directly interact with each other and promote RR activity, resulting in enhanced DNA synthesis and cancer malignancy. We propose that the RRM1-hTrx1 interaction might be a novel potential therapeutic target for cancer treatment.

  7. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    SciTech Connect

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H. ); Appleman, J.R.; Blakley, R.L. ); Sheridan, R.P.; Venkataraghavan, R. )

    1990-09-04

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2{prime}-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K{sub m} values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K{sub m} and k{sub cat} values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K{sub m}(NADH)/K{sub m}(NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2{prime}-phosphate, makes a major contribution in terms of binding energy and differentiation of K{sub m} values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme.

  8. The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase.

    PubMed

    Zheng, Xuehua; Zhang, Liping; Zhai, Jing; Chen, Yunyun; Luo, Haibin; Hu, Xiaopeng

    2012-01-02

    Sulindac (SLD) exhibits both the highest inhibitory activity towards human aldose reductase (AR) among popular non-steroidal anti-inflammatory drugs and clear beneficial clinical effects on Type 2 diabetes. However, the molecular basis for these properties is unclear. Here, we report that SLD and its pharmacologically active/inactive metabolites, SLD sulfide and SLD sulfone, are equally effective as un-competitive inhibitors of AR in vitro. Crystallographic analysis reveals that π-π stacking favored by the distinct scaffold of SLDs is pivotal to their high AR inhibitory activities. These results also suggest that SLD sulfone could be a potent lead compound for AR inhibition in vivo. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Biochemical properties of human dehydrogenase/reductase (SDR family) member 7.

    PubMed

    Stambergova, Hana; Skarydova, Lucie; Dunford, James E; Wsol, Vladimir

    2014-01-25

    Dehydrogenase/reductase (SDR family) member 7 (DHRS7, retSDR4, SDR34C1) is a previously uncharacterized member of the short-chain dehydrogenase/reductase (SDR) superfamily. While human SDR members are known to play an important role in various (patho)biochemical pathways including intermediary metabolism and biotransformation of xenobiotics, only 20% of them are considered to be well characterized. Based on phylogenetic tree and SDR sequence clusters analysis DHRS7 is a close relative to well-known SDR member 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) that participates in metabolism of endogenous and xenobiotic substances with carbonyl group. The aim of present study is to determine the basic biochemical properties of DHRS7 and its possible involvement in metabolism of substrates with carbonyl group. For the first time the computational predictions of this membrane protein and membrane topology were experimentally confirmed. DHRS7 has been demonstrated to be an integral protein facing the lumen of the endoplasmic reticulum with lack of posttranscriptional glycosylation modification. Subsequently, NADP(H) cofactor preference and enzymatic reducing activity of DHRS7 was determined towards endogenous substrates with a steroid structure (cortisone, 4-androstene-3,17-dion) and also toward relevant exogenous substances bearing a carbonyl group harmful to human health (1,2-naphtoquinone, 9,10-phenantrenequinone). In addition to 11β-HSD1, DHRS7 is another enzyme from SDR superfamily that have been proved, at least in vitro, to contribute to the metabolism of xenobiotics with carbonyl group.

  10. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  11. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings.

    PubMed

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A phylogenetic tree is constructed from different plant and human DHFR domain using the Neighbour - Joining method in MEGA 5.05. Conservation score is performed by using PARALINE. Result suggests that folate binding domain of dihydrofolare reductase is conserved (score 8.06) and excepting some minor variations the basic structure of the domain in both plant species and human being is rather similar. Human DHFR domain contains PEKN sequence near active site, though proline is common for all the selected organisms but the other sequences are different in plants. The plant domain is always associated with TS (Thymidylate synthase). Plant based system is predicted to be an effective model for assessment of MTX (Methotrexate) and other antifolate drugs.

  12. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase.

    PubMed

    Lamb, Kristen M; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2013-10-15

    The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 μM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 μM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.

  13. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages.

    PubMed

    Kalantari, Parisa; Narayan, Vivek; Natarajan, Sathish K; Muralidhar, Kambadur; Gandhi, Ujjawal H; Vunta, Hema; Henderson, Andrew J; Prabhu, K Sandeep

    2008-11-28

    Epidemiological studies suggest a correlation between severity of acquired immunodeficiency syndrome (AIDS) and selenium deficiency, indicating a protective role for this anti-oxidant during HIV infection. Here we demonstrate that thioredoxin reductase-1 (TR1), a selenium-containing pyridine nucleotide-disulfide oxidoreductase that reduces protein disulfides to free thiols, negatively regulates the activity of the HIV-1 encoded transcriptional activator, Tat, in human macrophages. We used a small interfering RNA approach as well as a high affinity substrate of TR1, ebselen, to demonstrate that Tat-dependent transcription and HIV-1 replication were significantly increased in human macrophages when TR1 activity was reduced. The increase in HIV-1 replication in TR1 small interfering RNA-treated cells was independent of the redox-sensitive transcription factor, NF-kappaB. These studies indicate that TR-1 acts as a negative regulator of Tat-dependent transcription. Furthermore, in vitro biochemical assays with recombinant Tat protein confirmed that TR1 targets two disulfide bonds within the Cys-rich motif required for efficient HIV-1 transactivation. Increasing TR1 expression along with other selenoproteins by supplementing with selenium suggests a potential inexpensive adjuvant therapy for HIV/AIDS patients.

  14. [Purification of cytochrome P-450 and NADPH cytochrome p-450 reductase from human liver].

    PubMed

    Isa, M; Cumps, J; Fossoul, C; Atassi, G

    1990-01-01

    Two methods for the purification of cytochromes-P450 from microsomes of human liver are described. Method A: Cyt-P450 were solubilized from microsomes using a non ionic detergent, the Lubrol. The Cyt-P450 were purified by affinity, hydrophobicity followed by ion-exchange chromatography on DEAE-5PW column (HPLC) with an overall yield of 18% and a specific activity of 10 nmole/mg of protein. The recovery of NADPH Cyt-P450 reductase by method A (affinity) is about 60% with a specific activity of 16.2 U.I./mg of protein. Method B: Cyt-P450 were solubilized from microsomes using a zwitterionic detergent, the CHAPS. Cyt-P450 were filtered and separated by chromatofocusing on Mono-P column (HPLC). By this method it was possible to increase strongly the specific activity keeping a yield of 50% of Cyt-P450. Also it was possible to apply this method to small samples of human liver like biopsies (0.5 to 2.5 g).

  15. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  16. Association of C677T transition of the human methylenetetrahydrofolate reductase (MTHFR) gene with male infertility.

    PubMed

    Karimian, Mohammad; Colagar, Abasalt Hosseinzadeh

    2016-04-01

    The human methylenetetrahydrofolate reductase (MTHFR) gene encodes one of the key enzymes in folate metabolism. This gene is located on chromosome 1 (1p36.3), which has 12 exons. The aim of the present study was to investigate the possible association of the two (C677T and A1298C) polymorphisms of this gene with male infertility. In a case-control study, 250 blood samples were collected from IVF centres in Sari and Babol (Iran): 118 samples were from oligospermic men and 132 were from controls. Two single nucleotide polymorphisms of the MTHFR genotype were detected using polymerase chain reaction-restriction fragment length polymorphism. There was no association found between the A1298C variant and male infertility. However, carriers of the 677T allele (CT and TT genotypes) were at a higher risk of infertility than individuals with other genotypes (odds ratio 1.84; 95% confidence interval 1.11-3.04; P=0.0174). Structural analysis of human MTHFR flavoprotein showed that C677T transition played an important role in the change in affinity of the MTHFR-Flavin adenine dinucleotide binding site. Based on our results, we suggest that C677T transition in MTHFR may increase the risk of male infertility, and detection of the C677T polymorphism biomarker may be helpful in the screening of idiopathic male infertility.

  17. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  18. Selenite protects human endothelial cells from oxidative damage and induces thioredoxin reductase.

    PubMed

    Miller, S; Walker, S W; Arthur, J R; Nicol, F; Pickard, K; Lewin, M H; Howie, A F; Beckett, G J

    2001-05-01

    The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 microM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant protection against the harmful effects of 100 microM t-BuOOH, with complete protection being achieved with 40 nM selenite. The preincubation period was required for selenite to exert this protective effect on endothelial cells. When compared with selenium-deficient cells, the activities of cytoplasmic glutathione peroxidase (GPX-1), phospholipid hydroperoxide glutathione peroxidase (GPX-4) and thioredoxin reductase (TR) were each induced approx. 3--4-fold by 40 nM selenite. HCAEC and HUVEC showed great similarity in their relative abilities to resist oxidative damage in the presence and absence of selenite, and the activities of TR and the GPXs were also similar in these cell types. BAEC were more susceptible to damage by 100 microM t-BuOOH than were human endothelial cells, and could not be protected completely by incubation with selenite at concentrations up to 160 nM. The activity of TR in human endothelial cells was approx. 25-fold greater than that in BAEC of a similar selenium status, but GPX-1 and GPX-4 activities were not significantly different between the human and bovine cells. These studies, although performed with a small number of cultures, show for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress. TR may be an important antioxidant selenoprotein in this regard, in addition to the GPXs. The data also suggest that HUVEC, but not BAEC, represent a suitable model system in which to study the effects of selenium on the endothelium of human coronary arteries.

  19. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    PubMed Central

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  20. STRUCTURAL BASIS FOR ALLOSTERIC REGULATION OF HUMAN RIBONUCLEOTIDE REDUCTASE BY NUCLEOTIDE-INDUCED OLIGOMERIZATION

    PubMed Central

    Fairman, James Wesley; Wijerathna, Sanath Ranjan; Ahmad, Md. Faiz; Xu, Hai; Nakano, Ryo; Jha, Shalini; Prendergast, Jay; Welin, Martin; Flodin, Susanne; Roos, Annette; Nordlund, Pär; Li, Zongli; Walz, Thomas; Dealwis, Chris Godfrey

    2011-01-01

    Ribonucleotide reductase (RR) is an αnβn (RR1●RR2) complex that maintains balanced dNTP pools by reducing ribonucleoside diphosphates to deoxyribonucleoside diphosphates. RR1 is the catalytic subunit and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP-only, dATP-only, TTP●GDP, TTP●ATP, and TTP●dATP. These structures provide insights into ATP/dATP regulation of RR. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1●dATP hexamer and used single-particle electron microscopy to visualize the α6●ββ’ 1●dATP holo complex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data provide an elegant mechanism for regulating RR activity by dATP-induced oligomerization. PMID:21336276

  1. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  2. Isatin-induced increase in the affinity of human ferrochelatase and adrenodoxin reductase interaction.

    PubMed

    Ershov, Pavel; Mezentsev, Yuri; Gilep, Andrey; Usanov, Sergey; Buneeva, Olga; Medvedev, Alexei; Ivanov, Alexis

    2017-09-14

    Isatin (indol-2,3-dione) is an endogenous non-peptide regulator exhibiting a wide range of biological and pharmacological activities, which are poorly characterized in terms of their molecular mechanisms. Identification of many isatin-binding proteins in the mammalian brain and liver suggests that isatin may influence their functions. We have hypothesized that besides direct action on particular protein targets, isatin can act as a regulator of protein-protein interactions (PPIs). In this surface plasmon resonance-based biosensor study we have found that physiologically relevant concentrations of isatin (25-100 μM) increase affinity of interactions between human recombinant ferrochelatase (FECH) and NADPH-dependent adrenodoxin reductase (ADR). In the presence of increasing concentrations of isatin the Kd values demonstrated a significant (up to 6-fold) decrease. It is especially important that the interaction of isatin with each individual protein (FECH, ADR) was basically negligible and therefore could not contribute to the observed effect. This effect was specific only for the FECH/ADR complex formation and was not observed for other protein complexes studied: FECH/cytochrome b5(CYB5A) and FECH/SMAD4. © 2017 The Protein Society.

  3. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    SciTech Connect

    Liu, Zhen-Bo; Shen, Xun

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  4. Tyrosine kinase-dependent modulation of 3-hydroxy-3-methylglutaryl-CoA reductase in human breast adenocarcinoma SKBR-3 cells.

    PubMed Central

    Asslan, R; Pradines, A; Favre, G; Le Gaillard, F

    1998-01-01

    3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the major rate-limiting enzyme in sterol and non-sterol isoprenoid synthesis. Isoprenoids are involved in the mechanisms of cell proliferation and transformation leading notably to crucial post-translational maturation of small G-proteins of the Ras superfamily. HMG-CoA reductase is among the most highly regulated enzymes. It is controlled by several feedback regulation mechanisms induced by sterol and non-sterol metabolites. The present results show that tyrosine kinase activity is also involved in the regulation of HMG-CoA reductase activity in the human breast cancer cell line SKBR-3. Incubation of SKBR-3 cells with the tyrosine kinase inhibitor, herbimycin A, induces a concentration-dependent reduction of HMG-CoA reductase activity with an IC50 of 80nM. The inhibition of HMG-CoA reductase activity by herbimycin A is also time-dependent. A similar effect of herbimycin A was obtained on the steady-state level of the HMG-CoA reductase protein. The effect of herbimycin A is probably specific as it abolished the stimulation of reductase activity by epidermal growth factor. To elucidate the molecular basis of the inhibition of HMG-CoA reductase activity and protein level by herbimycin A, we performed experiments to study the metabolic turnover of this enzyme using [35S]methionine and [35]cysteine. Herbimycin A (1 microM) did not have any significant effect on the rate of HMG-CoA reductase protein degradation but did affect its rate of synthesis and mRNA levels. The decrease in protein synthesis rate correlates with the lower reductase protein level but is more pronounced than the decrease in mRNA levels. Taken together, the results reveal a novel pathway of regulation of HMG-CoA reductase expression and activity by cellular tyrosine kinase activities. PMID:9461516

  5. 3D-QSAR studies on unsaturated 4-azasteroids as human 5alpha-reductase inhibitors: a self organizing molecular field analysis approach.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, T R; Kumar, Manoj

    2010-02-01

    Azasteroids have been reported as inhibitors of human 5alpha-reductase enzyme. These were designed by substitution of one carbon atom of steroidal A ring by heteroatom nitrogen. Due to lack of information on the crystal structure of human 5alpha-reductase, 3D-QSAR study has been performed on a series of unsaturated 4-azasteroids using Self Organizing Molecular Field Analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(2)(cv) (0.783), non cross-validated r(2) (0.806) and F-test value (87.282), showed satisfied predictive ability. Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of new steroidal human 5alpha-reductase inhibitors.

  6. SDR-O: an orphan short-chain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12.

    PubMed

    Chen, Weiguo; Song, Min-Sun; Napoli, Joseph L

    2002-07-10

    We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.

  7. Evaluating the Therapeutic Potential of a Non-Natural Nucleotide that Inhibits Human Ribonucleotide Reductase

    PubMed Central

    Ahmad, Faiz; Wan, Qun; Jha, Shalini; Motea, Edward; Berdis, Anthony; Dealwis, Chris

    2012-01-01

    Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-2’-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogs with dATP predicted that they would inhibit hRR activity by binding to its allosteric sites. In silico analysis and in vitro characterization identified one particular analog designated as 5-nitro-indolyl-2'-deoxyribose triphosphate (5-NITP) that inhibits hRR. 5-NITP binding to hRR was determined by isothermal titration calorimetry. X-ray crystal structure of 5-NITP bound to RR1 was determined. Cell-based studies demonstrated the anti-cancer effects of the corresponding non-natural nucleoside against leukemia cells. 5-NITP binds to hRR with micromolar affinity. Binding does not induce hexamerization of hRR1 like dATP, the native allosteric inhibitor of hRR that binds with high affinity to the A-site. The X-ray crystal structure of S. cerevisiae RR1-5-NITP (ScRR1-5-NITP) complex determined to 2.3 Å resolution shows that 5-NITP does not bind to the A-site but rather at the S-site. Regardless, 5-NIdR produces cytostatic and cytotoxic effects against human leukemia cells by altering cell-cycle progression. Our studies provide useful insights towards developing new inhibitors with improved potency and efficacy against hRR. PMID:22933704

  8. Human biliverdin reductase promotes EMT through the ERK1/2 signal pathway in breast cancer.

    PubMed

    Zhang, Min; Song, Shasha; Yi, Zhi; Zhao, Xijuan; Fu, Li; Wang, Lin; Ma, Cui; Mao, Min; Xing, Yan; Zhu, Daling

    2016-10-05

    Epithelial-to-mesenchymal transition (EMT) plays an important role in the development of the invasive and metastatic potentials of breast cancer cells during progression. Human biliverdin reductase (hBVR), an enzyme in the heme metabolism pathway, is involved in hypoxia-induced renal tubular EMT. However, whether hBVR contributes to the EMT of breast cancer remains unclear. Here, we used breast cancer cell lines (MCF-7, T-47D) and normal breast epithelial cells (MCF-10A) to explore the potential role of hBVR in the EMT of breast cancer. Western blot, RT-PCR and immunofluorescence were employed to test the expression and location of hBVR in the cell lines. Small interfering RNA of hBVR (si-hBVR) was used to knockdown the expression of hBVR, and U0126 was applied to inhibit the ERK1/2 signaling in MCF-7, T-47D cells. We found that hBVR highly expressed in MCF-7 and T-47D cells compared with MCF-10A cells, and had different cellular locations between them. Our results revealed that EMT occurred in tissues from breast cancer patients and breast cancer cell lines. However, the EMT in MCF-7 and T-47D cells was suppressed by si-hBVR and U0126. Furthermore, the expression of phosphorylated ERK1/2 was down-regulated by si-hBVR. In addition, hBVR regulated EMT through the ERK1/2 signaling, but bilirubin, which is a product of hBVR in the heme metabolism pathway in breast cancer, did not. Taken together, these findings provide new evidence that hBVR plays an important role in promoting EMT in human breast cancer through the ERK1/2 signaling pathway, and hBVR may be a therapeutic target for this disease.

  9. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.

  10. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  11. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase.

    PubMed

    Nýdlová, Erika; Vrbová, Martina; Cesla, Petr; Jankovičová, Barbora; Ventura, Karel; Roušar, Tomáš

    2014-09-01

    Acetaminophen overdose is the most frequent cause of acute liver injury. The main mechanism of acetaminophen toxicity has been attributed to oxidation of acetaminophen. The oxidation product is very reactive and reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). Although this conjugate has been recognized to be generally nontoxic, we have found recently that APAP-SG could produce a toxic effect. Therefore, the aim of our study was to estimate the toxicity of purified APAP-SG by characterizing the inhibitory effect in human glutathione reductase (GR) and comparing that to the inhibitory effect of the natural inhibitor reduced glutathione. We used two types of human GR: recombinant and freshly purified from red blood cells. Our results show that GR was significantly inhibited in the presence of both APAP-SG and reduced glutathione. For example, the enzyme activity of recombinant and purified GR was reduced in the presence of 4 mm APAP-SG (with 0.5 mm glutathione disulfide) by 28% and 22%, respectively. The type of enzyme inhibition was observed to be competitive in the cases of both APAP-SG and glutathione. As glutathione inhibits GR activity in cells under physiological conditions, the rate of enzyme inhibition ought to be weaker in the case of glutathione depletion that is typical of acetaminophen overdose. Notably, however, enzyme activity likely remains inhibited due to the presence of APAP-SG, which might enhance the pro-oxidative status in the cell. We conclude that our finding could reflect some other pathological mechanism that may contribute to the toxicity of acetaminophen.

  12. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  13. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  14. Synthesis of 3-[(N-carboalkoxy)ethylamino]-indazole-dione derivatives and their biological activities on human liver carbonyl reductase.

    PubMed

    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A; Warner, Don L; Zalkow, Leon H; Burgess, Edward M; Enwerem, Nkechi M; Bakare, Oladapo

    2010-01-01

    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC(50) values ranging from 3-5 microM. Two of the inhibitors were studied in greater detail and were found to be noncompetitive inhibitors against both NADPH and menadione with K(I) values ranging between 2 and 11 microM. Computational studies suggest that conformation of the compounds may determine whether the indazole-diones bind productively to yield product or nonproductively to inhibit the enzyme.

  15. Reductive Detoxication of Arylhydroxylamine Carcinogens by Human NADH Cytochrome b5 Reductase and Cytochrome b5

    PubMed Central

    Kurian, Joseph R.; Chin, Nathaniel A.; Longlais, Brett J.; Hayes, Kristie L.; Trepanier, Lauren A.

    2008-01-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of inter-individual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. Based on our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxication of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2- amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56 to 346-fold higher in the purified system compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (Km values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM (∼1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of arylhydroxylamine carcinogens

  16. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5.

