Science.gov

Sample records for human aldo-keto reductase

  1. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    2015-01-01

    Aldo-keto reductases (AKRs) are promiscuous NAD(P)(H) dependent oxidoreductases implicated in the metabolic activation of polycyclic aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen species (ROS). The PAH o-quinones are Michael acceptors and can form adducts but are also redox-active and enter into futile redox cycles to amplify ROS formation. Evidence exists to support this metabolic pathway in humans. The human recombinant AKR1A1 and AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating ROS formation. Moreover, this pathway of PAH activation occurs in a panel of human lung cell lines, resulting in the production of ROS and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine. Using stable-isotope dilution liquid chromatography tandem mass spectrometry, this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide pathway to the activation of this human carcinogen in human lung cells. Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on p53 showed that the o-quinone produced by AKRs was the more potent mutagen, provided that it was permitted to redox cycle, and that the mutations observed were G to T transversions, reminiscent of those observed in human lung cancer. It is concluded that there is sufficient evidence to support the role of human AKRs in the metabolic activation of PAH in human lung cell lines and that they may contribute to the causation of human lung cancer. PMID:25279998

  2. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  3. Oxidation of PAH trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10

    PubMed Central

    Quinn, Amy M.; Harvey, Ronald G.; Penning, Trevor M.

    2009-01-01

    AKR1B10 has been identified as a potential biomarker for human non-small cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro, and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (−)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols. PMID:18788756

  4. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  5. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  6. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins.

    PubMed

    Beranič, Nataša; Brožič, Petra; Brus, Boris; Sosič, Izidor; Gobec, Stanislav; Lanišnik Rižner, Tea

    2012-05-01

    The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied.

  7. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  8. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10.

  9. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  10. Structure and Promoter Characterization of Aldo-Keto Reductase Family 1 B10 Gene

    PubMed Central

    Liu, Ziwen; Zhong, Linlin; Krishack, Paulette A; Robbins, Sarah; Cao, Julia X; Zhao, Yupei; Chung, Stephen; Cao, Deliang

    2009-01-01

    Aldo-keto reductase family 1 member B10 (AKR1B10) is overexpressed in human hepatocellular carcinoma, lung squamous carcinoma, and lung adenocarcinoma in smokers. Our recent studies have showed that AKR1B10 plays a critical role in the growth and proliferation of cancer cells by detoxifying reactive carbonyls and regulating fatty acid biosynthesis. However, little is known about the regulatory mechanisms of AKR1B10 expression. In this study, we determined the structure of AKR1B10 gene and characterized its promoter. The results demonstrated that AKR1B10 consists of 10 exons and 9 introns, stretching approximately 13.8 kb. A 5′-RACE study determined the transcriptional start site of AKR1B10 at 320 bp upstream of the ATG translational start codon. A TATA-like (TAATAA) and a CAAT box are present from −145 to −140 bp and −193 to −190 bp upstream of the transcriptional start site, respectively. Motif analysis recognized multiple putative oncogenic and tumor suppressor protein binding sites in the AKR1B10 promoter, including c-Ets-1, C/EBP, AP-1, and p53, but osmolytic response elements were not found. A -4,091 bp of the 5′-flanking fragment of the AKR1B10 gene was capable of driving GFP and luciferase reporter gene expression in HepG2 cells derived from human hepatocellular carcinoma; progressive 5′-deletions revealed that a −255 bp fragment possesses full promoter activity. PMID:19236911

  11. Aldo-keto Reductase 1B15 (AKR1B15)

    PubMed Central

    Weber, Susanne; Salabei, Joshua K.; Möller, Gabriele; Kremmer, Elisabeth; Bhatnagar, Aruni; Adamski, Jerzy; Barski, Oleg A.

    2015-01-01

    Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues. PMID:25577493

  12. Lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products

    SciTech Connect

    Scharf, Michael; Sethi, Amit

    2016-09-13

    Termites have specialized digestive systems that overcome the lignin barrier in wood to release fermentable simple sugars. Using the termite Reticulitermes flavipes and its gut symbionts, high-throughput titanium pyrosequencing and proteomics approaches experimentally compared the effects of lignin-containing diets on host-symbiont digestome composition. Proteomic investigations and functional digestive studies with recombinant lignocellulases conducted in parallel provided strong evidence of congruence at the transcription and translational levels and provide enzymatic strategies for overcoming recalcitrant lignin barriers in biofuel feedstocks. Briefly described, therefore, the disclosure provides a system for generating a fermentable product from a lignified plant material, the system comprising a cooperating series of at least two catalytically active polypeptides, where said catalytically active polypeptides are selected from the group consisting of: cellulase Cell-1, .beta.-glu cellulase, an aldo-keto-reductase, a catalase, a laccase, and an endo-xylanase.

  13. Enzymatic detection of γ-hydroxybutyrate using aldo-keto reductase 7A2.

    PubMed

    Bendinskas, Kestutis; Sattelberg, Patricia; Crossett, Daniel; Banyikwa, Andrew; Dempsey, Daniel; MacKenzie, James A

    2011-05-01

    Gamma-hydroxybutyrate (GHB) is a prescribed medication as well as a drug of abuse. Its detection in various matrices for in-field forensic scientists remains a challenge. We have developed an assay that uses aldo-keto reductase 7A2 (AKR7A2) for the specific determination of GHB in various drinks. AKR7A2 was purified using Ni-affinity chromatography. The Michaelis-Menten constant for the GHB oxidation reaction was 10 mM, and the minimum detection limit was 4 mM. Ethanol was not a substrate for AKR7A2. In a coupled reaction with NADP(+), phenazine methosulfate (PMS), and 2,6-dichlorophenolindophenol, various beverages (orange juice, milk, soda, and numerous alcoholic drinks) containing GHB turned from blue to light yellow. In a second coupled reaction where diaphorase replaced PMS, the presence of GHB also caused the expected change of color in various beers.

  14. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism

    PubMed Central

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J. B.

    2016-01-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  15. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.

  16. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    PubMed

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Udayakumar, M

    2016-09-09

    In recent years, concerns about the use of glyphosate-resistant (GR) crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an Aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologs in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedlings growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1 or OsAKRI expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. This article is protected by copyright. All rights reserved.

  17. Genomic Rearrangements Leading to Overexpression of Aldo-Keto Reductase YafB of Escherichia coli Confer Resistance to Glyoxal

    PubMed Central

    Kwon, Minsuk; Lee, Junghoon; Lee, Changhan

    2012-01-01

    Glyoxal is toxic and mutagenic α-oxoaldehyde generated in vivo as an oxidation by-product of sugar metabolism. We selected glyoxal-resistant mutants from an Escherichia coli strain lacking major glyoxal-detoxifying genes, gloA and yqhD, by growing cells in medium containing a lethal concentration of glyoxal. The mutants carried diverse genomic rearrangements, such as multibase deletions and recombination, in the upstream region of the yafB gene, encoding an aldo-keto reductase. Since these genomic lesions create transcriptional fusions of the yafB gene to the upstream rrn regulon or eliminate a negative regulatory site, the mutants generally enhanced an expression of the yafB gene. Glyoxal resistances of the mutants are correlated with the levels of yafB transcripts as well as the activities of aldo-keto reductase. An overproduction of YafB in the glyoxal-resistant mutant lacking the putative NsrR-binding site provides evidence that the yafB gene is negatively regulated by this protein. We also observed that the expression of yafB is enhanced with an increased concentration of glyoxal as well as a mutation in the fnr gene, encoding a putative regulator. The bindings of NsrR and Fnr to the yafB promoter were also demonstrated by gel mobility shift assays. PMID:22328670

  18. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-07

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.

  19. The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion.

    PubMed

    Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin

    2013-03-01

    On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.

  20. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors.

    PubMed

    Penning, Trevor M; Steckelbroeck, Stephan; Bauman, David R; Miller, Meredith W; Jin, Yi; Peehl, Donna M; Fung, Kar-Ming; Lin, Hseuh-Kung

    2006-03-27

    Human aldo-keto reductases (AKR) of the 1A, 1B, 1C and 1D subfamilies are involved in the pre-receptor regulation of nuclear (steroid hormone and orphan) receptors by regulating the local concentrations of their lipophilic ligands. AKR1C3 is one of the most interesting isoforms. It was cloned from human prostate and the recombinant protein was found to function as a 3-, 17- and 20-ketosteroid reductase with a preference for the conversion of Delta4-androstene-3,17-dione to testosterone implicating this enzyme in the local production of active androgens within the prostate. Using a validated isoform specific real-time RT-PCR procedure the AKR1C3 transcript was shown to be more abundant in primary cultures of epithelial cells than stromal cells, and its expression in stromal cells increased with benign and malignant disease. Using a validated isoform specific monoclonal Ab, AKR1C3 protein expression was also detected in prostate epithelial cells by immunoblot analysis. Immunohistochemical staining of prostate tissue showed that AKR1C3 was expressed in adenocarcinoma and surprisingly high expression was observed in the endothelial cells. These cells are a rich source of prostaglandin G/H synthase 2 (COX-2) and vasoactive prostaglandins (PG) and thus the ability of recombinant AKR1C enzymes to act as PGF synthases was compared. AKR1C3 had the highest catalytic efficiency (kcat/Km) for the 11-ketoreduction of PGD2 to yield 9alpha,11beta-PGF2 raising the prospect that AKR1C3 may govern ligand access to peroxisome proliferator activated receptor (PPARgamma). Activation of PPARgamma is often a pro-apoptotic signal and/or leads to terminal differentiation, while 9alpha,11beta-PGF2 is a pro-proliferative signal. AKR1C3 is potently inhibited by non-steroidal anti-inflammatory drugs suggesting that the cancer chemopreventive properties of these agents may be mediated either by inhibition of AKR1C3 or COX. To discriminate between these effects we developed potent AKR1C

  1. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  2. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    PubMed

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes.

  3. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  4. Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling

    PubMed Central

    Lin, Eugene E.; Pentz, Ellen S.; Sequeira-Lopez, Maria Luisa S.

    2015-01-01

    We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression—together with renin—is progressively restricted in the kidney arteries toward the glomerulus. Subsequently, when formerly renin-expressing cells reacquire renin expression, AKR1B7 is reexpressed as well. This pattern of coexpression persists in extreme pathological situations, such as deletion of the genes for aldosterone synthase or Dicer. However, the two proteins do not colocalize within the same organelles: renin is found in the secretory granules, whereas AKR1B7 localizes to the endoplasmic reticulum. Interestingly, upon deletion of the renin gene, AKR1B7 expression is maintained in a pattern mimicking the embryonic expression of renin, while ablation of renin cells resulted in complete abolition of AKR1B7 expression. Finally, we demonstrate that AKR1B7 transcription is controlled by cAMP. Cultured cells of the renin lineage reacquire the ability to express both renin and AKR1B7 upon elevation of intracellular cAMP. In vivo, deleting elements of the cAMP-response pathway (CBP/P300) results in a stark decrease in AKR1B7- and renin-positive cells. In summary, AKR1B7 is expressed within the renin cell throughout development and perturbations to homeostasis, and AKR1B7 is regulated by cAMP levels within the renin cell. PMID:26180185

  5. Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Yoshida, Kazuhiko; Tanino, Mishie; Kimura, Taichi; Nishihara, Hiroshi; Abe, Takashige; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2016-01-01

    In treating bladder cancer, determining the molecular mechanisms of tumor invasion, metastasis, and drug resistance are urgent to improving long-term patient survival. One of the metabolic enzymes, aldo-keto reductase 1C1 (AKR1C1), plays an essential role in cancer invasion/metastasis and chemoresistance. In orthotopic xenograft models of a human bladder cancer cell line, UM-UC-3, metastatic sublines were established from tumors in the liver, lung, and bone. These cells possessed elevated levels of EMT-associated markers, such as Snail, Slug, or CD44, and exhibited enhanced invasion. By microarray analysis, AKR1C1 was found to be up-regulated in metastatic lesions, which was verified in metastatic human bladder cancer specimens. Decreased invasion caused by AKR1C1 knockdown suggests a novel role of AKR1C1 in cancer invasion, which is probably due to the regulation of Rac1, Src, or Akt. An inflammatory cytokine, interleukin-1β, was found to increase AKR1C1 in bladder cancer cell lines. One particular non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic sublines. These data uncover the crucial role of AKR1C1 in regulating both metastasis and drug resistance; as a result, AKR1C1 should be a potent molecular target in invasive bladder cancer treatment. PMID:27698389

  6. Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance.

    PubMed

    Matsunaga, Toshiyuki; Saito, Haruhi; Endo, Satoshi; Iguchi, Kazuhiro; Soda, Midori; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-12-01

    Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.

  7. Heightened aggressive behavior in mice deficient in aldo-keto reductase 1a (Akr1a).

    PubMed

    Homma, Takujiro; Akihara, Ryusuke; Okano, Satoshi; Shichiri, Mototada; Yoshida, Yasukazu; Yamada, Ken-Ichi; Miyata, Satoshi; Nakajima, Osamu; Fujii, Junichi

    2017-02-15

    Aldehyde reductase (Akr1a) is involved in the synthesis of ascorbic acid (AsA) which may play a role in social behavior. In the current study, we performed analyses on Akr1a-deficient (Akr1a(-/-)) mice that synthesize about 10% as much AsA as wild-type mice from the viewpoint of intermale aggression. The use of the resident-intruder test revealed that the Akr1a(-/-) mice exhibited more aggressive phenotypes than wild-type control mice. Unexpectedly, however, the oral administration of additional AsA failed to reduce the aggressive behavior of Akr1a(-/-) mice, suggesting that the heightened aggression was independent of AsA biosynthesis. The findings also show that the plasma levels of corticosterone, but not serotonin and testosterone, were increased in the absence of Akr1a in mice, suggesting that the mice were highly stressed. These results suggest that Akr1a might be involved in the metabolism of steroids and other carbonyl-containing compounds and, hence, the absence of Akr1a results in heightened aggression via a malfunction in a metabolic pathway.

  8. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  9. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily.

    PubMed Central

    Hoog, S S; Pawlowski, J E; Alzari, P M; Penning, T M; Lewis, M

    1994-01-01

    The 3.0-A-resolution x-ray structure of rat liver 3 alpha-hydroxysteroid dehydrogenase/dihydrodiol dehydrogenase (3 alpha-HSD, EC 1.1.1.50) was determined by molecular replacement using human placental aldose reductase as the search model. The protein folds into an alpha/beta or triose-phosphate isomerase barrel and lacks a canonical Rossmann fold for binding pyridine nucleotide. The structure contains a concentration of hydrophobic amino acids that lie in a cavity near the top of the barrel and that are presumed to be involved in binding hydrophobic substrates (steroids, prostaglandins, and polycyclic aromatic hydrocarbons) and inhibitors (nonsteroidal antiinflammatory drugs). At the distal end of this cavity lie three residues in close proximity that have been implicated in catalysis by site-directed mutagenesis--Tyr-55, Asp-50, and Lys-84. Tyr-55 is postulated to act as the general acid. 3 alpha-HSD shares significant sequence identity with other HSDs that belong to the aldo-keto reductase superfamily and these may show similar architecture. Other members of this family include prostaglandin F synthase and rho-crystallin. By contrast, 3 alpha-HSD shares no sequence identity with HSDs that are members of the short-chain alcohol dehydrogenase family but does contain the Tyr-Xaa-Xaa-Xaa-Lys consensus sequence implicated in catalysis in this family. In the 3 alpha-HSD structure these residues are on the periphery of the barrel and are unlikely to participate in catalysis. Images PMID:8146147

  10. Bioequivalence studies of tibolone in premenopausal women and effects on expression of the tibolone-metabolizing enzyme AKR1C (aldo-keto reductase) family caused by estradiol.

    PubMed

    Kang, Keon W; Kim, Yoon G

    2008-12-01

    This study aimed to investigate the bioequivalence of a test formulation of tibolone with the marketed reference formulation in 24 young healthy female volunteers. Tibolone is a synthetic steroid hormone for menopausal women. Volunteers were treated with the 2 formulations of tibolone (total dose of active ingredient 2.5 mg) according to a 2 x 2 crossover design with a 1-week washout period. Plasma concentrations of 3alpha- and 3beta-hydroxytibolone, which are major metabolites of tibolone, were assayed in timed samples over a 24-hour period with a validated gas chromatography/mass spectrometry (GC/MS) method that had a lower limit of quantification of 0.5 ng/mL. The reference and test formulations gave a mean 3alpha-hydroxytibolone C(max) of 5.0 and 5.2 ng/mL, respectively, and a mean 3beta-hydroxytibolone C(max) of 16.4 and 16.5 ng/mL, respectively. The mean AUC(t) of 3alpha-hydroxytibolone was 24.7 and 24.3 ng h/mL, whereas the mean AUC(t) of 3beta-hydroxytibolone was 57.6 and 54.8 ng h/mL for the test and reference formulations, respectively. The authors did not find significant differences in pharmacokinetic parameters between the 2 formulations, but metabolite formation was different from reports in postmenopausal women. The authors therefore measured the effects of estradiol on the expression of the tibolone-metabolizing enzymes, from the aldo-keto reductase (AKR1C) family, using HepG2 cell (human hepatoma cells) and MCF-7 cell (human breast cancer cells). Estradiol increased mRNA levels of AKR1C1, AKR1C2, and AKR1C3 and protein levels of total AKR1C in HepG2 cells. Estradiol selectively enhanced levels of AKR1C2 mRNA in MCF-7 cells. Thus, changes in the major metabolites of tibolone might result from changes in AKR1C family expression by patient estrogen status.

  11. Knockdown or inhibition of aldo-keto reductase 1B10 inhibits pancreatic carcinoma growth via modulating Kras-E-cadherin pathway.

    PubMed

    Zhang, Wanying; Li, Haonan; Yang, Yihe; Liao, Jie; Yang, Guang-Yu

    2014-12-28

    Aldo-keto reductase 1B10 (AKR1B10) has relatively specific lipid substrates including carbonyls, retinal and farnesal/geranylgeranial. Metabolizing these lipid substrates appears crucial to carcinogenesis, particularly for farnesal/geranylgeranial that involves protein prenylation. Mutant Kras is a most common active oncogene in pancreatic cancer, and its activation requires protein prenylation. To directly determine the role of AKR1B10 in pancreatic carcinogenesis, we knocked down AKR1B10 in CD18 human pancreatic carcinoma cells using shRNA approach. Silencing AKR1B10 resulted in a significant inhibition of anchor-dependent growth (knockdown cells vs. vector-control cells: 67 ± 9.5 colonies/HPF vs. 170 ± 3.7 colonies/HPF, p < 0.01), invasion index (0.27 vs. 1.00, p < 0.05), and cell migration (at 16 hours 9.2 ± 1.2% vs. 14.0 ± 1.8%, at 24 hours 21.0 ± 1.1% vs. 30.5 ± 3.5%, and at 48 hours 51.9 ± 5.7% vs. 88.9 ± 3.0%, p < 0.01). Inhibition of AKR1B10 by oleanolic acid (OA) showed a dose-dependent inhibition of cell growth with IC50 at 30 µM. Kras pull-down and Western blot analysis revealed a significant down-regulation of active form Kras and phosphorylated C-Raf, and Erk, as well as an up-regulation of E-cadherin. A significant reduction of in vivo tumor growth was observed in nude mice implanted with the CD18 pancreatic carcinoma cells with AKR1B10 knockdown (tumor weight: 0.25 ± 0.06 g vs. 0.52 ± 0.07 g, p = 0.01), and with OA treatment (tumor weight: 0.35 ± 0.05 g vs. 0.52 ± 0.07 g, p = 0.05). Our findings indicate AKR1B10 is a unique enzyme involved in pancreatic carcinogenesis via modulation of the Kras-E-cadherin pathway.

  12. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    PubMed

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.

  13. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

    PubMed Central

    MacLeod, A Kenneth; Acosta-Jimenez, Lourdes; Coates, Philip J; McMahon, Michael; Carey, Frank A; Honda, Tadashi; Henderson, Colin J; Wolf, C Roland

    2016-01-01

    Background: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. Methods: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. Results: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. Conclusions: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses. PMID:27824809

  14. Cloning of a novel aldo-keto reductase gene from Klebsiella sp. strain F51-1-2 and its functional expression in Escherichia coli.

    PubMed

    Jiang, Hong; Yang, Chao; Qu, Hong; Liu, Zheng; Fu, Q S; Qiao, Chuanling

    2007-08-01

    A soil bacterium capable of metabolizing organophosphorus compounds by reducing the P S group in the molecules was taxonomically identified as Klebsiella sp. strain F51-1-2. The gene involved in the reduction of organophosphorus compounds was cloned from this strain by the shotgun technique, and the deduced protein (named AKR5F1) showed homology to members of the aldo-keto reductase (AKR) superfamily. The intact coding region for AKR5F1 was subcloned into vector pET28a and overexpressed in Escherichia coli BL21(DE3). Recombinant His(6)-tagged AKR5F1 was purified in one step using Ni-nitrilotriacetic acid affinity chromatography. Assays for cofactor specificity indicated that reductive transformation of organophosphorus compounds by the recombinant AKR5F1 specifically required NADH. The kinetic constants of the purified recombinant AKR5F1 toward six thion organophosphorus compounds were determined. For example, the K(m) and k(cat) values of reductive transformation of malathion by the purified recombinant AKR5F1 are 269.5 +/- 47.0 microM and 25.7 +/- 1.7 min(-1), respectively. Furthermore, the reductive transformation of organophosphorus compounds can be largely explained by structural modeling.

  15. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    PubMed Central

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  16. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  17. The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases.

    PubMed

    Shi, Liang; Wang, Yuan; Tu, Shuyang; Li, Xiaolei; Sun, Maomao; Srivastava, Sanjay; Xu, Ningzhi; Bhatnagar, Aruni; Liu, Siqi

    2008-08-01

    A large body of evidence supports the view that mitochondria are a primary target of alcohol stress. Changes in mitochondrial proteins due to moderate ethanol intake, however, have not been broadly and accurately estimated. For this study, rats were fed low doses of ethanol and the mitochondria were isolated from heart, kidney, and liver, using ultracentrifugation with Nycodenz density gradient. The mitochondrial proteins were well resolved upon two-dimensional electrophoresis (2DE), and the alcohol-responsive 2DE spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Compared with the control group, the proteins extracted from liver mitochondria of ethanol-fed rats exhibited the significant changes on 2DE images, whereas the 2DE images obtained from the kidney and the heart mitochondria remained almost unchanged by ethanol feeding. Significantly, over 50% of the alcohol-responsive proteins in liver mitochondria were members of aldo-keto reductase family (AKR), which were usually present in cytoplasm. The organelle distributions of AKR proteins in liver mitochondria were further confirmed by Western blot analysis as well as by confocal microscopy. In addition, translocations of AKR were examined in the CHANG cell line, which was cultured with and without ethanol. The results of Western blot strongly suggested that the abundances of AKR proteins in the mitochondria were greatly reduced by the presence of ethanol in culture medium. The results of this study show that, even with moderate ethanol feeding, the mitochondrial proteome in rat liver was more sensitive to alcohol stress than that of either the kidney or the heart. The translocation of AKR proteins may be involved in the detoxification of liver cells.

  18. Reduction of lipid peroxidation products and advanced glycation end-product precursors by cyanobacterial aldo-keto reductase AKR3G1—a founding member of the AKR3G subfamily.

    PubMed

    Hintzpeter, Jan; Martin, Hans-Joerg; Maser, Edmund

    2015-01-01

    The purpose of this study was to investigate the origin and function of the aldo-keto reductase (AKR) superfamily as enzymes involved in the detoxification of xenobiotics. We used the cyanobacterium Synechocystis sp. PCC 6803 as a model organism and sequence alignments to find bacterial AKRs with highest identity to human enzymes. Disappearance of NADPH was monitored spectrophotometrically to calculate enzymatic activity. The molecular weight of the native protein was determined by size exclusion chromatography. Substrate docking was performed by SwissDock. Sequence alignments identified the NADPH-dependent AKR3G1 having 41.5 and 40% identity with the human enzymes AKR1B1 and AKR1B10, respectively. Highest enzymatic efficiency was observed with 4-oxonon-2-enal (4-ONE; k(cat)/K(m), 561 s(-1) mM(-1)) and 4-hydroxynonenal (k(cat)/K(m), 26.5 s(-1) mM(-1)), respectively. P74308 is the most efficient enzyme for 4-ONE discovered until now. Cooperativity of this monomeric enzyme was observed with some substrates. Enzyme inactivation or oligomerization as possible explanations for nonhyperbolic enzyme kinetics were ruled out by Selwyn's test and gel filtration. The role of the little investigated carbonyl-reducing enzymes in detoxification seems to be in fact a very old process with rarely observed nonhyperbolic enzyme kinetics as an adaptation mechanism to higher concentrations of reactive oxygen species.

  19. Aldo-keto reductases AKR1C1, AKR1C2 and AKR1C3 may enhance progesterone metabolism in ovarian endometriosis.

    PubMed

    Hevir, N; Vouk, K; Sinkovec, J; Ribič-Pucelj, M; Rižner, T Lanišnik

    2011-05-30

    Endometriosis is a very common disease that is characterized by increased formation of estradiol and disturbed progesterone action. This latter is usually explained by a lack of progesterone receptor B (PR-B) expression, while the role of pre-receptor metabolism of progesterone is not yet fully understood. In normal endometrium, progesterone is metabolized by reductive 20α-hydroxysteroid dehydrogenases (20α-HSDs), 3α/β-HSDs and 5α/β-reductases. The aldo-keto reductases 1C1 and 1C3 (AKR1C1 and AKR1C3) are the major reductive 20α-HSDs, while the oxidative reaction is catalyzed by 17β-HSD type 2 (HSD17B2). Also, 3α-HSD and 3β-HSD activities have been associated with the AKR1C isozymes. Additionally, 5α-reductase types 1 and 2 (SRD5A1, SRD5A2) and 5β-reductase (AKR1D1) are responsible for the formation of 5α- and 5β-reduced pregnanes. In this study, we examined the expression of PR-AB and the progesterone metabolizing enzymes in 31 specimens of ovarian endometriosis and 28 specimens of normal endometrium. Real-time PCR analysis revealed significantly decreased mRNA levels of PR-AB, HSD17B2 and SRD5A2, significantly increased mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1, and negligible mRNA levels of AKR1D1. Immunohistochemistry staining of endometriotic tissue compared to control endometrium showed significantly lower PR-B levels in epithelial cells and no significant differences in stromal cells, there were no significant differences in the expression of AKR1C3 and significantly higher AKR1C2 levels were seen only in stromal cells. Our expression analysis data at the mRNA level and partially at the cellular level thus suggest enhanced metabolism of progesterone by SRD5A1 and the 20α-HSD and 3α/β-HSD activities of AKR1C1, AKR1C2 and AKR1C3.