    PubMed

    Kurian, Joseph R; Chin, Nathaniel A; Longlais, Brett J; Hayes, Kristie L; Trepanier, Lauren A

    2006-10-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of interindividual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. On the basis of our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxification of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56-346-fold higher in the purified system as compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (K(m) values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM ( approximately 1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of

  17. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed Central

    Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Talbot, D. C.; Harris, A. L.; Strafford, I. J.

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069. Images Figure 1 PMID:9374381

  18. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed

    Patterson, A V; Saunders, M P; Chinje, E C; Talbot, D C; Harris, A L; Strafford, I J

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069.

  19. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule.

    PubMed

    Ahmad, Md Faiz; Alam, Intekhab; Huff, Sarah E; Pink, John; Flanagan, Sheryl A; Shewach, Donna; Misko, Tessianna A; Oleinick, Nancy L; Harte, William E; Viswanathan, Rajesh; Harris, Michael E; Dealwis, Chris Godfrey

    2017-08-01

    Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.

  20. Osmolyte induced enhancement of expression and solubility of human dihydrofolate reductase: An in vivo study.

    PubMed

    Rashid, Naira; Thapliyal, Charu; Chaudhuri Chattopadhyay, Pratima

    2017-10-01

    The process of recombinant protein production in E. coli system is often hampered by the formation of insoluble aggregates. Human Dihydrofolate reductase (hDHFR), an enzyme involved in the synthesis of purine, thymidilate and several other amino acids like glycine, methionine and serine is highly aggregation prone. It catalyzes the reduction of dihydrofolate (H2F) in order to regenerate tetrahydrofolate (H4F) utilizing NADPH as a cofactor. We have attempted to ameliorate the production of soluble and functional protein by growing and inducing the cells under osmotic stress condition, in the presence of various osmolytes like glycerol, sorbitol, TMAO, proline and glycine at 37°C. The expression and yield of functional hDHFR protein were highly enhanced in the presence of these osmolytes. The specific activity of the purified recombinant hDHFR protein has also been increased to a cogent level in the presence of osmolytes. We also observed that protein expressed in presence of the osmolytes was stable in the denaturing conditions as compared to the protein expressed in absence of an osmolyte. We also observed using the intrinsic fluorescence spectroscopy that the osmolytes didn't interfere with the structure of the protein and in denaturing conditions the protein expressed in presence of osmolytes had more stability. Our study is consequential in increasing the production of functional and soluble protein in the cell extract and will also be appropriate to find a therapeutic agent against many neurodegenerative diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The effect of methylenetetrahydrofolate reductase polymorphisms on susceptibility to human papilloma virus infection and cervical cancer.

    PubMed

    Hajiesmaeil, Mogge; Tafvizi, Farzaneh; Sarmadi, Soheila

    2016-12-01

    Cervical cancer is the third most common cancer among women worldwide. Several factors lead to cervical cancer, among which human papilloma virus (HPV) infection has a prominent role. Methylenetetrahydrofolate reductase (MTHFR) is crucial in folate metabolic pathway and plays an important role in DNA synthesis and DNA methylation. MTHFR gene polymorphisms, including C677T and A1298C, lead to reduced enzyme activity. This case-control study aims to illustrate the association between MTHFR gene polymorphisms and the risk of cervical cancer. This study was conducted on 196 samples, which included 96 cervical biopsy samples compared to 100 Pap smear samples of normal healthy women without HPV infection. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for the MTHFR polymorphism detection, followed by fluorescent amplification-based specific hybridization PCR method to detect HPV16 and HPV18. The results show that the MTHFR 677TT genotype plays a protective role in cervical cancer (P=0.0030) (OR=0.21, 95% confidence interval [CI]: 0.07-0.59). Furthermore, there was a strong significant association between MTHFR 1298CC genotype and the risk of cervical cancer (OR=10.69; 95% CI: 4.28-26.71, P=0.0001). It can be concluded that A1298C polymorphism is a genetic risk factor for cervical cancer in the assessed Iranian population group. It seems that MTHFR 1298CC genotype is more susceptible to HPV 16 infection. Combination analysis of MTHFR C677T and A1298C polymorphisms revealed that combined MTHFR 677CC and 1298CC are strongly associated with a risk of cervical cancer.

  2. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate.

  3. Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers.

    PubMed

    Ding, Jiefeng; Kuo, Mei-Ling; Su, Leila; Xue, Lijun; Luh, Frank; Zhang, Hang; Wang, Jianghai; Lin, Tiffany G; Zhang, Keqiang; Chu, Peiguo; Zheng, Shu; Liu, Xiyong; Yen, Yun

    2017-04-03

    Human mitochondrial pyrroline-5-carboxylate reductase (PYCR) is a house-keeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate to proline. This enzymatic cycle plays pivotal roles in amino acid metabolism, intracellular redox potential and mitochondrial integrity. Here, we hypothesize that PYCR1 might be a novel prognostic biomarker and therapeutic target for breast cancer. In this study, breast cancer tissue samples were obtained from Zhejiang University (ZJU set). Immunohistochemistry analysis was performed to detect the protein level of PYCR1, and Kaplan-Meier and Cox proportional analyses were employed in this outcome study. The prognostic significance and performance of PYCR1 mRNA were validated on 13 worldwide independent microarray data sets, composed of 2500 assessable breast cancer cases. Our findings revealed that both PYCR1 mRNA and protein expression were significantly associated with tumor size, grade and invasive molecular subtypes of breast cancers. Independent and pooled analyses verified that higher PYCR1 mRNA levels were significantly associated with poor survival of breast cancer patients, regardless of estrogen receptor (ER) status. For in vitro studies, inhibition of PYCR1 by small-hairpin RNA significantly reduced the growth and invasion capabilities of the cells, while enhancing the cytotoxicity of doxorubicin in breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative). Further population study also validated that chemotherapy significantly improved survival in early-stage breast cancer patients with low PYCR1 expression levels. Therefore, PYCR1 might serve as a prognostic biomaker for either ER-positive or ER-negative breast cancer subtypes and can also be a potential target for breast cancer therapy.

  4. Human Biliverdin Reductase Suppresses Goodpasture Antigen-binding Protein (GPBP) Kinase Activity

    PubMed Central

    Miralem, Tihomir; Gibbs, Peter E. M.; Revert, Fernando; Saus, Juan; Maines, Mahin D.

    2010-01-01

    The Ser/Thr/Tyr kinase activity of human biliverdin reductase (hBVR) and the expression of Goodpasture antigen-binding protein (GPBP), a nonconventional Ser/Thr kinase for the type IV collagen of basement membrane, are regulated by tumor necrosis factor (TNF-α). The pro-inflammatory cytokine stimulates kinase activity of hBVR and activates NF-κB, a transcriptional regulator of GPBP mRNA. Increased GPBP activity is associated with several autoimmune conditions, including Goodpasture syndrome. Here we show that in HEK293A cells hBVR binds to GPBP and down-regulates its TNF-α-stimulated kinase activity; this was not due to a decrease in GPBP expression. Findings with small interfering RNA to hBVR and to the p65 regulatory subunit of NF-κB show the hBVR role in the initial stimulation of GPBP expression by TNF-α-activated NF-κB; hBVR was not a factor in mediating GPBP mRNA stability. The interacting domain was mapped to the 281CX10C motif in the C-terminal 24 residues of hBVR. A 7-residue peptide, KKRILHC281, corresponding to the core of the consensus D(δ)-Box motif in the interacting domain, was as effective as the intact 296-residue hBVR polypeptide in inhibiting GPBP kinase activity. GPBP neither regulated hBVR expression nor TNF-α dependent NF-κB expression. Collectively, our data reveal that hBVR is a regulator of the TNF-α-GPBP-collagen type IV signaling cascade and uncover a novel biological interaction that may be of relevance in autoimmune pathogenesis. PMID:20177069

  5. 5β-Reduced Steroids and Human Δ4-3-Ketosteroid 5β-Reductase (AKR1D1)

    PubMed Central

    Chen, Mo; Penning, Trevor M.

    2014-01-01

    5β-Reduced steroids are non-planar steroids that have 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ4-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldoketo reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19–C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency. PMID:24513054

  6. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Kuwata, Kazuo; Zhao, Hai-Tao; El-Kabbani, Ossama; Kitade, Yukio; Hara, Akira

    2010-04-01

    A human aldose reductase-like protein, AKR1B10 in the aldo-keto reductase (AKR) superfamily, was recently identified as a therapeutic target in the treatment of several types of cancer. In order to identify potential leads for new inhibitors of AKR1B10, we adopted the virtual screening approach using the automated program icm, which resulted in the discovery of several chromene-3-carboxamide derivatives as potent competitive inhibitors. The most potent (Z)-2-(4-methoxyphenylimino)-7-hydroxy-N-(pyridin-2-yl)-2H-chromene-3-carboxamide inhibited the reductase activity of AKR1B10 with a K(i) value of 2.7nM, and the metabolism of farnesal and 4-hydroxynonenal in the AKR1B10-overexpressed cells from 0.1microM with an IC(50) value equal to 0.8microM. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Human biliverdin reductase suppresses Goodpasture antigen-binding protein (GPBP) kinase activity: the reductase regulates tumor necrosis factor-alpha-NF-kappaB-dependent GPBP expression.

    PubMed

    Miralem, Tihomir; Gibbs, Peter E M; Revert, Fernando; Saus, Juan; Maines, Mahin D

    2010-04-23

    The Ser/Thr/Tyr kinase activity of human biliverdin reductase (hBVR) and the expression of Goodpasture antigen-binding protein (GPBP), a nonconventional Ser/Thr kinase for the type IV collagen of basement membrane, are regulated by tumor necrosis factor (TNF-alpha). The pro-inflammatory cytokine stimulates kinase activity of hBVR and activates NF-kappaB, a transcriptional regulator of GPBP mRNA. Increased GPBP activity is associated with several autoimmune conditions, including Goodpasture syndrome. Here we show that in HEK293A cells hBVR binds to GPBP and down-regulates its TNF-alpha-stimulated kinase activity; this was not due to a decrease in GPBP expression. Findings with small interfering RNA to hBVR and to the p65 regulatory subunit of NF-kappaB show the hBVR role in the initial stimulation of GPBP expression by TNF-alpha-activated NF-kappaB; hBVR was not a factor in mediating GPBP mRNA stability. The interacting domain was mapped to the (281)CX(10)C motif in the C-terminal 24 residues of hBVR. A 7-residue peptide, KKRILHC(281), corresponding to the core of the consensus D(delta)-Box motif in the interacting domain, was as effective as the intact 296-residue hBVR polypeptide in inhibiting GPBP kinase activity. GPBP neither regulated hBVR expression nor TNF-alpha dependent NF-kappaB expression. Collectively, our data reveal that hBVR is a regulator of the TNF-alpha-GPBP-collagen type IV signaling cascade and uncover a novel biological interaction that may be of relevance in autoimmune pathogenesis.

  8. Identification of androgen receptor protein and 5α-reductase mRNA in human ocular tissues

    PubMed Central

    Rocha, E.; Wickham, L; da Silveira, L. A; Krenzer, K.; Yu, F.; Toda, I.; Sullivan, B.; Sullivan, D.

    2000-01-01

    BACKGROUND/AIMS—Androgens have been reported to influence the structural organisation, functional activity, and/or pathological features of many ocular tissues. In addition, these hormones have been proposed as a topical therapy for such conditions as dry eye syndromes, corneal wound healing, and high intraocular pressure. To advance our understanding of androgen action in the eye, the purpose of the present study was twofold: firstly, to determine whether tissues of the anterior and posterior segments contain androgen receptor protein, which might make them susceptible to hormone effects following topical application; and, secondly, to examine whether these tissues contain the mRNA for types 1 and/or 2 5α-reductase, an enzyme that converts testosterone to the very potent metabolite, dihydrotestosterone.
METHODS—Human ocular tissues and cells were obtained and processed for histochemical and molecular biological procedures. Androgen receptor protein was identified by utilising specific immunoperoxidase techniques. The analysis of type 1 and type 2 5α-reductase mRNAs was performed by the use of RT-PCR, agarose gel electrophoresis, and DNA sequence analysis. All immunohistochemical evaluations and PCR amplifications included positive and negative controls.
RESULTS—These findings show that androgen receptor protein exists in the human lacrimal gland, meibomian gland, cornea, bulbar and forniceal conjunctivae, lens epithelial cells, and retinal pigment epithelial cells. In addition, our results demonstrate that the mRNAs for types 1 and 2 5α-reductase occur in the human lacrimal gland, meibomian gland, bulbar conjunctiva, cornea, and RPE cells.
CONCLUSION—These combined results indicate that multiple ocular tissues may be target sites for androgen action.

 PMID:10611104

  9. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation.

    PubMed

    Blakytny, R; Harding, J J

    1997-06-01

    With no measurable protein synthesis occurring in the centre of the lens, structural proteins and enzymes there will need to be stable for many years, if not decades, in order to maintain lens integrity and function. Recent work has indicated that alpha-crystallin, which is sequentially related to heat shock proteins, has chaperone-like properties in that it is capable of preventing heat-induced aggregation of various proteins, including other crystallins. Thus this universal vertebrate lens protein may contribute to maintenance of lens integrity by protecting other lens proteins from non-enzymic insults or the consequences thereof. We previously showed that the enzyme glutathione reductase was inactivated in a time-dependent manner when incubated with various sugars, suggesting glycation was responsible for this effect. In this paper we confirmed that this was the case. Using this enzyme model system, the inclusion of either bovine or human alpha-crystallin protected against the inactivation of glutathione reductase by fructation. This action was specific, with control proteins displaying no such protection. Use of high performance liquid chromatography supported the fact that alpha-crystallin did not act simply by mopping up free sugar but rather maintained the activity of the modified enzyme. Dose-dependent experiments indicated that human alpha-crystallin was more effective than its bovine counterpart, which might be expected considering the much longer lifespan of humans. The stoichiometry of the protection by both alpha-crystallins indicated that alpha-crystallin with glutathione reductase was not acting like GroEL as a large complex with a hydrophobic pore, but rather that individual subunits may be capable of acting as chaperones.

  10. The Effects of Acrolein on Peroxiredoxins, Thioredoxins, and Thioredoxin Reductase in Human Bronchial Epithelial Cells

    PubMed Central

    Myers, Charles R.; Myers, Judith M.

    2009-01-01

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 μM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 μM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-hr acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until ≥90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and

  11. The Effects of Hexavalent Chromium on Thioredoxin Reductase and Peroxiredoxins in Human Bronchial Epithelial Cells

    PubMed Central

    Myers, Judith M.; Myers, Charles R.

    2009-01-01

    Inhalational exposure to hexavalent chromium [Cr(VI)] compounds (e.g. chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells where they are reduced to reactive Cr species which may also contribute to the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trxs keep many intracellular proteins reduced including the peroxiredoxins (Prx). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trxs. Prx oxidation is therefore likely the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR) maintain the Trxs largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 were reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trxs and Prxs. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trxs, Prxs, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance to oxidant insults. PMID:19703554

  12. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.

  13. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders

    PubMed Central

    Auchus, Richard J.

    2011-01-01

    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590

  14. Importance of the substrate-binding loop region of human monomeric carbonyl reductases in catalysis and coenzyme binding.

    PubMed

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2009-08-12

    Monomeric carbonyl reductase 1 (CBR1) and 3 (CBR3) are members of the short-chain dehydrogenase/reductase superfamily, and metabolize endogenous and xenobiotic compounds using NADPH as a coenzyme. CBR3 exhibits a higher K(m) value toward NADPH and more limited carbonyl reductase activities than CBR1, although they are highly homologous to each other in amino acid sequence levels. In the present study, we investigated the origin of the different properties of the enzymes by analyses using several chimeric enzymes. Harr-plot analysis of the amino acid sequences was conducted and as a result, two low-identity regions between human CBR1 and CBR3 were found: these were designated as the N-terminal low-identity region (LirN) and the C-terminal low-identity region (LirC; the substrate-binding region). We genetically constructed chimeric enzymes while focusing on these regions. Chimeric CBR1 possessing LirN of CBR3 (CBR1LirN3) exhibited CBR1-like activities but a low coenzyme affinity probably due to a structural alteration in a micro domain, whereas chimeric CBR1 including LirC of CBR3 (CBR1LirC3) was enzymatically similar to CBR3. Furthermore, CBR3LirC1 was similar to CBR1 in both enzymatic activities and coenzyme binding. These results suggested that LirC, i.e., the substrate-binding loop region, is the origin of the difference between human CBR1 and CBR3 in both catalytic and coenzyme-binding properties.

  15. Covalent Adducts Between Thioredoxin Reductase and Endogenous Electrophiles in Human Breast Cancer

    DTIC Science & Technology

    2005-09-01

    S, Lee S-R, Rhee SG. Identification of proteins containing cysteine residues that are sensitive to hydrogen peroxide at neutral pH. Anal. Biochem...of chemoprevention trials utilizing agents such as NSAIDs, selenium supplements, inducers of Phase 2 detoxification enzymes such as curcumin , and...metabolite, LTA4, the lipid peroxidation combination of a C-terminal thioredoxin product, 4-HNE, and a quinone metabolite of reductase mutant and small

  16. Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum▿

    PubMed Central

    Buchholz, Kathrin; Schirmer, R. Heiner; Eubel, Jana K.; Akoachere, Monique B.; Dandekar, Thomas; Becker, Katja; Gromer, Stephan

    2008-01-01

    Methylene blue (MB) has experienced a renaissance mainly as a component of drug combinations against Plasmodium falciparum malaria. Here, we report biochemically relevant pharmacological data on MB such as rate constants for the uncatalyzed reaction of MB at pH 7.4 with cellular reductants like NAD(P)H (k = 4 M−1 s−1), thioredoxins (k = 8.5 to 26 M−1 s−1), dihydrolipoamide (k = 53 M−1 s−1), and slowly reacting glutathione. As the disulfide reductases are prominent targets of MB, optical tests for enzymes reducing MB at the expense of NAD(P)H under aerobic conditions were developed. The product leucomethylene blue (leucoMB) is auto-oxidized back to MB at pH 7 but can be stabilized by enzymes at pH 5.0, which makes this colorless compound an interesting drug candidate. MB was found to be an inhibitor and/or a redox-cycling substrate of mammalian and P. falciparum disulfide reductases, with the kcat values ranging from 0.03 s−1 to 10 s−1 at 25°C. Kinetic spectroscopy of mutagenized glutathione reductase indicates that MB reduction is conducted by enzyme-bound reduced flavin rather than by the active-site dithiol Cys58/Cys63. The enzyme-catalyzed reduction of MB and subsequent auto-oxidation of the product leucoMB mean that MB is a redox-cycling agent which produces H2O2 at the expense of O2 and of NAD(P)H in each cycle, turning the antioxidant disulfide reductases into pro-oxidant enzymes. This explains the terms subversive substrate or turncoat inhibitor for MB. The results are discussed in cell-pathological and clinical contexts. PMID:17967916

  17. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    PubMed

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  18. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  19. Effects of Cigarette Smoke on the Human Oral Mucosal Transcriptome

    PubMed Central

    Boyle, Jay O.; Gümüş, Zeynep H.; Kacker, Ashutosh; Choksi, Vishal L.; Bocker, Jennifer M.; Zhou, Xi Kathy; Yantiss, Rhonda K.; Hughes, Duncan B.; Du, Baoheng; Judson, Benjamin L.; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2009-01-01

    Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU 133 Plus2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers vs. never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared to the bronchial mucosa. The observed changes in gene expression were compared to known chemical signatures using the Connectivity Map database, and suggested that geldanamycin, an Hsp90 inhibitor, might be an anti-mimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials and illustrate the potential of computational biology to identify chemopreventive agents. PMID:20179299

  20. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles.

  1. Avemar, a nontoxic fermented wheat germ extract, induces apoptosis and inhibits ribonucleotide reductase in human HL-60 promyelocytic leukemia cells.

    PubMed

    Saiko, Philipp; Ozsvar-Kozma, Maria; Madlener, Sibylle; Bernhaus, Astrid; Lackner, Andreas; Grusch, Michael; Horvath, Zsuzsanna; Krupitza, Georg; Jaeger, Walter; Ammer, Kirsten; Fritzer-Szekeres, Monika; Szekeres, Thomas

    2007-06-08

    Avemar (MSC) is a nontoxic fermented wheat germ extract demonstrated to significantly improve the survival rate in patients suffering from various malignancies. We investigated its effects in human HL-60 promyelocytic leukemia cells. After 24, 48, and 72 h of incubation, Avemar inhibited the growth of HL-60 cells with IC50 values of 400, 190, and 160 microg/ml, respectively. Incubation with MSC caused dose-dependent induction of apoptosis in up to 85% of tumor cells. In addition, Avemar attenuated the progression from G2-M to G0-G1 phase of the cell cycle and was also found to significantly reduce the in situ activity of ribonucleotide reductase, the key enzyme of de novo DNA synthesis. We conclude that Avemar exerts a number of beneficial effects which could support conventional chemotherapy of human malignancies.

  2. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    PubMed Central

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. PMID:26170618

  3. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    PubMed

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  4. Human Heme Oxygenase-1 Efficiently Catabolizes Heme in the Absence of Biliverdin Reductase

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2010-01-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR. PMID:20679134

  5. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  6. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  7. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  8. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    EPA Science Inventory

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  9. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    EPA Science Inventory

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  10. Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans.

    PubMed

    Jakubowski, Hieronim; Boers, Godfried H J; Strauss, Kevin A

    2008-12-01

    Severely elevated plasma homocysteine (Hcy) levels observed in genetic disorders of Hcy metabolism are associated with pathologies in multiple organs and lead to premature death due to vascular complications. In addition to elevating plasma Hcy, mutations in cystathionine beta-synthase (CBS) or methylenetetrahydrofolate reductase (MTHFR) gene lead to markedly elevated levels of circulating Hcy-thiolactone. The thiooester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues (N-Hcy-protein), which may impair or alter the protein's function. However, it was not known whether genetic deficiencies in Hcy metabolism affect N-Hcy-protein levels in humans. Here we show that plasma N-Hcy-protein levels are significantly elevated in CBS- and MTHFR-deficient patients. We also show that CBS-deficient patients have significantly elevated plasma levels of prothrombotic N-Hcy-fibrinogen. These results provide a possible explanation for increased atherothrombosis observed in CBS-deficient patients.

  11. Accurate and Sensitive Detection of Plasmodium Species in Humans by Use of the Dihydrofolate Reductase-Thymidylate Synthase Linker Region▿ †

    PubMed Central

    Tanomsing, Naowarat; Imwong, Mallika; Theppabutr, Sasikrit; Pukrittayakamee, Sasithon; Day, Nicholas P. J.; White, Nicholas J.; Snounou, Georges

    2010-01-01

    A nested-PCR protocol based on the linker region of the Plasmodium dihydrofolate reductase-thymidylate synthase gene (dhfr-ts) was developed. This provides highly sensitive specific detection and identification of the five parasite species that infect humans. PMID:20702666

  12. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  13. Comparative Study on Sequence-Structure-Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family.

    PubMed

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor.

  14. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells.

    PubMed

    Antosiewicz, Anna; Jarmuła, Adam; Przybylska, Dorota; Mosieniak, Grażyna; Szczepanowska, Joanna; Kowalkowska, Anna; Rode, Wojciech; Cieśla, Joanna

    2016-08-05

    Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.

  15. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    PubMed Central

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor. PMID:25374450

  16. New evidence of similarity between human and plant steroid metabolism: 5alpha-reductase activity in Solanum malacoxylon.

    PubMed

    Rosati, Fabiana; Danza, Giovanna; Guarna, Antonio; Cini, Nicoletta; Racchi, Milvia Luisa; Serio, Mario

    2003-01-01

    The physiological role of steroid hormones in humans is well known, and the metabolic pathway and mechanisms of action are almost completely elucidated. The role of plant steroid hormones, brassinosteroids, is less known, but an increasing amount of data on brassinosteroid biosynthesis is showing unexpected similarities between human and plant steroid metabolic pathways. Here we focus our attention on the enzyme 5alpha-reductase (5alphaR) for which a plant ortholog of the mammalian system, DET2, was recently described in Arabidopsis thaliana. We demonstrate that campestenone, the natural substrate of DET2, is reduced to 5alpha-campestanone by both human 5alphaR isozymes but with different affinities. Solanum malacoxylon, which is a calcinogenic plant very active in the biosynthesis of vitamin D-like molecules and sterols, was used to study 5alphaR activity. Leaves and calli were chosen as examples of differentiated and undifferentiated tissues, respectively. Two separate 5alphaR activities were found in calli and leaves of Solanum using campestenone as substrate. The use of progesterone allowed the detection of both activities in calli. Support for the existence of two 5alphaR isozymes in S. malacoxylon was provided by the differential actions of inhibitors of the human 5alphaR in calli and leaves. The evidence for the presence of two isozymes in different plant tissues extends the analogies between plant and mammalian steroid metabolic pathways.

  17. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) - an in silico approach.

    PubMed

    Ebert, Bettina; Kisiela, Michael; Maser, Edmund

    2016-05-01

    Numerous physiological functions of the body are controlled by endogenous (e.g. steroids, retinoids, lipid mediators) or exogenous molecules (e.g. drugs, xenobiotics) that bind to transcription factors (TF). The biosynthesis and catabolism of these signaling molecules depend, apart from CYPs, on enzymes belonging to the short-chain dehydrogenase/reductase (SDR) superfamily. Moreover, the contribution of SDRs to the metabolism of therapeutic drugs and xenobiotics is increasingly recognized. However, only scarce information exists regarding the transcriptional regulation of most SDR proteins. This work aims to illustrate the role of nuclear receptors (NR) and TF related to oxidative stress, inflammation, hypoxia, and xenobiotics in the regulation of selected human and murine SDRs that play crucial roles in steroid, retinoid, eicosanoid, fatty acid, and xenobiotic metabolism. These include, for example, 17β-hydroxysteroid dehydrogenases, retinol dehydrogenases, and carbonyl reductases. Because existing experimental data are limited, an in silico analysis (TRANSFAC(®) Professional database) of the 5'-upstream sequences for putative response elements was performed. Experimental and in silico data suggest that pharmaceutical, environmental, or dietary NR ligands may alter SDR-mediated retinoid, steroid, and xenobiotic metabolism, likely affecting basic cellular events like energy expenditure, cell proliferation/differentiation, or aging processes. Also, some SDRs are possibly induced by their own substrates. Further experimental work is urgently needed to fully understand the NR-mediated transcriptional regulation of SDRs. This is essential for deducing their possible involvement in drug side effects and will help to identify new substrates and further physiological functions of these SDRs.

  18. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy.

    PubMed

    Barnett, Scott D; Buxton, Iain L O

    2017-04-10

    S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (•NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of •NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.

  19. Antitumor Indolequinones Induced Apoptosis in Human Pancreatic Cancer Cells via Inhibition of Thioredoxin Reductase and Activation of Redox Signaling

    PubMed Central

    Yan, Chao; Siegel, David; Newsome, Jeffery; Chilloux, Aurelie; Moody, Christopher J.

    2012-01-01

    Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC50 values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells. PMID:22147753

  20. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  1. Glutathione peroxidase, glutathione reductase and glutathione transferase activities in the human artery, vein and heart.

    PubMed

    Mezzetti, A; Di Ilio, C; Calafiore, A M; Aceto, A; Marzio, L; Frederici, G; Cuccurullo, F

    1990-09-01

    The continuous exposure to blood components, including prooxidants, makes the blood vessel wall susceptible to oxidative stress and free radical mediated reactions (Henning and Chow, 1988; Stamm et al., 1989; Halliwell and Gutteridge, 1984). Free radicals can be produced extracellularly via the respiratory bursts of activated neutrophils, or intracellularly, via oxidation of hypoxanthine by xanthine oxidase (Henning and Chow, 1988; Stamm et al., 1989; Rubanyi, 1988). Microsomal enzymes such as lipoxygenase and cyclooxygenase may also be a source of reactive species of oxygen (Henning and Chow, 1988; Stamm et al., 1989; Rubanyi, 1988; Mason et al., 1980). It has been proposed that free radicals are involved in the initiation and progression of various cardiovascular diseases including arteriosclerosis (Henning and Chow, 1988; Stamm et al., 1989; Yagi, 1988; Jürgens et al., 1987). Thus the adequacy of the defence systems against free radicals is critical for the susceptibility of blood vessel wall to oxidative damage. Among the enzymatic systems capable of protecting the cell against oxidative injury, selenium dependent glutathione peroxidase (Se-GSH-px), glutatione reductase (GSSG-rx) and glutathione transferase (GST) play a crucial role (Flohe' et al., 1976; Mannervik and Danielson, 1988). Using glutathione (GSH) as a cofactor, Se-GSH-px reduces H2O2 to water and organic hydroperoxides to the corresponding alcohols (Flohe' et al., 1976). This reaction leads to conversion of GSH into its oxidized form (GSSG). In the presence of NADPH, GSSG-rx is able to reduce the oxidized glutathione.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors.

    PubMed

    Takeda, Michio; Noshiro, Rie; Onozato, Maristela Lika; Tojo, Akihiro; Hasannejad, Habib; Huang, Xiu-Lin; Narikawa, Shinichi; Endou, Hitoshi

    2004-01-12

    The purpose of this study was to elucidate the role of human organic anion transporters (human OATs) in the induction of drug-induced skeletal muscle abnormalities. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have been clinically used for lowering plasma cholesterol levels, and are known to induce various forms of skeletal muscle abnormalities including myopathy and rhabdomyolysis. Immunohistochemical analysis revealed that human OAT1 and human OAT3 are localized in the cytoplasmic membrane of the human skeletal muscles. The activities of human OATs were measured using mouse cell lines from renal proximal tubules stably expressing human OATs. Human OAT3, but not human OAT1, mediates the transport of pravastatin. Fluvastatin inhibited organic anion uptake mediated by human OAT1 in a mixture of competitive and noncompetitive manner, whereas simvastatin and fluvastatin noncompetitively inhibited the organic anion uptake mediated by human OAT3. In conclusion, the organic anion transporters OAT1 and OAT3 are localized in the cytoplasmic membrane of human skeletal muscles. Pravastatin, simvasatin, and fluvasatin inhibit human OATs activity. These results suggest that muscle organic anion transporters play a role in the muscular side effects of HMG-CoA reductase inhibitors.

  3. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution.

  4. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins.

    PubMed

    Wu, Peng-Fei; Xie, Na; Zhang, Juan-Juan; Guan, Xin-Lei; Zhou, Jun; Long, Li-Hong; Li, Yuan-Long; Xiong, Qiu-Ju; Zeng, Jian-Hua; Wang, Fang; Chen, Jian-Guo

    2013-06-01

    Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection.

    PubMed

    Barbier, Thibault; Machelart, Arnaud; Zúñiga-Ripa, Amaia; Plovier, Hubert; Hougardy, Charlotte; Lobet, Elodie; Willemart, Kevin; Muraille, Eric; De Bolle, Xavier; Van Schaftingen, Emile; Moriyón, Ignacio; Letesson, Jean-Jacques

    2017-01-01

    Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors.

  6. Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection

    PubMed Central

    Barbier, Thibault; Machelart, Arnaud; Zúñiga-Ripa, Amaia; Plovier, Hubert; Hougardy, Charlotte; Lobet, Elodie; Willemart, Kevin; Muraille, Eric; De Bolle, Xavier; Van Schaftingen, Emile; Moriyón, Ignacio; Letesson, Jean-Jacques

    2017-01-01

    Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors. PMID:28659902

  7. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  8. Immunohistochemical localization of the antioxidant enzymes biliverdin reductase and heme oxygenase-2 in human and pig gastric fundus.

    PubMed

    Colpaert, Erwin E; Timmermans, Jean Pierre; Lefebvre, Romain A

    2002-04-01

    The intrinsic antioxidant capacities of the bile pigments biliverdin and bilirubin are increasingly recognized since both heme degradation products can exert beneficial cytoprotective effects due to their scavenging of oxygen free radicals and interaction with antioxidant vitamins. Several studies have been published on the localization of the carbon monoxide producing enzyme heme oxygenase-2 (HO-2), which concomitantly generates biliverdin; histochemical data on the distribution of biliverdin reductase (BVR), converting biliverdin to bilirubin, are still very scarce in large mammals including humans. The present study revealed by means of immunohistochemistry the presence of BVR and HO-2 in mucosal epithelial cells and in the endothelium of intramural vessels of both human and porcine gastric fundus. In addition, co-labeling with the specific neural marker protein-gene product 9.5 (PGP 9.5) demonstrated that both BVR and HO-2 were present in all intrinsic nerve cell bodies of both submucous and myenteric plexuses, while double labeling with c-Kit antibody confirmed their presence in intramuscular interstitial cells of Cajal (ICC). Our results substantiate the hypothesis that BVR, through the production of the potent antioxidant bilirubin, might be an essential component of normal physiologic gastrointestinal defense in man and pig.

  9. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  10. The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase.

    PubMed

    Maciejak, Agata; Leszczynska, Agata; Warchol, Ilona; Gora, Monika; Kaminska, Joanna; Plochocka, Danuta; Wysocka-Kapcinska, Monika; Tulacz, Dorota; Siedlecka, Joanna; Swiezewska, Ewa; Sojka, Maciej; Danikiewicz, Witold; Odolczyk, Norbert; Szkopinska, Anna; Sygitowicz, Grazyna; Burzynska, Beata

    2013-08-30

    The yeast Saccharomyces cerevisiae can be a useful model for studying cellular mechanisms related to sterol synthesis in humans due to the high similarity of the mevalonate pathway between these organisms. This metabolic pathway plays a key role in multiple cellular processes by synthesizing sterol and nonsterol isoprenoids. Statins are well-known inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the cholesterol synthesis pathway. However, the effects of statins extend beyond their cholesterol-lowering action, since inhibition of HMGR decreases the synthesis of all products downstream in the mevalonate pathway. Using transgenic yeast expressing human HMGR or either yeast HMGR isoenzyme we studied the effects of simvastatin, atorvastatin, fluvastatin and rosuvastatin on the cell metabolism. Statins decreased sterol pools, prominently reducing sterol precursors content while only moderately lowering ergosterol level. Expression of genes encoding enzymes involved in sterol biosynthesis was induced, while genes from nonsterol isoprenoid pathways, such as coenzyme Q and dolichol biosynthesis or protein prenylation, were diversely affected by statin treatment. Statins increased the level of human HMGR protein substantially and only slightly affected the levels of Rer2 and Coq3 proteins involved in non-sterol isoprenoid biosynthesis. Statins influence the sterol pool, gene expression and protein levels of enzymes from the sterol and nonsterol isoprenoid biosynthesis branches and this effect depends on the type of statin administered. Our model system is a cheap and convenient tool for characterizing individual statins or screening for novel ones, and could also be helpful in individualized selection of the most efficient HMGR inhibitors leading to the best response and minimizing serious side effects.

  11. The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase

    PubMed Central

    2013-01-01

    Background The yeast Saccharomyces cerevisiae can be a useful model for studying cellular mechanisms related to sterol synthesis in humans due to the high similarity of the mevalonate pathway between these organisms. This metabolic pathway plays a key role in multiple cellular processes by synthesizing sterol and nonsterol isoprenoids. Statins are well-known inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the cholesterol synthesis pathway. However, the effects of statins extend beyond their cholesterol-lowering action, since inhibition of HMGR decreases the synthesis of all products downstream in the mevalonate pathway. Using transgenic yeast expressing human HMGR or either yeast HMGR isoenzyme we studied the effects of simvastatin, atorvastatin, fluvastatin and rosuvastatin on the cell metabolism. Results Statins decreased sterol pools, prominently reducing sterol precursors content while only moderately lowering ergosterol level. Expression of genes encoding enzymes involved in sterol biosynthesis was induced, while genes from nonsterol isoprenoid pathways, such as coenzyme Q and dolichol biosynthesis or protein prenylation, were diversely affected by statin treatment. Statins increased the level of human HMGR protein substantially and only slightly affected the levels of Rer2 and Coq3 proteins involved in non-sterol isoprenoid biosynthesis. Conclusion Statins influence the sterol pool, gene expression and protein levels of enzymes from the sterol and nonsterol isoprenoid biosynthesis branches and this effect depends on the type of statin administered. Our model system is a cheap and convenient tool for characterizing individual statins or screening for novel ones, and could also be helpful in individualized selection of the most efficient HMGR inhibitors leading to the best response and minimizing serious side effects. PMID:24128347

  12. Electrostatic Fields Near the Active Site of Human Aldose Reductase: 2. New Inhibitors and Complications due to Hydrogen Bonds†

    PubMed Central

    Xu, Lin; Cohen, Aina E.; Boxer, Steven G.

    2011-01-01

    Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the x-ray structure of its complex, along with cofactor NADP+, with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in close proximity to T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen bonded and non-hydrogen bonded population by comparison with the mutant T113A, where a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peaked distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed. PMID:21859105

  13. Thioredoxin and thioredoxin reductase influence estrogen receptor α-mediated gene expression in human breast cancer cells

    PubMed Central

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2010-01-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor α (ERα). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERα, Trx, and TrxR interact and ERα and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17β-estradiol, Trx, and TrxR alter hydrogen peroxide (H2O2) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H2O2 levels and transcription factor activity, aid ERα in regulating the expression of estrogen-responsive genes in target cells. PMID:19620238

  14. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  15. Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells

    PubMed Central

    Park, Hye Rim; Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Jin, Young-Ho; Park, Yong Seek

    2015-01-01

    Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δ signaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δ genes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death. PMID:26236385

  16. Thioredoxin and thioredoxin reductase influence estrogen receptor alpha-mediated gene expression in human breast cancer cells.

    PubMed

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2009-12-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERalpha, Trx, and TrxR interact and ERalpha and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17beta-estradiol, Trx, and TrxR alter hydrogen peroxide (H(2)O(2)) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H(2)O(2) levels and transcription factor activity, aid ERalpha in regulating the expression of estrogen-responsive genes in target cells.

  17. Thioredoxin reductase activity may be more important than GSH level in protecting human lens epithelial cells against UVA light.

    PubMed

    Padgaonkar, Vanita A; Leverenz, Victor R; Bhat, Aparna V; Pelliccia, Sara E; Giblin, Frank J

    2015-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2 , 3% and 20%, were employed during a 1 h exposure of the cells to 25 J cm(-2) of UVA radiation (338-400 nm wavelength, peak at 365 nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. © 2014 The American Society of Photobiology.

  18. Role of thioredoxin reductase 1 in dysplastic transformation of human breast epithelial cells triggered by chronic oxidative stress

    PubMed Central

    Dong, Chaoran; Zhang, Lei; Sun, Ruoxuan; Liu, Jianying; Yin, Hanwei; Li, Xiaoxiao; Zheng, Xiaoqing; Zeng, Huihui

    2016-01-01

    Thioredoxin reductase 1 (TrxR1) is a pivotal intracellular redox sensor and antioxidant enzyme. On the other hand, overexpression of TrxR1 is closely correlated with the initiation of various tumors including breast cancer, though the detailed mechanism remains unclear. Here we investigated the role of TrxR1 in dysplastic transformation of human breast epithelial cell line MCF-10A induced by chronic oxidative stress. Not surprisingly, sustained exposure to H2O2 significantly augmented the expression and activity of TrxR1 in MCF-10A cells. The dysplastically transformed MCF-10A (MCF-10AT) cells undergoing 8-week H2O2 treatment exhibited a certain degree of malignancy in tumorigenicity evaluation. Moreover, TrxR1 inhibitor ethaselen (BBSKE) could partially reverse some malignant phenotypes including epithelial to mesenchymal transition (EMT) of MCF-10AT as well as MCF-7 cells. Collectively, our results supported the considerable involvement of TrxR1 in the onset of breast cancer and BBSKE may be a promising agent against breast cancer. PMID:27845427

  19. Prevention of VEGF-induced growth and tube formation in human retinal endothelial cell by aldose reductase inhibition

    PubMed Central

    Yadav, Umesh CS; Srivastava, SK; Ramana, KV

    2012-01-01

    Objective Since diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF–induced human retinal endothelial cell (HREC) growth and tube formation. Materials and Methods HREC were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer. Results Stimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation. Conclusions Our results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD. PMID:22658411

  20. Effect of glutathione reductase knockdown in response to UVB-induced oxidative stress in human lung adenocarcinoma

    PubMed Central

    2014-01-01

    Background Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported. Methods In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation. Results We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression. Conclusions In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model. PMID:24405781

  1. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  2. Automated enzyme inhibition assay method for the determination of atorvastatin-derived HMG-CoA reductase inhibitors in human plasma using radioactivity detection.