  20. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    SciTech Connect

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  1. Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds.

    PubMed

    Vemanna, Ramu S; Babitha, K C; Solanki, Jayant K; Amarnatha Reddy, V; Sarangi, S K; Udayakumar, M

    2017-04-01

    Cytotoxic compounds like reactive carbonyl compounds such as methylglyoxal (MG), melandialdehyde (MDA), besides the ROS accumulate significantly at higher levels under salinity stress conditions and affect lipids and proteins that inhibit plant growth and productivity. The detoxification of these cytotoxic compounds by overexpression of NADPH-dependent Aldo-ketoreductase (AKR1) enzyme enhances the salinity stress tolerance in tobacco. The PsAKR1 overexpression plants showed higher survival and chlorophyll content and reduced MDA, H2O2, and MG levels under NaCl stress. The transgenic plants showed reduced levels of Na(+) levels in both root and shoot due to reduced reactive carbonyl compounds (RCCs) and showed enhanced membrane stability resulted in higher root growth and biomass. The increased levels of antioxidant glutathione and enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) suggest AKR1 could protect these enzymes from the RCC induced protein carbonylation by detoxification process. The transgenics also showed higher activity of delta 1-pyrroline-5- carboxylate synthase (P5CS) enzyme resulted in increasedproline levels to maintain osmotic homeostasis. The results demonstrates that the AKR1 protects proteins or enzymes that are involved in scavenging of cytotoxic compounds by detoxifying RCCs generated under salinity stress.

  2. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10)

    PubMed Central

    Li, Haonan; Yang, Allison L.; Yang, Guang-Yu

    2013-01-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice (Pankras/p53 mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan–Meier survival analysis showed that average animal survival in Pankras/p53 mice was 143.7±8.8 days, and average survival with sulindac was increased to 168.0±8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pankras/p53 mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10. PMID:23689354

  3. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  4. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  5. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  6. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Ikari, Akira; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio

    2015-03-01

    In rabbit tissues, hydroxysteroid dehydrogenase belonging to the aldo-keto reductase (AKR) superfamily exists in six isoforms (AKRs: 1C5 and 1C29-1C33), sharing >73% amino acid sequence identity. AKR1C33 is strictly NADPH-specific, in contrast to dual NADPH/NADH specificity of the other isoforms. All coenzyme-binding residues of the structurally elucidated AKR1C5 are conserved in other isoforms, except that S217 (interacting with the pyrophosphate moiety) and T273 (interacting with the 2'-phosphate moiety) are replaced with F217 and N272, respectively, in AKR1C33. To explore the determinants for the NADPH specificity of AKR1C33, we prepared its F217S and N272T mutant enzymes. The mutation of F217S, but not N272T, converted AKR1C33 into a dually coenzyme-specific form that showed similar kcat values for NAD(P)H to those of AKR1C32. The reverse mutation (S217F) in dually coenzyme-specific AKR1C32 produced a strictly NADPH-specific form. The F217S mutation also abolished the activity towards 3-keto-5β-cholestanes that are substrates specific to AKR1C33, and markedly decreased the sensitivity to 4-pregnenes (such as deoxycorticosterone and medroxyprogesterone acetate) that were found to be potent mixed-type inhibitors of the wild-type enzyme. The results indicate the important role of F217 in the strict NADPH-dependency, as well as its involvement in the unique catalytic properties of AKR1C33.

  7. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP +

    SciTech Connect

    Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.; Nidetzky, Bernd

    2005-01-11

    Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+ were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP+-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contacts of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P)+ in the wild-type remains partly disordered in the NADP+-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.

  8. Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells

    SciTech Connect

    Lemieux, N. ); Malfoy, B. ); Forrest, G.L. )

    1993-01-01

    Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

  9. Aldo-keto Reductase Family 1 B10 as a Novel Target for Breast Cancer Treatment

    DTIC Science & Technology

    2010-08-01

    1Department of Medical Microbiology , Immunology, & Cell Biology, SimmonsCooper Cancer Institute and 2Division of Statistics and Research Consulting, Southern...University, Beijing 100084,People’s Republic of China. ¥To whom requests reprints: Deliang Cao, Department of Medical Microbiology , Immunology, & Cell

  10. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  11. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).

    PubMed

    Chen, Mo; Penning, Trevor M

    2014-05-01

    5β-Reduced steroids are non-planar steroids that have a 90° bend in their structure to create an A/B cis-ring junction. This novel property is required for bile-acids to act as emulsifiers, but in addition 5β-reduced steroids have remarkable physiology and may act as potent tocolytic agents, endogenous cardiac glycosides, neurosteroids, and can act as ligands for orphan and membrane bound receptors. In humans there is only a single 5β-reductase gene AKR1D1, which encodes Δ(4)-3-ketosteroid-5β-reductase (AKR1D1). This enzyme is a member of the aldo-keto reductase superfamily, but possesses an altered catalytic tetrad, in which Glu120 replaces the conserved His residue. This predominant liver enzyme generates all 5β-dihydrosteroids in the C19-C27 steroid series. Mutations exist in the AKR1D1 gene, which result in loss of protein stability and are causative in bile-acid deficiency.

  12. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  13. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    distribution. Mol Endocrinol 1997, 11, 1971-1984. 17. Stanbrough, M.; Bubley, G. J.; Ross , K.; Golub, T. R.; Rubin, M. A.; Penning, T. M.; Febbo, P...21. Cherian, M. T.; Wilson , E. M.; Shapiro, D. J. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive

  14. Human hydroxysteroid dehydrogenases and pre-receptor regulation: Insights into inhibitor design and evaluation

    PubMed Central

    Penning, Trevor M.

    2011-01-01

    Hydroxysteroid dehydrogenases (HSDs) represent a major class of NAD(P)(H) dependent steroid hormone oxidoreductases involved in the pre-receptor regulation of hormone action. This is achieved by HSDs working in pairs so that they can interconvert ketosteroids with hydroxysteroids resulting in a change in ligand potency for nuclear receptors. HSDs belong to two protein superfamilies the aldo-keto reductases and the short-chain dehydrogenase/reductases. In humans, many of the important enzymes have been thoroughly characterized including the elucidation of their three-dimensional structures. Because these enzymes play fundamental roles in steroid hormone action they can be considered to be drug targets for a variety of steroid driven diseases: e.g. metabolic syndrome and obesity, inflammation, and hormone dependent malignancies of the endometrium, prostate and breast. This article will review how fundamental knowledge of these enzymes can be exploited in the development of isoform specific HSD inhibitors from both protein superfamilies. PMID:21272640

  15. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.

    PubMed

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2014-03-01

    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  16. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure.

    PubMed

    Mir, Sartaj Ahmad; Pinto, Sneha M; Paul, Somnath; Raja, Remya; Nanjappa, Vishalakshi; Syed, Nazia; Advani, Jayshree; Renuse, Santosh; Sahasrabuddhe, Nandini A; Prasad, T S Keshava; Giri, Ashok K; Gowda, Harsha; Chatterjee, Aditi

    2017-03-01

    Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin.

  17. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    PubMed

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  18. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  19. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  20. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  1. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

  2. The human kidney is a progesterone-metabolizing and androgen-producing organ.

    PubMed

    Quinkler, M; Bumke-Vogt, C; Meyer, B; Bähr, V; Oelkers, W; Diederich, S

    2003-06-01

    Progesterone (P) is a potent antagonist of the human mineralocorticoid receptor (MR) in vitro. We have previously demonstrated effective downstream metabolism of P in the kidney. This mechanism potentially protects the MR from P action. Here, we have investigated the expression and functional activity of steroidogenic enzymes in human kidney. RT-PCR analysis demonstrated the expression of 5 alpha-reductase type 1, 5 beta-reductase, aldo-keto-reductase (AKR) 1C1, AKR1C2, AKR1C3, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) type 2, and 17 alpha-hydroxylase/17,20-lyase (P450c17). The presence of 3 beta-HSD type 2 and P450c17 indicated that conversion of pregnenolone to dehydroepiandrosterone (DHEA) and to androstenedione may take place effectively in kidney. To investigate this further, we incubated kidney subcellular fractions with radiolabeled pregnenolone. This resulted in efficient formation of DHEA from pregnenolone, indicating both 17 alpha-hydroxylase and 17,20-lyase activities exerted by P450c17. Radiolabeled DHEA was converted via androstenedione, androstenediol, and testosterone, indicating both 3 beta-HSD type 2 activity and 17 beta-HSD activity. In addition, the conversion of testosterone to 5 alpha-dihydrotestosterone was detectable, indicating 5 alpha-reductase activity. In conclusion, we verified the expression and functional activity of several enzymes involved in downstream metabolism of P and androgen synthesis in human kidney. These findings may be critical to the understanding of water balance during the menstrual cycle and pregnancy and of sex differences in hypertension.

  3. AKR1B1 — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: This gene encodes a member of the aldo/keto reductase superfamily, which consists of more than 40 known enzymes and proteins. This member catalyzes the reduction of a number of aldehydes, including the aldehyde form of glucose, and is thereby implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. Multiple pseudogenes have been identified for this gene. The nomenclature system used by the HUGO Gene Nomenclature Committee to define human aldo-keto reductase family members is known to differ from that used by the Mouse Genome Informatics database. [provided by RefSeq, Feb 2009

  4. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  5. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    PubMed

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction.

  6. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids

    PubMed Central

    Valanejad, Leila; Nadolny, Christina; Shiffka, Stephanie; Chen, Yuan; You, Sangmin; Deng, Ruitang

    2017-01-01

    Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism. PMID:28125709

  7. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    PubMed

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  8. Metabolism and disposition of a potent and selective JNK inhibitor [14C]tanzisertib following oral administration to rats, dogs and humans.

    PubMed

    Atsriku, Christian; Hoffmann, Matthew; Ye, Ying; Kumar, Gondi; Surapaneni, Sekhar

    2015-05-01

    1. The disposition of tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, orally active c-Jun amino-terminal kinase inhibitor intended for treatment of fibrotic diseases was studied in rats, dogs and humans following a single oral dose of [(14)C]tanzisertib (Independent Investigational Review Board Inc., Plantation, FL). 2. Administered dose was quantitatively recovered in all species and feces/bile was the major route of elimination. Tanzisertib was rapidly absorbed (Tmax: 1-2 h) across all species with unchanged tanzisertib representing >83% of plasma radioactivity in dogs and humans, whereas <34% was observed in rats. Variable amounts of unchanged tanzisertib (1.5-32% of dose) was recovered in urine/feces across all species, the highest in human feces. 3. Metabolic profiling revealed that tanzisertib was primarily metabolized via oxidation and conjugation pathways, but extensively metabolized in rats relative to dogs/humans. CC-418424 (S-cis isomer of tanzisertib) was the major plasma metabolite in rats (38.4-46.4% of plasma radioactivity), while the predominant plasma metabolite in humans and dogs was M18 (tanzisertib-/CC-418424 glucuronide), representing 7.7 and 3.2% of plasma radioactivity, respectively. Prevalent biliary metabolite in rats and dogs, M18 represented 16.8 and 17.1% of dose, respectively. 4. In vitro studies using liver subcellular fractions and expressed enzymes characterized involvement of novel human aldo-keto reductases for oxido-reduction and UDP-glucuronosyltransferases for conjugation pathways.

  9. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.

    PubMed Central

    Mayr, Peter; Nidetzky, Bernd

    2002-01-01

    Kinetic substituent effects have been used to examine the catalytic reaction profile of xylose reductase from the yeast Candida tenuis, a representative aldo/keto reductase of primary carbohydrate metabolism. Michaelis-Menten parameters (k(cat) and K(m)) for NADH-dependent enzymic aldehyde reductions have been determined using a homologous series of benzaldehyde derivatives in which substituents in meta and para positions were employed to systematically perturb the properties of the reactive carbonyl group. Kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m) for enzymic reactions with meta-substituted benzaldehydes have been obtained by using NADH (2)H-labelled in the pro-R C4-H position, and equilibrium constants for the conversion of these aldehydes into the corresponding alcohols (K(eq)) have been measured in the presence of NAD(H) and enzyme. Aldehyde dissociation constants (K(d)) and the hydride transfer rate constant (k(7)) have been calculated from steady-state rate and KIE data. Quantitative structure-activity relationship analysis was used to factor the observed substituent dependence of k(cat)/K(m) into a major electronic effect and a productive positional effect of the para substituent. k(cat)/K(m) (after correction for substituent position) and K(eq) obeyed log-linear correlations over the substituent parameter, Hammett sigma, giving identical slope values (rho) of +1.4 to +1.7, whereas the same Hammett plot for logK(d) yielded rho=-1.5. This leads to the conclusion that electron-withdrawing substituents facilitate the reaction and increase binding to about the same extent. KIE values for k(cat) (1.8) and k(cat)/K(m) (2.7), and likewise k(7), showed no substituent dependence. Therefore, irrespective of the observed changes in reactivity over the substrate series studied no shift in the character of the rate-limiting transition state of hydride transfer occurred. The signs and magnitudes of rho values suggest this transition state to be product

  10. Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A

    PubMed Central

    Erzinger, Melanie M.; Bovet, Cédric; Hecht, Katrin M.; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W.; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J.

    2016-01-01

    The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues. PMID:26950072

  11. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  12. Cloning, expression and characterization of a putative 2,5-diketo-D-gluconic acid reductase in Comamonas testosteroni.

    PubMed

    Chen, Yuanan; Ji, Wei; Zhang, Hao; Zhang, Xiao; Yu, Yuanhua

    2015-06-05

    Aldo-keto reductases (AKRs) are a superfamily of soluble NAD(P)(H) oxidoreductases. The function of the enzymes is to reduce aldehydes and ketones into primary and secondary alcohols. We have cloned a 2,5-diketo-D-gluconic acid reductase (2,5DKGR) gene from Comamonas testosteroni (C. testosteroni) ATCC11996 (a Gram-negative bacterium which can use steroids as carbon and energy source) into plasmid pET-15b and over expressed in Escherichia coli BL21 (DE3). The protein was purified by His-tag Metal chelating affinity chromatography column. The 2,5-diketo-D-gluconic acid reductase (2,5DKGR) gene contains 1062 bp and could be translated into a protein of 353 amino acid residues. Three consensus sequences of the AKR superfamily are found as GxxxxDxAxxY, LxxxGxxxPxxGxG and LxxxxxxxxxDxxxxH. GxxxxDxAxxY is the active site, LxxxGxxxPxxGxG is the Cofactor-binding site for NAD(P)(H), LxxxxxxxxxDxxxxH is used for supporting the 3D structure. 2,5-diketo-D-gluconic acid reductase gene of C. testosteroni was knocked out and a mutant M-AKR was obtained. Compared to wild type C. testosteroni, degradations of testosterone, estradiol, oestrone and methyltestosterone in mutant M-AKR were decreased. Therefore, 2,5-diketo-D-gluconic acid reductase in C. testosteroni is involved in steroid degradation.

  13. Diesel Exhaust Influences Carcinogenic PAH-Induced Genotoxicity and Gene Expression in Human Breast Epithelial Cells in Culture

    PubMed Central

    Courter, Lauren A.; Pereira, Cliff; Baird, William M.

    2009-01-01

    The carcinogenic polycyclic aromatic hydrocarbon ns (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are widespread environmental pollutants, however their toxicological effects within a mixture is not established. We investigated the influence of diesel exhaust (DE) on B[a]P and DB[a,l]P-induced PAH-DNA adduct formation, metabolic activation, gene expression and 8-oxo-dG adduct levels in human breast epithelial cells (MCF-10A) in culture. Following 24 and 48 h, cells co-exposed to DE plus B[a]P exhibited a significant decrease in PAH-DNA adduct levels, compared with B[a]P alone, as determined by 33P-postlabeling combined with reversed-phase high performance liquid chromatography (HPLC). Cytochrome P450 (CYP) enzyme activity, as measured by the ethoxyresorufin O-deethylase (EROD) assay and CYP1B1 expression, significantly increased with co-exposure of DE plus DB[a,l]P, compared with DB[a,l]P alone. Aldo keto-reductase (AKR)1C1, AKR1C2,and AKR1C3 expression also significantly increased in cells exposed to DE plus PAH, compared with PAH exposure alone. Cell populations exhibiting 8-oxo-dG adducts significantly increased in response to exposure to B[a]P or DE plus B[a]P for 24 h, compared with vehicle control, as quantified by flow cytometry. These results suggest that complex mixtures may modify the carcinogenic potency of PAH by shifting the metabolic activation pathway from the production of PAH diol-epoxides to AKR pathway-derived metabolites. PMID:17612574

  14. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  15. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  16. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A.

    PubMed

    Banta, Scott; Swanson, Barbara A; Wu, Shan; Jarnagin, Alisha; Anderson, Stephen

    2002-02-01

    The NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme is a required component in some novel biosynthetic vitamin C production processes. This enzyme catalyzes the conversion of 2,5-DKG to 2-keto-L-gulonic acid, which is an immediate precursor to L-ascorbic acid. Forty unique site-directed mutations were made at five residues in the cofactor-binding pocket of 2,5-DKG reductase A in an attempt to improve its ability to use NADH as a cofactor. NADH is more stable, less expensive and more prevalent in the cell than is NADPH. To the best of our knowledge, this is the first focused attempt to alter the cofactor specificity of a member of the aldo-keto reductase superfamily by engineering improved activity with NADH into the enzyme. Activity of the mutants with NADH or NADPH was assayed using activity-stained native polyacrylamide gels. Eight of the mutants at three different sites were identified as having improved activity with NADH. These mutants were purified and subjected to a kinetic characterization with NADH as a cofactor. The best mutant obtained, R238H, produced an almost 7-fold improvement in catalysis with NADH compared with the wild-type enzyme. Surprisingly, most of this catalytic improvement appeared to be due to an improvement in the apparent kcat for the reaction rather than a large improvement in the affinity of the enzyme for NADH.

  17. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  18. Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis.

    PubMed

    Ziegler, Jörg; Voigtländer, Susan; Schmidt, Jürgen; Kramell, Robert; Miersch, Otto; Ammer, Christian; Gesell, Andreas; Kutchan, Toni M

    2006-10-01

    Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7-epi-salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.

  19. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.

  20. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  1. Catalytic cycle of human glutathione reductase near 1 Å resolution

    PubMed Central

    Berkholz, Donald S.; Faber, H. Richard; Savvides, Savvas N.; Karplus, P. Andrew

    2008-01-01

    Summary Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity, a net deviation of 53° across 5 residues. But this apparent strain is not a factor in catalysis as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds. PMID:18638483

  2. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2015-01-01

    Human mitochondrial outer membrane protein mitoNEET is a newly discovered target of type II diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane alpha helix tethered to mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters, indicating that the redox active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. PMID:25645953

  3. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  4. NADPH-dependent Reductases Involved in the Detoxification of Reactive Carbonyls in Plants*

    PubMed Central

    Yamauchi, Yasuo; Hasegawa, Ayaka; Taninaka, Ai; Mizutani, Masaharu; Sugimoto, Yukihiro

    2011-01-01

    Reactive carbonyls, especially α,β-unsaturated carbonyls produced through lipid peroxidation, damage biomolecules such as proteins and nucleotides; elimination of these carbonyls is therefore essential for maintaining cellular homeostasis. In this study, we focused on an NADPH-dependent detoxification of reactive carbonyls in plants and explored the enzyme system involved in this detoxification process. Using acrolein (CH2 = CHCHO) as a model α,β-unsaturated carbonyl, we purified a predominant NADPH-dependent acrolein-reducing enzyme from cucumber leaves, and we identified the enzyme as an alkenal/one oxidoreductase (AOR) catalyzing reduction of an α,β-unsaturated bond. Cloning of cDNA encoding AORs revealed that cucumber contains two distinct AORs, chloroplastic AOR and cytosolic AOR. Homologs of cucumber AORs were found among various plant species, including Arabidopsis, and we confirmed that a homolog of Arabidopsis (At1g23740) also had AOR activity. Phylogenetic analysis showed that these AORs belong to a novel class of AORs. They preferentially reduced α,β-unsaturated ketones rather than α,β-unsaturated aldehydes. Furthermore, we selected candidates of other classes of enzymes involved in NADPH-dependent reduction of carbonyls based on the bioinformatic information, and we found that an aldo-keto reductase (At2g37770) and aldehyde reductases (At1g54870 and At3g04000) were implicated in the reduction of an aldehyde group of saturated aldehydes and methylglyoxal as well as α,β-unsaturated aldehydes in chloroplasts. These results suggest that different classes of NADPH-dependent reductases cooperatively contribute to the detoxification of reactive carbonyls. PMID:21169366

  5. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.

    PubMed

    Zhang, Min; Jiang, Shao-tong; Zheng, Zhi; Li, Xing-jiang; Luo, Shui-zhong; Wu, Xue-feng

    2015-07-01

    Rhizopus oryzae is valuable as a producer of organic acids via lignocellulose catalysis. R. oryzae metabolizes xylose, which is one component of lignocellulose hydrolysate. In this study, a novel NADPH-dependent xylose reductase gene from R. oryzae AS 3.819 (Roxr) was cloned and expressed in Pichia pastoris GS115. Homology alignment suggested that the 320-residue protein contained domains and active sites belonging to the aldo/keto reductase family. SDS-PAGE demonstrated that the recombinant xylose reductase has a molecular weight of approximately 37 kDa. The optimal catalytic pH and temperature of the purified recombinant protein were 5.8 and 50 °C, respectively. The recombinant protein was stable from pH 4.4 to 6.5 and at temperatures below 42 °C. The recombinant enzyme has bias for D-xylose and L-arabinose as substrates and NADPH as its coenzyme. Real-time quantitative reverse transcription PCR tests suggested that native Roxr expression is regulated by a carbon catabolite repression mechanism. Site-directed mutagenesis at two possible key sites involved in coenzyme binding, Thr(226)  → Glu(226) and Val(274)  → Asn(274), were performed, respectively. The coenzyme specificity constants of the resulted RoXR(T226E) and RoXR(V274N) for NADH increased 18.2-fold and 2.4-fold, which suggested possibility to improve the NADH preference of this enzyme through genetic modification.

  6. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal.

    PubMed

    Doorn, Jonathan A; Maser, Edmund; Blum, Andreas; Claffey, David J; Petersen, Dennis R

    2004-10-19

    4-Oxonon-2-enal (4ONE) was demonstrated to be a product of lipid peroxidation, and previous studies found that it was highly reactive toward DNA and protein. The present study sought to determine whether carbonyl reductase (CR) catalyzes reduction of 4ONE, representing a potential pathway for metabolism of the lipid peroxidation product. Recombinant CR was cloned from a human liver cDNA library, expressed in Escherichia coli, and purified by metal chelate chromatography. Both 4ONE and its glutathione conjugate were found to be substrates for CR, and kinetic parameters were calculated. TLC analysis of reaction products revealed the presence of three compounds, two of which were identified as 4-hydroxynon-2-enal (4HNE) and 1-hydroxynon-2-en-4-one (1HNO). GC/MS analysis confirmed 4HNE and 1HNO and identified the unknown reaction product as 4-oxononanal (4ONA). Analysis of oxime derivatives of the reaction products via LC/MS confirmed the unknown as 4ONA. The time course for CR-mediated, NADPH-dependent 4ONE reduction and appearance of 4HNE and 1HNO was determined using HPLC, demonstrating 4HNE to be a major product and 1HNO and 4ONA to be minor products. Simulated structures of 4ONE in the active site of CR/NADPH calculated via docking experiments predict the ketone positioned as primary hydride acceptor. Results of the present study demonstrate that 4ONE is a substrate for CR/NADPH and the enzyme may represent a pathway for biotransformation of the lipid. Furthermore, these findings reveal that CR catalyzes hydride transfer selectively to the ketone but also to the aldehyde and C=C of 4ONE, resulting in 4HNE, 1HNO, and 4ONA, respectively.

  7. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  8. Detoxication of benzo[a]pyrene-7,8-dione by sulfotransferases (SULTs) in human lung cells.

    PubMed

    Zhang, Li; Huang, Meng; Blair, Ian A; Penning, Trevor M

    2012-08-24

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.

  9. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  10. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  11. Structural and biochemical properties of cloned and expressed human and rat steroid 5. alpha. -reductases

    SciTech Connect

    Andersson, S.; Russell, D.W. )

    1990-05-01

    The microsomal enzyme steroid 5{alpha}-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5{alpha}-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5{alpha}-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5{alpha}-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5{alpha}-reductases.

  12. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols.

    PubMed

    Zhang, Li; Jin, Yi; Chen, Mo; Huang, Meng; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2011-07-22

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.

  13. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    PubMed

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R(2)=0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors.

  14. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase

    PubMed Central

    Sanli, Gulsah; Banta, Scott; Anderson, Stephen; Blaber, Michael

    2004-01-01

    Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified. PMID:14718658

  15. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.

    PubMed

    Bando, M; Obazawa, H

    1995-12-01

    Major and minor ascorbate free radical (AFR) reductases, with diaphorase activity, and three other diaphorases were separated from the human lens soluble fraction by DEAE-cellulose ion-exchange column chromatography. They were characterized for adsorptivity to ion-exchange and 5'AMP-Sepharose 4B affinity columns, kinetic properties, and substrate specificity. The latter diaphorases were closely correlated with NADH-cytochrome beta 5 reductase. The major and minor AFR reductases were regarded as a major diaphorase group different from two ubiquitous diaphorases, i.e., NADH-cytochrome beta 5 reductase and DT-diaphorase. A major AFR reductase was partially purified approximately 50 fold over the lens soluble fraction by ion-exchange, affinity, and gel filtration (Sephacryl S-200 HR) column chromatography. From the partially purified enzyme, 2 bands, one sharp and one diffuse, were obtained by native polyacrylamide gel electrophoresis. Two proteins, of 20 and 24 kDa, were identified in the active enzyme bands by SDS-polyacrylamide gel electrophoresis. This suggests that the 20 and/or 24 kDa proteins may be components of the major AFR reductase.

  16. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  17. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  18. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct.

    PubMed

    Huang, Meng; Liu, Xiaojing; Basu, Sankha S; Zhang, Li; Kushman, Mary E; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2012-05-21

    Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.

  19. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds.