    PubMed

    Valesky, Robert J; Liu, Lida; Musson, Donald G; Zhao, Jamie J

    2008-01-01

    A Tecan-based enzyme inhibition assay has been developed for the determination of atorvastatin-derived 'active' and 'total' (active inhibitors plus atorvastatin lactone and other potential inhibitors following base hydrolysis) 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitor concentrations in human plasma. Atorvastatin is an inhibitor of HMG-CoA reductase, which is a key rate-limiting enzyme in the cholesterol biosynthesis. Previously, atorvastatin-derived HMG-CoA reductase inhibitors were measured via enzyme inhibition assays by manual operation. In this work, an enzyme assay procedure based on 8-tip Tecan robotics and set-up in a 96-well plate format with customized hardware is presented. Following protein precipitation of the plasma sample, an aliquot of the resulting supernatant is mixed with HMG-CoA reductase and (14)C-labeled HMG-CoA prior to incubation. The product, (14)C-mevalonic acid, is lactonized, separated from unreacted (14)C-substrate, and counted in a liquid scintillation counter. Plasma HMG-CoA reductase inhibitor concentrations are measured against atorvastatin as the standard. Tecan Genesis 150 and 200 robotic workstations were used for the protein precipitation, enzyme incubation, and product separation. The standard calibration range for the assay was 0.4-20 ng eq/mL. Intra-day precision (%CV) data for the calibration standard and quality control (QC) samples (n=5 replicates) were both

  3. Human carotid atherosclerotic lesion protein components decrease cholesterol biosynthesis rate in macrophages through 3-hydroxy-3-methylglutaryl-CoA reductase regulation.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Rosenblat, Mira; Vaya, Jacob

    2015-01-01

    Atherosclerosis is characterized by the formation of cholesterol-loaded macrophages, which are turned into foam cells, the hallmark of early atherogenesis. As part of ongoing research on the interactions among human carotid lesion components and blood elements, the effect of plaque homogenate on macrophage cholesterol biosynthesis rate was examined. Human carotid plaques were ground, extracted with phosphate-buffered saline (homogenate), and then added to the macrophage medium. This extract decreased macrophage cholesterol biosynthesis rate up to 50% in a dose-dependent manner. Cholesterol or lipoproteins were separated from the homogenate and added to the MQ medium. Unlike the homogenate, neither free cholesterol nor the lipoproteins were able to inhibit cholesterol biosynthesis rate under the above experimental concentration, suggesting that the homogenate-induced cholesterol biosynthesis inhibition in our experimental system was not owing to the feedback inhibition of cholesterol. Furthermore, the homogenate remaining after lipoprotein removal (lipoprotein-deficient homogenate) also decreased cholesterol biosynthesis rate, whereas boiled homogenate or phospholipids extracted from the homogenate decreased macrophage cholesterol biosynthesis rate only partially. Finally, cholesterol biosynthesis inhibition was achieved only upon using the precursor [(3)H]acetate, but not [(14)C]mevalonate, suggesting that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoA Reductase), the rate-limiting enzyme in the cholesterol biosynthesis pathway, is involved in the above antiatherogenic effect of the homogenate, whereas the treatment with homogenate decreased HMGCoA Reductase mRNA. Proteins and phospholipids from human carotid lesion homogenate decrease cholesterol biosynthesis rate in macrophages secondary to HMGCoA Reductase feedback regulation. Such an effect may delay foam cell formation and atherosclerosis progression.

  4. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  5. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    PubMed Central

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-01-01

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells. PMID:26016500

  6. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells.

    PubMed

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-05-26

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.

  7. Natural mutations lead to enhanced proteasomal degradation of human Ncb5or, a novel flavoheme reductase.

    PubMed

    Kálmán, Fanni S; Lizák, Beáta; Nagy, Szilvia K; Mészáros, Tamás; Zámbó, Veronika; Mandl, József; Csala, Miklós; Kereszturi, Eva

    2013-07-01

    NADH cytochrome b5 oxidoreductase (Ncb5or) protects β-cells against oxidative stress and lipotoxicity. The predominant phenotype of lean Ncb5or-null mouse is insulin-dependent diabetes due to β-cell death. This suggests the putative role of NCB5OR polymorphism in human diabetes. Therefore, we aimed to investigate the effect of natural missense mutations on the expression of human NCB5OR. Protein and mRNA levels of five non-synonymous coding variants were analyzed in transfected HEK293 and HepG2 cells. Although the mRNA levels were only slightly affected by the mutations, the amount of Ncb5or protein was largely reduced upon two Glu to Gly replacements in the third exon (p.E87G, p.E93G). These two mutations remarkably and synergistically shortened the half-life of Ncb5or and their effect could be attenuated by proteasome inhibitors. Our results strongly indicate that p.E87G, p.E93G mutations lead to enhanced proteasomal degradation due to manifest conformational alterations in the b5 domain. These data provide first evidence for natural mutations in NCB5OR gene resulting in decreased protein levels and hence having potential implications in human pathology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Discovery of 2-methyl-1-{1-[(5-methyl-1H-indol-2-yl)carbonyl]piperidin-4-yl}propan-2-ol: a novel, potent and selective type 5 17β-hydroxysteroid dehydrogenase inhibitor.

    PubMed

    Watanabe, Kazushi; Kakefuda, Akio; Yasuda, Minoru; Enjo, Kentaro; Kikuchi, Aya; Furutani, Takashi; Naritomi, Yoichi; Otsuka, Yukio; Okada, Minoru; Ohta, Mitsuaki

    2013-09-01

    Type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5), also known as aldo-keto reductase 1C3 (AKR1C3), is a member of the aldo-keto reductase superfamily of enzymes and is expressed in the human prostate. One of the main functions of 17β-HSD5 is to catalyze the conversion of the weak androgen, androstenedione, to the potent androgen, testosterone. The concentration of intraprostatic 5α-dihydrotestosterone (DHT) in patients following chemical or surgical castration has been reported to remain as high as 39% of that of healthy men, with 17β-HSD5 shown to be involved in this androgen synthesis. Inhibition of 17β-HSD5 therefore represents a promising target for the treatment of castration-resistant prostate cancer (CRPC). To investigate this, we conducted high-throughput screening (HTS) and identified compound 2, which displayed a structure distinct from known 17β-HSD5 inhibitors. To optimize the inhibitory activity of compound 2, we first introduced a primary alcohol group. We then converted the primary alcohol group to a tertiary alcohol, which further enhanced the inhibitory activity, improved metabolic stability, and led to the identification of compound 17. Oral administration of compound 17 to castrated nude mice bearing the CWR22R xenograft resulted in the suppression of androstenedione (AD)-induced intratumoral testosterone production. Compound 17 also demonstrated good isoform selectivity, minimal inhibitory activity against either CYP or hERG, and enhanced pharmacokinetic and physicochemical properties.

  9. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    SciTech Connect

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr. )

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed the presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.

  10. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution.

    PubMed Central

    Zhao, Q.; Modi, S.; Smith, G.; Paine, M.; McDonagh, P. D.; Wolf, C. R.; Tew, D.; Lian, L. Y.; Roberts, G. C.; Driessen, H. P.

    1999-01-01

    The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c. PMID:10048323

  11. Effect of an aldose reductase inhibitor on type IV collagen production by human endothelial cells cultured in high glucose.

    PubMed

    Bakillah, A; Grigorova-Borsos, A M; Guillot, R; Urios, P; Sternberg, M

    1996-06-01

    Diabetic microangiopathy is characterized by a thickening of capillary basement membranes associated with type IV collagen accumulation. An increase in type IV collagen content of the aortic wall is also observed in macroangiopathy. In order to analyse the importance of the polyol pathway in the development of the collagen metabolism alterations seen in diabetic angiopathy and their prevention by aldose reductase inhibitors, we have studied the effects of sorbinil on the high glucose-induced stimulation of type IV collagen biosynthesis in human umbilical vein endothelial cells. Primary cultures were exposed to high glucose (16.7 mmol/l), with and without 0.11 mmol/l sorbinil, for 3 or 6 days after beginning of confluence. We measured the soluble type IV collagen secreted into the culture medium and the insoluble type IV collagen accumulated in the extracellular matrix and cells, by ELISA. We also studied [14C]proline incorporation into the newly synthesized collagenous and total proteins in the culture supernatant and in the extracellular matrix and cell fraction. High glucose decreased the number of cells and increased the amount of type IV collagen in the culture supernatant and in the extracellular matrix and cell fraction. It also increased proline incorporation into the newly synthesized collagenous and total proteins in the culture supernatant and in the extracellular matrix and cell fraction. Sorbinil corrected all these high glucose-induced alterations. The corrective effects of sorbinil on the proliferation and on type IV collagen metabolism of endothelial cells cultured in high glucose may be attributed to prevention of polyol pathway dysregulation.

  12. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2.

    PubMed

    Manta, Bruno; Hugo, Martín; Ortiz, Cecilia; Ferrer-Sueta, Gerardo; Trujillo, Madia; Denicola, Ana

    2009-04-15

    Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent K(M) of 2.4 microM for human thioredoxin and a very low K(M) for H2O2 (0.7 microM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k(2) = 1.0 x 10(8) and 1.4 x 10(7) M(-1) s(-1) at 25 degrees C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant K(d) < 10(-23) M(4) which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.

  13. Inhibition of Human Steroid 5β-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex*

    PubMed Central

    Drury, Jason E.; Di Costanzo, Luigi; Penning, Trevor M.; Christianson, David W.

    2009-01-01

    The Δ4-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5α- or 5β-reductase. Finasteride is a mechanism-based inactivator of 5α-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-de pend ent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5β-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1·NADP+·finasteride complex determined at 1.7 Å resolution shows that it is not possible for NADPH to reduce the Δ1-2-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism. PMID:19515843

  14. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress.

    PubMed

    Yasunari, K; Maeda, K; Minami, M; Yoshikawa, J

    2001-06-01

    In vitro and in vivo evidence of a decrease in vascular smooth muscle cell (SMC) migration induced by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been reported. When added to SMC cultures for 6 hours, the HMG-CoA reductase inhibitors fluvastatin, simvastatin, and pravastatin at 1 micromol/L resulted in a 48%, 50%, and 16% suppression, respectively, of human coronary SMC migration; these reductions mirrored the suppression in oxidative stress induced by 1 micromol/L lysophosphatidylcholine (lyso-PC) of 50%, 53% and 19%, respectively. The hydroxylated metabolites of fluvastatin, M(2) and M(3), at 1 micromol/L also suppressed the enhancement of SMC migration by 58% and 45% and the increase in oxidative stress induced by lyso-PC of 58% and 49%, respectively. Lyso-PC activated phospholipase D and protein kinase C (PKC), and this activation was also suppressed by HMG-CoA reductase inhibitors. The inhibition of phospholipase D and PKC was reversed by 100 micromol/L mevalonate, its isoprenoid derivative, farnesol, and geranylgeraniol but not by 10 micromol/L squalene. Antisense oligodeoxynucleotides at 5 micromol/L to PKC-alpha, but not those to the PKC-beta isoform, suppressed the lyso-PC-mediated increases in SMC migration and oxidative stress. These findings suggest that HMG-CoA reductase inhibitors have direct antimigratory effects on the vascular wall beyond their effects on plasma lipids and that they might exert such antimigratory effects via suppression of the phospholipase D- and PKC (possibly PKC-alpha)-induced increase in oxidative stress, which might in turn prevent significant coronary artery disease.

  15. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  16. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma.

    PubMed

    Tanaka, Sota; Miki, Yasuhiro; Hashimoto, Chiaki; Takagi, Kiyoshi; Doe, Zhulanqiqige; Li, Bin; Yaegashi, Nobuo; Suzuki, Takashi; Ito, Kiyoshi

    2015-02-05

    Endometrial carcinoma, especially endometrioid endometrial adenocarcinoma, is an estrogen-dependent tumor that is similar to breast cancer. Androgen is closely associated with other steroid hormones, but its correlation with endometrioid endometrial adenocarcinoma remains largely unclear. We previously demonstrated the expression of the androgen receptor, 5α-reductase type 1, and 5α-reductase type 2 in endometrioid endometrial adenocarcinoma tissue, but androgen action and its correlation with prognosis are unknown. In this study, we measured the tissue and serum concentrations of androgen and performed immunohistochemical analyses of androgen-associated factors in 41 patients. In 86 additional patients, we performed the same immunohistochemical analyses to identify correlations associated with prognosis. We found that 5α-reductase type 1 was associated with intratumoral dihydrotestosterone concentrations, and it was an independent prognostic factor in endometrioid endometrial adenocarcinoma. The poor prognosis of patients negative for both androgen receptor and 5α-reductase type 1 suggests that androgens have inhibitory effects on tumor growth. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Geraki, Kalotina; Grossmann, J Günter; Gutierrez, Aldo

    2007-07-17

    A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are

  18. AKR1B10 — EDRN Public Portal

    Cancer.gov

    The AKR1B10 protein is a member of the aldo/keto reductase superfamily. This superfamily has more than 40 known enzymes and proteins. AKR1B10 acts as an all-trans-retinaldehyde reductase. It can efficiently reduce aliphatic and aromatic aldehydes, and is less active on hexoses (in vitro). It is highly expressed in adrenal gland, small intestine, and colon, and may play an important role in liver carcinogenesis.

  19. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia.

    PubMed

    Grigg, Matthew J; Barber, Bridget E; Marfurt, Jutta; Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J; Cox, Jonathan; White, Nicholas J; Cheng, Qin; Yeo, Tsin W; Auburn, Sarah; Anstey, Nicholas M

    2016-01-01

    Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

  20. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia

    PubMed Central

    Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A.; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J.; Cox, Jonathan; White, Nicholas J.; Cheng, Qin; Yeo, Tsin W.; Auburn, Sarah; Anstey, Nicholas M.

    2016-01-01

    Background Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. Methods The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Results Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Conclusion Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug

  1. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  2. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes.

    PubMed

    Kallberg, Yvonne; Oppermann, Udo; Jörnvall, Hans; Persson, Bengt

    2002-03-01

    The progress in genome characterizations has opened new routes for studying enzyme families. The availability of the human genome enabled us to delineate the large family of short-chain dehydrogenase/reductase (SDR) members. Although the human genome releases are not yet final, we have already found 63 members. We have also compared these SDR forms with those of three model organisms: Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. We detect eight SDR ortholog clusters in a cross-genome comparison. Four of these clusters represent extended SDR forms, a subgroup found in all life forms. The other four are classical SDRs with activities involved in cellular differentiation and signalling. We also find 18 SDR genes that are present only in the human genome of the four genomes studied, reflecting enzyme forms specific to mammals. Close to half of these gene products represent steroid dehydrogenases, emphasizing the regulatory importance of these enzymes.

  3. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Paine, Mark J; Ladbury, John E; Gutierrez, Aldo

    2006-02-07

    The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez

  4. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans.

    PubMed

    Blech, Stefan; Ludwig-Schwellinger, Eva; Gräfe-Mody, Eva Ulrike; Withopf, Barbara; Wagner, Klaus

    2010-04-01

    The pharmacokinetics and metabolism of linagliptin (BI1356, 8-(3R-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione) were investigated in healthy volunteers. The 10- and 5-mg (14)C-labeled drug was administered orally or intravenously, respectively. Fecal excretion was the dominant excretion pathway with 84.7% (p.o.) and 58.2% (i.v.) of the dose. Renal excretion accounted for 5.4% (p.o.) and 30.8% (i.v.) of the dose. Unchanged linagliptin was the most abundant radioactive species in all matrices investigated. The exposure (area under the curve 0-24 h) to the parent compound in plasma accounted for 191 nM . h (p.o.) and 356 nM . h (i.v.), respectively. The main metabolite 7-but-2-ynyl-8-(3S-hydroxy-piperidin-1-yl)-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (CD1790) was observed with >10% of parent compound systemic exposure after oral administration. The metabolite was identified as S-3-hydroxypiperidinly derivative of linagliptin. Experiments that included stable-labeled isotope techniques indicated that CD1790 was formed by a two-step mechanism via the ketone 7-but-2-yn-1-yl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(3-oxopiperidin-1-yl)-3,7-dihydro-1H-purine-2,6-dione (CD10604). The initial ketone formation was CYP3A4-dependent and rate-limiting for the overall reaction to CD1790. Aldo-keto reductases with minor contribution of carbonyl reductases were involved in the subsequent stereoselective reduction of CD10604 to CD1790. The antipodes of linagliptin and CD1790 were not observed with adequate enantioselective liquid chromatography-tandem mass spectrometry methods. Other minor metabolites were identified by mass spectrometry and NMR investigations. However, it was concluded that the metabolites of linagliptin only play a minor role in the overall disposition and elimination of linagliptin.

  5. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  6. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  7. Use of Sandwich-Cultured Human Hepatocytes to Predict Biliary Clearance of Angiotensin II Receptor Blockers and HMG-CoA Reductase Inhibitors

    PubMed Central

    Abe, Koji; Bridges, Arlene S.; Brouwer, Kim L. R.

    2009-01-01

    Previous reports have indicated that in vitro biliary clearance (Clbiliary) determined in sandwich-cultured hepatocytes correlates well with in vivo Clbiliary for limited sets of compounds. The purpose of this study was 1) to determine the in vitro Clbiliary in sandwich-cultured human hepatocytes of angiotensin II receptor blockers and HMG-CoA reductase inhibitors that undergo limited metabolism and 2) to compare the predicted Clbiliary values with estimated in vivo hepatic clearance data in humans. The average biliary excretion index and in vitro intrinsic Clbiliary values of olmesartan, valsartan, pravastatin, rosuvastatin, and pitavastatin in sandwich-cultured human hepatocytes were 35, 23, 31, 25, and 16%, respectively, and 0.943, 1.20, 0.484, 3.39, and 5.48 ml/min/kg, respectively. Clbiliary values predicted from sandwich-cultured human hepatocytes correlated with estimated in vivo hepatic clearance values based on published data (no in vivo data in humans was available for pitavastatin), and the rank order was also consistent. In conclusion, in vitro Clbiliary determined in sandwich-cultured human hepatocytes can be used to predict in vivo Clbiliary of compounds in humans. PMID:19074974

  8. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  9. LDL-Induced Impairment of Human Vascular Smooth Muscle Cells Repair Function Is Reversed by HMG-CoA Reductase Inhibition

    PubMed Central

    Padró, Teresa; Lugano, Roberta; García-Arguinzonis, Maisa; Badimon, Lina

    2012-01-01

    Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins. PMID:22719992

  10. Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties.

    PubMed

    Lundová, Tereza; Štambergová, Hana; Zemanová, Lucie; Svobodová, Markéta; Havránková, Jana; Šafr, Miroslav; Wsól, Vladimír

    2016-01-01

    Dehydrogenase/reductase (SDR family) member 8 (DHRS8, SDR16C2) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, one of the largest enzyme groups. In addition to the well-known members which participate in the metabolism of important eobiotics and xenobiotics, this superfamily contains many poorly characterized proteins. DHRS8 is a member of the Multisubstrate NADP(H)-dependent SDR16C family, which generally contains insufficiently described enzymes. Despite the limited knowledge about DHRS8, preliminary indicators have emerged regarding its significant function in the modulation of steroidal activity, at least in the case of 3α-adiol, lipid metabolism and detoxification. The aim of this study was to describe additional biochemical properties of DHRS8 and to unify knowledge about this enzyme. The DHRS8 was prepared in recombinant form and its membrane topology in the endoplasmic reticulum as an integral protein with cytosolic orientation was demonstrated. The enzyme participates in the NAD(+)-dependent oxidation of steroid hormones as β-estradiol and testosterone in vitro; apparent K m and V max values were 39.86 µM and 0.80 nmol × mg(-1) × min(-1) for β-estradiol and 1207.29 µM and 3.45 nmol × mg(-1) × min(-1) for testosterone. Moreover, synthetic steroids (methyltestosterone and nandrolone) used as anabolics as well as all-trans-retinol were for the first time identified as substrates of DHRS8. This knowledge of its in vitro activity together with a newly described expression pattern at the protein level in tissues involved in steroidogenesis (adrenal gland and testis) and detoxification (liver, lung, kidney and small intestine) could suggest a potential role of DHRS8 in vivo.