    PubMed

    MacLeod, A Kenneth; McMahon, Michael; Plummer, Simon M; Higgins, Larry G; Penning, Trevor M; Igarashi, Kazuhiko; Hayes, John D

    2009-09-01

    To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome microarray revealed that knockdown of KEAP1 resulted in 23 messenger RNAs (mRNAs) being up-regulated > or = 2.0-fold. mRNA for aldo-keto reductase (AKR) 1B10, AKR1C1, AKR1C2 and AKR1C3 were induced to the greatest extent, showing increases of between 12- and 16-fold, whereas mRNA for glutamate-cysteine ligase catalytic and modifier subunits, NAD(P)H:quinone oxidoreductase-1 and haem oxygenase-1 (HMOX1) were induced between 2.0- and 4.8-fold. Knockdown of BACH1 increased HMOX1 135-fold but induced the other genes examined to a maximum of only 2.7-fold. Activation of NRF2, by KEAP1 knockdown, caused a 75% increase in the amount of glutathione in HaCaT cells and a 1.4- to 1.6-fold increase in their resistance to the electrophiles acrolein, chlorambucil and cumene hydroperoxide (CuOOH), as well as the redox-cycling agent menadione. Inhibition of glutathione synthesis during KEAP1 knockdown, by treatment with buthionine sulfoximine, abrogated resistance to acrolein, chlorambucil and CuOOH, but not to menadione. In contrast, knockdown of BACH1 did not increase glutathione levels or resistance to xenobiotics. Knockdown of NRF2 in HaCaT cells decreased glutathione to approximately 80% of normal homeostatic levels and similarly reduced their tolerance of electrophiles. Thus, the KEAP1-NRF2 pathway determines resistance to electrophiles and redox-cycling compounds in human keratinocytes through glutathione-dependent and glutathione-independent mechanisms. This study also shows that AKR1B10, AKR1C1 and AKR1C2 proteins have potential utility as biomarkers for NRF2 activation in the human.

  20. Plant progesterone 5beta-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5betaR from Digitalis purpurea.

    PubMed

    Gavidia, Isabel; Tarrío, Rosa; Rodríguez-Trelles, Francisco; Pérez-Bermúdez, Pedro; Seitz, H Ulrich

    2007-03-01

    Plants of the genus Digitalis produce cardiac glycosides, i.e. digoxin, which are widely used for congestive heart failure. Progesterone 5beta-reductase (P5betaR) is a key enzyme in the biosynthesis of these natural products. Here, we have carried out the purification and partial amino acid sequencing of the native P5betaR from foxglove (Digitalis purpurea), and isolated a cDNA encoding this enzyme. Similarly to other steroid 5beta-reductases, the recombinant P5betaR catalyzes the stereospecific reduction of the Delta(4)-double bond of several steroids with a 3-oxo,Delta(4,5) structure. The gene encoding P5betaR is expressed in all plant organs, and maximally transcribed in leaves and mature flowers. P5betaR belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, bearing no structural homology to its mammalian counterpart, which is a member of the aldo-keto reductase (AKR) superfamily. A similar situation occurs with 3beta-hydroxy-Delta(5)-steroid dehydrogenase (3betaHSD), the gene immediately preceding P5betaR in the cardenolide pathway, which suggests that the entire route has evolved independently in animals and plants. P5betaR is retained only in plants, where it is ubiquitous, and a few distantly related bacterial lineages after its diversification from the last universal common ancestor. Evolutionary conserved changes in its putative active site suggest that plant P5betaR is a member of a novel subfamily of extended SDRs, or a new SDR family.

  1. Crustacean oxi-reductases protein sequences derived from a functional genomic project potentially involved in ecdysteroid hormones metabolism - a starting point for function examination.

    PubMed

    Tom, Moshe; Manfrin, Chiara; Giulianini, Piero G; Pallavicini, Alberto

    2013-12-01

    A transcriptomic assembly originated from hypodermis and Y organ of the crustacean Pontastacus leptodactylus is used here for in silico characterization of oxi-reductase enzymes potentially involved in the metabolism of ecdysteroid molting hormones. RNA samples were extracted from male Y organ and its neighboring hypodermis in all stages of the molt cycle. An equimolar RNA mix from all stages was sequenced using next generation sequencing technologies and de novo assembled, resulting with 74,877 unique contigs. These transcript sequences were annotated by examining their resemblance to all GenBank translated transcripts, determining their Gene Ontology terms and their characterizing domains. Based on the present knowledge of arthropod ecdysteroid metabolism and more generally on steroid metabolism in other taxa, transcripts potentially related to ecdysteroid metabolism were identified and their longest possible conceptual protein sequences were constructed in two stages, correct reading frame was deduced from BLASTX resemblances, followed by elongation of the protein sequence by identifying the correct translation frame of the original transcript. The analyzed genes belonged to several oxi-reductase superfamilies including the Rieske non heme iron oxygenases, cytochrome P450s, short-chained hydroxysteroid oxi-reductases, aldo/keto oxireductases, lamin B receptor/sterol reductases and glucose-methanol-cholin oxi-reductatses. A total of 68 proteins were characterized and the most probable participants in the ecdysteroid metabolism where indicated. The study provides transcript and protein structural information, a starting point for further functional studies, using a variety of gene-specific methods to demonstrate or disprove the roles of these proteins in relation to ecdysteroid metabolism in P. leptodactylus.

  2. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine.

  3. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects.

  4. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.

    PubMed

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K; Nidetzky, Bernd

    2006-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo-keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/K(m)) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 A (1 A=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8-9 kJ/mol.

  5. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans.

    PubMed

    Liu, C Tony; Hanoian, Philip; French, Jarrod B; Pringle, Thomas H; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2013-06-18

    With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.

  6. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  7. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  8. Self-organizing molecular field analysis on pregnane derivatives as human steroidal 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-06-01

    Normal growth and development of human prostate is regulated by the androgens which balances cell proliferation and apoptosis. Testosterone (T) and dihydrotestosterone (DHT) are the two key androgens that stimulate most of the androgen action in prostate. Testosterone is converted to DHT by the membrane bound NADPH-dependent 5alpha-reductase enzyme. As a consequence of the important observation that progesterone and deoxycortisone inhibits the synthesis of DHT by competing with 4-en-3-one function of the testosterone for the 5alpha-reductase enzyme a number of pregnane derivatives were synthesized and have been reported as inhibitors of human 5alpha-reductase enzyme. Due to lack of information on the crystal structure of human 5alpha-reductase, ligand-based 3D-QSAR study has been performed on pregnane derivatives using self-organizing molecular field analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(cv)(2) (0.881), non-cross-validated r(2) (0.893) and F-test value (175.527), showed satisfied predictive ability r(pred)(2) (0.777). Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of steroidal structure as novel human 5alpha-reductase inhibitors.

  9. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes.

    PubMed

    Li, Dan; Wu, Kun; Howie, A Forbes; Beckett, Geoffrey J; Wang, Wei; Bao, Yongping

    2008-09-01

    Dietary isothiocyanates and selenium (Se) can up-regulate thioredoxin reductase 1 (TR1) in cultured human HepG2 and MCF-7 cells [Zhang et al. (2003). Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis, 24, 497-503; Wang et al. (2005). Sulforaphane, erucin and iberin up-regulate thioredoxin reductase expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry, 53, 1417-1421] at both the protein and mRNA levels. In this study, broccoli sprout extract (a rich source of the isothiocyanates sulforaphane and iberin) and Se interacted synergistically to induce TR1 in immortalised human hepatocytes. Broccoli sprout extracts containing 1.6, 4 and 8μM isothiocyanates were tested for their ability to induce TR1 at the protein and mRNA level. Although induction of TR1 mRNA by broccoli sprout extract (1.6-8μM) was only 1.7-2.2-fold, co-treatment with Se (0.2-1μM) enhanced the expression of TR1 mRNA (3.0-3.3-fold). Moreover, broccoli sprout extract induced the cellular concentration of TR1 and TR enzymatic activity, an induction that was augmented by Se addition. Thus, broccoli sprout extract (8μM) and Se induced cellular TR1 concentration and enzymatic activity 3.7- and 5-fold respectively, whereas, Se or broccoli sprout extract alone produced an induction of only approximately 2-fold. These data suggest that dietary isothiocyanates from broccoli sprouts and Se are important agents in the regulation of redox status in human liver cells. The synergistic effect between isothiocyanates and Se at physiologically-relevant concentrations on the induction of TR1 may play an important role in protection against oxidative stress.

  10. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  11. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary.

    PubMed

    Bray, James E; Marsden, Brian D; Oppermann, Udo

    2009-03-16

    The short-chain dehydrogenase/reductase (SDR) superfamily represents one of the largest protein superfamilies known to date. Enzymes of this family usually catalyse NAD(P)(H) dependent reactions with a substrate spectrum ranging from polyols, retinoids, steroids and fatty acid derivatives to xenobiotics. We have currently identified 73 SDR superfamily members within the human genome. A status report of the human SDR superfamily is provided in terms of 3D structure determination, co-factor preferences, subcellular localisation and functional annotation. A simple scoring system for measuring structural and functional information (SFS score) has also been introduced to monitor the status of 5 key metrics. Currently there are 17 SDR members with an SFS score of zero indicating that almost a quarter of the human SDR superfamily lacks substantial functional annotation.

  12. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  13. Molecular cloning and characterization of a novel Dehydrogenase/reductase (SDR family) member 1 genea from human fetal brain.

    PubMed

    Wu, Q; Xu, M; Cheng, C; Zhou, Z; Huang, Y; Zhao, W; Zeng, L; Xu, J; Fu, X; Ying, K; Xie, Y; Mao, Y

    2001-01-01

    Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.

  14. Geranylgeraniol suppresses the viability of human DU145 prostate carcinoma cells and the level of HMG CoA reductase

    PubMed Central

    Fernandes, Nicolle V.; Yeganehjoo, Hoda; Katuru, Rajasekhar; DeBose-Boyd, Russell A.; Morris, Lindsey L.; Michon, Renee; Yu, Zhi-Ling; Mo, Huanbiao

    2014-01-01

    The rate-limiting enzyme of the mevalonate pathway, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, provides essential intermediates for the prenylation of nuclear lamins and Ras and dolichol-mediated glycosylation of growth factor receptors. The diterpene geranylgeraniol downregulates the level of HMG CoA reductase and suppresses the growth of human liver, lung, ovary, pancreas, colon, stomach, and blood tumors. We evaluated the growth-suppressive activity of geranylgeraniol in human prostate carcinoma cells. Geranylgeraniol induced dose-dependent suppression of the viability of human DU145 prostate carcinoma cells (IC50 = 80 ±18 μmol/L, n =5) following 72-h incubations in 96-well plates. Cell cycle was arrested at the G1 phase with a concomitant decrease in cyclin D1 protein. Geranylgeraniol-induced apoptosis was detected by flow cytometric analysis, fluorescence microscopy following acridine orange and ethidium bromide dual staining, and caspase-3 activation. Geranylgeraniol-induced viability suppression was accompanied by concentration-dependent decrease in the level of HMG CoA reductase protein. As a nonsterol molecule that downregulates HMG CoA reductase in the presence of sterols, geranylgeraniol may have potential in the chemoprevention and/or therapy of human prostate cancer. PMID:24006306

  15. Biochemical properties of human dehydrogenase/reductase (SDR family) member 7.

    PubMed

    Stambergova, Hana; Skarydova, Lucie; Dunford, James E; Wsol, Vladimir

    2014-01-25

    Dehydrogenase/reductase (SDR family) member 7 (DHRS7, retSDR4, SDR34C1) is a previously uncharacterized member of the short-chain dehydrogenase/reductase (SDR) superfamily. While human SDR members are known to play an important role in various (patho)biochemical pathways including intermediary metabolism and biotransformation of xenobiotics, only 20% of them are considered to be well characterized. Based on phylogenetic tree and SDR sequence clusters analysis DHRS7 is a close relative to well-known SDR member 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) that participates in metabolism of endogenous and xenobiotic substances with carbonyl group. The aim of present study is to determine the basic biochemical properties of DHRS7 and its possible involvement in metabolism of substrates with carbonyl group. For the first time the computational predictions of this membrane protein and membrane topology were experimentally confirmed. DHRS7 has been demonstrated to be an integral protein facing the lumen of the endoplasmic reticulum with lack of posttranscriptional glycosylation modification. Subsequently, NADP(H) cofactor preference and enzymatic reducing activity of DHRS7 was determined towards endogenous substrates with a steroid structure (cortisone, 4-androstene-3,17-dion) and also toward relevant exogenous substances bearing a carbonyl group harmful to human health (1,2-naphtoquinone, 9,10-phenantrenequinone). In addition to 11β-HSD1, DHRS7 is another enzyme from SDR superfamily that have been proved, at least in vitro, to contribute to the metabolism of xenobiotics with carbonyl group.

  16. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  17. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings.

    PubMed

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A phylogenetic tree is constructed from different plant and human DHFR domain using the Neighbour - Joining method in MEGA 5.05. Conservation score is performed by using PARALINE. Result suggests that folate binding domain of dihydrofolare reductase is conserved (score 8.06) and excepting some minor variations the basic structure of the domain in both plant species and human being is rather similar. Human DHFR domain contains PEKN sequence near active site, though proline is common for all the selected organisms but the other sequences are different in plants. The plant domain is always associated with TS (Thymidylate synthase). Plant based system is predicted to be an effective model for assessment of MTX (Methotrexate) and other antifolate drugs.

  18. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase.

    PubMed

    Lamb, Kristen M; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2013-10-15

    The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 μM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 μM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.

  19. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  20. Selenite protects human endothelial cells from oxidative damage and induces thioredoxin reductase.

    PubMed

    Miller, S; Walker, S W; Arthur, J R; Nicol, F; Pickard, K; Lewin, M H; Howie, A F; Beckett, G J

    2001-05-01

    The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 microM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant protection against the harmful effects of 100 microM t-BuOOH, with complete protection being achieved with 40 nM selenite. The preincubation period was required for selenite to exert this protective effect on endothelial cells. When compared with selenium-deficient cells, the activities of cytoplasmic glutathione peroxidase (GPX-1), phospholipid hydroperoxide glutathione peroxidase (GPX-4) and thioredoxin reductase (TR) were each induced approx. 3--4-fold by 40 nM selenite. HCAEC and HUVEC showed great similarity in their relative abilities to resist oxidative damage in the presence and absence of selenite, and the activities of TR and the GPXs were also similar in these cell types. BAEC were more susceptible to damage by 100 microM t-BuOOH than were human endothelial cells, and could not be protected completely by incubation with selenite at concentrations up to 160 nM. The activity of TR in human endothelial cells was approx. 25-fold greater than that in BAEC of a similar selenium status, but GPX-1 and GPX-4 activities were not significantly different between the human and bovine cells. These studies, although performed with a small number of cultures, show for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress. TR may be an important antioxidant selenoprotein in this regard, in addition to the GPXs. The data also suggest that HUVEC, but not BAEC, represent a suitable model system in which to study the effects of selenium on the endothelium of human coronary arteries.

  1. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    PubMed Central

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  2. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  3. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    SciTech Connect

    Liu, Zhen-Bo; Shen, Xun

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  4. 3D-QSAR studies on unsaturated 4-azasteroids as human 5alpha-reductase inhibitors: a self organizing molecular field analysis approach.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, T R; Kumar, Manoj

    2010-02-01

    Azasteroids have been reported as inhibitors of human 5alpha-reductase enzyme. These were designed by substitution of one carbon atom of steroidal A ring by heteroatom nitrogen. Due to lack of information on the crystal structure of human 5alpha-reductase, 3D-QSAR study has been performed on a series of unsaturated 4-azasteroids using Self Organizing Molecular Field Analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(2)(cv) (0.783), non cross-validated r(2) (0.806) and F-test value (87.282), showed satisfied predictive ability. Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of new steroidal human 5alpha-reductase inhibitors.

  5. SDR-O: an orphan short-chain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12.

    PubMed

    Chen, Weiguo; Song, Min-Sun; Napoli, Joseph L

    2002-07-10

    We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.

  6. Human biliverdin reductase promotes EMT through the ERK1/2 signal pathway in breast cancer.

    PubMed

    Zhang, Min; Song, Shasha; Yi, Zhi; Zhao, Xijuan; Fu, Li; Wang, Lin; Ma, Cui; Mao, Min; Xing, Yan; Zhu, Daling

    2016-10-05

    Epithelial-to-mesenchymal transition (EMT) plays an important role in the development of the invasive and metastatic potentials of breast cancer cells during progression. Human biliverdin reductase (hBVR), an enzyme in the heme metabolism pathway, is involved in hypoxia-induced renal tubular EMT. However, whether hBVR contributes to the EMT of breast cancer remains unclear. Here, we used breast cancer cell lines (MCF-7, T-47D) and normal breast epithelial cells (MCF-10A) to explore the potential role of hBVR in the EMT of breast cancer. Western blot, RT-PCR and immunofluorescence were employed to test the expression and location of hBVR in the cell lines. Small interfering RNA of hBVR (si-hBVR) was used to knockdown the expression of hBVR, and U0126 was applied to inhibit the ERK1/2 signaling in MCF-7, T-47D cells. We found that hBVR highly expressed in MCF-7 and T-47D cells compared with MCF-10A cells, and had different cellular locations between them. Our results revealed that EMT occurred in tissues from breast cancer patients and breast cancer cell lines. However, the EMT in MCF-7 and T-47D cells was suppressed by si-hBVR and U0126. Furthermore, the expression of phosphorylated ERK1/2 was down-regulated by si-hBVR. In addition, hBVR regulated EMT through the ERK1/2 signaling, but bilirubin, which is a product of hBVR in the heme metabolism pathway in breast cancer, did not. Taken together, these findings provide new evidence that hBVR plays an important role in promoting EMT in human breast cancer through the ERK1/2 signaling pathway, and hBVR may be a therapeutic target for this disease.

  7. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.

  8. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  9. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase.

    PubMed

    Nýdlová, Erika; Vrbová, Martina; Cesla, Petr; Jankovičová, Barbora; Ventura, Karel; Roušar, Tomáš

    2014-09-01

    Acetaminophen overdose is the most frequent cause of acute liver injury. The main mechanism of acetaminophen toxicity has been attributed to oxidation of acetaminophen. The oxidation product is very reactive and reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). Although this conjugate has been recognized to be generally nontoxic, we have found recently that APAP-SG could produce a toxic effect. Therefore, the aim of our study was to estimate the toxicity of purified APAP-SG by characterizing the inhibitory effect in human glutathione reductase (GR) and comparing that to the inhibitory effect of the natural inhibitor reduced glutathione. We used two types of human GR: recombinant and freshly purified from red blood cells. Our results show that GR was significantly inhibited in the presence of both APAP-SG and reduced glutathione. For example, the enzyme activity of recombinant and purified GR was reduced in the presence of 4 mm APAP-SG (with 0.5 mm glutathione disulfide) by 28% and 22%, respectively. The type of enzyme inhibition was observed to be competitive in the cases of both APAP-SG and glutathione. As glutathione inhibits GR activity in cells under physiological conditions, the rate of enzyme inhibition ought to be weaker in the case of glutathione depletion that is typical of acetaminophen overdose. Notably, however, enzyme activity likely remains inhibited due to the presence of APAP-SG, which might enhance the pro-oxidative status in the cell. We conclude that our finding could reflect some other pathological mechanism that may contribute to the toxicity of acetaminophen.

  10. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  11. Synthesis of 3-[(N-carboalkoxy)ethylamino]-indazole-dione derivatives and their biological activities on human liver carbonyl reductase.

    PubMed

    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A; Warner, Don L; Zalkow, Leon H; Burgess, Edward M; Enwerem, Nkechi M; Bakare, Oladapo

    2010-01-01

    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC(50) values ranging from 3-5 microM. Two of the inhibitors were studied in greater detail and were found to be noncompetitive inhibitors against both NADPH and menadione with K(I) values ranging between 2 and 11 microM. Computational studies suggest that conformation of the compounds may determine whether the indazole-diones bind productively to yield product or nonproductively to inhibit the enzyme.

  12. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed Central

    Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Talbot, D. C.; Harris, A. L.; Strafford, I. J.

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069. Images Figure 1 PMID:9374381

  13. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate.

  14. Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers.

    PubMed

    Ding, Jiefeng; Kuo, Mei-Ling; Su, Leila; Xue, Lijun; Luh, Frank; Zhang, Hang; Wang, Jianghai; Lin, Tiffany G; Zhang, Keqiang; Chu, Peiguo; Zheng, Shu; Liu, Xiyong; Yen, Yun

    2017-04-03

    Human mitochondrial pyrroline-5-carboxylate reductase (PYCR) is a house-keeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate to proline. This enzymatic cycle plays pivotal roles in amino acid metabolism, intracellular redox potential and mitochondrial integrity. Here, we hypothesize that PYCR1 might be a novel prognostic biomarker and therapeutic target for breast cancer. In this study, breast cancer tissue samples were obtained from Zhejiang University (ZJU set). Immunohistochemistry analysis was performed to detect the protein level of PYCR1, and Kaplan-Meier and Cox proportional analyses were employed in this outcome study. The prognostic significance and performance of PYCR1 mRNA were validated on 13 worldwide independent microarray data sets, composed of 2500 assessable breast cancer cases. Our findings revealed that both PYCR1 mRNA and protein expression were significantly associated with tumor size, grade and invasive molecular subtypes of breast cancers. Independent and pooled analyses verified that higher PYCR1 mRNA levels were significantly associated with poor survival of breast cancer patients, regardless of estrogen receptor (ER) status. For in vitro studies, inhibition of PYCR1 by small-hairpin RNA significantly reduced the growth and invasion capabilities of the cells, while enhancing the cytotoxicity of doxorubicin in breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative). Further population study also validated that chemotherapy significantly improved survival in early-stage breast cancer patients with low PYCR1 expression levels. Therefore, PYCR1 might serve as a prognostic biomaker for either ER-positive or ER-negative breast cancer subtypes and can also be a potential target for breast cancer therapy.

  15. The effect of methylenetetrahydrofolate reductase polymorphisms on susceptibility to human papilloma virus infection and cervical cancer.

    PubMed

    Hajiesmaeil, Mogge; Tafvizi, Farzaneh; Sarmadi, Soheila

    2016-12-01

    Cervical cancer is the third most common cancer among women worldwide. Several factors lead to cervical cancer, among which human papilloma virus (HPV) infection has a prominent role. Methylenetetrahydrofolate reductase (MTHFR) is crucial in folate metabolic pathway and plays an important role in DNA synthesis and DNA methylation. MTHFR gene polymorphisms, including C677T and A1298C, lead to reduced enzyme activity. This case-control study aims to illustrate the association between MTHFR gene polymorphisms and the risk of cervical cancer. This study was conducted on 196 samples, which included 96 cervical biopsy samples compared to 100 Pap smear samples of normal healthy women without HPV infection. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for the MTHFR polymorphism detection, followed by fluorescent amplification-based specific hybridization PCR method to detect HPV16 and HPV18. The results show that the MTHFR 677TT genotype plays a protective role in cervical cancer (P=0.0030) (OR=0.21, 95% confidence interval [CI]: 0.07-0.59). Furthermore, there was a strong significant association between MTHFR 1298CC genotype and the risk of cervical cancer (OR=10.69; 95% CI: 4.28-26.71, P=0.0001). It can be concluded that A1298C polymorphism is a genetic risk factor for cervical cancer in the assessed Iranian population group. It seems that MTHFR 1298CC genotype is more susceptible to HPV 16 infection. Combination analysis of MTHFR C677T and A1298C polymorphisms revealed that combined MTHFR 677CC and 1298CC are strongly associated with a risk of cervical cancer.

  16. Identification of androgen receptor protein and 5α-reductase mRNA in human ocular tissues

    PubMed Central

    Rocha, E.; Wickham, L; da Silveira, L. A; Krenzer, K.; Yu, F.; Toda, I.; Sullivan, B.; Sullivan, D.

    2000-01-01

    BACKGROUND/AIMS—Androgens have been reported to influence the structural organisation, functional activity, and/or pathological features of many ocular tissues. In addition, these hormones have been proposed as a topical therapy for such conditions as dry eye syndromes, corneal wound healing, and high intraocular pressure. To advance our understanding of androgen action in the eye, the purpose of the present study was twofold: firstly, to determine whether tissues of the anterior and posterior segments contain androgen receptor protein, which might make them susceptible to hormone effects following topical application; and, secondly, to examine whether these tissues contain the mRNA for types 1 and/or 2 5α-reductase, an enzyme that converts testosterone to the very potent metabolite, dihydrotestosterone.
METHODS—Human ocular tissues and cells were obtained and processed for histochemical and molecular biological procedures. Androgen receptor protein was identified by utilising specific immunoperoxidase techniques. The analysis of type 1 and type 2 5α-reductase mRNAs was performed by the use of RT-PCR, agarose gel electrophoresis, and DNA sequence analysis. All immunohistochemical evaluations and PCR amplifications included positive and negative controls.
RESULTS—These findings show that androgen receptor protein exists in the human lacrimal gland, meibomian gland, cornea, bulbar and forniceal conjunctivae, lens epithelial cells, and retinal pigment epithelial cells. In addition, our results demonstrate that the mRNAs for types 1 and 2 5α-reductase occur in the human lacrimal gland, meibomian gland, bulbar conjunctiva, cornea, and RPE cells.
CONCLUSION—These combined results indicate that multiple ocular tissues may be target sites for androgen action.

 PMID:10611104

  17. The Effects of Hexavalent Chromium on Thioredoxin Reductase and Peroxiredoxins in Human Bronchial Epithelial Cells

    PubMed Central

    Myers, Judith M.; Myers, Charles R.

    2009-01-01

    Inhalational exposure to hexavalent chromium [Cr(VI)] compounds (e.g. chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells where they are reduced to reactive Cr species which may also contribute to the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trxs keep many intracellular proteins reduced including the peroxiredoxins (Prx). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trxs. Prx oxidation is therefore likely the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR) maintain the Trxs largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 were reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trxs and Prxs. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trxs, Prxs, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance to oxidant insults. PMID:19703554

  18. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.