  11. Synthesis of 17beta-N-substituted 19-Nor-10-azasteroids as inhibitors of human 5alpha-reductases I and II.

    PubMed

    Scarpi, Dina; Occhiato, Ernesto G; Danza, Giovanna; Serio, Mario; Guarna, Antonio

    2002-11-01

    The synthesis of 17beta-[N-(phenyl)methyl/phenyl-amido] substituted 10-azasteroids has been accomplished by either the TiCl4- or TMSOTf-catalysed reaction of carbamates 11 and 12 with Danishefsky's diene. The reaction provided 5alpha-H isomers 3a-5a and 5beta-H isomers 3b-5b depending on the reaction conditions. Both epimers of each compound were tested against human 5alpha-reductase types I and II. Unexpectedly, 5beta-H compounds were found more active than their 5alpha-H counterparts, the best inhibitors being 3b (IC50=279 and 2000 nM toward isoenzyme I and II, respectively) and 5b (IC50=913 and 247 nM toward isoenzymes I and II, respectively).

  12. Regulation of the Lactobacillus Strains on HMGCoA Reductase Gene Transcription in Human HepG2 Cells via Nuclear Factor-κB.

    PubMed

    Chen, Kun; Li, Shaocong; Chen, Fang; Li, Jun; Luo, Xuegang

    2016-02-01

    Lactic acid bacteria have been identified to be effective in reducing cholesterol levels. Most of the mechanistic studies were focused on the bile salt deconjugation ability of bile salt hydrolase in lactic acid bacteria. However, the mechanism by which Lactobacillus decreases cholesterol levels has not been thoroughly studied in intact primate cells. 3-Hydroxy-3- methyl-glutaryl-coenzyme A reductase (HMGCR) is the vital enzyme in cholesterol synthesis. To confirm the effect of probiotic Lactobacillus strains on HMGCR level, in the present study, human hepatoma HepG2 cells were treated with Lactobacillus strains, and then the HMGCR level was illustrated by luciferase reporter assay and RT-PCR. The results showed that the level of HMGCR was suppressed after being treated with the live Lactobacillus strains. These works might set a foundation for the following study of the antihyperlipidemic effects of L. acidophilus, and contribute to the development of functional foods or drugs that benefit patients suffering from hyperlipidemia diseases.

  13. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor

    PubMed Central

    Gibbs, Peter E. M.; Lerner-Marmarosh, Nicole; Poulin, Amelia; Farah, Elie; Maines, Mahin D.

    2014-01-01

    Insulin binding changes conformation of the insulin receptor kinase (IRK) domain and initiates glucose uptake through the insulin, IGF-1, phosphatidyl inositol 3-kinase (PI3K), and MAPK pathways; human biliverdin reductase (hBVR) is an IRK substrate and pathway effector. This is the first report on hBVR peptide-mediated IRK activation and conformational change. 290KYCCSRK, which increased IRK Vmax without changing Km, stimulated glucose uptake and potentiated insulin and IGF-1 stimulation in 4 cell lines. KYCCSRK in native hBVR was necessary for the hBVR and IRK cross-activation. Peptide treatment also activated PI3K downstream effectors, Akt and ERK, phosphorylation, and Elk transcriptional activity. In cells transfected with CMV-regulated EGFP-VP-peptide plasmid, C292→A mutant did not stimulate glucose uptake; K296→A decreased uptake and kinase activity. KEDQYMKMTV, corresponding to hBVR's SH2-binding domain, was a potent inhibitor of glucose uptake and IRK. The mechanism of action of peptides was examined using cells expressing IRK (aa 988–1263) activated by coexpressed KYCCSRK. Three active cys-mutants of IRK, with fluorophore coupled to cysteines, C1056, C1138, or C1234, were examined for changes in fluorescence emission spectra in the presence of peptides. KYCCSRK and KEDQYMKMTV bound to different sites in IRK. The findings identify novel agents for activating or inhibiting insulin signaling and offer a new approach for treatment of type 2 diabetes and hypoglycemia.—Gibbs, P. E. M., Lerner-Marmarosh, N., Poulin, A., Farah, E., Maines, M. D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. PMID:24568842

  14. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12

    SciTech Connect

    Pahl, P.; Berger, R.; Hart, I. |

    1995-04-10

    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases. 33 refs., 2 figs., 1 tab.

  15. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12.

    PubMed

    Pahl, P; Berger, R; Hart, I; Chae, H Z; Rhee, S G; Patterson, D

    1995-04-10

    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases.

  16. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  17. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function.

  18. Aldose reductase inhibitor improves insulin-mediated glucose uptake and prevents migration of human coronary artery smooth muscle cells induced by high glucose.

    PubMed

    Yasunari, K; Kohno, M; Kano, H; Minami, M; Yoshikawa, J

    2000-05-01

    We examined involvement of the polyol pathway in high glucose-induced human coronary artery smooth muscle cell (SMC) migration using Boyden's chamber method. Chronic glucose treatment for 72 hours potentiated, in a concentration-dependent manner (5.6 to 22.2 mol/L), platelet-derived growth factor (PDGF) BB-mediated SMC migration. This potentiation was accompanied by an increase in PDGF BB binding, because of an increased number of PDGF-beta receptors, and this potentiation was blocked by the aldose reductase inhibitor epalrestat. Epalrestat at concentrations of 10 and 100 nmol/L inhibited high glucose-potentiated (22.2 mmol/L), PDGF BB-mediated migration. Epalrestat at 100 nmol/L inhibited a high glucose-induced increase in the reduced/oxidized nicotinamide adenine dinucleotide ratio and membrane-bound protein kinase C (PKC) activity in SMCs. PKC inhibitors calphostin C (100 nmol/L) and chelerythrine (1 micromol/L) each inhibited high glucose-induced, PDGF BB-mediated SMC migration. High glucose-induced suppression of insulin-mediated [(3)H]-deoxyglucose uptake, which was blocked by both calphostin C (100 nmol/L) and chelerythrine (1 micromol/L), was decreased by epalrestat (100 nmol/L). Chronic high glucose treatment for 72 hours increased intracellular oxidative stress, which was directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by epalrestat (100 nmol/L). Antisense oligonucleotide to PKC-beta isoform inhibited high glucose-mediated changes in SMC migration, insulin-mediated [(3)H]-deoxyglucose uptake, and oxidative stress. These findings suggest that high glucose concentrations potentiate SMC migration in coronary artery and that the aldose reductase inhibitor epalrestat inhibits high glucose-potentiated, PDGF BB-induced SMC migration, possibly through suppression of PKC (PKC-beta), impaired insulin-mediated glucose uptake, and oxidative stress.

  19. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases*

    PubMed Central

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-01-01

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. PMID:26364851

  20. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the Ki values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    PubMed

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  2. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.

    PubMed

    Watanabe, Takao; Kusuhara, Hiroyuki; Maeda, Kazuya; Kanamaru, Hiroshi; Saito, Yoshikazu; Hu, Zhuohan; Sugiyama, Yuichi

    2010-02-01

    Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.

  3. Human Delta4-3-oxosteroid 5beta-reductase (AKR1D1) deficiency and steroid metabolism.

    PubMed

    Palermo, Mario; Marazzi, Maria Grazia; Hughes, Beverly A; Stewart, Paul M; Clayton, Peter T; Shackleton, Cedric H L

    2008-04-01

    Conclusive in vivo evidence regarding the enzyme responsible for steroid hormone 5beta-reduction has not been obtained, although studies have suggested it may be the same enzyme as that utilized for cholic acid and chenodeoxycholic bile-acid synthesis. We have recorded the steroid metabolome of a patient with a defect in the "bile-acid" 5beta-reductase (AKR1D1) and from this confirm that this enzyme is additionally responsible for steroid hormone metabolism. The 13-year old patient has been investigated since infancy because of a cholestasis phenotype caused by bile-acid insufficiency. Several years ago it was shown that she had a 662C>T missense mutation in AKR1D1 causing a Pro198Leu substitution. It was found that the patient had an almost total absence of 5beta-reduced metabolites of corticosteroids and severely reduced production of 5beta-reduced metabolites of other steroids. The patient is healthy in spite of her earlier hepatic failure and is on no treatment. All her vital signs were normal, as were results of many biochemical analyses. She had normal pubertal changes and experiences regular menstrual cycles. There was no evidence for any clinical condition that could be attributed to attenuated ability to metabolize steroids in normal fashion. Both parents were heterozygous for the mutation but the steroid excretion was entirely normal, although an older female sibling showed definitive evidence for attenuated 5beta-reduction of cortisol. A younger brother had a normal steroid metabolome. The sibling genotypes were not available.

  4. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops.

    PubMed

    Castrignanò, Silvia; D'Avino, Serena; Di Nardo, Giovanna; Catucci, Gianluca; Sadeghi, Sheila J; Gilardi, Gianfranco

    2017-07-19

    Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis*

    PubMed Central

    Tebbi, Ali; Guittet, Olivier; Tuphile, Karine; Cabrié, Aimeric; Lepoivre, Michel

    2015-01-01

    Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication. The p53R2 protein is expressed throughout the cell cycle and in quiescent cells where it provides dNTPs for mitochondrial DNA synthesis. Participation of R2 and p53R2 in DNA repair has also been suggested. In this study, we investigated the fate of the RnR subunits during apoptosis. The p53R2 protein was cleaved in a caspase-dependent manner in K-562 cells treated with inhibitors of the Bcr-Abl oncogenic kinase and in HeLa 229 cells incubated with TNF-α and cycloheximide. The cleavage site was mapped between Asp342 and Asn343. Caspase attack released a C-terminal p53R2 peptide of nine residues containing the conserved heptapeptide essential for R1 binding. As a consequence, the cleaved p53R2 protein was inactive. In vitro, purified caspase-3 and -8 could release the C-terminal tail of p53R2. Knocking down these caspases, but not caspase-2, -7, and -10, also inhibited p53R2 cleavage in cells committed to die via the extrinsic death receptor pathway. The R2 subunit was subjected to caspase- and proteasome-dependent proteolysis, which was prevented by siRNA targeting caspase-8. Knocking down caspase-3 was ineffective. Protein R1 was not subjected to degradation. Adding deoxyribonucleosides to restore dNTP pools transiently protected cells from apoptosis. These data identify RnR activity as a prosurvival function inactivated by proteolysis during apoptosis. PMID:25878246

  6. In search for function of two human orphan SDR enzymes: hydroxysteroid dehydrogenase like 2 (HSDL2) and short-chain dehydrogenase/reductase-orphan (SDR-O).

    PubMed

    Kowalik, Dorota; Haller, Ferdinand; Adamski, Jerzy; Moeller, Gabriele

    2009-11-01

    The protein superfamily of short-chain dehydrogenases/reductases (SDRs) today comprises over 20,000 members found in pro- and eukaryotes. Despite low amino acid sequence identity (only 15-30%), they share several similar characteristics in conformational structures, the N-terminal cofactor (NAD(P)/NAD(P)H) binding region being the most conserved. The enzymes catalyze oxido-reductive reactions and have a broad spectrum of substrates. Not all recently identified SDRs have been analyzed in detail yet, and we therefore characterized two rudimentarily annotated human SDR candidates: an orphan SDR (SDR-O) and hydroxysteroid dehydrogenase like 2 (HSDL2). We analyzed the amino acid sequence for cofactor preference, performed subcellular localization studies, and a screening for substrates of the enzymes, including steroid hormones and retinoids. None of both tested proteins showed a significant conversion of steroid hormones. However, the peroxisomal localization of human HSDL2 may suggest an involvement in fatty acid metabolism. For SDR-O a weak conversion of retinal into retinol was detectable in the presence of the cofactor NADH.

  7. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells

    PubMed Central

    Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-01-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  8. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  9. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes.

    PubMed

    Li, Dan; Wang, Wei; Shan, Yujuan; Barrera, Lawrence N; Howie, Alexander F; Beckett, Geoffrey J; Wu, Kun; Bao, Yongping

    2012-07-15

    Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds.

  11. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress

    PubMed Central

    Moskovitz, Jackob; Flescher, Eliezer; Berlett, Barbara S.; Azare, Janeen; Poston, J. Michael; Stadtman, Earl R.

    1998-01-01

    The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress. PMID:9826655

  12. 2.6 Å X-ray Crystal Structure of Human p53R2, a p53 Inducible Ribonucleotide Reductase

    PubMed Central

    Smith, Peter; Zhou, Bingsen; Ho, Nam; Yuan, Yate-Ching; Su, Leila; Tsai, Shiou-Chuan; Yen, Yun

    2009-01-01

    Human p53R2 (hp53R2) is a 351 residue p53-inducible ribonucleotide reductase (RNR) small subunit. It shares >80% sequence identity with hRRM2, the small RNR subunit responsible for normal maintenance of the deoxyribonucleotide (dNTP) pool used for DNA replication, which is active during the S-phase in a cell-cycle dependent fashion. But rather than cyclic dNTP synthesis, hp53R2 has been shown to supply dNTPs for DNA repair to cells in G0-G1 in a p53-dependent fashion. The first x-ray crystal structure of hp53R2 is solved to 2.6 Å, in which monomers A and B exhibit mono- and bi-nuclear iron occupancy, respectively. The pronounced structural differences at three regions between hp53R2 and hRRM2 highlight the possible regulatory role in iron assimilation, and help explain previously observed physical and biochemical differences in the mobility and accessibility of the radical-iron center, as well as radical transfer pathways between the two enzymes. The sequence-structure-function correlations that differentiate hp53R2 and hRRM2 are revealed for the first time. Insight gained from this structural work will be used toward the identification of biological function, regulation mechanism and inhibitors selection in RNR small subunits. PMID:19728742

  13. Effect of chronic alcohol use on hepatic testosterone 5-alpha-A-ring reductase in the baboon and in the human being.

    PubMed

    Gordon, G G; Vittek, J; Ho, R; Rosenthal, W S; Southren, A L; Lieber, C S

    1979-07-01

    Hepatic testosterone 5-alpha-A-ring reductase (HTAR) activity was measured in open liver biopsies in eight alcohol-fed baboons and eight pair-fed controls. The animals were studied after at least 1 yr of alcohol feeding. In the alcholol-fed animals, a significant fall in enzyme activity was noted. This occurred whether the enzyme levels were related to soluble protein, to DNA, or to wet tissue weight, showing that the change was due to a decrease in the specific activity of the enzyme. In addition, aspiration liver biopsy specimens were obtained from 14 men and women with alcoholic liver disease. Again, there was a significant decrease in HTAH activity in these patients compared with a normal population. No relationship was found between hepatic histology and HTAR levels in either the baboon or human population with alcoholic liver disease, suggesting that the changes in enzyme activity were related to an alcohol effect rather than to liver disease per se. This study demonstrates that chronic alcohol use decreases the function of the enzyme which controls an important rate-limiting step in the metabolism of testosterone in the liver and that this effect may be due primarily to alcohol.

  14. CREB1 directly activates the transcription of ribonucleotide reductase small subunit M2 and promotes the aggressiveness of human colorectal cancer

    PubMed Central

    Fang, Zejun; Lin, Aifen; Chen, Jiaoe; Zhang, Xiaomin; Liu, Hong; Li, Hongzhang; Hu, Yanyan; Zhang, Xia; Zhang, Jiangang; Qiu, Lanlan; Mei, Lingming; Shao, Jimin; Chen, Xiang

    2016-01-01

    As the small subunit of Ribonucleotide reductase (RR), RRM2 displays a very important role in various critical cellular processes such as cell proliferation, DNA repair, and senescence, etc. Importantly, RRM2 functions like a tumor driver in most types of cancer but little is known about the regulatory mechanism of RRM2 in cancer development. In this study, we found that the cAMP responsive element binding protein 1 (CREB1) acted as a transcription factor of RRM2 gene in human colorectal cancer (CRC). CREB1 directly bound to the promoter of RRM2 gene and induced its transcriptional activation. Knockdown of CREB1 decreased the expression of RRM2 at both mRNA and protein levels. Moreover, knockdown of RRM2 attenuated CREB1-induced aggressive phenotypes of CRC cells in vitro and in vivo. Analysis of the data from TCGA database and clinical CRC specimens with immunohistochemical staining also demonstrated a strong correlation between the co-expression of CREB1 and RRM2. Decreased disease survivals were observed in CRC patients with high expression levels of CREB1 or RRM2. Our results indicate CREB1 as a critical transcription factor of RRM2 which promotes tumor aggressiveness, and imply a significant correlation between CREB1 and RRM2 in CRC specimens. These may provide the possibility that CREB1 and RRM2 could be used as biomarkers or targets for CRC diagnosis and treatment. PMID:27801665

  15. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  16. Synthesis and activity of 8-substituted benzo[c]quinolizin-3-ones as dual inhibitors of human 5alpha-reductases 1 and 2.

    PubMed

    Ferrali, Alessandro; Menchi, Gloria; Occhiato, Ernesto G; Danza, Giovanna; Mancina, Rosa; Serio, Mario; Guarna, Antonio

    2005-01-03

    Some potent dual inhibitors of 5alpha-reductases 1 and 2, based on the benzo[c]quinolizin-3-one structure and with IC(50) values ranging between 93 and 166nM for both isozymes, were found. The presence of the F atom on the ester moiety at the position 8 was crucial. This result can help in the design of other potent, dual inhibitors to be developed as drugs in the treatment of 5alpha-reductase related diseases.

  17. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression.

    PubMed

    Habib, Fouad K; Ross, Margaret; Ho, Clement K H; Lyons, Valerie; Chapman, Karen

    2005-03-20

    The phytotherapeutic agent Serenoa repens is an effective dual inhibitor of 5alpha-reductase isoenzyme activity in the prostate. Unlike other 5alpha-reductase inhibitors, Serenoa repens induces its effects without interfering with the cellular capacity to secrete PSA. Here, we focussed on the possible pathways that might differentiate the action of Permixon from that of synthetic 5alpha-reductase inhibitors. We demonstrate that Serenoa repens, unlike other 5alpha-reductase inhibitors, does not inhibit binding between activated AR and the steroid receptor-binding consensus in the promoter region of the PSA gene. This was shown by a combination of techniques: assessment of the effect of Permixon on androgen action in the LNCaP prostate cancer cell line revealed no suppression of AR and maintenance of PSA protein expression at control levels. This was consistent with reporter gene experiments showing that Permixon failed to interfere with AR-mediated transcriptional activation of PSA and that both testosterone and DHT were equally effective at maintaining this activity. Our results demonstrate that despite Serenoa repens effective inhibition of 5alpha-reductase activity in the prostate, it did not suppress PSA secretion. Therefore, we confirm the therapeutic advantage of Serenoa repens over other 5alpha-reductase inhibitors as treatment with the phytotherapeutic agent will permit the continuous use of PSA measurements as a useful biomarker for prostate cancer screening and for evaluating tumour progression.

  18. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors

    PubMed Central

    Verma, Sant Kumar

    2017-01-01

    Aldose reductase (ALR2) inhibition is the most legitimate approach for the management of diabetic complications. The limited triumph in the drug development against ALR2 is mainly because of its close structural similarity with the other members of aldo-keto reductase (AKR) superfamily viz. ALR1, AKR1B10; and lipophilicity problem i.e. poor diffusion of synthetic aldose reductase inhibitors (ARIs) to target tissues. The literature evidenced that naturally occurring curcumin demonstrates relatively specific and non-competitive inhibition towards human recombinant ALR2 over ALR1 and AKR1B10; however β-diketone moiety of curcumin is a specific substrate for liver AKRs and accountable for it’s rapid in vivo metabolism. In the present study, structure based comprehensive modelling studies were used to map the pharmacophoric features/spatial fingerprints of curcumin analogues responsible for their ALR2 specificity along with potency on a data set of synthetic curcumin analogues and naturally occurring curcuminoids. The data set molecules were also screened for drug-likeness or ADME parameters, and the screening data strongly support that curcumin analogues could be proposed as a good drug candidate for the development of ALR2 inhibitors with improved pharmacokinetic profile compared to curcuminoids due to the absence of β-diketone moiety in their structural framework. PMID:28399135

  19. Induction of carbonyl reductase 1 (CBR1) expression in human lung tissues and lung cancer cells by the cigarette smoke constituent benzo[a]pyrene.