  19. Covalent Adducts Between Thioredoxin Reductase and Endogenous Electrophiles in Human Breast Cancer

    DTIC Science & Technology

    2005-09-01

    S, Lee S-R, Rhee SG. Identification of proteins containing cysteine residues that are sensitive to hydrogen peroxide at neutral pH. Anal. Biochem...of chemoprevention trials utilizing agents such as NSAIDs, selenium supplements, inducers of Phase 2 detoxification enzymes such as curcumin , and...metabolite, LTA4, the lipid peroxidation combination of a C-terminal thioredoxin product, 4-HNE, and a quinone metabolite of reductase mutant and small

  20. Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum▿

    PubMed Central

    Buchholz, Kathrin; Schirmer, R. Heiner; Eubel, Jana K.; Akoachere, Monique B.; Dandekar, Thomas; Becker, Katja; Gromer, Stephan

    2008-01-01

    Methylene blue (MB) has experienced a renaissance mainly as a component of drug combinations against Plasmodium falciparum malaria. Here, we report biochemically relevant pharmacological data on MB such as rate constants for the uncatalyzed reaction of MB at pH 7.4 with cellular reductants like NAD(P)H (k = 4 M−1 s−1), thioredoxins (k = 8.5 to 26 M−1 s−1), dihydrolipoamide (k = 53 M−1 s−1), and slowly reacting glutathione. As the disulfide reductases are prominent targets of MB, optical tests for enzymes reducing MB at the expense of NAD(P)H under aerobic conditions were developed. The product leucomethylene blue (leucoMB) is auto-oxidized back to MB at pH 7 but can be stabilized by enzymes at pH 5.0, which makes this colorless compound an interesting drug candidate. MB was found to be an inhibitor and/or a redox-cycling substrate of mammalian and P. falciparum disulfide reductases, with the kcat values ranging from 0.03 s−1 to 10 s−1 at 25°C. Kinetic spectroscopy of mutagenized glutathione reductase indicates that MB reduction is conducted by enzyme-bound reduced flavin rather than by the active-site dithiol Cys58/Cys63. The enzyme-catalyzed reduction of MB and subsequent auto-oxidation of the product leucoMB mean that MB is a redox-cycling agent which produces H2O2 at the expense of O2 and of NAD(P)H in each cycle, turning the antioxidant disulfide reductases into pro-oxidant enzymes. This explains the terms subversive substrate or turncoat inhibitor for MB. The results are discussed in cell-pathological and clinical contexts. PMID:17967916

  1. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  2. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders

    PubMed Central

    Auchus, Richard J.

    2011-01-01

    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590

  3. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles.

  4. Avemar, a nontoxic fermented wheat germ extract, induces apoptosis and inhibits ribonucleotide reductase in human HL-60 promyelocytic leukemia cells.

    PubMed

    Saiko, Philipp; Ozsvar-Kozma, Maria; Madlener, Sibylle; Bernhaus, Astrid; Lackner, Andreas; Grusch, Michael; Horvath, Zsuzsanna; Krupitza, Georg; Jaeger, Walter; Ammer, Kirsten; Fritzer-Szekeres, Monika; Szekeres, Thomas

    2007-06-08

    Avemar (MSC) is a nontoxic fermented wheat germ extract demonstrated to significantly improve the survival rate in patients suffering from various malignancies. We investigated its effects in human HL-60 promyelocytic leukemia cells. After 24, 48, and 72 h of incubation, Avemar inhibited the growth of HL-60 cells with IC50 values of 400, 190, and 160 microg/ml, respectively. Incubation with MSC caused dose-dependent induction of apoptosis in up to 85% of tumor cells. In addition, Avemar attenuated the progression from G2-M to G0-G1 phase of the cell cycle and was also found to significantly reduce the in situ activity of ribonucleotide reductase, the key enzyme of de novo DNA synthesis. We conclude that Avemar exerts a number of beneficial effects which could support conventional chemotherapy of human malignancies.

  5. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    PubMed

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  6. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    PubMed Central

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. PMID:26170618

  7. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  8. Effects of Cigarette Smoke on the Human Oral Mucosal Transcriptome

    PubMed Central

    Boyle, Jay O.; Gümüş, Zeynep H.; Kacker, Ashutosh; Choksi, Vishal L.; Bocker, Jennifer M.; Zhou, Xi Kathy; Yantiss, Rhonda K.; Hughes, Duncan B.; Du, Baoheng; Judson, Benjamin L.; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2009-01-01

    Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU 133 Plus2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers vs. never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared to the bronchial mucosa. The observed changes in gene expression were compared to known chemical signatures using the Connectivity Map database, and suggested that geldanamycin, an Hsp90 inhibitor, might be an anti-mimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials and illustrate the potential of computational biology to identify chemopreventive agents. PMID:20179299

  9. Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans.

    PubMed

    Jakubowski, Hieronim; Boers, Godfried H J; Strauss, Kevin A

    2008-12-01

    Severely elevated plasma homocysteine (Hcy) levels observed in genetic disorders of Hcy metabolism are associated with pathologies in multiple organs and lead to premature death due to vascular complications. In addition to elevating plasma Hcy, mutations in cystathionine beta-synthase (CBS) or methylenetetrahydrofolate reductase (MTHFR) gene lead to markedly elevated levels of circulating Hcy-thiolactone. The thiooester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues (N-Hcy-protein), which may impair or alter the protein's function. However, it was not known whether genetic deficiencies in Hcy metabolism affect N-Hcy-protein levels in humans. Here we show that plasma N-Hcy-protein levels are significantly elevated in CBS- and MTHFR-deficient patients. We also show that CBS-deficient patients have significantly elevated plasma levels of prothrombotic N-Hcy-fibrinogen. These results provide a possible explanation for increased atherothrombosis observed in CBS-deficient patients.

  10. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells.

    PubMed

    Antosiewicz, Anna; Jarmuła, Adam; Przybylska, Dorota; Mosieniak, Grażyna; Szczepanowska, Joanna; Kowalkowska, Anna; Rode, Wojciech; Cieśla, Joanna

    2016-08-05

    Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.

  11. Comparative Study on Sequence-Structure-Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family.

    PubMed

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor.

  12. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  13. New evidence of similarity between human and plant steroid metabolism: 5alpha-reductase activity in Solanum malacoxylon.

    PubMed

    Rosati, Fabiana; Danza, Giovanna; Guarna, Antonio; Cini, Nicoletta; Racchi, Milvia Luisa; Serio, Mario

    2003-01-01

    The physiological role of steroid hormones in humans is well known, and the metabolic pathway and mechanisms of action are almost completely elucidated. The role of plant steroid hormones, brassinosteroids, is less known, but an increasing amount of data on brassinosteroid biosynthesis is showing unexpected similarities between human and plant steroid metabolic pathways. Here we focus our attention on the enzyme 5alpha-reductase (5alphaR) for which a plant ortholog of the mammalian system, DET2, was recently described in Arabidopsis thaliana. We demonstrate that campestenone, the natural substrate of DET2, is reduced to 5alpha-campestanone by both human 5alphaR isozymes but with different affinities. Solanum malacoxylon, which is a calcinogenic plant very active in the biosynthesis of vitamin D-like molecules and sterols, was used to study 5alphaR activity. Leaves and calli were chosen as examples of differentiated and undifferentiated tissues, respectively. Two separate 5alphaR activities were found in calli and leaves of Solanum using campestenone as substrate. The use of progesterone allowed the detection of both activities in calli. Support for the existence of two 5alphaR isozymes in S. malacoxylon was provided by the differential actions of inhibitors of the human 5alphaR in calli and leaves. The evidence for the presence of two isozymes in different plant tissues extends the analogies between plant and mammalian steroid metabolic pathways.

  14. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) - an in silico approach.

    PubMed

    Ebert, Bettina; Kisiela, Michael; Maser, Edmund

    2016-05-01

    Numerous physiological functions of the body are controlled by endogenous (e.g. steroids, retinoids, lipid mediators) or exogenous molecules (e.g. drugs, xenobiotics) that bind to transcription factors (TF). The biosynthesis and catabolism of these signaling molecules depend, apart from CYPs, on enzymes belonging to the short-chain dehydrogenase/reductase (SDR) superfamily. Moreover, the contribution of SDRs to the metabolism of therapeutic drugs and xenobiotics is increasingly recognized. However, only scarce information exists regarding the transcriptional regulation of most SDR proteins. This work aims to illustrate the role of nuclear receptors (NR) and TF related to oxidative stress, inflammation, hypoxia, and xenobiotics in the regulation of selected human and murine SDRs that play crucial roles in steroid, retinoid, eicosanoid, fatty acid, and xenobiotic metabolism. These include, for example, 17β-hydroxysteroid dehydrogenases, retinol dehydrogenases, and carbonyl reductases. Because existing experimental data are limited, an in silico analysis (TRANSFAC(®) Professional database) of the 5'-upstream sequences for putative response elements was performed. Experimental and in silico data suggest that pharmaceutical, environmental, or dietary NR ligands may alter SDR-mediated retinoid, steroid, and xenobiotic metabolism, likely affecting basic cellular events like energy expenditure, cell proliferation/differentiation, or aging processes. Also, some SDRs are possibly induced by their own substrates. Further experimental work is urgently needed to fully understand the NR-mediated transcriptional regulation of SDRs. This is essential for deducing their possible involvement in drug side effects and will help to identify new substrates and further physiological functions of these SDRs.

  15. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    EPA Science Inventory

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  16. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    EPA Science Inventory

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  17. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  18. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy.

    PubMed

    Barnett, Scott D; Buxton, Iain L O

    2017-04-10

    S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (•NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of •NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.

  19. Antitumor Indolequinones Induced Apoptosis in Human Pancreatic Cancer Cells via Inhibition of Thioredoxin Reductase and Activation of Redox Signaling

    PubMed Central

    Yan, Chao; Siegel, David; Newsome, Jeffery; Chilloux, Aurelie; Moody, Christopher J.

    2012-01-01

    Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC50 values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells. PMID:22147753

  20. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  1. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors.

    PubMed

    Takeda, Michio; Noshiro, Rie; Onozato, Maristela Lika; Tojo, Akihiro; Hasannejad, Habib; Huang, Xiu-Lin; Narikawa, Shinichi; Endou, Hitoshi

    2004-01-12

    The purpose of this study was to elucidate the role of human organic anion transporters (human OATs) in the induction of drug-induced skeletal muscle abnormalities. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have been clinically used for lowering plasma cholesterol levels, and are known to induce various forms of skeletal muscle abnormalities including myopathy and rhabdomyolysis. Immunohistochemical analysis revealed that human OAT1 and human OAT3 are localized in the cytoplasmic membrane of the human skeletal muscles. The activities of human OATs were measured using mouse cell lines from renal proximal tubules stably expressing human OATs. Human OAT3, but not human OAT1, mediates the transport of pravastatin. Fluvastatin inhibited organic anion uptake mediated by human OAT1 in a mixture of competitive and noncompetitive manner, whereas simvastatin and fluvastatin noncompetitively inhibited the organic anion uptake mediated by human OAT3. In conclusion, the organic anion transporters OAT1 and OAT3 are localized in the cytoplasmic membrane of human skeletal muscles. Pravastatin, simvasatin, and fluvasatin inhibit human OATs activity. These results suggest that muscle organic anion transporters play a role in the muscular side effects of HMG-CoA reductase inhibitors.

  2. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  3. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution.

  4. Immunohistochemical localization of the antioxidant enzymes biliverdin reductase and heme oxygenase-2 in human and pig gastric fundus.

    PubMed

    Colpaert, Erwin E; Timmermans, Jean Pierre; Lefebvre, Romain A

    2002-04-01

    The intrinsic antioxidant capacities of the bile pigments biliverdin and bilirubin are increasingly recognized since both heme degradation products can exert beneficial cytoprotective effects due to their scavenging of oxygen free radicals and interaction with antioxidant vitamins. Several studies have been published on the localization of the carbon monoxide producing enzyme heme oxygenase-2 (HO-2), which concomitantly generates biliverdin; histochemical data on the distribution of biliverdin reductase (BVR), converting biliverdin to bilirubin, are still very scarce in large mammals including humans. The present study revealed by means of immunohistochemistry the presence of BVR and HO-2 in mucosal epithelial cells and in the endothelium of intramural vessels of both human and porcine gastric fundus. In addition, co-labeling with the specific neural marker protein-gene product 9.5 (PGP 9.5) demonstrated that both BVR and HO-2 were present in all intrinsic nerve cell bodies of both submucous and myenteric plexuses, while double labeling with c-Kit antibody confirmed their presence in intramuscular interstitial cells of Cajal (ICC). Our results substantiate the hypothesis that BVR, through the production of the potent antioxidant bilirubin, might be an essential component of normal physiologic gastrointestinal defense in man and pig.

  5. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  6. Electrostatic Fields Near the Active Site of Human Aldose Reductase: 2. New Inhibitors and Complications due to Hydrogen Bonds†

    PubMed Central

    Xu, Lin; Cohen, Aina E.; Boxer, Steven G.

    2011-01-01

    Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the x-ray structure of its complex, along with cofactor NADP+, with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in close proximity to T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen bonded and non-hydrogen bonded population by comparison with the mutant T113A, where a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peaked distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed. PMID:21859105

  7. Effect of glutathione reductase knockdown in response to UVB-induced oxidative stress in human lung adenocarcinoma

    PubMed Central

    2014-01-01

    Background Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported. Methods In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation. Results We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression. Conclusions In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model. PMID:24405781

  8. Role of thioredoxin reductase 1 in dysplastic transformation of human breast epithelial cells triggered by chronic oxidative stress

    PubMed Central

    Dong, Chaoran; Zhang, Lei; Sun, Ruoxuan; Liu, Jianying; Yin, Hanwei; Li, Xiaoxiao; Zheng, Xiaoqing; Zeng, Huihui

    2016-01-01

    Thioredoxin reductase 1 (TrxR1) is a pivotal intracellular redox sensor and antioxidant enzyme. On the other hand, overexpression of TrxR1 is closely correlated with the initiation of various tumors including breast cancer, though the detailed mechanism remains unclear. Here we investigated the role of TrxR1 in dysplastic transformation of human breast epithelial cell line MCF-10A induced by chronic oxidative stress. Not surprisingly, sustained exposure to H2O2 significantly augmented the expression and activity of TrxR1 in MCF-10A cells. The dysplastically transformed MCF-10A (MCF-10AT) cells undergoing 8-week H2O2 treatment exhibited a certain degree of malignancy in tumorigenicity evaluation. Moreover, TrxR1 inhibitor ethaselen (BBSKE) could partially reverse some malignant phenotypes including epithelial to mesenchymal transition (EMT) of MCF-10AT as well as MCF-7 cells. Collectively, our results supported the considerable involvement of TrxR1 in the onset of breast cancer and BBSKE may be a promising agent against breast cancer. PMID:27845427

  9. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  10. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  11. Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells

    PubMed Central

    Park, Hye Rim; Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Jin, Young-Ho; Park, Yong Seek

    2015-01-01

    Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δ signaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δ genes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death. PMID:26236385

  12. Thioredoxin and thioredoxin reductase influence estrogen receptor α-mediated gene expression in human breast cancer cells

    PubMed Central

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2010-01-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor α (ERα). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERα, Trx, and TrxR interact and ERα and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17β-estradiol, Trx, and TrxR alter hydrogen peroxide (H2O2) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H2O2 levels and transcription factor activity, aid ERα in regulating the expression of estrogen-responsive genes in target cells. PMID:19620238

  13. Thioredoxin and thioredoxin reductase influence estrogen receptor alpha-mediated gene expression in human breast cancer cells.

    PubMed

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2009-12-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERalpha, Trx, and TrxR interact and ERalpha and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17beta-estradiol, Trx, and TrxR alter hydrogen peroxide (H(2)O(2)) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H(2)O(2) levels and transcription factor activity, aid ERalpha in regulating the expression of estrogen-responsive genes in target cells.

  14. Prevention of VEGF-induced growth and tube formation in human retinal endothelial cell by aldose reductase inhibition

    PubMed Central

    Yadav, Umesh CS; Srivastava, SK; Ramana, KV

    2012-01-01

    Objective Since diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF–induced human retinal endothelial cell (HREC) growth and tube formation. Materials and Methods HREC were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer. Results Stimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation. Conclusions Our results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD. PMID:22658411

  15. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  16. Human carotid atherosclerotic lesion protein components decrease cholesterol biosynthesis rate in macrophages through 3-hydroxy-3-methylglutaryl-CoA reductase regulation.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Rosenblat, Mira; Vaya, Jacob

    2015-01-01

    Atherosclerosis is characterized by the formation of cholesterol-loaded macrophages, which are turned into foam cells, the hallmark of early atherogenesis. As part of ongoing research on the interactions among human carotid lesion components and blood elements, the effect of plaque homogenate on macrophage cholesterol biosynthesis rate was examined. Human carotid plaques were ground, extracted with phosphate-buffered saline (homogenate), and then added to the macrophage medium. This extract decreased macrophage cholesterol biosynthesis rate up to 50% in a dose-dependent manner. Cholesterol or lipoproteins were separated from the homogenate and added to the MQ medium. Unlike the homogenate, neither free cholesterol nor the lipoproteins were able to inhibit cholesterol biosynthesis rate under the above experimental concentration, suggesting that the homogenate-induced cholesterol biosynthesis inhibition in our experimental system was not owing to the feedback inhibition of cholesterol. Furthermore, the homogenate remaining after lipoprotein removal (lipoprotein-deficient homogenate) also decreased cholesterol biosynthesis rate, whereas boiled homogenate or phospholipids extracted from the homogenate decreased macrophage cholesterol biosynthesis rate only partially. Finally, cholesterol biosynthesis inhibition was achieved only upon using the precursor [(3)H]acetate, but not [(14)C]mevalonate, suggesting that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoA Reductase), the rate-limiting enzyme in the cholesterol biosynthesis pathway, is involved in the above antiatherogenic effect of the homogenate, whereas the treatment with homogenate decreased HMGCoA Reductase mRNA. Proteins and phospholipids from human carotid lesion homogenate decrease cholesterol biosynthesis rate in macrophages secondary to HMGCoA Reductase feedback regulation. Such an effect may delay foam cell formation and atherosclerosis progression.

  17. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution.

    PubMed Central

    Zhao, Q.; Modi, S.; Smith, G.; Paine, M.; McDonagh, P. D.; Wolf, C. R.; Tew, D.; Lian, L. Y.; Roberts, G. C.; Driessen, H. P.

    1999-01-01

    The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c. PMID:10048323

  18. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2.

    PubMed

    Manta, Bruno; Hugo, Martín; Ortiz, Cecilia; Ferrer-Sueta, Gerardo; Trujillo, Madia; Denicola, Ana

    2009-04-15

    Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent K(M) of 2.4 microM for human thioredoxin and a very low K(M) for H2O2 (0.7 microM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k(2) = 1.0 x 10(8) and 1.4 x 10(7) M(-1) s(-1) at 25 degrees C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant K(d) < 10(-23) M(4) which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.

  19. Discovery of 2-methyl-1-{1-[(5-methyl-1H-indol-2-yl)carbonyl]piperidin-4-yl}propan-2-ol: a novel, potent and selective type 5 17β-hydroxysteroid dehydrogenase inhibitor.

    PubMed

    Watanabe, Kazushi; Kakefuda, Akio; Yasuda, Minoru; Enjo, Kentaro; Kikuchi, Aya; Furutani, Takashi; Naritomi, Yoichi; Otsuka, Yukio; Okada, Minoru; Ohta, Mitsuaki

    2013-09-01

    Type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5), also known as aldo-keto reductase 1C3 (AKR1C3), is a member of the aldo-keto reductase superfamily of enzymes and is expressed in the human prostate. One of the main functions of 17β-HSD5 is to catalyze the conversion of the weak androgen, androstenedione, to the potent androgen, testosterone. The concentration of intraprostatic 5α-dihydrotestosterone (DHT) in patients following chemical or surgical castration has been reported to remain as high as 39% of that of healthy men, with 17β-HSD5 shown to be involved in this androgen synthesis. Inhibition of 17β-HSD5 therefore represents a promising target for the treatment of castration-resistant prostate cancer (CRPC). To investigate this, we conducted high-throughput screening (HTS) and identified compound 2, which displayed a structure distinct from known 17β-HSD5 inhibitors. To optimize the inhibitory activity of compound 2, we first introduced a primary alcohol group. We then converted the primary alcohol group to a tertiary alcohol, which further enhanced the inhibitory activity, improved metabolic stability, and led to the identification of compound 17. Oral administration of compound 17 to castrated nude mice bearing the CWR22R xenograft resulted in the suppression of androstenedione (AD)-induced intratumoral testosterone production. Compound 17 also demonstrated good isoform selectivity, minimal inhibitory activity against either CYP or hERG, and enhanced pharmacokinetic and physicochemical properties.

  20. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  1. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Geraki, Kalotina; Grossmann, J Günter; Gutierrez, Aldo

    2007-07-17

    A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are

  2. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  3. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes.

    PubMed

    Kallberg, Yvonne; Oppermann, Udo; Jörnvall, Hans; Persson, Bengt

    2002-03-01

    The progress in genome characterizations has opened new routes for studying enzyme families. The availability of the human genome enabled us to delineate the large family of short-chain dehydrogenase/reductase (SDR) members. Although the human genome releases are not yet final, we have already found 63 members. We have also compared these SDR forms with those of three model organisms: Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. We detect eight SDR ortholog clusters in a cross-genome comparison. Four of these clusters represent extended SDR forms, a subgroup found in all life forms. The other four are classical SDRs with activities involved in cellular differentiation and signalling. We also find 18 SDR genes that are present only in the human genome of the four genomes studied, reflecting enzyme forms specific to mammals. Close to half of these gene products represent steroid dehydrogenases, emphasizing the regulatory importance of these enzymes.

  4. AKR1B10 — EDRN Public Portal

    Cancer.gov

    The AKR1B10 protein is a member of the aldo/keto reductase superfamily. This superfamily has more than 40 known enzymes and proteins. AKR1B10 acts as an all-trans-retinaldehyde reductase. It can efficiently reduce aliphatic and aromatic aldehydes, and is less active on hexoses (in vitro). It is highly expressed in adrenal gland, small intestine, and colon, and may play an important role in liver carcinogenesis.

  5. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Paine, Mark J; Ladbury, John E; Gutierrez, Aldo

    2006-02-07

    The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez

  6. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  7. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  8. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  9. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans.

    PubMed

    Blech, Stefan; Ludwig-Schwellinger, Eva; Gräfe-Mody, Eva Ulrike; Withopf, Barbara; Wagner, Klaus

    2010-04-01

    The pharmacokinetics and metabolism of linagliptin (BI1356, 8-(3R-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione) were investigated in healthy volunteers. The 10- and 5-mg (14)C-labeled drug was administered orally or intravenously, respectively. Fecal excretion was the dominant excretion pathway with 84.7% (p.o.) and 58.2% (i.v.) of the dose. Renal excretion accounted for 5.4% (p.o.) and 30.8% (i.v.) of the dose. Unchanged linagliptin was the most abundant radioactive species in all matrices investigated. The exposure (area under the curve 0-24 h) to the parent compound in plasma accounted for 191 nM . h (p.o.) and 356 nM . h (i.v.), respectively. The main metabolite 7-but-2-ynyl-8-(3S-hydroxy-piperidin-1-yl)-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (CD1790) was observed with >10% of parent compound systemic exposure after oral administration. The metabolite was identified as S-3-hydroxypiperidinly derivative of linagliptin. Experiments that included stable-labeled isotope techniques indicated that CD1790 was formed by a two-step mechanism via the ketone 7-but-2-yn-1-yl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(3-oxopiperidin-1-yl)-3,7-dihydro-1H-purine-2,6-dione (CD10604). The initial ketone formation was CYP3A4-dependent and rate-limiting for the overall reaction to CD1790. Aldo-keto reductases with minor contribution of carbonyl reductases were involved in the subsequent stereoselective reduction of CD10604 to CD1790. The antipodes of linagliptin and CD1790 were not observed with adequate enantioselective liquid chromatography-tandem mass spectrometry methods. Other minor metabolites were identified by mass spectrometry and NMR investigations. However, it was concluded that the metabolites of linagliptin only play a minor role in the overall disposition and elimination of linagliptin.

  10. Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties.

    PubMed

    Lundová, Tereza; Štambergová, Hana; Zemanová, Lucie; Svobodová, Markéta; Havránková, Jana; Šafr, Miroslav; Wsól, Vladimír

    2016-01-01

    Dehydrogenase/reductase (SDR family) member 8 (DHRS8, SDR16C2) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, one of the largest enzyme groups. In addition to the well-known members which participate in the metabolism of important eobiotics and xenobiotics, this superfamily contains many poorly characterized proteins. DHRS8 is a member of the Multisubstrate NADP(H)-dependent SDR16C family, which generally contains insufficiently described enzymes. Despite the limited knowledge about DHRS8, preliminary indicators have emerged regarding its significant function in the modulation of steroidal activity, at least in the case of 3α-adiol, lipid metabolism and detoxification. The aim of this study was to describe additional biochemical properties of DHRS8 and to unify knowledge about this enzyme. The DHRS8 was prepared in recombinant form and its membrane topology in the endoplasmic reticulum as an integral protein with cytosolic orientation was demonstrated. The enzyme participates in the NAD(+)-dependent oxidation of steroid hormones as β-estradiol and testosterone in vitro; apparent K m and V max values were 39.86 µM and 0.80 nmol × mg(-1) × min(-1) for β-estradiol and 1207.29 µM and 3.45 nmol × mg(-1) × min(-1) for testosterone. Moreover, synthetic steroids (methyltestosterone and nandrolone) used as anabolics as well as all-trans-retinol were for the first time identified as substrates of DHRS8. This knowledge of its in vitro activity together with a newly described expression pattern at the protein level in tissues involved in steroidogenesis (adrenal gland and testis) and detoxification (liver, lung, kidney and small intestine) could suggest a potential role of DHRS8 in vivo.

  11. Synthesis of 17beta-N-substituted 19-Nor-10-azasteroids as inhibitors of human 5alpha-reductases I and II.

    PubMed

    Scarpi, Dina; Occhiato, Ernesto G; Danza, Giovanna; Serio, Mario; Guarna, Antonio

    2002-11-01

    The synthesis of 17beta-[N-(phenyl)methyl/phenyl-amido] substituted 10-azasteroids has been accomplished by either the TiCl4- or TMSOTf-catalysed reaction of carbamates 11 and 12 with Danishefsky's diene. The reaction provided 5alpha-H isomers 3a-5a and 5beta-H isomers 3b-5b depending on the reaction conditions. Both epimers of each compound were tested against human 5alpha-reductase types I and II. Unexpectedly, 5beta-H compounds were found more active than their 5alpha-H counterparts, the best inhibitors being 3b (IC50=279 and 2000 nM toward isoenzyme I and II, respectively) and 5b (IC50=913 and 247 nM toward isoenzymes I and II, respectively).

  12. Regulation of the Lactobacillus Strains on HMGCoA Reductase Gene Transcription in Human HepG2 Cells via Nuclear Factor-κB.

    PubMed

    Chen, Kun; Li, Shaocong; Chen, Fang; Li, Jun; Luo, Xuegang

    2016-02-01

    Lactic acid bacteria have been identified to be effective in reducing cholesterol levels. Most of the mechanistic studies were focused on the bile salt deconjugation ability of bile salt hydrolase in lactic acid bacteria. However, the mechanism by which Lactobacillus decreases cholesterol levels has not been thoroughly studied in intact primate cells. 3-Hydroxy-3- methyl-glutaryl-coenzyme A reductase (HMGCR) is the vital enzyme in cholesterol synthesis. To confirm the effect of probiotic Lactobacillus strains on HMGCR level, in the present study, human hepatoma HepG2 cells were treated with Lactobacillus strains, and then the HMGCR level was illustrated by luciferase reporter assay and RT-PCR. The results showed that the level of HMGCR was suppressed after being treated with the live Lactobacillus strains. These works might set a foundation for the following study of the antihyperlipidemic effects of L. acidophilus, and contribute to the development of functional foods or drugs that benefit patients suffering from hyperlipidemia diseases.

  13. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor

    PubMed Central

    Gibbs, Peter E. M.; Lerner-Marmarosh, Nicole; Poulin, Amelia; Farah, Elie; Maines, Mahin D.

    2014-01-01

    Insulin binding changes conformation of the insulin receptor kinase (IRK) domain and initiates glucose uptake through the insulin, IGF-1, phosphatidyl inositol 3-kinase (PI3K), and MAPK pathways; human biliverdin reductase (hBVR) is an IRK substrate and pathway effector. This is the first report on hBVR peptide-mediated IRK activation and conformational change. 290KYCCSRK, which increased IRK Vmax without changing Km, stimulated glucose uptake and potentiated insulin and IGF-1 stimulation in 4 cell lines. KYCCSRK in native hBVR was necessary for the hBVR and IRK cross-activation. Peptide treatment also activated PI3K downstream effectors, Akt and ERK, phosphorylation, and Elk transcriptional activity. In cells transfected with CMV-regulated EGFP-VP-peptide plasmid, C292→A mutant did not stimulate glucose uptake; K296→A decreased uptake and kinase activity. KEDQYMKMTV, corresponding to hBVR's SH2-binding domain, was a potent inhibitor of glucose uptake and IRK. The mechanism of action of peptides was examined using cells expressing IRK (aa 988–1263) activated by coexpressed KYCCSRK. Three active cys-mutants of IRK, with fluorophore coupled to cysteines, C1056, C1138, or C1234, were examined for changes in fluorescence emission spectra in the presence of peptides. KYCCSRK and KEDQYMKMTV bound to different sites in IRK. The findings identify novel agents for activating or inhibiting insulin signaling and offer a new approach for treatment of type 2 diabetes and hypoglycemia.—Gibbs, P. E. M., Lerner-Marmarosh, N., Poulin, A., Farah, E., Maines, M. D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. PMID:24568842

  14. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12

    SciTech Connect

    Pahl, P.; Berger, R.; Hart, I. |

    1995-04-10

    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases. 33 refs., 2 figs., 1 tab.

  15. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  16. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function.

  17. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases*

    PubMed Central

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-01-01

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. PMID:26364851

  18. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    PubMed

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  19. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.

    PubMed

    Watanabe, Takao; Kusuhara, Hiroyuki; Maeda, Kazuya; Kanamaru, Hiroshi; Saito, Yoshikazu; Hu, Zhuohan; Sugiyama, Yuichi

    2010-02-01

    Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.

  20. Fundamentals and Bioengineering of Enzymatic Fuel Cells. Part 1. Bioengineering of Enzymes as Electrocatalysts

    DTIC Science & Technology

    2012-01-31

    PAGE. The purified polypeptide was lyophilized after dialysis against water for 3 days. Construction of pQE9HSslac and expression and purification of...after 3 days of dialysis against DI water. Hydrogel preparation. Neat hydrogels of OsHSH-1 and OsHSH-2 were prepared by one of two methods: 1...identities). Structures were analyzed using MolProbity27 and verified against other members of the aldo- keto reductase superfamily. The conserved

  1. In search for function of two human orphan SDR enzymes: hydroxysteroid dehydrogenase like 2 (HSDL2) and short-chain dehydrogenase/reductase-orphan (SDR-O).

    PubMed

    Kowalik, Dorota; Haller, Ferdinand; Adamski, Jerzy; Moeller, Gabriele

    2009-11-01

    The protein superfamily of short-chain dehydrogenases/reductases (SDRs) today comprises over 20,000 members found in pro- and eukaryotes. Despite low amino acid sequence identity (only 15-30%), they share several similar characteristics in conformational structures, the N-terminal cofactor (NAD(P)/NAD(P)H) binding region being the most conserved. The enzymes catalyze oxido-reductive reactions and have a broad spectrum of substrates. Not all recently identified SDRs have been analyzed in detail yet, and we therefore characterized two rudimentarily annotated human SDR candidates: an orphan SDR (SDR-O) and hydroxysteroid dehydrogenase like 2 (HSDL2). We analyzed the amino acid sequence for cofactor preference, performed subcellular localization studies, and a screening for substrates of the enzymes, including steroid hormones and retinoids. None of both tested proteins showed a significant conversion of steroid hormones. However, the peroxisomal localization of human HSDL2 may suggest an involvement in fatty acid metabolism. For SDR-O a weak conversion of retinal into retinol was detectable in the presence of the cofactor NADH.

  2. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells

    PubMed Central

    Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-01-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  3. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  4. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds.

  5. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  6. 2.6 Å X-ray Crystal Structure of Human p53R2, a p53 Inducible Ribonucleotide Reductase

    PubMed Central

    Smith, Peter; Zhou, Bingsen; Ho, Nam; Yuan, Yate-Ching; Su, Leila; Tsai, Shiou-Chuan; Yen, Yun

    2009-01-01

    Human p53R2 (hp53R2) is a 351 residue p53-inducible ribonucleotide reductase (RNR) small subunit. It shares >80% sequence identity with hRRM2, the small RNR subunit responsible for normal maintenance of the deoxyribonucleotide (dNTP) pool used for DNA replication, which is active during the S-phase in a cell-cycle dependent fashion. But rather than cyclic dNTP synthesis, hp53R2 has been shown to supply dNTPs for DNA repair to cells in G0-G1 in a p53-dependent fashion. The first x-ray crystal structure of hp53R2 is solved to 2.6 Å, in which monomers A and B exhibit mono- and bi-nuclear iron occupancy, respectively. The pronounced structural differences at three regions between hp53R2 and hRRM2 highlight the possible regulatory role in iron assimilation, and help explain previously observed physical and biochemical differences in the mobility and accessibility of the radical-iron center, as well as radical transfer pathways between the two enzymes. The sequence-structure-function correlations that differentiate hp53R2 and hRRM2 are revealed for the first time. Insight gained from this structural work will be used toward the identification of biological function, regulation mechanism and inhibitors selection in RNR small subunits. PMID:19728742

  7. Effect of chronic alcohol use on hepatic testosterone 5-alpha-A-ring reductase in the baboon and in the human being.

    PubMed

    Gordon, G G; Vittek, J; Ho, R; Rosenthal, W S; Southren, A L; Lieber, C S

    1979-07-01

    Hepatic testosterone 5-alpha-A-ring reductase (HTAR) activity was measured in open liver biopsies in eight alcohol-fed baboons and eight pair-fed controls. The animals were studied after at least 1 yr of alcohol feeding. In the alcholol-fed animals, a significant fall in enzyme activity was noted. This occurred whether the enzyme levels were related to soluble protein, to DNA, or to wet tissue weight, showing that the change was due to a decrease in the specific activity of the enzyme. In addition, aspiration liver biopsy specimens were obtained from 14 men and women with alcoholic liver disease. Again, there was a significant decrease in HTAH activity in these patients compared with a normal population. No relationship was found between hepatic histology and HTAR levels in either the baboon or human population with alcoholic liver disease, suggesting that the changes in enzyme activity were related to an alcohol effect rather than to liver disease per se. This study demonstrates that chronic alcohol use decreases the function of the enzyme which controls an important rate-limiting step in the metabolism of testosterone in the liver and that this effect may be due primarily to alcohol.

  8. CREB1 directly activates the transcription of ribonucleotide reductase small subunit M2 and promotes the aggressiveness of human colorectal cancer

    PubMed Central

    Fang, Zejun; Lin, Aifen; Chen, Jiaoe; Zhang, Xiaomin; Liu, Hong; Li, Hongzhang; Hu, Yanyan; Zhang, Xia; Zhang, Jiangang; Qiu, Lanlan; Mei, Lingming; Shao, Jimin; Chen, Xiang

    2016-01-01

    As the small subunit of Ribonucleotide reductase (RR), RRM2 displays a very important role in various critical cellular processes such as cell proliferation, DNA repair, and senescence, etc. Importantly, RRM2 functions like a tumor driver in most types of cancer but little is known about the regulatory mechanism of RRM2 in cancer development. In this study, we found that the cAMP responsive element binding protein 1 (CREB1) acted as a transcription factor of RRM2 gene in human colorectal cancer (CRC). CREB1 directly bound to the promoter of RRM2 gene and induced its transcriptional activation. Knockdown of CREB1 decreased the expression of RRM2 at both mRNA and protein levels. Moreover, knockdown of RRM2 attenuated CREB1-induced aggressive phenotypes of CRC cells in vitro and in vivo. Analysis of the data from TCGA database and clinical CRC specimens with immunohistochemical staining also demonstrated a strong correlation between the co-expression of CREB1 and RRM2. Decreased disease survivals were observed in CRC patients with high expression levels of CREB1 or RRM2. Our results indicate CREB1 as a critical transcription factor of RRM2 which promotes tumor aggressiveness, and imply a significant correlation between CREB1 and RRM2 in CRC specimens. These may provide the possibility that CREB1 and RRM2 could be used as biomarkers or targets for CRC diagnosis and treatment. PMID:27801665

  9. Synthesis and activity of 8-substituted benzo[c]quinolizin-3-ones as dual inhibitors of human 5alpha-reductases 1 and 2.

    PubMed

    Ferrali, Alessandro; Menchi, Gloria; Occhiato, Ernesto G; Danza, Giovanna; Mancina, Rosa; Serio, Mario; Guarna, Antonio

    2005-01-03

    Some potent dual inhibitors of 5alpha-reductases 1 and 2, based on the benzo[c]quinolizin-3-one structure and with IC(50) values ranging between 93 and 166nM for both isozymes, were found. The presence of the F atom on the ester moiety at the position 8 was crucial. This result can help in the design of other potent, dual inhibitors to be developed as drugs in the treatment of 5alpha-reductase related diseases.

  10. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression.

    PubMed

    Habib, Fouad K; Ross, Margaret; Ho, Clement K H; Lyons, Valerie; Chapman, Karen

    2005-03-20

    The phytotherapeutic agent Serenoa repens is an effective dual inhibitor of 5alpha-reductase isoenzyme activity in the prostate. Unlike other 5alpha-reductase inhibitors, Serenoa repens induces its effects without interfering with the cellular capacity to secrete PSA. Here, we focussed on the possible pathways that might differentiate the action of Permixon from that of synthetic 5alpha-reductase inhibitors. We demonstrate that Serenoa repens, unlike other 5alpha-reductase inhibitors, does not inhibit binding between activated AR and the steroid receptor-binding consensus in the promoter region of the PSA gene. This was shown by a combination of techniques: assessment of the effect of Permixon on androgen action in the LNCaP prostate cancer cell line revealed no suppression of AR and maintenance of PSA protein expression at control levels. This was consistent with reporter gene experiments showing that Permixon failed to interfere with AR-mediated transcriptional activation of PSA and that both testosterone and DHT were equally effective at maintaining this activity. Our results demonstrate that despite Serenoa repens effective inhibition of 5alpha-reductase activity in the prostate, it did not suppress PSA secretion. Therefore, we confirm the therapeutic advantage of Serenoa repens over other 5alpha-reductase inhibitors as treatment with the phytotherapeutic agent will permit the continuous use of PSA measurements as a useful biomarker for prostate cancer screening and for evaluating tumour progression.

  11. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  12. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations.

  13. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  14. Induction of carbonyl reductase 1 (CBR1) expression in human lung tissues and lung cancer cells by the cigarette smoke constituent benzo[a]pyrene.

    PubMed

    Kalabus, James L; Cheng, Qiuying; Jamil, Raqeeb G; Schuetz, Erin G; Blanco, Javier G

    2012-06-20

    Carbonyl reductase 1 (CBR1) reduces various xenobiotic carbonyl substrates to corresponding alcohol metabolites. Here we demonstrated that benzo[a]pyrene (B[a]P), a potent pro-carcinogen and predominant polycyclic aromatic hydrocarbon (PAH) compound in cigarette smoke and air pollutants, upregulates CBR1 gene expression in vitro and in vivo, and that a proximal xenobiotic response element (XRE) motif (₋₁₂₂XRE) mediates the induction effect of B[a]P. First, we observed 46% and 50% increases in CBR1 mRNA and CBR1 protein levels, respectively, in human lung tissue samples from smokers compared to never-smokers. Second, we detected 3.0-fold (p<0.0001) induction of CBR1 mRNA and 1.5-fold (p<0.01) induction of CBR1 protein levels in cells of the human lung cancer cell line A549 incubated with 2.5 μM B[a]P for 24h. Third, results from experiments with CBR1 promoter constructs indicated that a proximal XRE motif ₋₁₂₂XRE) mediates induction of reporter activity in response to B[a]P. Furthermore, we detected enhanced nuclear translocation of aryl hydrocarbon receptor (AhR) following B[a]P exposure in A549 cells. Finally, we demonstrated increased binding of specific protein complexes to ₋₁₂₂XRE in nuclear extracts from B[a]P-treated cells and the presence of the AhR/Arnt complex in the specific nuclear protein ₋₁₂₂XRE complexes.

  15. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  16. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.

    PubMed

    Meinerz, Daiane F; Branco, Vasco; Aschner, Michael; Carvalho, Cristina; Rocha, João Batista T

    2017-04-06

    Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe)2 ] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH-SY5Y). Our results established that (PhSe)2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe)2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm). Among the selenocompounds only (PhSe)2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe)2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe)2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening.

    PubMed

    Zhang, Qing Y; Wan, Jian; Xu, Xin; Yang, Guang F; Ren, Yan L; Liu, Jun J; Wang, Hui; Guo, Yu

    2007-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.

  18. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  19. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  20. Identification of Lactobacillus brevis using a species-specific AFLP-derived marker.

    PubMed

    Fusco, Vincenzina; Quero, Grazia Marina; Chieffi, Daniele; Franz, Charles M A P

    2016-09-02

    A simple and specific method for the rapid detection and identification of Lactobacillus brevis was developed. A fAFLP (Fluorescent Amplified Fragment Length Polymorphisms) marker for L. brevis was used to design oligonucleotide primers for a species-specific PCR assay, targeting a 125bp fragment of the gene encoding the aldo/keto reductase of the diketogulonate-reductase family of L. brevis. This assay resulted in 100% inclusivity and exclusivity of assignment of strains to the species L. brevis. The analytical specificity of this assay was successfully tested to identify L. brevis isolates from sourdoughs.

  1. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  2. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  3. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  4. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  5. NF-E2-related factor 2 regulates the stress response to UVA-1-oxidized phospholipids in skin cells.

    PubMed

    Gruber, Florian; Mayer, Herbert; Lengauer, Barbara; Mlitz, Veronika; Sanders, John M; Kadl, Alexandra; Bilban, Martin; de Martin, Rainer; Wagner, Oswald; Kensler, Thomas W; Yamamoto, Masayuki; Leitinger, Norbert; Tschachler, Erwin

    2010-01-01

    Long-wavelength ultraviolet (UVA-1) radiation causes oxidative stress that modifies cellular molecules. To defend themselves against noxious oxidation products, skin cells produce detoxifying enzymes and antioxidants. We have recently shown that UVA-1 oxidized the abundant membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), which then induced the stress-response protein heme oxygenase 1 (HO-1) in dermal fibroblasts. Here we examined the effects of UVA-1- and UV-oxidized phospholipids on global gene expression in human dermal fibroblasts and keratinocytes. We identified a cluster of genes that were coinduced by UVA-1-oxidized PAPC and UVA-1 radiation. The cluster included HO-1, glutamate-cysteine ligase modifier subunit, aldo-keto reductases-1-C1 and -C2, and IL-8. These genes are members of the cellular stress response system termed "antioxidant response." Accordingly, the regulatory regions of all of these genes contain binding sites for NF-E2-related factor 2 (NRF2), a major regulator of the antioxidant response. Both UVA-1 irradiation and treatment with oxidized lipids led to increased nuclear accumulation and DNA binding of NRF2. Silencing and deficiency of NRF2 suppressed the antioxidant response. Taken together, our data show that UVA-1-mediated lipid oxidation induces expression of antioxidant response genes, which is dependent on the redox-regulated transcription factor NRF2. Our findings suggest a different view on UV-generated lipid mediators that were commonly regarded as detrimental

  6. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery

    PubMed Central

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M.; Buonaguro, Luigi

    2016-01-01

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely “HCC-associated” and “HCC-specific”. Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy. PMID:27387388

  7. Endogenous alpha-oxoaldehydes and formation of protein and nucleotide advanced glycation endproducts in tissue damage.

    PubMed

    Thornalley, Paul J

    2007-01-01

    Human and other biological tissues face a continual threat of damage by alpha-oxoaldehydes formed endogenously. Glyoxal, methylglyoxal and 3-deoxyglucosone are formed by the degradation of glycolytic intermediates, glycated proteins and lipid peroxidation. They are potent glycating agents of protein and nucleotides leading to the formation of advanced glycation endproducts (AGEs). With proteins, they are arginine residue-directed glycating agents forming mainly hydroimidazolones, found at 0.1-1% of total arginine residues in tissues (2-20% of proteins modified). With nucleotides, imidazopurinone- and N2-carboxyalkyl- derivatives of deoxyguanosine are formed, found at 0.1-0.8 per 10(6) nucleotides in DNA. Glycation occurs in all tissues and body fluids. Cellular proteolysis of AGE-modified proteins and DNA releases glycated amino acids and nucleosides. Glycated amino acids and nucleosides are released into plasma, undergo glomerular filtration and are excreted in urine. The damage to tissue protein and nucleotides by alpha-oxoaldehydes is suppressed by the metabolism of alpha-oxoaldehyde glycating agents by the glutathione-dependent enzyme, glyoxalase I, and aldo-keto reductases. These enzymatic activities are part of the enzymatic defence against glycation. Tissue damage by alpha-oxoaldehyde glycation is implicated in diabetic and non-diabetic vascular disease, renal failure, cirrhosis, Alzheimer's disease, arthritis and ageing.

  8. A tricistronic human adrenodoxin reductase-adrenodoxin–cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli

    PubMed Central

    Salamanca-Pinzón, S. Giovanna; Guengerich, F. Peter

    2011-01-01

    Cytochrome P450 (P450) 27A1 catalyzes 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3, serving as an important component for the maintenance of lipid homeostasis. In eukaryotic cells P450 27A1 is a membrane-bound protein located on the inner mitochondrial membrane and requires two auxiliary reduction partners, adrenodoxin (Adx) and NADPH-adrenodoxin reductase (Adr), for catalysis in the bile acid biosynthesis pathway. A strategy was developed for the functional coexpression of P450 27A1 with Adr and Adx in a tricistronic fashion (single RNA, three proteins) in Escherichia coli, mimicking the mitochondrial P450 system. Intact bacterial cells coexpressing the P450 vector (pTC27A1) efficiently hydroxylated cholesterol at the 27 position as well as vitamin D3 at the 25 position when supplemented with glycerol as a carbon source. Thus, E. coli containing pTC27A1 is able to hydroxylate cholesterol in a self-sufficient fashion and is suitable for further applications of protein interaction, drug discovery, and inhibitor evaluation and for the study of other mitochondrial P450s and oxysterol production in microorganisms without a need for membrane reconstitution, membrane simulation by detergents, or purification of the components. PMID:21621619

  9. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  10. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  11. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  12. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  13. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  14. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  15. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  16. The model homologue of the partially defective human 5,10-methylenetetrahydrofolate reductase, considered as a risk factor for stroke due to increased homocysteine level, can be protected and reactivated by heat shock proteins.

    PubMed

    Grabowski, Michał; Banecki, Bogdan; Kadziński, Leszek; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Banecka-Majkutewicz, Zyta

    2016-10-01

    The A222 V substitution in the human MTHFR gene product (5,10-methylenetetrahydrofolate reductase) is responsible for a decreased activity of this enzyme. This may cause an increased homocysteine level, considered as a risk factor for arteriosclerosis and stroke. The bacterial homologue of the human enzyme, MetF, has been found to be a useful model in genetic and biochemical studies. The similarity of Escherichia coli MetF and human MTHFR proteins is so high that particular mutations in the corresponding human gene can be reflected by the bacterial mutants. For example, the A222 V substitution in MTHFR (caused by the C667T substitution in the MTHFR gene) can be ascribed to the A117 V substitution in MetF. Here, it is reported that a temperature-sensitive MetF117 (A117 V) protein can be partially protected from a thermal inactivation by the heat shock proteins from the Hsp70/100 systems. Moreover, activity of the thermally denatured enzyme can be partially restored by the same heat shock proteins. High temperature protein G (HtpG) had no effect on MetF117 activity in both experimental systems. The presented results indicate that functions of heat shock proteins may be required for maintenance of the MetF117 function. This may have implications for the mechanisms of arteriosclerosis and stroke, especially in the light of previous findings that the A222 V MTHFR polymorphism may be a risk factor for stroke, as well as recently published results which demonstrated the increased levels of antibodies against heat shock proteins in stroke patients.

  17. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  18. Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ubiquinone levels in rat skeletal muscle and heart: relationship to cytotoxicity and inhibitory activity for cholesterol synthesis in human skeletal muscle cells.

    PubMed

    Yamazaki, Hiroyuki; Suzuki, Mahomi; Aoki, Taro; Morikawa, Shigeru; Maejima, Takashi; Sato, Fumiyasu; Sawanobori, Kimio; Kitahara, Masaki; Kodama, Tatsuhiko; Saito, Yasushi

    2006-12-01

    Although statins are prescribed as relatively safe and effective drugs for hypercholesterolemic patients, it has been reported that a significant side effect, myopathy, occurs infrequently during medication. Moreover, because statins decrease cardiac ubiquinone levels, the risk of cardiac dysfunction has been suggested. This study sought to evaluate and compare the cytotoxicity of statins (cerivastatin, pitavastatin, fluvastatin, simvastatin, atorvastatin and pravastatin) in cultured human skeletal muscle cells (HSkMCs) and the effects on ubiquinone levels in statin-treated rat skeletal muscle and heart. Cerivastatin, the most potent inhibitor of HMG-CoA reductase, showed the strongest cytotoxicity (over 10-fold) among the statins examined, while the effects of the others were in a similar range. In rat experiments, neither pitavastatin nor cerivastatin decreased ubiquinone levels in skeletal muscle, but both dose-dependently lowered ubiquinone levels in the heart. As the rates of reduction by pitavastatin (9.6% at 30 mg/kg) and cerivastatin (9.7% at 0.3 mg/kg) were almost equal, it was estimated that cerivastatin reduced ubiquinone levels in the rat heart approximately 100-fold more strongly than pitavastatin, based on the effective doses. We found that cerivastatin showed the most potent cytotoxicity in HSkMCs and strongly lowered ubiquinone levels in the rat heart.

  19. Synthesis, biological activity, and three-dimensional quantitative structure-activity relationship model for a series of benzo[c]quinolizin-3-ones, nonsteroidal inhibitors of human steroid 5alpha-reductase 1.

    PubMed

    Occhiato, Ernesto G; Ferrali, Alessandro; Menchi, Gloria; Guarna, Antonio; Danza, Giovanna; Comerci, Alessandra; Mancina, Rosa; Serio, Mario; Garotta, Gianni; Cavalli, Andrea; De Vivo, Marco; Recanatini, Maurizio

    2004-07-01

    New 5alpha-reductase 1 (5alphaR-1) inhibitors were designed to complete a consistent set of analogues suitable for a 3D QSAR study. These compounds were synthesized by a modification of the aza-Robinson annulation, further functionalized by Pd-catalyzed cross-coupling processes, and were tested with human 5alphaR-1 expressed in Chinese hamster ovary 1827 cells. It turned out that the potency of the resulting inhibitors was strongly dependent on the type of substitution at the 8 position, with the IC(50) values ranging from 8.1 to 1050 nM. The construction of this homogeneous set of molecules allowed a 3D QSAR study. In particular, comparative molecular field analysis (CoMFA) was used to correlate the potency of the inhibitors with their physicochemical features. Highly accurate evaluations of the atomic point charges were carried out by means of quantum chemical calculations at the DFT/B3LYP level of theory followed by the RESP fitting procedure. It turned out that increasing the reliability of electrostatic parameters greatly affected the statistical results of the QSAR analysis. The 3D QSAR model proposed could be very useful in the further development of 5alphaR-1 inhibitors, which are suitable candidates to be evaluated as drugs in the treatment of 5alphaR-1 related diseases such as acne and alopecia in men and hirsutism in women.

  20. Comparison of the expression of human equilibrative nucleotide transporter 1 (hENT1) and ribonucleotide reductase subunit M1 (RRM1) genes in seven non-Hodgkin lymphoma cell lines.

    PubMed

    Zhao, H B; Zhang, X F; Shi, F; Zhang, M Z; Xue, W L

    2016-05-06

    We investigated the variability in the expression of human equilibrative nucleoside transporter 1 (hENT1) and ribonucleotide reductase subunit M1 (RRM1) in non-Hodgkin lymphoma cell lines. hENT1 and RRM1 mRNA expression levels in natural killer (NK) cells and seven non-Hodgkin lymphoma cell lines (YTS, SNK-6, Jeko-1, ly-1, Raji, Karpas, and Jurket) were studied using reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) and the results were compared using the Student t-test. mRNA expression of hENT1 was detectable in YTS, SNK-6, Jeko-1, ly-1, Raji, Karpas, Jurket, and NK cells, which revealed variability in gene expression. There were significant differences in the mRNA expression values of hENT1 (P = 0.021) and RRM1 (P = 0.002) compared to those in NK cells. mRNA expression of both hENT1 and RRM1 was closely associated with non-Hodgkin lymphoma cell proliferation. Differential expression analysis of hENT1 and RRM1 in non-Hodgkin lymphoma cell lines may provide novel drug leads for precision medicine.

  1. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  2. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  3. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  4. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution.