    PubMed

    Kalabus, James L; Cheng, Qiuying; Jamil, Raqeeb G; Schuetz, Erin G; Blanco, Javier G

    2012-06-20

    Carbonyl reductase 1 (CBR1) reduces various xenobiotic carbonyl substrates to corresponding alcohol metabolites. Here we demonstrated that benzo[a]pyrene (B[a]P), a potent pro-carcinogen and predominant polycyclic aromatic hydrocarbon (PAH) compound in cigarette smoke and air pollutants, upregulates CBR1 gene expression in vitro and in vivo, and that a proximal xenobiotic response element (XRE) motif (₋₁₂₂XRE) mediates the induction effect of B[a]P. First, we observed 46% and 50% increases in CBR1 mRNA and CBR1 protein levels, respectively, in human lung tissue samples from smokers compared to never-smokers. Second, we detected 3.0-fold (p<0.0001) induction of CBR1 mRNA and 1.5-fold (p<0.01) induction of CBR1 protein levels in cells of the human lung cancer cell line A549 incubated with 2.5 μM B[a]P for 24h. Third, results from experiments with CBR1 promoter constructs indicated that a proximal XRE motif ₋₁₂₂XRE) mediates induction of reporter activity in response to B[a]P. Furthermore, we detected enhanced nuclear translocation of aryl hydrocarbon receptor (AhR) following B[a]P exposure in A549 cells. Finally, we demonstrated increased binding of specific protein complexes to ₋₁₂₂XRE in nuclear extracts from B[a]P-treated cells and the presence of the AhR/Arnt complex in the specific nuclear protein ₋₁₂₂XRE complexes.

  20. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  1. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations.

  2. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  3. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  4. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  5. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.

    PubMed

    Meinerz, Daiane F; Branco, Vasco; Aschner, Michael; Carvalho, Cristina; Rocha, João Batista T

    2017-04-06

    Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe)2 ] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH-SY5Y). Our results established that (PhSe)2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe)2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm). Among the selenocompounds only (PhSe)2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe)2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe)2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd.

  6. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  7. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening.

    PubMed

    Zhang, Qing Y; Wan, Jian; Xu, Xin; Yang, Guang F; Ren, Yan L; Liu, Jun J; Wang, Hui; Guo, Yu

    2007-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.

  8. The plant-type ferredoxin-NADP+ reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites.

    PubMed

    Seeber, Frank; Aliverti, Alessandro; Zanetti, Giuliana

    2005-01-01

    Apicomplexa are unicellular, obligate intracellular parasites of great medical importance. They include human pathogens like Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, an opportunistic parasite of immunosuppressed individuals and a common cause of congenital disease (toxoplasmosis). They alone affect several hundred million people worldwide so that new drugs, especially for plasmodial infections, are urgently needed. This review will focus on a recently emerged, potential drug target, a plant-type redox system consisting of ferredoxin-NADP(+) reductase (FNR) and its redox partner, ferredoxin (Fd). Both reside in an unique organelle of these parasites, named apicoplast, which is of algal origin. The apicoplast has been shown to be required for pathogen survival. In addition to other pathways already identified in this compartment, the FNR/Fd redox system represents a promising drug target because homologous proteins are not present in host organisms. Furthermore, a wealth of structural information exists on the closely related plant proteins, which can be exploited for structure-function studies of the apicomplexan protein pair. T. gondii and P. falciparum FNRs have been cloned, and the T. gondii enzyme was shown to be a flavoprotein active as a NADPH-dependent oxidoreductase. Both phylogenetic and biochemical analyses indicate that T. gondii FNR is similar in function to the isoform present in non-photosynthetic plastids whereby electron flow is from NADPH to oxidized Fd. The resulting reduced Fd is then presumably used as a reductant for various target enzymes whose nature is just starting to emerge. Among the likely candidates is the iron-sulfur cluster biosynthesis pathway, which is also located in the apicoplast and dependent on reducing power. Furthermore, lipoic acid synthase and enzymes of the isoprenoid biosynthetic pathway may be other conceivable targets. Since all these metabolic steps are vital for the parasite, blocking

  9. Biochemical modulation of aracytidine (Ara-C) effects by GTI-2040, a ribonucleotide reductase inhibitor, in K562 human leukemia cells.

    PubMed

    Chen, Ping; Aimiuwu, Josephine; Xie, Zhiliang; Wei, Xiaohui; Liu, Shujun; Klisovic, Rebecca; Marcucci, Guido; Chan, Kenneth K

    2011-03-01

    GTI-2040 is a potent antisense to the M2 subunit of the ribonucleotide reductase (RNR), an enzyme involved in the de novo synthesis of nucleoside triphosphates. We hypothesized that combination of GTI-2040 with the cytarabine (Ara-C) could result in an enhanced cytotoxic effect with perturbed intracellular deoxynucleotide/nucleotide (dNTP/NTP) pools including Ara-C triphosphate (Ara-CTP). This study aims to provide a direct experimental support of this hypothesis by monitoring the biochemical modulation effects, intracellular levels of Ara-CTP, dNTPs/NTPs following the combination treatment of Ara-C, and GTI-2040 in K562 human leukemia cells. GTI-2040 was introduced into cells via electroporation. A hybridization-ligation ELISA was used to quantify intracellular GTI-2040 concentrations. Real-time PCR and Western blot methods were used to measure the RNR M2 mRNA and protein levels, respectively. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay was used to measure the cytotoxicity following various drug treatments. A non-radioactive HPLC-UV method was used for measuring the intracellular Ara-CTP, while a LC-MS/MS method was used to quantify intracellular dNTP/NTP pools. GTI-2040 was found to downregulate M2 mRNA and protein levels in a dose-dependent manner and showed significant decrease in dNTP but not NTP pool. When combining GTI-2040 with Ara-C, a synergistic cytotoxicity was observed with no further change in dNTP/NTP pools. Importantly, pretreatment of K562 cells with GTI-2040 was found to increase Ara-CTP level for the first time, and this effect may be due to inhibition of RNR by GTI-2040. This finding provides a laboratory justification for the current phase I/II evaluation of GTI-2040 in combination with Ara-C in patients with acute myeloid leukemia.

  10. Structure-activity correlations for three pyrido[2,3-d]pyrimidine antifolates binding to human and Pneumocystis carinii dihydrofolate reductase.

    PubMed

    Cody, Vivian; Pace, Jim; Namjoshi, Ojas A; Gangjee, Aleem

    2015-06-01

    To further define the interactions that enhance the selectivity of binding and to directly compare the binding of the most potent analogue {N(6)-methyl-N(6)-(3,4,5-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine; compound 26} in the series of bicyclic pyrido[2,3-d]pyrimidine analogues of piritrexim (PTX) with native human (h), Pneumocystis carinii (pc) and Pneumocystis jirovecii (pj) dihydrofolate reductase (DHFR) enzymes, the crystal structures of hDHFR complexed with N(6)-methyl-N(6)-(4-isopropylphenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 22), of hDHFR complexed with compound 26 and of pcDHFR complexed with N(6)-methyl-N(6)-1-naphthylpyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 24) are reported as ternary complexes with NADPH. This series of bicyclic pyrido[2,3-d]pyrimidines were designed in which there was a transposition of the 5-methyl group of PTX to the N9 position of the pyrido[2,3-d]pyrimidine. It was hypothesized that the N9-methyl group would preferentially interact with Ile123 of pcDHFR (and Ile123 of pjDHFR), but not with the shorter Val115 in hDHFR. Structure-activity data for this series of antifolates revealed that a trifluoro derivative (26) was the most selective against pjDHFR compared with mammalian DHFR (h/pj = 35.7). Structural data for the hDHFR-26 complex revealed that 26 binds in a different conformation from that observed in the pcDHFR-26 complex. In the hDHFR-26 complex the trifluorophenyl ring of 26 occupies a position near the cofactor-binding site, with close intermolecular contacts with Asp21, Ser59 and Ile60, whereas this ring in the pcDHFR-26 complex is positioned away from the cofactor site and near Ile65, with weaker contacts with Ile65, Phe69 and Ile123. Comparison of the intermolecular contacts between the N9-methyl group with Val115/Ile123 validates the hypothesis that the N9-methyl substituent preferentially interacts with Ile123 compared with Val115 of hDHFR, as the weaker contact with Val115 in the h

  11. Identification of Lactobacillus brevis using a species-specific AFLP-derived marker.

    PubMed

    Fusco, Vincenzina; Quero, Grazia Marina; Chieffi, Daniele; Franz, Charles M A P

    2016-09-02

    A simple and specific method for the rapid detection and identification of Lactobacillus brevis was developed. A fAFLP (Fluorescent Amplified Fragment Length Polymorphisms) marker for L. brevis was used to design oligonucleotide primers for a species-specific PCR assay, targeting a 125bp fragment of the gene encoding the aldo/keto reductase of the diketogulonate-reductase family of L. brevis. This assay resulted in 100% inclusivity and exclusivity of assignment of strains to the species L. brevis. The analytical specificity of this assay was successfully tested to identify L. brevis isolates from sourdoughs.

  12. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  13. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    PubMed

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  14. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. AKR1C1 as a Biomarker for Differentiating the Biological Effects of Combustible from Non-Combustible Tobacco Products.

    PubMed

    Woo, Sangsoon; Gao, Hong; Henderson, David; Zacharias, Wolfgang; Liu, Gang; Tran, Quynh T; Prasad, G L

    2017-05-03

    Smoking has been established as a major risk factor for developing oral squamous cell carcinoma (OSCC), but less attention has been paid to the effects of smokeless tobacco products. Our objective is to identify potential biomarkers to distinguish the biological effects of combustible tobacco products from those of non-combustible ones using oral cell lines. Normal human gingival epithelial cells (HGEC), non-metastatic (101A) and metastatic (101B) OSCC cell lines were exposed to different tobacco product preparations (TPPs) including cigarette smoke total particulate matter (TPM), whole-smoke conditioned media (WS-CM), smokeless tobacco extract in complete artificial saliva (STE), or nicotine (NIC) alone. We performed microarray-based gene expression profiling and found 3456 probe sets from 101A, 1432 probe sets from 101B, and 2717 probe sets from HGEC to be differentially expressed. Gene Set Enrichment Analysis (GSEA) revealed xenobiotic metabolism and steroid biosynthesis were the top two pathways that were upregulated by combustible but not by non-combustible TPPs. Notably, aldo-keto reductase genes, AKR1C1 and AKR1C2, were the core genes in the top enriched pathways and were statistically upregulated more than eight-fold by combustible TPPs. Quantitative real time polymerase chain reaction (qRT-PCR) results statistically support AKR1C1 as a potential biomarker for differentiating the biological effects of combustible from non-combustible tobacco products.

  16. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery

    PubMed Central

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M.; Buonaguro, Luigi

    2016-01-01

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely “HCC-associated” and “HCC-specific”. Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy. PMID:27387388

  17. NF-E2-related factor 2 regulates the stress response to UVA-1-oxidized phospholipids in skin cells.

    PubMed

    Gruber, Florian; Mayer, Herbert; Lengauer, Barbara; Mlitz, Veronika; Sanders, John M; Kadl, Alexandra; Bilban, Martin; de Martin, Rainer; Wagner, Oswald; Kensler, Thomas W; Yamamoto, Masayuki; Leitinger, Norbert; Tschachler, Erwin

    2010-01-01

    Long-wavelength ultraviolet (UVA-1) radiation causes oxidative stress that modifies cellular molecules. To defend themselves against noxious oxidation products, skin cells produce detoxifying enzymes and antioxidants. We have recently shown that UVA-1 oxidized the abundant membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), which then induced the stress-response protein heme oxygenase 1 (HO-1) in dermal fibroblasts. Here we examined the effects of UVA-1- and UV-oxidized phospholipids on global gene expression in human dermal fibroblasts and keratinocytes. We identified a cluster of genes that were coinduced by UVA-1-oxidized PAPC and UVA-1 radiation. The cluster included HO-1, glutamate-cysteine ligase modifier subunit, aldo-keto reductases-1-C1 and -C2, and IL-8. These genes are members of the cellular stress response system termed "antioxidant response." Accordingly, the regulatory regions of all of these genes contain binding sites for NF-E2-related factor 2 (NRF2), a major regulator of the antioxidant response. Both UVA-1 irradiation and treatment with oxidized lipids led to increased nuclear accumulation and DNA binding of NRF2. Silencing and deficiency of NRF2 suppressed the antioxidant response. Taken together, our data show that UVA-1-mediated lipid oxidation induces expression of antioxidant response genes, which is dependent on the redox-regulated transcription factor NRF2. Our findings suggest a different view on UV-generated lipid mediators that were commonly regarded as detrimental

  18. Endogenous alpha-oxoaldehydes and formation of protein and nucleotide advanced glycation endproducts in tissue damage.

    PubMed

    Thornalley, Paul J

    2007-01-01

    Human and other biological tissues face a continual threat of damage by alpha-oxoaldehydes formed endogenously. Glyoxal, methylglyoxal and 3-deoxyglucosone are formed by the degradation of glycolytic intermediates, glycated proteins and lipid peroxidation. They are potent glycating agents of protein and nucleotides leading to the formation of advanced glycation endproducts (AGEs). With proteins, they are arginine residue-directed glycating agents forming mainly hydroimidazolones, found at 0.1-1% of total arginine residues in tissues (2-20% of proteins modified). With nucleotides, imidazopurinone- and N2-carboxyalkyl- derivatives of deoxyguanosine are formed, found at 0.1-0.8 per 10(6) nucleotides in DNA. Glycation occurs in all tissues and body fluids. Cellular proteolysis of AGE-modified proteins and DNA releases glycated amino acids and nucleosides. Glycated amino acids and nucleosides are released into plasma, undergo glomerular filtration and are excreted in urine. The damage to tissue protein and nucleotides by alpha-oxoaldehydes is suppressed by the metabolism of alpha-oxoaldehyde glycating agents by the glutathione-dependent enzyme, glyoxalase I, and aldo-keto reductases. These enzymatic activities are part of the enzymatic defence against glycation. Tissue damage by alpha-oxoaldehyde glycation is implicated in diabetic and non-diabetic vascular disease, renal failure, cirrhosis, Alzheimer's disease, arthritis and ageing.

  19. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids*

    PubMed Central

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-01-01

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids. PMID:22745130

  20. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  1. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  2. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  3. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  4. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  5. A tricistronic human adrenodoxin reductase-adrenodoxin–cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli

    PubMed Central

    Salamanca-Pinzón, S. Giovanna; Guengerich, F. Peter

    2011-01-01

    Cytochrome P450 (P450) 27A1 catalyzes 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3, serving as an important component for the maintenance of lipid homeostasis. In eukaryotic cells P450 27A1 is a membrane-bound protein located on the inner mitochondrial membrane and requires two auxiliary reduction partners, adrenodoxin (Adx) and NADPH-adrenodoxin reductase (Adr), for catalysis in the bile acid biosynthesis pathway. A strategy was developed for the functional coexpression of P450 27A1 with Adr and Adx in a tricistronic fashion (single RNA, three proteins) in Escherichia coli, mimicking the mitochondrial P450 system. Intact bacterial cells coexpressing the P450 vector (pTC27A1) efficiently hydroxylated cholesterol at the 27 position as well as vitamin D3 at the 25 position when supplemented with glycerol as a carbon source. Thus, E. coli containing pTC27A1 is able to hydroxylate cholesterol in a self-sufficient fashion and is suitable for further applications of protein interaction, drug discovery, and inhibitor evaluation and for the study of other mitochondrial P450s and oxysterol production in microorganisms without a need for membrane reconstitution, membrane simulation by detergents, or purification of the components. PMID:21621619

  6. Association of the C677T polymorphism in the human methylenetetrahydrofolate reductase (MTHFR) gene with the genetic predisposition for type 2 diabetes mellitus in a Moroccan population.

    PubMed

    Benrahma, Houda; Abidi, Omar; Melouk, Leila; Ajjemami, Maria; Rouba, Hassan; Chadli, Asmaa; Oudghiri, Mounia; Farouqui, Ahmed; Barakat, Abdelhamid

    2012-05-01

    Type 2 diabetes mellitus (T2DM) is a major public health problem around the world. The C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene have been reported to be associated with T2DM and its complications. This study aimed to investigate this association in the Moroccan population. A case-control study was performed among 282 Moroccan diabetic patients and 232 healthy controls. The MTHFR C677T and A1298C polymorphisms were genotyped by polymerase chain reaction, followed by enzymatic digestion with HinfI and MboII enzymes, respectively. There was a significant association between C677T polymorphism and T2DM in both additive and dominant models. In addition, the 677T allele frequency differed significantly between the diabetic and control groups (26.06% vs. 33.20%, respectively). However, no significant association was found between A1298C polymorphism and T2DM. The frequencies of combined genotypes 677CC/1298AA and 677CT/1298AC differed significantly between the diabetic and control groups (32.62% vs. 20.61% and 9.57% vs. 17.55%, respectively). These results show an evident association between the MTHFR C677T polymorphism and T2DM in Moroccan patients but no significant association with the MTHFR A1298C polymorphism.

  7. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  8. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  10. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  11. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  12. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  13. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  14. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  15. Histochemical localization of nitrate reductase.

    PubMed

    Vaughn, K C; Duke, S O

    1981-01-01

    NADH-dependent nitrate reductase (E.C. 1.6.6.1) was ultrastructurally localized in norflurazon-treated and control soybean cotyledons [Glycine max (L.) Merr.] by a method based upon the increase in osmiophilia due to the formation of an azo dye. The reaction product was observed in small vesicles throughout the cytoplasm. An apparent transport of nitrite to the plastid, the site of nitrite reduction, may occur through fusion of the nitrite-containing vesicles with the chloroplast envelope. Plants grown in tungstate lacked nitrate reductase activity as measured by standard assay procedures, and showed no increase in osmiophilia, suggesting a degree of specificity of this cytochemical procedure.

  16. The model homologue of the partially defective human 5,10-methylenetetrahydrofolate reductase, considered as a risk factor for stroke due to increased homocysteine level, can be protected and reactivated by heat shock proteins.

    PubMed

    Grabowski, Michał; Banecki, Bogdan; Kadziński, Leszek; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Banecka-Majkutewicz, Zyta

    2016-10-01

    The A222 V substitution in the human MTHFR gene product (5,10-methylenetetrahydrofolate reductase) is responsible for a decreased activity of this enzyme. This may cause an increased homocysteine level, considered as a risk factor for arteriosclerosis and stroke. The bacterial homologue of the human enzyme, MetF, has been found to be a useful model in genetic and biochemical studies. The similarity of Escherichia coli MetF and human MTHFR proteins is so high that particular mutations in the corresponding human gene can be reflected by the bacterial mutants. For example, the A222 V substitution in MTHFR (caused by the C667T substitution in the MTHFR gene) can be ascribed to the A117 V substitution in MetF. Here, it is reported that a temperature-sensitive MetF117 (A117 V) protein can be partially protected from a thermal inactivation by the heat shock proteins from the Hsp70/100 systems. Moreover, activity of the thermally denatured enzyme can be partially restored by the same heat shock proteins. High temperature protein G (HtpG) had no effect on MetF117 activity in both experimental systems. The presented results indicate that functions of heat shock proteins may be required for maintenance of the MetF117 function. This may have implications for the mechanisms of arteriosclerosis and stroke, especially in the light of previous findings that the A222 V MTHFR polymorphism may be a risk factor for stroke, as well as recently published results which demonstrated the increased levels of antibodies against heat shock proteins in stroke patients.

  17. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  18. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    PubMed

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  19. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, potentiate the anti-angiogenic effects of bevacizumab by suppressing angiopoietin2, BiP, and Hsp90α in human colorectal cancer.

    PubMed

    Lee, S J; Lee, I; Lee, J; Park, C; Kang, W K

    2014-07-29

    Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are commonly prescribed because of their therapeutic and preventive effects on cardiovascular diseases. Even though they have been occasionally reported to have antitumour activity, it is unknown whether statins have anti-angiogenic effect in human colorectal cancer (CRC). A total of 11 human CRC cell lines were used to test the effects of bevacizumab, statins, and bevacizumab plus statins on human umbilical vein endothelial cell (HUVEC) viability and invasion in vitro. To determine the molecular mechanism of statins as anti-angiogenic agents, we performed an angiogenesis antibody array and proteomics analysis and confirmed the results using immunoblot assay, HUVEC invasion rescue assay, and siRNA assay. The antitumoural effects of bevacizumab and statins were evaluated in xenograft models. A conventional dose of statins (simvastatin 0.2 μM, lovastatin 0.4 μM, atorvastatin 0.1 μM, and pravastatin 0.4 μM) in combination with bevacizumab directly reduced the cell viability, migration, invasion, and tube formation of HUVECs. The culture media of the CRC cells treated with bevacizumab or statins were also found to inhibit HUVEC invasion by suppressing angiogenic mediators, such as angiopoietin2, binding immunoglobulin protein (BiP), and Hsp90α. The combined treatment with bevacizumab and simvastatin significantly reduced the growth and metastases of xenograft tumours compared with treatment with bevacizumab alone. The addition of simvastatin at a dose used in patients with cardiovascular diseases (40-80 mg once daily) may potentiate the anti-angiogenic effects of bevacizumab on CRC by suppressing angiopoietin2, BiP, and Hsp90α in cancer cells. A clinical trial of simvastatin in combination with bevacizumab in patients with CRC is needed.