    PubMed Central

    Quandt, K S; Hultquist, D E

    1994-01-01

    Flavin reductase catalyzes electron transfer from reduced pyridine nucleotides to methylene blue or riboflavin, and this catalysis is the basis of the therapeutic use of methylene blue or riboflavin in the treatment of methemoglobinemia. A cDNA for a mammalian flavin reductase has been isolated and sequenced. Degenerate oligonucleotides, with sequences based on amino acid sequences of peptides derived from bovine erythrocyte flavin reductase, were used as primers in PCR to selectively amplify a partial cDNA that encodes the bovine reductase. The template used in the PCR was first strand cDNA synthesized from bovine liver total RNA using oligo(dT) primers. A PCR product was used as a specific probe to screen a bovine liver cDNA library. The sequence determined from two overlapping clones contains an open reading frame of 621 nucleotides and encodes 206 amino acids. The amino acid sequence deduced from the bovine liver flavin reductase cDNA matches the amino acid sequences determined for erythrocyte reductase-derived peptides, and the predicted molecular mass of 22,001 Da for the liver reductase agrees well with the molecular mass of 21,994 Da determined for the erythrocyte reductase by electrospray mass spectrometry. The amino acid sequence at the N terminus of the reductase has homology to sequences of pyridine nucleotide-dependent enzymes, and the predicted secondary structure, beta alpha beta, resembles the common nucleotide-binding structural motif. RNA blot analysis indicates a single 1-kilobase reductase transcript in human heart, kidney, liver, lung, pancreas, placenta, and skeletal muscle. Images PMID:7937764

  5. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  6. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  7. Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts.

    PubMed

    Viola, Giampietro; Grobelny, Pawel; Linardi, Maria Antonella; Salvador, Alessia; Dall'Acqua, Stefano; Sobotta, Łukasz; Mielcarek, Jadwiga; Dall'Acqua, Francesco; Vedaldi, Daniela; Basso, Giuseppe

    2012-03-01

    This study reports the results of an investigation of the phototoxicity mechanism induced by pitavastatin and its photoproducts, namely 6-cyclopropyl-10-fluoro-7,8-dihydrobenzo[k]phenanthridine (PP3) and 6-cyclopropyl-10-fluorobenzo[k]phenanthridine (PP4). The phototoxicity was tested in human keratinocytes cell lines NCTC-2544, and the results proved that under the same conditions, all three compounds exhibited phototoxic effects in the model tested. The reduction in cell viability was found to be both concentration- and UVA dose-dependent. A point of note is that both the photoproducts produced a dramatic decrease in cell viability with GI(50) values one order of magnitude lower compared to the parent compound. In particular, the fully aromatic derivative (PP4) showed the highest antiproliferative activity. Flow cytometric analysis indicated that pitavastatin and the photoproduct PP4 principally induced necrosis, as revealed by the large appearance of propidium iodide-positive cells and also confirmed by the rapid drop in cellular ATP levels. Further studies committed to better understanding of photoinduced cell death mechanism(s) revealed that neither pitavastatin nor PP4 induced mitochondrial depolarization or lysosomal damage, but, interestingly, extensive cell lipid membrane peroxidation along with a significant oxidation of model proteins occurred, suggesting that pitavastatin and PP4 exert their phototoxic effect mainly in the cellular membranes. The present results suggest that the phototoxicity of pitavastatin may be mediated by the formation of benzophenanthridine-like photoproducts that appear to have high potential as photosensitizers.

  8. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  9. A rapid, reproducible, on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver.

    PubMed

    Cao, Jin; Gonzalez-Covarrubias, Vanessa; Covarrubias, Vanessa M; Straubinger, Robert M; Wang, Hao; Duan, Xiaotao; Yu, Haoying; Qu, Jun; Blanco, Javier G

    2010-04-01

    Liquid chromatography (LC)/mass spectrometry (MS) in selected-reactions-monitoring (SRM) mode provides a powerful tool for targeted protein quantification. However, efficient, high-throughput strategies for proper selection of signature peptides (SP) for protein quantification and accurate optimization of their SRM conditions remain elusive. Here we describe an on-the-fly, orthogonal array optimization (OAO) approach that enables rapid, comprehensive, and reproducible SRM optimization of a large number of candidate peptides in a single nanoflow-LC/MS run. With the optimized conditions, many peptide candidates can be evaluated in biological matrixes for selection of the final SP. The OAO strategy employs a systematic experimental design that strategically varies product ions, declustering energy, and collision energy in a cycle of 25 consecutive SRM trials, which accurately reveals the effects of these factors on the signal-to-noise ratio of a candidate peptide and optimizes each. As proof of concept, we developed a highly sensitive, accurate, and reproducible method for the quantification of carbonyl reductases CBR1 and CBR3 in human liver. Candidate peptides were identified by nano-LC/LTQ/Orbitrap, filtered using a stringent set of criteria, and subjected to OAO. After evaluating both sensitivity and stability of the candidates, two SP were selected for quantification of each protein. As a result of the accurate OAO of assay conditions, sensitivities of 80 and 110 amol were achieved for CBR1 and CBR3, respectively. The method was validated and used to quantify the CBRs in 33 human liver samples. The mean level of CBR1 was 93.4 +/- 49.7 (range: 26.2-241) ppm of total protein, and of CBR3 was 7.69 +/- 4.38 (range: 1.26-17.9) ppm. Key observations of this study: (i) evaluation of peptide stability in the target matrix is essential for final selection of the SP; (ii) utilization of two unique SP contributes to high reliability of target protein quantification; (iii

  10. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.

    PubMed

    Penning, Trevor M

    2016-07-01

    Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily.

  11. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  12. Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity.

    PubMed

    Anders, M W

    2017-02-05

    Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.

  13. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  14. Purification, characterization and NNK carbonyl reductase activities of 11beta-hydroxysteroid dehydrogenase type 1 from human liver: enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen.

    PubMed

    Maser, Edmund; Friebertshäuser, Jutta; Völker, Bernhard

    2003-02-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) physiologically catalyzes the interconversion of receptor-active 11-hydroxy glucocorticoids (cortisol) to their receptor-inactive 11-oxo metabolites (cortisone), thereby acting as important pre-receptor control device in regulating access of glucocorticoid hormones to the glucocorticoid receptor. Evidence is emerging that 11beta-HSD 1 fulfills an additional role in the detoxification of non-steroidal carbonyl compounds, by catalyzing their reduction to the corresponding hydroxy derivatives that are easier to conjugate and eliminate. Whereas a number of methods were ineffective in purifying 11beta-HSD 1 from human liver, this membrane-bound enzyme was successfully obtained in an active state by a purification procedure that took advantage of a gentle solubilization method as well as providing a favourable detergent surrounding during the various chromatographic steps. We could demonstrate that 11beta-HSD 1 is active as a dimeric enzyme which exhibits cooperativity with cortisone and dehydrocorticosterone (11-oxoreducing activity) as substrates. Accordingly, this enzyme dynamically adapts to low (nanomolar) as well as to high (micromolar) substrate concentrations, thereby providing the fine tuning required as a consequence of great variations in circadian plasma glucocorticoid levels. Due to this kinetic peculiarity, 11beta-HSD 1 is also able to even metabolize nanomolar concentrations of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), a fact which is important in view of the relatively low levels of this carcinogen observed in smokers. Finally, 11beta-HSD 1 is potently (in nM concentrations) inhibited by glycyrrhetinic acid, the main constituent of licorice. Licorice, however, in addition to being a confectionary, serves as a major cigarette additive, which is used in cigarette manufacturing as a taste and flavour intensifier. Hence, licorice exposure may affect NNK

  15. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  16. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  17. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae.

    PubMed

    Jirschitzka, Jan; Schmidt, Gregor W; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John Charles

    2012-06-26

    The pharmacologically important tropane alkaloids have a scattered distribution among angiosperm families, like many other groups of secondary metabolites. To determine whether tropane alkaloids have evolved repeatedly in different lineages or arise from an ancestral pathway that has been lost in most lines, we investigated the tropinone-reduction step of their biosynthesis. In species of the Solanaceae, which produce compounds such as atropine and scopolamine, this reaction is known to be catalyzed by enzymes of the short-chain dehydrogenase/reductase family. However, in Erythroxylum coca (Erythroxylaceae), which accumulates cocaine and other tropane alkaloids, no proteins of the short-chain dehydrogenase/reductase family were found that could catalyze this reaction. Instead, purification of E. coca tropinone-reduction activity and cloning of the corresponding gene revealed that a protein of the aldo-keto reductase family carries out this reaction in E. coca. This protein, designated methylecgonone reductase, converts methylecgonone to methylecgonine, the penultimate step in cocaine biosynthesis. The protein has highest sequence similarity to other aldo-keto reductases, such as chalcone reductase, an enzyme of flavonoid biosynthesis, and codeinone reductase, an enzyme of morphine alkaloid biosynthesis. Methylecgonone reductase reduces methylecgonone (2-carbomethoxy-3-tropinone) stereospecifically to 2-carbomethoxy-3β-tropine (methylecgonine), and has its highest activity, protein level, and gene transcript level in young, expanding leaves of E. coca. This enzyme is not found at all in root tissues, which are the site of tropane alkaloid biosynthesis in the Solanaceae. This evidence supports the theory that the ability to produce tropane alkaloids has arisen more than once during the evolution of the angiosperms.

  18. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    PubMed

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  19. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  20. Early diagnosis and management of 5 alpha-reductase deficiency.

    PubMed Central

    Odame, I; Donaldson, M D; Wallace, A M; Cochran, W; Smith, P J

    1992-01-01

    Two siblings of Pakistani origin, karyotype 46 XY, were born with predominantly female external genitalia with minute phallus, bifid scrotum, urogenital sinus, and palpable gonads. The older sibling at the age of 8 days showed an adequate testosterone response to human chorionic gonadotrophin (hCG) stimulation. The diagnosis of 5 alpha-reductase deficiency was made at age 6 years when no 5 alpha-reduced glucocorticoid metabolites were detectable in urine even after tetracosactrin (Synacthen) stimulation. In the younger sibling the diagnosis of 5 alpha-reductase deficiency was provisionally made at the early age of 3 days on the basis of high urinary tetrahydrocortisol (THF)/allotetrahydrocortisol (5 alpha-THF) ratio and this ratio increased with age confirming the diagnosis. Plasma testosterone: dihydrotestosterone (DHT) ratio before and after hCG stimulation was within normal limits at age 3 days but was raised at age 9 months. Topical DHT cream application to the external genitalia promoted significant phallic growth in both siblings and in the older sibling corrective surgery was facilitated. In prepubertal male pseudohermaphrodites with normal or raised testosterone concentrations, phallic growth in response to DHT cream treatment could be an indirect confirmation of 5 alpha-reductase deficiency. Images Figure 1 PMID:1626992

  1. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  2. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  3. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  4. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2012-04-01

    Methylglyoxal (MG) is a potent protein glycating agent. Glycation is directed to guanidino groups of arginine residues forming mainly hydroimidazolone N (δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) residues. MG-H1 formation is damaging to the proteome as modification is often directed to functionally important arginine residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis tandem mass spectrometry and also by immunoblotting with specific monoclonal antibodies. MG-glycated proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation endproduct in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and ageing. Glyoxalase 1 and aldo-keto reductase 1B1 metabolise >99% MG to innocuous products and thereby protect the proteome, providing an enzymatic defence against MG-mediated glycation. Proteins susceptible to MG modification with related functional impairment are called the "dicarbonyl proteome" (DCP). DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and other proteins. DCP component proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative stress, dyslipidemia, cell detachment and anoikis and apoptosis. Biochemical and physiological susceptibility of a protein to modification by MG and sensitivity of biochemical pathways and physiological systems to related functional impairment under challenge of physiologically relevant increases in MG exposure are key concepts. Improved understanding of the DCP will likely have profound importance for human health, longevity and treatment of disease.

  5. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  6. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries

    PubMed Central

    2013-01-01

    Background Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions. Results Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions. Conclusion Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important

  7. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death

    PubMed Central

    Zhou, Dianrong; Lou, Xiaomin; Xu, Yang; Liu, Siqi; Zhao, Xiaohang

    2016-01-01

    The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC. PMID:26934124

  8. Analysis of the anticancer activity of curcuminoids, thiotryptophan and 4-phenoxyphenol derivatives.

    PubMed

    Parsai, Shireen; Keck, Rick; Skrzypczak-Jankun, Ewa; Jankun, Jerzy

    2014-01-01

    Curcumin, a non-nutritive yellow pigment derived from the rhizome of Curcuma longa (turmeric), is considered to be an established nutraceutical with anticancer activity. Turmeric contains three principal components, curcumin, demethoxycurcumin and bisdemethoxycurcumin, of which curcumin is most abundant and potent. The concurrence of a high consumption of turmeric and a low incidence of prostate cancer in Asian countries may suggest a role for curcumin in chemoprevention. Curcumin has been identified to exhibit anti-inflammatory, anti-oxidative and anticarcinogenic properties. Since the compound does not exhibit side effects, curcumin has been designated for several clinical trials as a treatment for human cancers. The pro-apototic, antioxidant and anti-inflammatory characteristics of curcumin are implicated in its anticancer activity, yet the mechanism of action of curcumin remains unknown. To achieve an effective pharmacological outcome, curcumin must reach and sustain appropriate levels at the site of action. However, the main disadvantage of curcumin is its high metabolic instability and poor aqueous solubility that limits its systemic bioavailability. To overcome this difficulty, the present study tested the anticancer activity of new curcumin-like compounds (E21cH and Q012095H). Also, the use of new medicaments requires an understanding of their pharmacokinetic profiles and targets. Thus, molecular modeling methods were used to identify the targets of curcumin and curcumin-like compounds compared with other anticancer drugs (Q012138 and Q012169AT), which were used as the controls. The present study identified several enzymes that are targeted by curcumin, aldo-keto reductase family 1 member B10 (AKR1B10), serine/threonine-protein kinase, protein kinase C, matrix metalloproteinase (MMP), cyclooxygenase and epidermal growth factor receptor, which were tested as targets for these anticancer chemicals. All the examined small compounds demonstrated anticancer

  9. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  10. The tyrosyl free radical in ribonucleotide reductase.

    PubMed Central

    Gräslund, A; Sahlin, M; Sjöberg, B M

    1985-01-01

    The enzyme, ribonucleotide reductase, catalyses the formation of deoxyribonucleotides from ribonucleotides, a reaction essential for DNA synthesis in all living cells. The Escherichia coli ribonucleotide reductase, which is the prototype of all known eukaryotic and virus-coded enzymes, consists of two nonidentical subunits, proteins B1 and B2. The B2 subunit contains an antiferromagnetically coupled pair of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of an electron, has its unpaired spin density delocalized in the aromatic ring of tyrosine. Effects of iron-radical interaction indicate a relatively close proximity between the iron center and the radical. The EPR signal of the radical can be studied directly in frozen packed cells of E. coli or mammalian origin, if the cells are made to overproduce ribonucleotide reductase. The hypothetic role of the tyrosyl free radical in the enzymatic reaction is not yet elucidated, except in the reaction with the inhibiting substrate analogue 2'-azido-CDP. In this case, the normal tyrosyl radical is destroyed with concomitant appearance of a 2'-azido-CDP-localized radical intermediate. Attempts at spin trapping of radical reaction intermediates have turned out negative. In E. coli the activity of ribonucleotide reductase may be regulated by enzymatic activities that interconvert a nonradical containing form and the fully active protein B2. In synchronized mammalian cells, however, the cell cycle variation of ribonucleotide reductase, studied by EPR, was shown to be due to de novo protein synthesis. Inhibitors of ribonucleotide reductase are of medical interest because of their ability to control DNA synthesis. One example is hydroxyurea, used in cancer therapy, which selectively destroys the tyrosyl free radical. PMID:3007085

  11. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  12. Heterogeneity of rat type I 5 alpha-reductase cDNA: cloning, expression and regulation by pituitary implants and dihydrotestosterone.

    PubMed

    Lopez-Solache, I; Luu-The, V; Séralini, G E; Labrie, F

    1996-03-01

    Primer extension analysis reveals the presence of different forms of mRNA species for rat type I 5 alpha-reductase. Using a 5 alpha-reductase cDNA probe to screen the rat liver lambda gt11 cDNA library, we isolated cDNA clones that have 4 additional amino acids in the NH2-terminal region as compared with the previously reported sequence for rat type I 5 alpha-reductase. These four additional amino acids elongate the rat type I 5 alpha-reductase amino acid sequence to 259 amino acids, the same number as in human type I 5 alpha-reductase, with which it shares 60% identity. Expression of the long and short rat type I 5 alpha-reductase by transfection in human adrenal adenocarcinoma cells, SW-13 cells, indicated that the long cDNA encoded a protein with a higher affinity for the substrate than the short cDNA. To determine the effect of pituitary hormones and dihydrotestosterone (DHT), the mRNA levels in the livers of rats treated with pituitary implants, hypophysectomized, castrated, and castrated coupled with DHT treatment were quantified by dot-blot hybridization assay using rat type I 5 alpha-reductase cDNA as probes. The results demonstrated that rat type I 5 alpha-reductase mRNA is stimulated by pituitary hormones and castration but is decreased by DHT and hypophysectomy.

  13. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  14. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  15. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  16. Fumarate Reductase Activity of Streptococcus faecalis

    PubMed Central

    Aue, B. J.; Diebel, R. H.

    1967-01-01

    Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The Km value of the enzyme for reduced flavin mononucleotide was 2 × 10−4 m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive. PMID:4960892

  17. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  18. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  19. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    PubMed

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  20. Crystal Structure of Saccharomyces Cerevisiae 3'-Phosphoadenosine-5'-Phosphosulfate Reductase Complexed With Adenosine 3',5'-Bisphosphate

    SciTech Connect

    Yu, Z.; Lemongello, D.; Segel, I.H.; Fisher, A.J.

    2009-05-28

    Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The 'pyrophosphate-binding' sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.

  1. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  2. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  3. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  4. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  5. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity.

    PubMed

    Crona, Mikael; Codó, Paula; Jonna, Venkateswara Rao; Hofer, Anders; Fernandes, Aristi P; Tholander, Fredrik

    2016-11-01

    Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.

  6. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  7. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  8. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  9. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  10. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    SciTech Connect

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  11. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Levine, Rodney L.

    2012-01-01

    Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild. PMID:22521563

  12. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  13. A qualitative and quantitative cytochemical assay of dihydrofolate reductase in erythroid cells.

    PubMed

    Nano, R; Gerzeli, G; Invernizzi, R; Supino, R

    1989-01-01

    The distribution and intensity of dihydrofolate reductase (DHFR) cytochemically demonstrable was studied in erythroid cells. Cells of normal human bone marrow, of human erythroleukaemia (M6), and cells of the Friend (MEL) clone 745A murine erythroleukaemia (also after differentiation with dimethylsulphoxide, DMSO) were stained according to Gerzeli and de Piceis Polver (1969) technique; quantification of the reaction product was made using a Vickers M86 microdensitometer. The enzyme activity progressively decreased during the normal differentiation of the erythropoietic series while persisted at high levels in erythroleukaemia cells. It can be suggested that in the 1st case, the cytochemical pattern of dihydrofolate reductase may be a useful added tool for studying the erythroid differentiation. In the 2nd case, the increased level of this enzyme may be related to an amplification of the gene of DHFR in the malignant transformation.

  14. AKR1C2 — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: This gene encodes a member of the aldo/keto reductase superfamily, which consists of more than 40 known enzymes and proteins. These enzymes catalyze the conversion of aldehydes and ketones to their corresponding alcohols using NADH and/or NADPH as cofactors. The enzymes display overlapping but distinct substrate specificity. This enzyme binds bile acid with high affinity, and shows minimal 3-alpha-hydroxysteroid dehydrogenase activity. This gene shares high sequence identity with three other gene members and is clustered with those three genes at chromosome 10p15-p14. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Dec 2011

  15. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    PubMed

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.

  16. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions

    PubMed Central

    Vinayagam, Arunachalam; Zirin, Jonathan; Roesel, Charles; Hu, Yanhui; Yilmazel, Bahar; Samsonova, Anastasia A.; Neumüller, Ralph A.; Mohr, Stephanie E.; Perrimon, Norbert

    2013-01-01

    A major objective of systems biology is to organize molecular interactions as networks and to characterize information-flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the “signs” of interactions (i.e. activation/inhibition relationships). We constructed a Drosophila melanogaster signed PPI network, consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes Enolase and Aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation/inhibition relationships between physically interacting proteins within signaling pathways will impact our understanding of many biological functions, including signal transduction and mechanisms of disease. PMID:24240319

  17. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  18. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure

    PubMed Central

    Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets. PMID:27904805

  19. Enzyme toolbox: novel enantiocomplementary imine reductases.

    PubMed

    Scheller, Philipp N; Fademrecht, Silvia; Hofelzer, Sebastian; Pleiss, Jürgen; Leipold, Friedemann; Turner, Nicholas J; Nestl, Bettina M; Hauer, Bernhard

    2014-10-13

    Reducing reactions are among the most useful transformations for the generation of chiral compounds in the fine-chemical industry. Because of their exquisite selectivities, enzymatic approaches have emerged as the method of choice for the reduction of C=O and activated C=C bonds. However, stereoselective enzymatic reduction of C=N bonds is still in its infancy-it was only recently described after the discovery of enzymes capable of imine reduction. In our work, we increased the spectrum of imine-reducing enzymes by database analysis. By combining the currently available knowledge about the function of imine reductases with the experimentally uncharacterized diversity stored in protein sequence databases, three novel imine reductases with complementary enantiopreference were identified along with amino acids important for catalysis. Furthermore, their reducing capability was demonstrated by the reduction of the pharmaceutically relevant prochiral imine 2-methylpyrroline. These novel enzymes exhibited comparable to higher catalytic efficiencies than previously described enzymes, and their biosynthetic potential is highlighted by the full conversion of 2-methylpyrroline in whole cells with excellent selectivities.

  20. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  1. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity.

    PubMed

    Hanna, I H; Krauser, J A; Cai, H; Kim, M S; Guengerich, F P

    2001-10-26

    Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.

  2. Proteome Screening of Pleural Effusions Identifies Galectin 1 as a Diagnostic Biomarker and Highlights Several Prognostic Biomarkers for Malignant Mesothelioma*

    PubMed Central

    Mundt, Filip; Johansson, Henrik J.; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-01-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4–4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  3. NADP(+)-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification.

    PubMed

    Moschini, Roberta; Peroni, Eleonora; Rotondo, Rossella; Renzone, Giovanni; Melck, Dominique; Cappiello, Mario; Srebot, Massimo; Napolitano, Elio; Motta, Andrea; Scaloni, Andrea; Mura, Umberto; Del-Corso, Antonella

    2015-06-01

    An NADP(+)-dependent dehydrogenase activity on 3-glutathionyl-4-hydroxynonanal (GSHNE) was purified to electrophoretic homogeneity from a line of human astrocytoma cells (ADF). Proteomic analysis identified this enzymatic activity as associated with carbonyl reductase 1 (EC 1.1.1.184). The enzyme is highly efficient at catalyzing the oxidation of GSHNE (KM 33 µM, kcat 405 min(-1)), as it is practically inactive toward trans-4-hydroxy-2-nonenal (HNE) and other HNE-adducted thiol-containing amino acid derivatives. Combined mass spectrometry and nuclear magnetic resonance spectroscopy analysis of the reaction products revealed that carbonyl reductase oxidizes the hydroxyl group of GSHNE in its hemiacetal form, with the formation of the corresponding 3-glutathionylnonanoic-δ-lactone. The relevance of this new reaction catalyzed by carbonyl reductase 1 is discussed in terms of HNE detoxification and the recovery of reducing power.

  4. Succinate-cytochrome c reductase: assessment of its value in the investigation of defects of the respiratory chain.

    PubMed

    Taylor, R W; Birch-Machin, M A; Bartlett, K; Turnbull, D M

    1993-06-19

    Defects of the respiratory chain are important causes of human disease and one of the most commonly used assays in the investigation of these patients is the measurement of succinate-cytochrome c reductase. However, this assay measures several components of the respiratory chain and the ability to detect a partial defect in one enzyme complex will depend on the amount of control exerted by that enzyme step on overall electron flux. We show that measurement of succinate-cytochrome c reductase activity may fail to detect partial defects of complex III and therefore is of limited diagnostic value in the identification of complex III defects. However, complex II is a major point of control of flux through succinate-cytochrome reductase and it is likely that measurement of the latter will detect defects of complex II.

  5. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  6. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  7. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  8. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.

    PubMed

    Testa, Fabrizio; Mastronicola, Daniela; Cabelli, Diane E; Bordi, Eugenio; Pucillo, Leopoldo P; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro; Teixeira, Miguel

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  9. Identification of activators of methionine sulfoxide reductases A and B

    PubMed Central

    Cudic, Predrag; Joshi, Neelambari; Sagher, Daphna; Williams, Brandon T.; Stawikowski, Maciej J.; Weissbach, Herbert

    2016-01-01

    The methionine sulfoxide reductase (Msr) family of enzymes has been shown to protect cells against oxidative damage. The two major Msr enzymes, MsrA and MsrB, can repair oxidative damage to proteins due to reactive oxygen species, by reducing the methionine sulfoxide in proteins back to methionine. A role of MsrA in animal aging was first demonstrated in D. melanogaster where transgenic flies over-expressing recombinant bovine MsrA had a markedly extended life span. Subsequently, MsrA was also shown to be involved in the life span extension in C. elegans. These results supported other studies that indicated up-regulation, or activation, of the normal cellular protective mechanisms that cells use to defend against oxidative damage could be an approach to treat age related diseases and slow the aging process. In this study we have identified, for the first time, compounds structurally related to the natural products fusaricidins that markedly activate recombinant bovine and human MsrA and human MsrB. PMID:26718410

  10. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.

    PubMed

    Trimmer, Elizabeth E

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5-methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer's disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.

  11. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.

    PubMed

    Vaidyanathan, Ramanathan; Gopalram, Shubaash; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Pandian, Sureshbabu Ram Kumar; Gurunathan, Sangiliyandi

    2010-01-01

    Nanostructure materials are attracting a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. The generation of silver nanoparticles using optimized nitrate reductase for the reduction of Ag(+) with the retention of enzymatic activity in the complex is being reported. This report involves the optimization of enzyme activity to bring about enhanced nanoparticle synthesis. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of nitrate reductase by Bacillus licheniformis at pH 8. The four variables involved in the study of nitrate reductase were Glucose, Peptone, Yeast extract and KNO(3). Glucose had a significant effect on nitrate reductase production. The optimized medium containing (%) Glucose: 1.5, Peptone: 1, Yeast extract: 0.35 and KNO(3): 0.35 resulted in a nitrate reductase activity of 452.206 U/ml which is same as that of the central level. The medium A (showing least nitrate reductase activity) and the medium B (showing maximum nitrate reductase activity) were compared for the synthesis. Spectrophotometric analysis revealed that the particles exhibited a peak at 431 nm and the A(431) for the medium B was 2-fold greater than that of the medium A. The particles were also characterized using TEM. The particles synthesized using the optimized enzyme activity ranged from 10 to 80 nm and therefore can be extended to various medicinal applications.