  20. Synthesis, biological activity, and three-dimensional quantitative structure-activity relationship model for a series of benzo[c]quinolizin-3-ones, nonsteroidal inhibitors of human steroid 5alpha-reductase 1.

    PubMed

    Occhiato, Ernesto G; Ferrali, Alessandro; Menchi, Gloria; Guarna, Antonio; Danza, Giovanna; Comerci, Alessandra; Mancina, Rosa; Serio, Mario; Garotta, Gianni; Cavalli, Andrea; De Vivo, Marco; Recanatini, Maurizio

    2004-07-01

    New 5alpha-reductase 1 (5alphaR-1) inhibitors were designed to complete a consistent set of analogues suitable for a 3D QSAR study. These compounds were synthesized by a modification of the aza-Robinson annulation, further functionalized by Pd-catalyzed cross-coupling processes, and were tested with human 5alphaR-1 expressed in Chinese hamster ovary 1827 cells. It turned out that the potency of the resulting inhibitors was strongly dependent on the type of substitution at the 8 position, with the IC(50) values ranging from 8.1 to 1050 nM. The construction of this homogeneous set of molecules allowed a 3D QSAR study. In particular, comparative molecular field analysis (CoMFA) was used to correlate the potency of the inhibitors with their physicochemical features. Highly accurate evaluations of the atomic point charges were carried out by means of quantum chemical calculations at the DFT/B3LYP level of theory followed by the RESP fitting procedure. It turned out that increasing the reliability of electrostatic parameters greatly affected the statistical results of the QSAR analysis. The 3D QSAR model proposed could be very useful in the further development of 5alphaR-1 inhibitors, which are suitable candidates to be evaluated as drugs in the treatment of 5alphaR-1 related diseases such as acne and alopecia in men and hirsutism in women.

  1. The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.

    PubMed

    Cebula, Marcus; Moolla, Naazneen; Capovilla, Alexio; Arnér, Elias S J

    2013-04-05

    The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.

  2. Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ubiquinone levels in rat skeletal muscle and heart: relationship to cytotoxicity and inhibitory activity for cholesterol synthesis in human skeletal muscle cells.

    PubMed

    Yamazaki, Hiroyuki; Suzuki, Mahomi; Aoki, Taro; Morikawa, Shigeru; Maejima, Takashi; Sato, Fumiyasu; Sawanobori, Kimio; Kitahara, Masaki; Kodama, Tatsuhiko; Saito, Yasushi

    2006-12-01

    Although statins are prescribed as relatively safe and effective drugs for hypercholesterolemic patients, it has been reported that a significant side effect, myopathy, occurs infrequently during medication. Moreover, because statins decrease cardiac ubiquinone levels, the risk of cardiac dysfunction has been suggested. This study sought to evaluate and compare the cytotoxicity of statins (cerivastatin, pitavastatin, fluvastatin, simvastatin, atorvastatin and pravastatin) in cultured human skeletal muscle cells (HSkMCs) and the effects on ubiquinone levels in statin-treated rat skeletal muscle and heart. Cerivastatin, the most potent inhibitor of HMG-CoA reductase, showed the strongest cytotoxicity (over 10-fold) among the statins examined, while the effects of the others were in a similar range. In rat experiments, neither pitavastatin nor cerivastatin decreased ubiquinone levels in skeletal muscle, but both dose-dependently lowered ubiquinone levels in the heart. As the rates of reduction by pitavastatin (9.6% at 30 mg/kg) and cerivastatin (9.7% at 0.3 mg/kg) were almost equal, it was estimated that cerivastatin reduced ubiquinone levels in the rat heart approximately 100-fold more strongly than pitavastatin, based on the effective doses. We found that cerivastatin showed the most potent cytotoxicity in HSkMCs and strongly lowered ubiquinone levels in the rat heart.

  3. Co-clinical Analysis of a Genetically Engineered Mouse Model and Human Prostate Cancer Reveals Significance of NKX3.1 Expression for Response to 5α-reductase Inhibition.

    PubMed

    Dutta, Aditya; Panja, Sukanya; Virk, Renu K; Kim, Jaime Yeji; Zott, Roseann; Cremers, Serge; Golombos, David M; Liu, Deli; Mosquera, Juan Miguel; Mostaghel, Elahe A; Barbieri, Christopher E; Mitrofanova, Antonina; Abate-Shen, Cory

    2017-10-01

    Although men on active surveillance for prostate cancer (PCa) may benefit from intervention with 5α-reductase inhibitors (5-ARIs), it has not been resolved whether 5-ARIs are effective for delaying disease progression and, if so, whether specific patients are more likely to benefit. To identify molecular features predictive of patient response to 5-ARIs. Nkx3.1 mutant mice, a model of early-stage PCa, were treated with the 5-ARI finasteride, and histopathological and molecular analyses were performed. Cross-species computational analyses were used to compare expression profiles for treated mice with those of patients who had received 5-ARIs before prostatectomy. Finasteride administered to Nkx3.1 mutant mice. 5-ARI-treated patient specimens obtained retrospectively. Endpoints in mice included histopathology, immunohistochemistry, and molecular profiling. GraphPad Prism software, R-studio, and Matlab were used for statistical and data analyses. Finasteride treatment of Nkx3.1 mutant mice resulted in a significant reduction in prostatic intraepithelial neoplasia (PIN), as evident from histopathological and expression profiling analyses. Cross-species computational analysis comparing finasteride-treated mice with two independent 5-ARI-treated patient cohorts showed that reduced NKX3.1 expression is predictive of response to 5-ARI. A limitation of the study is that these retrospective human cohorts have relatively few patients with limited clinical outcome data. Future prospective clinical trials are needed to validate whether stratifying patients on the basis of NKX3.1 expression improves the benefit of 5-ARIs during active surveillance. This co-clinical study implicates NKX3.1 status as a predictor of response to 5-ARIs, and suggests that molecular features, including NKX3.1 expression, may help to identify PCa patients most likely to benefit from 5-ARIs during active surveillance. The aim of precision cancer prevention is to tailor interventions on the basis of

  4. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  5. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  6. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  7. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution.

    PubMed Central

    Quandt, K S; Hultquist, D E

    1994-01-01

    Flavin reductase catalyzes electron transfer from reduced pyridine nucleotides to methylene blue or riboflavin, and this catalysis is the basis of the therapeutic use of methylene blue or riboflavin in the treatment of methemoglobinemia. A cDNA for a mammalian flavin reductase has been isolated and sequenced. Degenerate oligonucleotides, with sequences based on amino acid sequences of peptides derived from bovine erythrocyte flavin reductase, were used as primers in PCR to selectively amplify a partial cDNA that encodes the bovine reductase. The template used in the PCR was first strand cDNA synthesized from bovine liver total RNA using oligo(dT) primers. A PCR product was used as a specific probe to screen a bovine liver cDNA library. The sequence determined from two overlapping clones contains an open reading frame of 621 nucleotides and encodes 206 amino acids. The amino acid sequence deduced from the bovine liver flavin reductase cDNA matches the amino acid sequences determined for erythrocyte reductase-derived peptides, and the predicted molecular mass of 22,001 Da for the liver reductase agrees well with the molecular mass of 21,994 Da determined for the erythrocyte reductase by electrospray mass spectrometry. The amino acid sequence at the N terminus of the reductase has homology to sequences of pyridine nucleotide-dependent enzymes, and the predicted secondary structure, beta alpha beta, resembles the common nucleotide-binding structural motif. RNA blot analysis indicates a single 1-kilobase reductase transcript in human heart, kidney, liver, lung, pancreas, placenta, and skeletal muscle. Images PMID:7937764

  8. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  9. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype*

    PubMed Central

    McCammon, Karen M.; Panda, Satya P.; Xia, Chuanwu; Kim, Jung-Ja P.; Moutinho, Daniela; Kranendonk, Michel; Auchus, Richard J.; Lafer, Eileen M.; Ghosh, Debashis; Martasek, Pavel; Kar, Rekha; Masters, Bettie Sue; Roman, Linda J.

    2016-01-01

    Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo. Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect. PMID:27496950

  10. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  11. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.

    PubMed

    Penning, Trevor M

    2016-07-01

    Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily.

  12. Initial testing of the hypoxia-activated prodrug PR-104 by the pediatric preclinical testing program.

    PubMed

    Houghton, Peter J; Lock, Richard; Carol, Hernan; Morton, Christopher L; Phelps, Doris; Gorlick, Richard; Kolb, E Anders; Keir, Stephen T; Reynolds, C Patrick; Kang, Min H; Maris, John M; Wozniak, Amy W; Gu, Yongchuan; Wilson, William R; Smith, Malcolm A

    2011-09-01

    PR-104 is rapidly hydrolyzed to PR-104A in vivo, which is activated by reduction to the corresponding 5-hydroxylamine (PR-104H) and amine (PR-104M) to produce DNA interstrand cross-links. PR-104 activation can occur via hypoxia-dependent reductases and also independently of hypoxia by aldo-keto reductase (AKR) 1C3. PR-104A was tested against the PPTP in vitro panel (10 nM to 100 µM), and PR-104 in vivo using a weekly × 6 schedule at its maximum tolerated dose (MTD) of 550 mg/kg. Subsequently PR-104 was tested at 270 and 110 mg/kg. Pharmacokinetics for PR-104 and its metabolites were determined, as were levels of AKR1C3 RNA and protein in xenografts. In vitro, the leukemia models were most sensitive to PR-104A. In vivo, PR-104 induced objective responses at its MTD in 21/34 solid tumor models and maintained complete responses against 7/7 acute lymphoblastic leukemia (ALL) models. At 270 mg/kg and lower dose levels, PR-104 did not induce solid tumor regressions, suggesting a steep dose-response relationship. Pharmacokinetic analysis suggests higher systemic exposures to PR-104A and its metabolites in mice compared to those achievable in patients. Levels of AKR1C3 protein did not correlate with tumor responsiveness. As monotherapy, PR-104 demonstrated a high level of activity against both solid tumor and ALL models at its MTD, but the activity was almost completely lost at half the MTD dose for solid tumors. Pharmacokinetic data at the PR-104 MTD from human trials suggest that PR-104 metabolites may not reach the plasma exposures in children that were associated with high-level preclinical activity. Copyright © 2010 Wiley-Liss, Inc.

  13. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  14. IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Fanfrlík, Jindřich; Giménez-Dejoz, Joan; Mitschler, André; Kamlar, Martin; Veselý, Jan; Ajani, Haresh; Parés, Xavier; Farrés, Jaume; Hobza, Pavel; Podjarny, Alberto D

    2016-10-21

    Human enzyme aldo-keto reductase family member 1B10 (AKR1B10) has evolved as a tumor marker and promising antineoplastic target. It shares high structural similarity with the diabetes target enzyme aldose reductase (AR). Starting from the potent AR inhibitor IDD388, we have synthesized a series of derivatives bearing the same halophenoxyacetic acid moiety with an increasing number of bromine (Br) atoms on its aryl moiety. Next, by means of IC50 measurements, X-ray crystallography, WaterMap analysis, and advanced binding free energy calculations with a quantum-mechanical (QM) approach, we have studied their structure-activity relationship (SAR) against both enzymes. The introduction of Br substituents decreases AR inhibition potency but improves it in the case of AKR1B10. Indeed, the Br atoms in ortho position may impede these drugs to fit into the AR prototypical specificity pocket. For AKR1B10, the smaller aryl moieties of MK181 and IDD388 can bind into the external loop A subpocket. Instead, the bulkier MK184, MK319, and MK204 open an inner specificity pocket in AKR1B10 characterized by a π-π stacking interaction of their aryl moieties and Trp112 side chain in the native conformation (not possible in AR). Among the three compounds, only MK204 can make a strong halogen bond with the protein (-4.4 kcal/mol, using QM calculations), while presenting the lowest desolvation cost among all the series, translated into the most selective and inhibitory potency AKR1B10 (IC50 = 80 nM). Overall, SAR of these IDD388 polyhalogenated derivatives have unveiled several distinctive AKR1B10 features (shape, flexibility, hydration) that can be exploited to design novel types of AKR1B10 selective drugs.

  15. Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity.

    PubMed

    Anders, M W

    2017-02-05

    Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.

  16. Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts.

    PubMed

    Viola, Giampietro; Grobelny, Pawel; Linardi, Maria Antonella; Salvador, Alessia; Dall'Acqua, Stefano; Sobotta, Łukasz; Mielcarek, Jadwiga; Dall'Acqua, Francesco; Vedaldi, Daniela; Basso, Giuseppe

    2012-03-01

    This study reports the results of an investigation of the phototoxicity mechanism induced by pitavastatin and its photoproducts, namely 6-cyclopropyl-10-fluoro-7,8-dihydrobenzo[k]phenanthridine (PP3) and 6-cyclopropyl-10-fluorobenzo[k]phenanthridine (PP4). The phototoxicity was tested in human keratinocytes cell lines NCTC-2544, and the results proved that under the same conditions, all three compounds exhibited phototoxic effects in the model tested. The reduction in cell viability was found to be both concentration- and UVA dose-dependent. A point of note is that both the photoproducts produced a dramatic decrease in cell viability with GI(50) values one order of magnitude lower compared to the parent compound. In particular, the fully aromatic derivative (PP4) showed the highest antiproliferative activity. Flow cytometric analysis indicated that pitavastatin and the photoproduct PP4 principally induced necrosis, as revealed by the large appearance of propidium iodide-positive cells and also confirmed by the rapid drop in cellular ATP levels. Further studies committed to better understanding of photoinduced cell death mechanism(s) revealed that neither pitavastatin nor PP4 induced mitochondrial depolarization or lysosomal damage, but, interestingly, extensive cell lipid membrane peroxidation along with a significant oxidation of model proteins occurred, suggesting that pitavastatin and PP4 exert their phototoxic effect mainly in the cellular membranes. The present results suggest that the phototoxicity of pitavastatin may be mediated by the formation of benzophenanthridine-like photoproducts that appear to have high potential as photosensitizers.

  17. NADPH-Cytochrome P450 Reductase Is Regulated by All-Trans Retinoic Acid and by 1,25-Dihydroxyvitamin D3 in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Gocek, Elżbieta; Marchwicka, Aleksandra; Bujko, Kamila; Marcinkowska, Ewa

    2014-01-01

    Acute myeloid leukemia (AML) cell lines can be driven to differentiate to monocyte-like cells by 1,25- dihydroxyvitamin D3 (1,25D) and to granulocyte-like cells by all-trans-retinoic acid (ATRA). Both compounds activate their specific intracellular receptors, vitamin D receptor (VDR) and retinoic acid receptors (RARs) respectively. Inside the cells 1,25D is degraded to calcitrioic acid by a mitochondrial enzyme CYP24A1, while ATRA is degraded to several polar metabolites by CYP26. NADPH-cytochrome P450 oxidoreductase (POR) is a membrane-bound enzyme required for electron transfer to cytochrome P450 (CYP), vital in the processes of the metabolism of drugs and steroid production in humans. In this paper we report that POR in AML cells, from both cell lines and patients, is upregulated by ATRA and by 1,25D at the level of mRNA and protein. Partial silencing of POR in HL60 cells resulted in augmented differentiation response to 1,25D. PMID:24642534

  18. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  19. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  20. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    PubMed

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  1. ATR-CHK1-E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG.

    PubMed

    Gong, Chaoju; Liu, Hong; Song, Rui; Zhong, Tingting; Lou, Meng; Wang, Tingyang; Qi, Hongyan; Shen, Jing; Zhu, Lijun; Shao, Jimin

    2016-04-01

    N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent and an environmental carcinogen, causes DNA lesions and even carcinomas. DNA damage responses induced by MNNG activate various DNA repair genes and related signaling pathways. The present study aimed to investigate the regulatory mechanisms of human RR small subunit M2 (hRRM2) in response to MNNG. In this study, we demonstrated that the RRM2 gene was transactivated by MNNG exposure more strongly than the other small subunit, p53R2. The upregulated RRM2 translocated to the nucleus for DNA repair. Further study showed that E2F3 transactivated RRM2 expression by directly binding to its promoter after MNNG exposure. The transactivation was enhanced by the upregulation of NFY, which bound to the RRM2 promoter adjacent to the E2F3 binding site and interacted with E2F3. In response to MNNG treatment, E2F3 accumulated mainly through its phosphorylation at S124 and was dependent on ATR-CHK1 signaling. In comparison, p53R2 played a relatively weaker role in the MNNG-induced DNA damage response, and its transcription was regulated by the ATR-CHK2-E2F1/p53 pathway. We suggest that MNNG-stimulated ATR/CHK1 signaling stabilizes E2F3 by S124 phosphorylation, and then E2F3 together with NFY co-transactivate RRM2 expression for DNA repair. We propose a new mechanism for RRM2 regulation to maintain genome stability in response to environmental chemical carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Why don't plants have diabetes? Systems for scavenging reactive carbonyls in photosynthetic organisms.

    PubMed

    Shimakawa, Ginga; Suzuki, Mayumi; Yamamoto, Eriko; Saito, Ryota; Iwamoto, Tatsuya; Nishi, Akiko; Miyake, Chikahiro

    2014-04-01

    In the present paper, we review the toxicity of sugar- and lipid-derived RCs (reactive carbonyls) and the RC-scavenging systems observed in photosynthetic organisms. Similar to heterotrophs, photosynthetic organisms are exposed to the danger of RCs produced in sugar metabolism during both respiration and photosynthesis. RCs such as methylglyoxal and acrolein have toxic effects on the photosynthetic activity of higher plants and cyanobacteria. These toxic effects are assumed to occur uniquely in photosynthetic organisms, suggesting that RC-scavenging systems are essential for their survival. The aldo-keto reductase and the glyoxalase systems mainly scavenge sugar-derived RCs in higher plants and cyanobacteria. 2-Alkenal reductase and alkenal/alkenone reductase catalyse the reduction of lipid-derived RCs in higher plants. In cyanobacteria, medium-chain dehydrogenases/reductases are the main scavengers of lipid-derived RCs.

  3. A rapid, reproducible, on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver.

    PubMed

    Cao, Jin; Gonzalez-Covarrubias, Vanessa; Covarrubias, Vanessa M; Straubinger, Robert M; Wang, Hao; Duan, Xiaotao; Yu, Haoying; Qu, Jun; Blanco, Javier G

    2010-04-01

    Liquid chromatography (LC)/mass spectrometry (MS) in selected-reactions-monitoring (SRM) mode provides a powerful tool for targeted protein quantification. However, efficient, high-throughput strategies for proper selection of signature peptides (SP) for protein quantification and accurate optimization of their SRM conditions remain elusive. Here we describe an on-the-fly, orthogonal array optimization (OAO) approach that enables rapid, comprehensive, and reproducible SRM optimization of a large number of candidate peptides in a single nanoflow-LC/MS run. With the optimized conditions, many peptide candidates can be evaluated in biological matrixes for selection of the final SP. The OAO strategy employs a systematic experimental design that strategically varies product ions, declustering energy, and collision energy in a cycle of 25 consecutive SRM trials, which accurately reveals the effects of these factors on the signal-to-noise ratio of a candidate peptide and optimizes each. As proof of concept, we developed a highly sensitive, accurate, and reproducible method for the quantification of carbonyl reductases CBR1 and CBR3 in human liver. Candidate peptides were identified by nano-LC/LTQ/Orbitrap, filtered using a stringent set of criteria, and subjected to OAO. After evaluating both sensitivity and stability of the candidates, two SP were selected for quantification of each protein. As a result of the accurate OAO of assay conditions, sensitivities of 80 and 110 amol were achieved for CBR1 and CBR3, respectively. The method was validated and used to quantify the CBRs in 33 human liver samples. The mean level of CBR1 was 93.4 +/- 49.7 (range: 26.2-241) ppm of total protein, and of CBR3 was 7.69 +/- 4.38 (range: 1.26-17.9) ppm. Key observations of this study: (i) evaluation of peptide stability in the target matrix is essential for final selection of the SP; (ii) utilization of two unique SP contributes to high reliability of target protein quantification; (iii

  4. A rapid, reproducible, on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver

    PubMed Central

    Cao, Jin; Gonzalez-Covarrubias, Vanessa; Straubinger, Robert M.; Wang, Hao; Duan, Xiaotao; Yu, Haoying; Qu, Jun; Blanco, Javier G.