  12. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  13. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.

    PubMed

    Miura, Takeshi; Taketomi, Ayako; Nakabayashi, Toshikatsu; Nishinaka, Toru; Terada, Tomoyuki

    2015-07-01

    CHCR3, a member of the short-chain dehydrogenase/reductase superfamily, is a carbonyl reductase 3 enzyme in Chinese hamsters. Carbonyl reductase 3 in humans has been believed to involve the metabolism and/or pharmacokinetics of anthracycline drugs, and the mechanism underlying the gene regulation has been investigated. In this study, the nucleotide sequence of the Chcr3 promoter was originally determined, and its promoter activity was characterised. The proximal promoter region is TATA-less and GC-rich, similar to the promoter region of human carbonyl reductase 3. Cobalt stimulated the transcriptional activity of the Chcr3 gene. The results of a luciferase gene reporter assay demonstrated that cobalt-induced stimulation required an antioxidant responsive element. Forced expression of Nrf2, the transcription factor that binds to antioxidant responsive elements, enhanced the transcriptional activity of the Chcr3 gene. These results suggest that cobalt induces the expression of the Chcr3 gene via the Nrf2-antioxidant responsive element pathway.

  14. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary.

    PubMed

    Zhu, Qingfu; El-Mergawy, Rabab G; Heinemann, Stefan H; Schönherr, Roland; Jáč, Pavel; Scriba, Gerhard K E

    2013-09-01

    A micellar electrokinetic chromatography method for the analysis of the l-methionine sulfoxide diastereomers employing a successive multiple ionic-polymer layer coated fused-silica capillary was developed and validated in order to investigate the stereospecificity of methionine sulfoxide reductases. The capillary coating consisted of a first layer of hexadimethrine and a second layer of dextran sulfate providing a stable strong cathodic EOF and consequently highly repeatable analyte migration times. The methionine sulfoxide diastereomers, methionine as product as well as β-alanine as internal standard were derivatized by dabsyl chloride and separated using a 35 mM sodium phosphate buffer, pH 8.0, containing 25 mM SDS as BGE and a separation voltage of 25 kV. The method was validated in the range of 0.15-2.0 mM with respect to linearity and precision. The LODs of the analytes ranged between 0.04 and 0.10 mM. The assay was subsequently applied to determine the stereospecificity of methionine sulfoxide reductases as well as the enzyme kinetics of human methionine sulfoxide reductase A. Monitoring the decrease of the l-methionine-(S)-sulfoxide Km = 411.8 ± 33.8 μM and Vmax = 307.5 ± 10.8 μM/min were determined.

  15. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  16. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.

    PubMed

    Gamenara, Daniela; Domínguez de María, Pablo

    2014-05-21

    Adding value to organic synthesis. Novel imine reductases enable the enantioselective reduction of imines to afford optically active amines. Likewise, novel bioinspired artificial metalloenzymes can perform the same reaction as well. Emerging proof-of-concepts are herein discussed.

  17. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis

    PubMed Central

    Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M. S.; Barh, Debmalya

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets. PMID:28316974

  18. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease,...

  19. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection.

    PubMed

    Fodil-Cornu, N; Kozij, N; Wu, Q; Rozen, R; Vidal, S M

    2009-10-01

    Folates provide one-carbon units for nucleotide synthesis and methylation reactions. A common polymorphism in the MTHFR gene (677C --> T) results in reduced enzymatic activity, and is associated with an increased risk for neural tube defects and cardiovascular disease. The high prevalence of this polymorphism suggests that it may have experienced a selective advantage under environmental pressure, possibly an infectious agent. To test the hypothesis that methylenetetrahydrofolate reductase (MTHFR) genotype influences the outcome of infectious disease, we examined the response of Mthfr-deficient mice against mouse cytomegalovirus (MCMV) infection. Acute MCMV infection of Mthfr(-/-) mice resulted in early control of cytokine secretion, decreased viral titer and preservation of spleen immune cells, in contrast to Mthfr wild-type littermates. The phenotype was abolished in MTHFR transgenic mice carrying an extra copy of the gene. Infection of primary fibroblasts with MCMV showed a decrease in viral replication and in the number of productively infected cells in Mthfr(+/-) fibroblasts compared with wild-type cells. These results indicate that Mthfr deficiency protects against MCMV infection in vivo and in vitro, suggesting that human genetic variants may provide an advantage in the host response against certain pathogens.

  20. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  1. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  2. Lausannevirus Encodes a Functional Dihydrofolate Reductase Susceptible to Proguanil

    PubMed Central

    Mueller, L.; Hauser, P. M.; Gauye, F.

    2017-01-01

    ABSTRACT Lausannevirus belongs to the family Marseilleviridae within the group of nucleocytoplasmic large DNA viruses (NCLDVs). These giant viruses exhibit unique features, including a large genome, ranging from 100 kb to 2.5 Mb and including from 150 to more than 2,500 genes, as well as the presence of genes coding for proteins involved in transcription and translation. The large majority of Lausannevirus open reading frames have unknown functions. Interestingly, a bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is encoded in the Lausannevirus genome. The enzyme plays central roles in DNA precursor biosynthesis. DHFR is the pharmacological target of antifolates, such as trimethoprim, pyrimethamine, and proguanil. First, the functionality of Lausannevirus DHFR-TS was demonstrated by the successful complementation of a DHFR-deficient Saccharomyces cerevisiae strain with a plasmid expressing the heterologous gene. Additionally, using this heterologous expression system, we demonstrated the in vitro susceptibility of Lausannevirus DHFR-TS to proguanil and its resistance to pyrimethamine and trimethoprim. Proguanil may provide a unique and useful treatment if Lausannevirus proves to be a human pathogen. To our knowledge, this is the first time that a DHFR-TS has been described and characterized in an NCLDV. PMID:28137801

  3. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  4. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed

    Sengupta, S; Shaila, M S; Rao, G R

    1996-07-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

  5. 3 alpha-hydroxysteroid dehydrogenase: three dimensional structure and gene regulation.

    PubMed

    Penning, T M

    1996-09-01

    Mammalian 3 alpha-hydroxysteroid dehydrogenases (3 alpha-HSDs) regulate steroid hormone levels. cDNA cloning indicates that the rat and human liver isoforms display high sequence identity and that they belong to the aldo-keto reductase (AKR) superfamily. Of these the most extensively characterized is rat liver 3 alpha-HSD. The recently solved X-ray crystal structure shows that this enzyme adopts an (alpha/beta)8-barrel scaffold (Hoog et al. 1994). NAD(P)H binds in an extended anti-conformation and lies along the inner surface of the barrel. The nicotinamide ring is stabilized by interaction with Y216. The 4-pro(R)-hydrogen transferred in the reaction is in close proximity to Y55. K84, D50 and H117 which are implicated in catalysis. These residues are located at the base of a hydrophobic pocket which is presumed to be involved in binding steroid hormone. This catalytic tetrad is conserved in members of the AKR superfamily. Mutant enzymes support roles for Y55 in steroid binding and for K84 as the general acid involved in catalysis. The gene for rat 3 alpha-HSD has been cloned and is 47 kb in length and contains 9 exon-intron boundaries which are highly conserved in the human gene(s). The 5'-flanking regions of the rat and human genes contain consensus sequences for AP-1, Oct-1 and multiple copies of perfect and imperfect steroid hormone response elements (REs) (estrogen, glucocorticoid (GRE), and progesterone) which may comprise a steroid response unit (SRU) (Lin & Penning 1995). Constitutive and regulated expression of the rat 3 alpha-HSD gene has been studied by transiently transfecting reporter gene (chloramphenicol acetyltransferase, CAT) constructs into human hepatoma (HepG2) cells. With respect to the transcription start-site (+1), a proximal (-498 to -199bp) and distal (-20 to -4.0kb) enhancer, as well as a powerful silencer (-755 to -498 bp) were located in the promoter. Band-shift and supershift assays provide evidence that Oct-1 binds to the silencer

  6. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  7. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    PubMed

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  8. Microsecond subdomain folding in dihydrofolate reductase.

    PubMed

    Arai, Munehito; Iwakura, Masahiro; Matthews, C Robert; Bilsel, Osman

    2011-07-08

    The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.

  9. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  10. Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase.

    PubMed

    Seike, Kazuharu; Murata, Mariko; Hirakawa, Kazutaka; Deyashiki, Yoshihiro; Kawanishi, Shosuke

    2004-11-01

    Tobacco smoke and polluted air are risk factors for lung cancer and contain many kinds of polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P) and benz[a]anthracene (BA). BA, as well as B[a]P, is assessed as probably carcinogenic to humans (IARC group 2A). BA is metabolized to several dihydrodiols. Dihydrodiol dehydrogenase (DD), a member of the aldo-keto reductase superfamily, catalyzes NAD(P)+-linked oxidation of dihydrodiols of aromatic hydrocarbons to corresponding catechols. To clarify the role of DD on PAH carcinogenesis, we examined oxidative DNA damage induced by trans-dihydrodiols of BA and B[a]P treated with DD using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene. In addition, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA by using HPLC with an electrochemical detector. DD-catalyzed BA-1,2-dihydrodiol caused Cu(II)-mediated DNA damage including 8-oxodG formation in the presence of NAD+. BA-1,2-dihydrodiol induced a Fpg sensitive and piperidine labile G lesion at the 5'-ACG-3' sequence complementary to codon 273 of the human p53 tumor suppressor gene, which is known as a hotspot. DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The observation of NADH production by UV-visible spectroscopy suggested that DD catalyzed BA-1,2-dihydrodiol most efficiently to the corresponding catechol among the PAH-dihydrodiols tested. A time-of-flight mass spectroscopic study showed that the catechol form of BA-1,2-dihydrodiol formed after DD treatment. In conclusion, BA-1,2-dihydrodiol can induce DNA damage more efficiently than B[a]P-7,8-dihydrodiol and other BA-dihydrodiols in the presence of DD. The reaction mechanism on oxidative DNA damage may be explained by theoretical calculations with an enthalpy change of dihydrodiols and oxidation potential of their catechol forms. DD

  11. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  12. Short-chain dehydrogenases/reductases in cyanobacteria.

    PubMed

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  13. Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion†

    PubMed Central

    Shang, Lixia; Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark

    2010-01-01

    Linear tetrapyrroles (bilins) perform important antioxidant and light harvesting functions in cells from bacteria to humans. To explore the role of the propionate moieties in bilin metabolism, we report the semisynthesis of mono- and di-amides of biliverdin IXα and those of its non-natural XIIIα isomer. Initially, these were examined as substrates of two types of NADPH-dependent biliverdin reductase, BVR and BvdR, and of the representative ferredoxin-dependent bilin reductase, phycocyanobilin:ferredoxin oxidoreductase (PcyA). Our studies indicate that the NADPH-dependent biliverdin reductases are less accommodating to amidation of the propionic acid sidechains of biliverdin IXα than PcyA, which does not require free carboxylic acid sidechains to yield its phytobilin product, phycocyanobilin. Bilin amides were also assembled with BV-type and phytobilin-type apophytochromes, demonstrating a role for the 8-propionate in formation of the spectroscopically native Pr dark states of these biliprotein photosensors. Neither ionizable propionate sidechain proved essential to primary photoisomerization for both classes of phytochromes, but an unsubstituted 12-propionate was required for full photointerconversion of phytobilin-type phytochrome Cph1. Taken together, these studies provide insight into the roles of the ionizable propionate sidechains in substrate discrimination by two bilin reductase families while further underscoring the mechanistic differences between the photoconversions of BV-type and phytobilin-type phytochromes. PMID:20565135

  14. Sulfite reductase protects plants against sulfite toxicity.

    PubMed

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  15. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.

    PubMed Central

    McLean, Kirsty J; Scrutton, Nigel S; Munro, Andrew W

    2003-01-01

    The genome sequence of the pathogenic bacterium Mycobacterium tuberculosis revealed numerous cytochrome P450 enzymes, which require accessory redox enzymes for catalytic function (ferredoxin reductase and ferredoxin). The most likely ferredoxin reductase is encoded by fprA, and its structure resembles eukaryotic adrenodoxin reductases. We have cloned, expressed and purified the flavoenzyme product of the fprA gene in Escherichia coli. FprA reduces various electron acceptors using either NADPH or NADH as the electron donor, but discriminates in favour of NADPH (apparent K (m) for NADH=50.6+/-3.1 microM; NADPH=4.1+/-0.3 microM from ferricyanide reduction experiments). Stopped-flow studies of reduction of the FprA FAD by NADPH demonstrate increased flavin reduction rate at low NADPH concentration (<200 microM), consistent with the presence of a second, kinetically distinct and inhibitory, pyridine nucleotide-binding site, similar to that identified in human cytochrome P450 reductase [Gutierrez, Lian, Wolf, Scrutton and Roberts (2001) Biochemistry 40, 1964-1975]. Flavin reduction by NADH is slower than with NADPH and displays hyperbolic dependence on NADH concentration [maximal reduction rate ( k (red))=25.4+/-0.7 s(-1), apparent K (d)=42.9+/-4.6 microM]. Flavin reoxidation by molecular oxygen is more rapid for NADH-reduced enzyme. Reductive titrations show that the enzyme forms a species with spectral characteristics typical of a neutral (blue) FAD semiquinone only on reduction with NADPH, consistent with EPR studies. The second order dependence of semiquinone formation on the concentration of FprA indicates a disproportionation reaction involving oxidized and two-electron-reduced FprA. Titration of FprA with dithionite converts oxidized FAD into the hydroquinone form; the flavin semiquinone is not populated under these conditions. The midpoint reduction potential for the two electron couple is -235+/-5 mV (versus the normal hydrogen electrode), similar to that for

  16. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  17. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  18. Bacterial morphinone reductase is related to Old Yellow Enzyme.

    PubMed Central

    French, C E; Bruce, N C

    1995-01-01

    Morphinone reductase, produced by Pseudomonas putida M10, catalyses the NADH-dependent saturation of the carbon-carbon double bond of morphinone and codeinone, and is believed to be involved in the metabolism of morphine and codeine. The structural gene encoding morphinone reductase, designated morB, was cloned from Ps. putida M10 genomic DNA by the use of degenerate oligonucleotide probes based on elements of the amino acid sequence of the purified enzyme. Sequence analysis and structural characteristics indicated that morphinone reductase is related to the flavoprotein alpha/beta-barrel oxidoreductases, and is particularly similar to Old Yellow Enzyme of Saccharomyces spp. and the related oestrogen-binding protein of Candida albicans. Expressed sequence tags from several plant species show high homology to these enzymes, suggesting the presence of a family of enzymes conserved in plants and fungi. Although related bacterial proteins are known, morphinone reductase appears to be more similar to the eukaryotic proteins. Morphinone reductase was overexpressed in Escherichia coli, and has potential applications for the industrial preparation of semisynthetic opiates. Images Figure 1 Figure 5 PMID:8554504

  19. Purification and properties of proline reductase from Clostridium sticklandii.

    PubMed

    Seto, B; Stadtman, T C

    1976-04-25

    Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.

  20. Nitrite Reductase NirBD Is Induced and Plays an Important Role during In Vitro Dormancy of Mycobacterium tuberculosis

    PubMed Central

    Akhtar, Shamim; Khan, Arshad; Sohaskey, Charles D.; Jagannath, Chinnaswamy

    2013-01-01

    Mycobacterium tuberculosis is one of the strongest reducers of nitrate among all mycobacteria. Reduction of nitrate to nitrite, mediated by nitrate reductase (NarGHJI) of M. tuberculosis, is induced during the dormant stage, and the enzyme has a respiratory function in the absence of oxygen. Nitrite reductase (NirBD) is also functional during aerobic growth when nitrite is the sole nitrogen source. However, the role of NirBD-mediated nitrite reduction during the dormancy is not yet characterized. Here, we analyzed nitrite reduction during aerobic growth as well as in a hypoxic dormancy model of M. tuberculosis in vitro. When nitrite was used as the sole nitrogen source in the medium, the organism grew and the reduction of nitrite was evident in both hypoxic and aerobic cultures of M. tuberculosis. Remarkably, the hypoxic culture of M. tuberculosis, compared to the aerobic culture, showed 32- and 4-fold-increased expression of nitrite reductase (NirBD) at the transcription and protein levels, respectively. More importantly, a nirBD mutant of M. tuberculosis was unable to reduce nitrite and compared to the wild-type (WT) strain had a >2-log reduction in viability after 240 h in the Wayne model of hypoxic dormancy. Dependence of M. tuberculosis on nitrite reductase (NirBD) was also seen in a human macrophage-based dormancy model where the nirBD mutant was impaired for survival compared to the WT strain. Overall, the increased expression and essentiality of nitrite reductase in the in vitro dormancy models suggested that NirBD-mediated nitrite reduction could be critical during the persistent stage of M. tuberculosis. PMID:23935045

  1. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  2. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  3. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  4. Selenium in thioredoxin reductase: a mechanistic perspective.

    PubMed

    Lacey, Brian M; Eckenroth, Brian E; Flemer, Stevenson; Hondal, Robert J

    2008-12-02

    Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to

  5. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification.

    PubMed

    Sollner, Sonja; Nebauer, Ruth; Ehammer, Heidemarie; Prem, Anna; Deller, Sigrid; Palfey, Bruce A; Daum, Günther; Macheroux, Peter

    2007-03-01

    NAD(P)H:quinone acceptor oxidoreductases are flavoenzymes expressed in the cytoplasm of many tissues and afford protection against the cytotoxic effects of electrophilic quinones by catalyzing a strict two-electron reduction. Such enzymes have been reported from several mammalian sources, e.g. human, mouse and rat, and from plant species. Here, we report identification of Lot6p (YLR011wp), the first soluble quinone reductase from the unicellular model organism Saccharomyces cerevisiae. Localization studies using an antibody raised against Lot6p as well as microscopic inspection of Lot6p-GFP demonstrated accumulation of the enzyme in the cytosol of yeast cells. Despite sharing only 23% similarity to type 1 human quinone reductase, Lot6p possesses biochemical properties that are similar to its human counterpart. The enzyme catalyzes a two-electron reduction of a series of natural and artificial quinone substrates at the expense of either NADH or NADPH. The kinetic mechanism follows a ping-pong bi-bi reaction scheme, with K(M) values of 1.6-11 microm for various quinones. Dicoumarol and Cibacron Marine, two well-known inhibitors of the quinone reductase family, bind to Lot6p and inhibit its activity. In vivo experiments demonstrate that the enzymatic activity of Lot6p is consistent with the phenotype of both Deltalot6 and Lot6p overexpressing strains, suggesting that Lot6p may play a role in managing oxidative stress in yeast.

  6. POLYPRENOL REDUCTASE2 Deficiency Is Lethal in Arabidopsis Due to Male Sterility[OPEN

    PubMed Central

    Gutkowska, Malgorzata; Buczkowska, Anna; Lichocka, Malgorzata; Nowakowska, Julita

    2015-01-01

    Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible. PMID:26628744

  7. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  8. Chromium Toxicity: Reductive Enzymes in Humans.

    DTIC Science & Technology

    2007-11-02

    heavy smoker; human C, male, age 22, ethanol detected; human F, female, age 50, alcoholic, diabetic , heavy smoker; human N, male, age 21, ethanol...catalytic activity of purified FMO or deplete rabbit liver microsomes of FMO [21], and protease treatment does not remove cytochrome bs reductase from...rat microsomes [50]. Treatment of hepatic microsomes with pre-boiled (inactive) steapsin left essentially all of the P450 reductase and Cr(VT

  9. Thioredoxin Glutathione Reductase as a Novel Drug Target: Evidence from Schistosoma japonicum

    PubMed Central

    Xie, ShuYing; Qian, ChunYan; Wang, Jie; Zhang, Wei; Yin, XuRen; Hua, ZiChun; Yu, ChuanXin

    2012-01-01

    Background Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. Methods and Findings After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. Conclusions Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum. PMID:22384025

  10. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  11. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to usemore » in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  12. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo.

    PubMed

    Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A

    2016-12-01

    Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed.

  13. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607.

    PubMed

    Schiering, N; Kabsch, W; Moore, M J; Distefano, M D; Walsh, C T; Pai, E F

    1991-07-11

    Several hundred million tons of toxic mercurials are dispersed in the biosphere. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase and mercuric ion reductase (MerA). The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases, catalyses the reaction NADPH + Hg(II)----NADP+ + H+ + Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), p1258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn501 and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon. These domains can be proteolytically cleaved off without changing the catalytic efficiency. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  14. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    SciTech Connect

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D.

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  15. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Zanetti, Giulia; Megighian, Aram; Scorzeto, Michele; Fillo, Silvia; Shone, Clifford C; Binz, Thomas; Rossetto, Ornella; Lista, Florigio; Montecucco, Cesare

    2014-09-25

    Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  16. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  17. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  18. Obtaining partial purified xylose reductase from Candida guilliermondii

    PubMed Central

    Tomotani, Ester Junko; de Arruda, Priscila Vaz; Vitolo, Michele; de Almeida Felipe, Maria das Graças

    2009-01-01

    The enzymatic bioconversion of xylose into xylitol by xylose reductase (XR) is an alternative for chemical and microbiological processes. The partial purified XR was obtained by using the following three procedures: an agarose column, a membrane reactor or an Amicon Ultra-15 50K Centrifugal Filter device at yields of 40%, 7% and 67%, respectively. PMID:24031408

  19. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  20. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  1. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].

    PubMed

    Belikova, Iu O; Kotliar, A B

    1988-04-01

    Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.

  2. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  3. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-28

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  4. [Inhibition of aldose reductase by Chinese herbal medicine].

    PubMed

    Mao, X M; Zhang, J Q

    1993-10-01

    Seven Chinese herbal drugs were screened for experimental inhibition of lens aldose reductase activity, among which quercetin exhibited potent enzyme-inhibitory activities in vitro. Its IC50 value was 3.44 x 10(-7) mol/L. It may be helpful in the prophylaxis and treatment of diabetic complications.

  5. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  6. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  7. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  8. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  9. Treatment of hirsutism with 5 alpha-reductase inhibitors.

    PubMed

    Brooks, J R

    1986-05-01

    Much os the evidence gathered from studies of 5 alpha-reductase activity levels and androgen metabolism in the skin of hirsute women and the excretion of androgen metabolites by hirsute women indicates that 5 alpha-reduced androgens are probably of primary importance in hirsutism. Unfortunately, until very recently, the lack of a suitable 5 alpha-reductase inhibitor made it very difficult to adequately test the hypothesis that such an inhibitor might be useful in the treatment of hirsutism and certain other androgen-related diseases. No substance was available which had good, unambiguous activity in vivo as a 5 alpha-reductase inhibitor. A number of 4-azasteroids have now been found to possess excellent 5 alpha-reductase inhibitory activity both in vitro and in vivo. Among other properties, several of these compounds show little or no affinity for the androgen receptor of rat prostate cytosol, they attenuate the growth promoting effect of T, but not DHT, on the ventral prostate of castrated male rats, they cause a marked reduction in prostatic DHT concentration in acutely treated rats and dogs and they bring about a significant decline in prostate size in chronically treated rats and dogs. It is expected that, in the near future, one or more of these highly active 5 alpha-reductase inhibitors will be tested in the clinic as a treatment for hirsutism. The results of those studies will be awaited with a great deal of interest since they should considerably advance our understanding of this disease and possibly contribute to its control.

  10. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  11. Measurement of nitrous oxide reductase activity in aquatic sediments

    SciTech Connect

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N/sub 2/O reductase assay. Sediments consumed small added quantities of N/sub 2/O over short periods (a few hours). In experiments with sediment slurries, N/sub 2/O reductase activity was inhibited by 0/sub 2/, C/sub 2/H/sub 2/, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 ..mu..M) did not influence activity, and moderate levels (about 150 ..mu..M) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N/sub 2/O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater, estuarine, and alkaline-saline environments. An in situ assay was devised in which a solution of N/sub 2/O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N/sub 2/O per m/sup 2/ per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N/sub 2/O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N/sub 2/O per m/sup 2/ per h made with the acetylene block assay.

  12. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  13. Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer.

    PubMed

    Liu, Shixuan; Cheng, Wei; Fowle Grider, Ronald; Shen, Guomin; Li, Weikai

    2014-01-01

    The intramembrane vitamin K epoxide reductase (VKOR) supports blood coagulation in humans and is the target of the anticoagulant warfarin. VKOR and its homologues generate disulphide bonds in organisms ranging from bacteria to humans. Here, to better understand the mechanism of VKOR catalysis, we report two crystal structures of a bacterial VKOR captured in different reaction states. These structures reveal a short helix at the hydrophobic active site of VKOR that alters between wound and unwound conformations. Motions of this 'horizontal helix' promote electron transfer by regulating the positions of two cysteines in an adjacent loop. Winding of the helix separates these 'loop cysteines' to prevent backward electron flow. Despite these motions, hydrophobicity at the active site is maintained to facilitate VKOR catalysis. Biochemical experiments suggest that several warfarin-resistant mutations act by changing the conformation of the horizontal helix. Taken together, these studies provide a comprehensive understanding of VKOR function.

  14. Discovery of Potent and Selective Leads against Toxoplasma gondii Dihydrofolate Reductase via Structure-Based Design.

    PubMed

    Welsch, Matthew E; Zhou, Jian; Gao, Yueqiang; Yan, Yunqing; Porter, Gene; Agnihotri, Gautam; Li, Yingjie; Lu, Henry; Chen, Zhongguo; Thomas, Stephen B

    2016-12-08

    Current treatment of toxoplasmosis targets the parasite's folate metabolism through inhibition of dihydrofolate reductase (DHFR). The most widely used DHFR antagonist, pyrimethamine, was introduced over 60 years ago and is associated with toxicity that can be largely attributed to a similar affinity for parasite and human DHFR. Computational analysis of biochemical differences between Toxoplasma gondii and human DHFR enabled the design of inhibitors with both improved potency and selectivity. The approach described herein yielded TRC-19, a promising lead with an IC50 of 9 nM and 89-fold selectivity in favor of Toxoplasma gondii DHFR, as well as crystallographic data to substantiate in silico methodology. Overall, 50% of synthesized in silico designs met hit threshold criteria of IC50 < 10 μM and >2-fold selectivity favoring Toxoplasma gondii, further demonstrating the efficiency of our structure-based drug design approach.

  15. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  16. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase.