    2010-01-01

    Liquid chromatography (LC)/mass spectrometry (MS) in selected-reactions-monitoring (SRM) mode provides a powerful tool for targeted protein quantification. However, efficient, high-throughput strategies for proper selection of signature peptides (SP) for protein quantification and accurate optimization of their SRM conditions remain elusive. Here we describe an on-the-fly, orthogonal array optimization (OAO) approach that enables rapid, comprehensive, and reproducible SRM optimization of a large number of candidate peptides in a single nanoflow-LC/MS run. With the optimized conditions, many peptide candidates can be evaluated in biological matrices for selection of the final SP. The OAO strategy employs a systematic experimental design that strategically varies product ions, de-clustering energy and collision energy in a cycle of 25 consecutive SRM trials, which accurately reveals the effects of these factors on the single-to-noise ratio of a candidate peptide, and optimizes each. As proof of concept, we developed a highly sensitive, accurate, and reproducible method for the quantification of carbonyl reductases CBR1 and CBR3 in human liver. Candidate peptides were identified by nano-LC/LTQ/Orbitrap, filtered using a stringent set of criteria, and subjected to OAO. After evaluating both sensitivity and stability of the candidates, two SP were selected for quantification of each protein. As a result of the accurate OAO of assay conditions, sensitivities of 80 and 110 amol were achieved for CBR1 and CBR3, respectively. The method was validated and used to quantify the CBRs in 33 human liver samples. The mean level of CBR1 was 93.4±49.7 (range: 26.2–241) ppm of total protein, and for CBR3 was 7.69±4.38 (range: 1.26–17.9) ppm. Key observations of this study are that: i) evaluation of peptide stability in the target matrix is essential for final selection of the SP; ii) utilization of two unique SP contributes to high reliability of target protein quantification

  5. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  6. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae.

    PubMed

    Jirschitzka, Jan; Schmidt, Gregor W; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John Charles

    2012-06-26

    The pharmacologically important tropane alkaloids have a scattered distribution among angiosperm families, like many other groups of secondary metabolites. To determine whether tropane alkaloids have evolved repeatedly in different lineages or arise from an ancestral pathway that has been lost in most lines, we investigated the tropinone-reduction step of their biosynthesis. In species of the Solanaceae, which produce compounds such as atropine and scopolamine, this reaction is known to be catalyzed by enzymes of the short-chain dehydrogenase/reductase family. However, in Erythroxylum coca (Erythroxylaceae), which accumulates cocaine and other tropane alkaloids, no proteins of the short-chain dehydrogenase/reductase family were found that could catalyze this reaction. Instead, purification of E. coca tropinone-reduction activity and cloning of the corresponding gene revealed that a protein of the aldo-keto reductase family carries out this reaction in E. coca. This protein, designated methylecgonone reductase, converts methylecgonone to methylecgonine, the penultimate step in cocaine biosynthesis. The protein has highest sequence similarity to other aldo-keto reductases, such as chalcone reductase, an enzyme of flavonoid biosynthesis, and codeinone reductase, an enzyme of morphine alkaloid biosynthesis. Methylecgonone reductase reduces methylecgonone (2-carbomethoxy-3-tropinone) stereospecifically to 2-carbomethoxy-3β-tropine (methylecgonine), and has its highest activity, protein level, and gene transcript level in young, expanding leaves of E. coca. This enzyme is not found at all in root tissues, which are the site of tropane alkaloid biosynthesis in the Solanaceae. This evidence supports the theory that the ability to produce tropane alkaloids has arisen more than once during the evolution of the angiosperms.

  7. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  8. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  9. Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy.

    PubMed

    Meiering, E M; Li, H; Delcamp, T J; Freisheim, J H; Wagner, G

    1995-03-24

    Previous NMR studies on the ternary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and NADPH detected six long-lived bound water molecules. Two of the water molecules, WatA and WatB, stabilize the structure of the protein while the other four, WatC, WatD, WatE and WatF, are involved in substrate binding and specificity. WatE may also act as a proton shuttle during catalysis. Here, the contributions of individual residues to the binding of these water molecules are investigated by performing NMR experiments on ternary complexes of mutant enzymes, W24F, E30A and E30Q. W24 and E30 are conserved residues that form hydrogen bonds with WatE in crystal structures of DHFR. Nuclear Overhauser effects (NOEs) are detected between WatE and the protein in all the mutant complexes, hence WatE still has a long lifetime bound to the complex when one of its hydrogen-bonding partners is deleted or altered by mutagenesis. The NOEs for WatE are much weaker, however, in the mutants than in wild-type. The NOEs for the other water molecules in and near the active site, WatA, WatC, WatD and WatF, also tend to be weaker in the mutant complexes. Little or no change is apparent in the NOEs for WatB, which is located outside the active site, farthest from the mutated residues. The decreased NOE intensities for the bound water molecules could be caused by changes in the positions and/or lifetimes of the water molecules. Chemical shift and NOE data indicate that the mutants have structures very similar to that of wild-type hDHFR, with possible conformational changes occurring only near the mutated residues. Based on the lack of structural change in the protein and evidence for increased structural fluctuations in the active sites of the mutant enzymes, it is likely that the NOE changes are caused, at least in part, by decreases in the lifetimes of the bound water molecules.

  10. Purification, characterization and NNK carbonyl reductase activities of 11beta-hydroxysteroid dehydrogenase type 1 from human liver: enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen.

    PubMed

    Maser, Edmund; Friebertshäuser, Jutta; Völker, Bernhard

    2003-02-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) physiologically catalyzes the interconversion of receptor-active 11-hydroxy glucocorticoids (cortisol) to their receptor-inactive 11-oxo metabolites (cortisone), thereby acting as important pre-receptor control device in regulating access of glucocorticoid hormones to the glucocorticoid receptor. Evidence is emerging that 11beta-HSD 1 fulfills an additional role in the detoxification of non-steroidal carbonyl compounds, by catalyzing their reduction to the corresponding hydroxy derivatives that are easier to conjugate and eliminate. Whereas a number of methods were ineffective in purifying 11beta-HSD 1 from human liver, this membrane-bound enzyme was successfully obtained in an active state by a purification procedure that took advantage of a gentle solubilization method as well as providing a favourable detergent surrounding during the various chromatographic steps. We could demonstrate that 11beta-HSD 1 is active as a dimeric enzyme which exhibits cooperativity with cortisone and dehydrocorticosterone (11-oxoreducing activity) as substrates. Accordingly, this enzyme dynamically adapts to low (nanomolar) as well as to high (micromolar) substrate concentrations, thereby providing the fine tuning required as a consequence of great variations in circadian plasma glucocorticoid levels. Due to this kinetic peculiarity, 11beta-HSD 1 is also able to even metabolize nanomolar concentrations of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), a fact which is important in view of the relatively low levels of this carcinogen observed in smokers. Finally, 11beta-HSD 1 is potently (in nM concentrations) inhibited by glycyrrhetinic acid, the main constituent of licorice. Licorice, however, in addition to being a confectionary, serves as a major cigarette additive, which is used in cigarette manufacturing as a taste and flavour intensifier. Hence, licorice exposure may affect NNK

  11. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    PubMed

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  12. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of gamma-hydroxybutyrate associated with its deficiency

    PubMed Central

    2009-01-01

    Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22) occupies a central position in central nervous system (CNS) neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA) recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2), represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH) or γ-hydroxybutyrate (GHB; AKR7A2). A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE), an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE). Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue. PMID:19164088

  13. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer

    PubMed Central

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J.

    2015-01-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds. PMID:25911656

  14. Physarum polycephalum expresses a dihydropteridine reductase with selectivity for pterin substrates with a 6-(1', 2'-dihydroxypropyl) substitution.

    PubMed

    Wild, Claudia; Golderer, Georg; Gröbner, Peter; Werner-Felmayer, Gabriele; Werner, Ernst R

    2003-07-01

    Physarum polycephalum is one of few non-animal organisms capable of synthesizing tetrahydrobiopterin from GTP. Here we demonstrate developmentally regulated expression of quinoid dihydropteridine reductase (EC 1.6.99.7), an enzyme required for recycling 6,7-[8H]-dihydrobiopterin. Physarum also expresses phenylalanine-4-hydroxylase activity, an enzyme that depends on dihydropteridine reductase. The 24.4 kDa Physarum dihydropteridine reductase shares 43% amino acid identity with the human protein. A number of residues important for function of the mammalian enzyme are also conserved in the Physarum sequence. In comparison to sheep liver dihydropteridine reductase, purified recombinant Physarum dihydropteridine reductase prefers pterin substrates with a 6-(1', 2'-dihydroxypropyl) group. Our results demonstrate that Physarum synthesizes, utilizes and metabolizes tetrahydrobiopterin in a way hitherto thought to be restricted to the animal kingdom.

  15. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    PubMed Central

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  16. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy.

    PubMed

    Mowday, Alexandra M; Ashoorzadeh, Amir; Williams, Elsie M; Copp, Janine N; Silva, Shevan; Bull, Matthew R; Abbattista, Maria R; Anderson, Robert F; Flanagan, Jack U; Guise, Christopher P; Ackerley, David F; Smaill, Jeff B; Patterson, Adam V

    2016-09-15

    The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  18. Identification of Critical Ligand Binding Determinants in Mycobacterium tuberculosis Adenosine-5′-Phosphosulfate Reductase

    PubMed Central

    Hong, Jiyoung A.; Bhave, Devayani P.; Carroll, Kate S.

    2009-01-01

    Mycobacterium tuberculosis adenosine 5′-phosphosulfate (APS) reductase is an iron-sulfur protein and a validated target to develop new anti-tubercular agents, particularly for the treatment of latent infection. To facilitate the development of potent and specific inhibitors of APS reductase, we have probed the molecular determinants that underlie binding and specificity through a series of substrate and product analogs. Our study highlights the importance of specific substitutent groups for substrate binding and provides functional evidence for ligand-specific conformational states. An active site model has been developed for M. tuberculosis APS reductase that is in accord with the results presented here as well as prior structural data reported for Pseudomonas aeruginosa APS reductase and related enzymes. This model illustrates the functional features required for the interaction of APS reductase with a ligand and provides a pharmacological road map for the rational design of small-molecules as potential inhibitors of APS reductase present in human pathogens, including M. tuberculosis. PMID:19678707

  19. Early diagnosis and management of 5 alpha-reductase deficiency.

    PubMed Central

    Odame, I; Donaldson, M D; Wallace, A M; Cochran, W; Smith, P J

    1992-01-01

    Two siblings of Pakistani origin, karyotype 46 XY, were born with predominantly female external genitalia with minute phallus, bifid scrotum, urogenital sinus, and palpable gonads. The older sibling at the age of 8 days showed an adequate testosterone response to human chorionic gonadotrophin (hCG) stimulation. The diagnosis of 5 alpha-reductase deficiency was made at age 6 years when no 5 alpha-reduced glucocorticoid metabolites were detectable in urine even after tetracosactrin (Synacthen) stimulation. In the younger sibling the diagnosis of 5 alpha-reductase deficiency was provisionally made at the early age of 3 days on the basis of high urinary tetrahydrocortisol (THF)/allotetrahydrocortisol (5 alpha-THF) ratio and this ratio increased with age confirming the diagnosis. Plasma testosterone: dihydrotestosterone (DHT) ratio before and after hCG stimulation was within normal limits at age 3 days but was raised at age 9 months. Topical DHT cream application to the external genitalia promoted significant phallic growth in both siblings and in the older sibling corrective surgery was facilitated. In prepubertal male pseudohermaphrodites with normal or raised testosterone concentrations, phallic growth in response to DHT cream treatment could be an indirect confirmation of 5 alpha-reductase deficiency. Images Figure 1 PMID:1626992

  20. Quinone Reductase Induction as a Biomarker for Cancer Chemoprevention⊥

    PubMed Central

    Cuendet, Muriel; Oteham, Carol P.; Moon, Richard C.; Pezzuto, John M.

    2007-01-01

    Chemoprevention involves the use of natural or synthetic substances to reduce the risk of developing cancer. Strategies for protecting cells from initiation events include decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) while increasing phase II enzymes that can deactivate radicals and electrophiles known to intercede in normal cellular processes. Reduction of electrophilic quinones by quinone reductase is an important detoxification pathway. Following evaluation of approximately 3000 plant and marine organism extracts, the number characterized as “active” was established in the range of 12% of the total, and over 60 active compounds have been isolated as quinone reductase inducers. One of them, isoliquiritigenin (1), isolated from tonka bean, was shown to be a monofunctional inducer by having similar quinone reductase inducing ability in wild-type Hepa 1c1c7 cells and two mutant cell lines. To further investigate the mechanism of induction, HepG2 human hepatoma cells stably transfected with ARE-luciferase plasmid were used. Isoliquiritigenin (1) significantly induced the luciferase activity in a dose-dependent manner. On the basis of these results, a full-term cancer chemoprevention study was conducted with 7,12-dimethylbenz[a]anthracene (DMBA)-treated female Sprague-Dawley rats. Dietary administration of 1 increased tumor latency. Based on these promising preliminary results, additional mechanistic studies are underway, as well as full-term carcinogenesis studies with chronic administration schedules. PMID:16562858

  1. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  2. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries

    PubMed Central

    2013-01-01

    Background Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions. Results Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions. Conclusion Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important

  3. Integration of HPV6 and Downregulation of AKR1C3 Expression Mark Malignant Transformation in a Patient with Juvenile-Onset Laryngeal Papillomatosis

    PubMed Central

    Kolligs, Jutta; Vent, Julia; Stenner, Markus; Wieland, Ulrike; Silling, Steffi; Drebber, Uta; Speel, Ernst-Jan M.; Klussmann, Jens Peter

    2013-01-01

    Juvenile-onset recurrent respiratory papillomatosis (RRP) is associated with low risk human papillomavirus (HPV) types 6 and 11. Malignant transformation has been reported solely for HPV11-associated RRP in 2–4% of all RRP-cases, but not for HPV6. The molecular mechanisms in the carcinogenesis of low risk HPV-associated cancers are to date unknown. We report of a female patient, who presented with a laryngeal carcinoma at the age of 24 years. She had a history of juvenile-onset RRP with an onset at the age of three and subsequently several hundred surgical interventions due to multiple recurrences of RRP. Polymerase chain reaction (PCR) or bead-based hybridization followed by direct sequencing identified HPV6 in tissue sections of previous papilloma and the carcinoma. P16INK4A, p53 and pRb immunostainings were negative in all lesions. HPV6 specific fluorescence in situ hybridization (FISH) revealed nuclear staining suggesting episomal virus in the papilloma and a single integration site in the carcinoma. Integration-specific amplification of papillomavirus oncogene transcripts PCR (APOT-PCR) showed integration in the aldo-keto reductase 1C3 gene (AKR1C3) on chromosome 10p15.1. ArrayCGH detected loss of the other gene copy as part of a deletion at 10p14-p15.2. Western blot analysis and immunohistochemistry of the protein AKR1C3 showed a marked reduction of its expression in the carcinoma. In conclusion, we identified a novel molecular mechanism underlying a first case of HPV6-associated laryngeal carcinoma in juvenile-onset RRP, i.e. that HPV6 integration in the AKR1C3 gene resulted in loss of its expression. Alterations of AKR1C gene expression have previously been implicated in the tumorigenesis of other (HPV-related) malignancies. PMID:23437342

  4. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha

    PubMed Central

    Wang, Xiu Jun; Hayes, John D.; Henderson, Colin J.; Wolf, C. Roland

    2007-01-01

    Isothiocyanates and phenolic antioxidants can prevent cancer through activation of Nrf2 (NF-E2 p45-related factor 2), a transcription factor that controls expression of cytoprotective genes through the antioxidant response element (ARE) enhancer. Using a human mammary MCF7-derived AREc32 reporter cell line, we now report that all-trans retinoic acid (ATRA), and other retinoic acid receptor alpha (RARα) agonists, markedly reduces the ability of Nrf2 to mediate induction of ARE-driven genes by cancer chemopreventive agents including the metabolite of butylated hydroxyanisole, tert-butylhydroquinone (tBHQ). The basal and tBHQ-inducible expression of aldo-keto reductase (AKR) AKR1C1 and AKR1C2 genes, which are regulated by Nrf2, was also repressed by ATRA in AREc32 cells. Antagonists of RARα augmented induction of ARE-driven gene expression by tBHQ, as did knockdown of RARα by using RNAi. The expression of the ARE-gene battery was increased in the small intestine of mice fed on a vitamin A-deficient diet, and this increase was repressed by administration of ATRA. By contrast, in the small intestine of Nrf2 null mice, the expression of ARE-driven genes was not affected by vitamin A status. In MCF7 cells, ATRA did not block the nuclear accumulation of Nrf2 but reduced the binding of Nrf2 to the ARE enhancer as a consequence of forming a complex with RARα. These data suggest that cross-talk between Nrf2 and RARα could markedly influence the sensitivity of cells to electrophiles and oxidative stressors and, as a consequence, to carcinogenesis. PMID:18048326

  5. Analysis of the anticancer activity of curcuminoids, thiotryptophan and 4-phenoxyphenol derivatives.

    PubMed

    Parsai, Shireen; Keck, Rick; Skrzypczak-Jankun, Ewa; Jankun, Jerzy

    2014-01-01

    Curcumin, a non-nutritive yellow pigment derived from the rhizome of Curcuma longa (turmeric), is considered to be an established nutraceutical with anticancer activity. Turmeric contains three principal components, curcumin, demethoxycurcumin and bisdemethoxycurcumin, of which curcumin is most abundant and potent. The concurrence of a high consumption of turmeric and a low incidence of prostate cancer in Asian countries may suggest a role for curcumin in chemoprevention. Curcumin has been identified to exhibit anti-inflammatory, anti-oxidative and anticarcinogenic properties. Since the compound does not exhibit side effects, curcumin has been designated for several clinical trials as a treatment for human cancers. The pro-apototic, antioxidant and anti-inflammatory characteristics of curcumin are implicated in its anticancer activity, yet the mechanism of action of curcumin remains unknown. To achieve an effective pharmacological outcome, curcumin must reach and sustain appropriate levels at the site of action. However, the main disadvantage of curcumin is its high metabolic instability and poor aqueous solubility that limits its systemic bioavailability. To overcome this difficulty, the present study tested the anticancer activity of new curcumin-like compounds (E21cH and Q012095H). Also, the use of new medicaments requires an understanding of their pharmacokinetic profiles and targets. Thus, molecular modeling methods were used to identify the targets of curcumin and curcumin-like compounds compared with other anticancer drugs (Q012138 and Q012169AT), which were used as the controls. The present study identified several enzymes that are targeted by curcumin, aldo-keto reductase family 1 member B10 (AKR1B10), serine/threonine-protein kinase, protein kinase C, matrix metalloproteinase (MMP), cyclooxygenase and epidermal growth factor receptor, which were tested as targets for these anticancer chemicals. All the examined small compounds demonstrated anticancer

  6. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2012-04-01

    Methylglyoxal (MG) is a potent protein glycating agent. Glycation is directed to guanidino groups of arginine residues forming mainly hydroimidazolone N (δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) residues. MG-H1 formation is damaging to the proteome as modification is often directed to functionally important arginine residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis tandem mass spectrometry and also by immunoblotting with specific monoclonal antibodies. MG-glycated proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation endproduct in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and ageing. Glyoxalase 1 and aldo-keto reductase 1B1 metabolise >99% MG to innocuous products and thereby protect the proteome, providing an enzymatic defence against MG-mediated glycation. Proteins susceptible to MG modification with related functional impairment are called the "dicarbonyl proteome" (DCP). DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and other proteins. DCP component proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative stress, dyslipidemia, cell detachment and anoikis and apoptosis. Biochemical and physiological susceptibility of a protein to modification by MG and sensitivity of biochemical pathways and physiological systems to related functional impairment under challenge of physiologically relevant increases in MG exposure are key concepts. Improved understanding of the DCP will likely have profound importance for human health, longevity and treatment of disease.

  7. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death

    PubMed Central

    Zhou, Dianrong; Lou, Xiaomin; Xu, Yang; Liu, Siqi; Zhao, Xiaohang

    2016-01-01

    The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC. PMID:26934124

  8. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds.

    PubMed

    Malenke, Jael R; Skopec, Michele M; Dearing, M Denise

    2014-08-15

    Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event-the dietary inclusion of creosote bush (Larrea tridentata)-that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the toxins in creosote and the evolution of

  9. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  10. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  11. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  12. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  13. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  14. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. R