    PubMed

    Blumenstiel, K; Schöneck, R; Yardley, V; Croft, S L; Krauth-Siegel, R L

    1999-12-01

    Lipoamide dehydrogenase (LipDH), trypanothione reductase (TR), and glutathione reductase (GR) catalyze the NAD(P)H-dependent reduction of disulfide substrates. TR occurs exclusively in trypanosomatids which lack a GR. Besides their physiological reactions, the flavoenzymes catalyze the single-electron reduction of nitrofurans with the concomitant generation of superoxide anions. Here, we report on the interaction of clinically used antimicrobial nitrofurans with LipDH and TR from Trypanosoma cruzi, the causative agent of Chagas' disease (South American trypanosomiasis), in comparison to mammalian LipDH and GR. The compounds were studied as inhibitors and as subversive substrates of the enzymes. None of the nitrofurans inhibited LipDH, although they did interfere with the disulfide reduction of TR and GR. When the compounds were studied as substrates, T. cruzi LipDH showed a high rate of nitrofuran reduction and was even more efficient than its mammalian counterpart. Several derivatives were also effective subversive substrates of TR, but the respective reaction with human GR was negligible. Nifuroxazide, nifuroxime, and nifurprazine proved to be the most promising derivatives since they were redox-cycled by both T. cruzi LipDH and TR and had pronounced antiparasitic effects in cultures of T. cruzi and Trypanosoma brucei. The results suggest that those nitrofuran derivatives which interact with both parasite flavoenzymes should be revisited as trypanocidal drugs.

  17. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  18. Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa.

    PubMed

    Li, Houhua; Qiu, Jian; Chen, Fudong; Lv, Xiaofen; Fu, Chunxiang; Zhao, Dexiu; Hua, Xuejun; Zhao, Qiao

    2012-03-01

    Dihydroflavonol 4-reductase (DFR), which catalyzes the reduction of dihydroflavonols to leucoanthocyanins, is a key enzyme in the biosynthesis of anthocyanidins, proanthocyanidins, and other flavonoids of importance in plant development and human nutrition. This study isolated a full length cDNA encoding DFR, designated as SmDFR (GenBank Accession No. EF600682), by screening a cDNA library from a red callus line of Saussurea medusa, which is an endangered, traditional Chinese medicinal plant with high pharmacological value. SmDFR was functionally expressed in yeast (Saccharomyces cerevisiae) to confirm that SmDFR can readily reduce dihydroquercetin (DHQ) and dihydrokampferol (DHK), but it could not reduce dihydromyricetin (DHM). The deduced SmDFR structure shared extensive sequence similarity with previously characterized plant DFRs and phylogenetic analysis showed that it belonged to the plant DFR super-family. SmDFR also possessed flavanone 4-reductase (FNR) activity and can catalyze the conversion of eridictyol to luteoforol. Real-time PCR analysis showed that the expression level of SmDFR was higher in flowers compared with both leaves and roots. This work greatly enhances our knowledge of flavonoid biosynthesis in S. medusa and marks a major advance that could facilitate future genetic modification of S. medusa.

  19. Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae.

    PubMed

    Yu, Jiang; Zhou, Cong-Zhao

    2007-09-01

    Yeast glutathione (GSH) reductase Glr1 is a dimeric flavo-oxidoreductase involved in cytoplasmic and mitochondrial redox regulatory systems. It reduces the oxidized GSH GSSG to the reduced form, GSH with NADPH as electron donor and FAD as coenzyme. Crystal structures and enzymatic mechanisms of GSH reductases from Escherichia coli and Homo sapiens have been well investigated, whereas the structural properties of yeast Glr1 remain unknown. Herein, we overexpressed Saccharomyces cerevisiae Glr1 in Pichia pastoris GS115 and determined its crystal structure at 2.40 A resolution. Although the overall structure and the active site are much conserved, obvious variety was found at the interface of Glr1 monomers when superimposed against the homolog from E. coli or human. The nonconserved C239 is exposed to the solvent and accessible to GSH or GSSG enriched in a microenvironment around the Glr1 molecules, leading to the partial and transient glutathionylation, as primarily identified from the 2Fo-Fc electron density map and further confirmed by biochemical assays. Meanwhile N278 at the vicinity of NADP-binding pocket was artificially glycosylated when heterogeneously overexpressed in P. pastoris. The highly motile oligosaccharide chain linked to N278 of the recombinant Glr1 interferes with the entry of NADPH, which results in a dramatic increase of Km for NAPDH and a significant decrease of turnover number, when compared with the native protein.

  20. Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites

    PubMed Central

    Ross, Fabiana; Hernández, Paola; Porcal, Williams; López, Gloria V.; Cerecetto, Hugo; González, Mercedes; Basika, Tatiana; Carmona, Carlos; Fló, Martín; Maggioli, Gabriela; Bonilla, Mariana; Gladyshev, Vadim N.; Boiani, Mariana; Salinas, Gustavo

    2012-01-01

    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites. PMID:22536349

  1. Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites.

    PubMed

    Ross, Fabiana; Hernández, Paola; Porcal, Williams; López, Gloria V; Cerecetto, Hugo; González, Mercedes; Basika, Tatiana; Carmona, Carlos; Fló, Martín; Maggioli, Gabriela; Bonilla, Mariana; Gladyshev, Vadim N; Boiani, Mariana; Salinas, Gustavo

    2012-01-01

    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.

  2. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi☆

    PubMed Central

    Jones, Deuan C.; Ariza, Antonio; Chow, Wing-Huen A.; Oza, Sandra L.; Fairlamb, Alan H.

    2010-01-01

    As part of a drug discovery programme to discover new treatments for human African trypanosomiasis, recombinant trypanothione reductase from Trypanosoma brucei has been expressed, purified and characterized. The crystal structure was solved by molecular replacement to a resolution of 2.3 Å and found to be nearly identical to the T. cruzi enzyme (root mean square deviation 0.6 Å over 482 Cα atoms). Kinetically, the Km for trypanothione disulphide for the T. brucei enzyme was 4.4-fold lower than for T. cruzi measured by either direct (NADPH oxidation) or DTNB-coupled assay. The Km for NADPH for the T. brucei enzyme was found to be 0.77 μM using an NADPH-regenerating system coupled to reduction of DTNB. Both enzymes were assayed for inhibition at their respective S = Km values for trypanothione disulphide using a range of chemotypes, including CNS-active drugs such as clomipramine, trifluoperazine, thioridazine and citalopram. The relative IC50 values for the two enzymes were found to vary by no more than 3-fold. Thus trypanothione reductases from these species are highly similar in all aspects, indicating that they may be used interchangeably for structure-based inhibitor design and high-throughput screening. PMID:19747949

  3. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  4. Decreased rates of methionine synthesis by methylene tetrahydrofolate reductase-deficient fibroblasts and lymphoblasts.

    PubMed

    Boss, G R; Erbe, R W

    1981-06-01

    Methionine synthesis from homocysteine was measured in intact human fibroblasts and lymphoblasts using a [14C]formate label. Seven fibroblast lines and two lymphoblast lines derived from patients with 5,10-methylene tetrahydrofolate reductase deficiency had rates of methionine synthesis that were from 4 to 43% of normal. When the patients were divided by clinical status into mildly (two patients), moderately (two patients), and severely (three patients) affected, methionine biosynthesis expressed as a percent of control values was 43 and 33%, 11 and 10%, and 7, 6, and 4%, respectively, in fibroblasts. Similar data for the two lymphoblast lines were 36 and 26% for a mildly and moderately affected patient, respectively. These data are to be contrasted with the measurement of residual enzyme activity in cell extracts which agrees less precisely with the clinical status of the patients. In the presence of normal methionine synthetase activity, the rate of synthesis of methionine from homocysteine is a function of the activity of the enzyme 5,10-methylene tetrahydrofolate reductase, and measurement of the methionine biosynthetic capacity of cells deficient in this enzyme accurately reflects the clinical status of the patient from whom the cells were derived.

  5. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase.

    PubMed Central

    Ponasik, J A; Strickland, C; Faerman, C; Savvides, S; Karplus, P A; Ganem, B

    1995-01-01

    The enzyme trypanothione reductase (TR), together with its substrate, the glutathione-spermidine conjugate trypanothione, plays an essential role in protecting parasitic trypanosomatids against oxidative stress and is a target for drug design. Here we show that a naturally occurring spermine derivative, the antihypertensive agent kukoamine A [N1N12-bis(dihydrocaffeoyl)-spermine] inhibits TR as a mixed inhibitor (Ki = 1.8 microM, Kii = 13 microM). Kukoamine shows no significant inhibition of human glutathione reductase (Ki > 10 mM) and thus provides a novel selective drug lead. The corresponding N1N8-bis(dihydrocaffeoyl)spermidine derivative was synthesized and acted as a purely competitive inhibitor with Ki = 7.5 microM. A series of mono- and di-acylated spermines and spermidines were synthesized to gain an insight into the effect of polyamine chain length, the nature and position of the acyl substituent and the importance of conformational mobility. These compounds inhibited TR with Ki values ranging from 11 to 607 microM. PMID:7487870

  6. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii.

    PubMed

    Díez, J; López-Ruiz, A

    1989-02-01

    The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.

  7. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  8. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  9. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-05

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  10. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  11. 2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.

    PubMed Central

    Roe, C R; Millington, D S; Norwood, D L; Kodo, N; Sprecher, H; Mohammed, B S; Nada, M; Schulz, H; McVie, R

    1990-01-01

    Several inherited disorders of fatty acid beta-oxidation have been described that relate mainly to saturated precursors. This study is the first report of an enzyme defect related only to unsaturated fatty acid oxidation and provides the first in vivo evidence that fat oxidation in humans proceeds by the reductase-dependent pathway. The patient was a black female, presenting in the neonatal period with persistent hypotonia. Biochemical studies revealed hyperlysinemia, hypocarnitinemia, normal organic acid profile, and an unusual acylcarnitine species in both urine and blood. The new metabolite was positively identified by mass spectrometry as 2-trans,4-cis-decadienoylcarnitine, derived from incomplete oxidation of linoleic acid. In spite of dietary therapy, the patient died of respiratory acidosis at four months of age. Samples of liver and muscle from the autopsy were assayed for 2,4-dienoyl-coenzyme A reductase activity. Using the substrate 2-trans,4-cis-decadienoylcoenzyme A, the reductase activity was 40% of the control value in liver and only 17% of that found in normal muscle. It is suggested that unsaturated substrates should be used for in vitro testing to cover the full range of potential beta-oxidation defects and that acylcarnitine species identification be used for in vivo detection of this disorder. PMID:2332510

  12. Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress

    PubMed Central

    Allu, Praveen Kumar; Marada, Adinarayana; Boggula, Yerranna; Karri, Srinivasu; Krishnamoorthy, Thanuja; Sepuri, Naresh Babu V.

    2015-01-01

    Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of mitochondrial MXR2 renders yeast cells more sensitive to oxidative stress than the cytosolic MXR1. Our earlier studies showed that Mge1, an evolutionarily conserved nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70. In the present study, we show that Mxr2 regulates Mge1 by selectively reducing MetO at position 155 and restores the activity of Mge1 both in vitro and in vivo. Mge1 M155L mutant rescues the slow-growth phenotype and aggregation of proteins of mxr2Δ strain during oxidative stress. By identifying the first mitochondrial substrate for Mxrs, we add a new paradigm to the regulation of the oxidative stress response pathway. PMID:25428986

  13. Influence of haem environment on the catalytic properties of the tetrathionate reductase TsdA from Campylobacter jejuni

    PubMed Central

    Kurth, Julia M.; Butt, Julea N.; Kelly, David J.; Dahl, Christiane

    2016-01-01

    Bifunctional dihaem cytochrome c thiosulfate dehydrogenases/tetrathionate reductases (TsdA) exhibit different catalytic properties depending on the source organism. In the human food-borne intestinal pathogen Campylobacter jejuni, TsdA functions as a tetrathionate reductase enabling respiration with tetrathionate as an alternative electron acceptor. In the present study, evidence is provided that Cys138 and Met255 serve as the sixth ligands of Haem 1 and Haem 2 respectively, in the oxidized CjTsdA wt protein. Replacement of Cys138 resulted in a virtually inactive enzyme, confirming Haem 1 as the active site haem. Significantly, TsdA variants carrying amino acid exchanges in the vicinity of the electron-transferring Haem 2 (Met255, Asn254 and Lys252) exhibited markedly altered catalytic properties of the enzyme, showing these residues play a key role in the physiological function of TsdA. The growth phenotypes and tetrathionate reductase activities of a series of ΔtsdA/*tsdA complementation strains constructed in the original host C. jejuni 81116, showed that in vivo, the TsdA variants exhibited the same catalytic properties as the pure, recombinantly produced enzymes. However, variants that catalysed tetrathionate reduction more effectively than the wild-type enzyme did not allow better growth. PMID:27789780

  14. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  15. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.

    PubMed

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M; Zhao, Fang-Jie; Salt, David E

    2014-12-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.

  16. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants

    PubMed Central

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M.; Zhao, Fang-Jie; Salt, David E.

    2014-01-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  17. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  18. Pyrroline-5-Carboxylate Reductase in Soybean Nodules 1

    PubMed Central

    Chilson, Oscar P.; Kelly-Chilson, Anne E.; Schneider, Julie D.

    1992-01-01

    Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable. PMID:16668837

  19. Characterization of 12-Oxo-Phytodienoic Acid Reductase in Corn

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1986-01-01

    12-Oxo-phytodienoic acid reductase, an enzyme of the biosynthetic pathway that converts linolenic acid to jasmonic acid, has been characterized from the kernel and seedlings of corn (Zea mays L.). The molecular weight of the enzyme, estimated by gel filtration, was 54,000. Optimum enzyme activity was observed over a broad pH range, from pH 6.8 to 9.0. The enzyme had a Km of 190 micromolar for its substrate, 12-oxo-phytodienoic acid. The preferred reductant was NADPH, for which the enzyme exhibited a Km of 13 micromolar, compared with 4.2 millimolar for NADH. Reductase activity was low in the corn kernel but increased five-fold by the fifth day after germination and then gradually declined. PMID:16664582

  20. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  1. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  2. The existence and significance of a mitochondrial nitrite reductase.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V

    2005-01-01

    The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.

  3. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase

    NASA Astrophysics Data System (ADS)

    Lay, Angelina J.; Jiang, Xing-Mai; Kisker, Oliver; Flynn, Evelyn; Underwood, Anne; Condron, Rosemary; Hogg, Philip J.

    2000-12-01

    Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.

  4. The effect of quercetin and galangin on glutathione reductase.

    PubMed

    Paulíková, Helena; Berczeliová, Elena

    2005-12-01

    Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.

  5. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2015-04-15

    A new series of triazine-benzimidazole hybrids has been synthesized with different substitution of primary and secondary amines at one of the position of triazine in moderate to good yields. These compounds were evaluated for their inhibitory activities over 60 human tumor cell lines at one dose and five dose concentrations. Compounds 6b, 8 and 9 showed broad spectrum of antitumor activities with GI50 values of 9.79, 2.58 and 3.81μM, respectively. DNA binding studies also indicated strong interaction properties of these compounds. These synthesized compounds also showed inhibition of mammalian dihydrofolate reductase (DHFR). Compound 6b was depicted as the most active member of DHFR inhibitor with IC50 value of 1.05μM. Molecular modelling studies were used to identify the stabilized interactions of Compound 6b within the active site of enzyme for DHFR.

  6. The role of thioredoxin reductase 1 in melanoma metabolism and metastasis.

    PubMed

    Cassidy, Pamela B; Honeggar, Matthew; Poerschke, Robyn L; White, Karen; Florell, Scott R; Andtbacka, Robert H I; Tross, Joycelyn; Anderson, Madeleine; Leachman, Sancy A; Moos, Philip J

    2015-11-01

    Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition.

  7. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  8. Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed Central

    Aoyagi, K; Beyou, A; Moon, K; Fang, L; Ulrich, T

    1993-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat. PMID:8108513

  9. Barrier crossing in dihydrofolate reductase does not involve a rate-promoting vibration

    NASA Astrophysics Data System (ADS)

    Dametto, Mariangela; Antoniou, Dimitri; Schwartz, Steven D.

    2012-05-01

    We have studied atomic motions during the chemical reaction catalysed by the enzyme dihydrofolate reductase of Escherichia coli (EcDHFR), an important enzyme for nucleic acid synthesis. In our earlier work on the enzymes human lactate dehydrogenase and purine nucleoside phosphorylase, we had identified fast sub-ps motions that are part of the reaction coordinate. We employed Transition Path Sampling (TPS) and our recently developed reaction coordinate identification methodology to investigate if such fast motions couple to the reaction in DHFR on the barrier-crossing timescale. While we identified some protein motions near the barrier crossing event, these motions do not constitute a compressive promoting vibration, and do not appear as a clearly identifiable protein component in reaction.

  10. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase.

    PubMed

    Persch, Elke; Bryson, Steve; Todoroff, Nickolay K; Eberle, Christian; Thelemann, Jonas; Dirdjaja, Natalie; Kaiser, Marcel; Weber, Maria; Derbani, Hassan; Brun, Reto; Schneider, Gisbert; Pai, Emil F; Krauth-Siegel, R Luise; Diederich, François

    2014-08-01

    The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.

  11. Role of 5α-reductase inhibitors in androgen-stimulated skin disorders.

    PubMed

    Azzouni, Faris; Zeitouni, Nathalie; Mohler, James

    2013-02-01

    5α-reductase (5α-R) isozymes are ubiquitously expressed in human tissues. This enzyme family is composed of 3 members that perform several important biologic functions. 5α-R isozymes play an important role in benign prostate hyperplasia, prostate cancer, and androgen-stimulated skin disorders, which include androgenic alopecia, acne, and hirsutism. Discovery of 5α-R type 2 deficiency in 1974 sparked interest in development of pharmaceutical agents to inhibit 5α-R isozymes, and 2 such inhibitors are currently available for clinical use: finasteride and dutasteride. 5α-R inhibitors are US Food and Drug Administration (FDA)-approved for the treatment of benign prostate hyperplasia. Only finasteride is FDA-approved for treatment of male androgenic alopecia. This article reviews the pathophysiology of androgen-stimulated skin disorders and the key clinical trials using 5α-R inhibitors in the treatment of androgen-stimulated skin disorders.

  12. Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

    PubMed Central

    Rouf, Syed Fazle; Kitowski, Vera; Böhm, Oliver M.; Rhen, Mikael; Jäger, Timo; Bange, Franz-Christoph

    2011-01-01

    Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium. PMID:22073230

  13. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  14. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  15. Structure of the Molybdenum Site of EEcherichia Coli Trimethylamine N-Oxide Reductase

    SciTech Connect

    Zhang, L.; Nelson, K.Johnson; Rajagopalan, K.V.; George, G.N.

    2009-05-28

    We report a structural characterization of the molybdenum site of recombinant Escherichia coli trimethylamine N-oxide (TMAO) reductase using X-ray absorption spectroscopy. The enzyme active site shows considerable similarity to that of dimethyl sulfoxide (DMSO) reductase, in that, like DMSO reductase, the TMAO reductase active site can exist in multiple forms. Examination of the published crystal structure of TMAO oxidase from Shewanella massilia indicates that the postulated Mo coordination structure is chemically impossible. The presence of multiple active site structures provides a potential explanation for the anomalous features reported from the crystal structure.

  16. Components of glycine reductase from Eubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA.

    PubMed

    Lübbers, M; Andreesen, J R

    1993-10-15

    The genes encoding thioredoxin reductase (trxB), thioredoxin (trxA), protein PA of glycine reductase (grdA) and the first 23 amino acids of the large subunit of protein PC of glycine reductase (grdC) belonging to the reductive deamination systems present in Eubacterium acidaminophilum were cloned and sequenced. The proteins were products of closely linked genes with 314 codons (thioredoxin reductase), 110 codons (thioredoxin), and 158 codons (protein PA). The protein previously called 'atypically small lipoamide dehydrogenase' or 'electron transferring flavoprotein' could now conclusively be identified as a thioredoxin reductase (subunit mass of 34781 Da) by the alignment with the enzyme of Escherichia coli showing the same typical order of the corresponding domains. The thioredoxin (molecular mass of 11742 Da) deviated considerably from the known consensus sequence, even in the most strongly conserved redox-active segment WCGPC that was now GCVPC. The selenocysteine of protein PA (molecular mass of 16609 Da) was encoded by TGA. The protein was highly similar to those of Clostridium purinolyticum and Clostridium sticklandii involved in glycine reductase. Thioredoxin reductase and thioredoxin of E. acidaminophilum could be successfully expressed in E. coli.

  17. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases.

    PubMed

    Sattler, Steven A; Walker, Alexander M; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-02-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species.

  18. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  19. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    PubMed

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease.

  20. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  1. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    SciTech Connect

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-04-24

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  2. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

    PubMed

    Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R; Brown, Neil; Ellappan, Sampathkumar; Gao, Ge; Luo, Diheng; Minatoya, Machiko; Lushington, Gerald H

    2009-11-01

    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

  3. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  4. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes.

    PubMed Central

    Coulanges, V; Andre, P; Ziegler, O; Buchheit, L; Vidon, D J

    1997-01-01

    Listeria monocytogenes is a ubiquitous potentially pathogenic organism requiring iron for growth and virulence. Although it does not produce siderophores, L. monocytogenes is able to obtain iron by using either exogenous siderophores produced by various microorganisms or natural catechol compounds widespread in the environment. In the presence of tropolone, an iron-chelating agent, growth of L. monocytogenes is completely inhibited. However, the growth inhibition can be relieved by the addition of dopamine or norepinephrine under their different isomeric forms, while the catecholamine derivatives 4-hydroxy-3-methoxyphenylglycol and normetanephrine did not relieve the inhibitory effect of tropolone. Preincubation of L. monocytogenes with chlorpromazine and yohimbine did not antagonize the growth-promoting effect of catecholamines in iron-complexed medium. In addition, norepinephrine stimulated the growth-promoting effect induced by human transferrin in iron-limited medium. Furthermore, dopamine and norepinephrine allowed 55Fe uptake by iron-deprived bacterial cells. The uptake of iron was energy dependent, as indicated by inhibition of 55Fe uptake at 0 degrees C as well as by preincubating the bacteria with KCN. Inhibition of 55Fe uptake by L. monocytogenes was also observed in the presence of Pt(II). Moreover, when assessed by a whole-cell ferric reductase assay, reductase activity of L. monocytogenes was inhibited by Pt(II). These data demonstrate that dopamine and norepinephrine can function as siderophore-like compounds in L. monocytogenes owing to their ortho-diphenol function and that catecholamine-mediated iron acquisition does not involve specific catecholamine receptors but acts through a cell-bound ferrireductase activity. PMID:9199450

  5. In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase.

    PubMed

    Vickers, S; Duncan, C A; Vyas, K P; Kari, P H; Arison, B; Prakash, S R; Ramjit, H G; Pitzenberger, S M; Stokker, G; Duggan, D E

    1990-01-01

    Simvastatin (SV), an analog of lovastatin, is the lactone form of 1', 2', 6', 7', 8', 8a'-hexahydro-3,5-dihydroxy-2', 6'-dimethyl-8' (2", 2"-dimethyl-1"-oxobutoxy)-1'-naphthalene-heptanoic acid (SVA) which lowers plasma cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase. SV but not its corresponding hydroxy acid form SVA underwent microsomal metabolism. Major in vitro metabolites were 6'-OH-SV (I) and 3"-OH-SV (III) formed by allylic and aliphatic hydroxylation, respectively, and 6'-exomethylene-SV (IV) formed by dehydrogenation. In rats, dogs, and humans, biliary excretion is the major route of elimination. Biliary metabolites (as both hydroxy acids and lactones) also included 6'-CH2OH-SV (V) and 6'-COOH-SV (VI) in both of which the 6'-chiral center had been inverted. High levels of esterase in rodent plasma favored the formation of SVA from SV. The formation of 1', 2', 6', 7', 8', 8a'-hexahydro-2', 6'-dimethyl-8'-(2",2"-dimethyl-1-oxobutoxy)-1'-naphthalene-pentano ic acid (VII) only in rodents represented a species difference in the metabolism of SV. It is proposed that VII is formed by beta-oxidation pathways of fatty acid intermediary metabolism. Several metabolites resulting from microsomal oxidation (after subsequent conversion from lactones to hydroxy acids) are effective inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase and may contribute to the cholesterol lowering effect of SV. Qualitatively, the metabolism of SV closely resembles that of lovastatin.

  6. Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads

    PubMed Central

    Kaminska, Kamila K.; Bertrand, Helene C.; Tajima, Hisashi; Stafford, William C.; Cheng, Qing; Chen, Wan; Wells, Geoffrey; Arner, Elias S.J.; Chew, Eng-Hui

    2016-01-01

    Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy. PMID:27244886

  7. Steroidal 5α-reductase inhibitors using 4-androstenedione as substrate.

    PubMed

    Cabeza, Marisa; Trejo, Karla Valeria; González, Claudia; García, Perla; Soriano, Juan; Heuze, Yvonne; Bratoeff, Eugene

    2011-10-01

    The aim of this study was to determine the capacity of some progesterone derivatives, to inhibit the conversion of labeled androstenedione ([(3)H] 4-dione) to [(3)H]dihydrotestosterone ([(3)H]DHT) in prostate nuclear membrane fractions, where the 5α-reductase activity is present. The enzyme 5α-reductase catalyzes the 5α-reduction of 4-dione whereas the 17β-hydroxysteroid dehydrogenase catalyzes the transformation of 4-dione to testosterone or 5α-dione to dihydrotestosterone (DHT). Moreover, we also investigated the role of unlabeled 5α-dione in these pathways. In order to determine the inhibitory effect of different concentrations of the progesterone derivatives in the conversion of [(3)H] 4-dione to [(3)H]DHT, homogenates of human prostate were incubated with [(3)H] 4-dione, NADPH and increasing concentrations of non-labeled 5α-dione. The incubating mixture was extracted and purified using thin layer chromatography. The fraction of the chromatogram corresponding to the standard of DHT was separated and the radioactivity determined. The results showed that the presence of [(3)H] 4-dione plus unlabelled 5α-dione produced similar levels of DHT as compared to [(3)H] 4-dione. On the other hand, the results indicated that 17α-hydroxypregn-4-ene-3,20-dione 5 and 4-bromo-17α-hydroxypregn-4-ene-3,20-dione 7b, were the most potent steroids to inhibit the conversion of [(3)H] 4-dione to [(3)H]DHT, showing IC(50) values of 2 and 1.6 nM, respectively.

  8. New ester derivatives of dehydroepiandrosterone as 5α-reductase inhibitors.

    PubMed

    Arellano, Yazmín; Bratoeff, Eugene; Garrido, Mariana; Soriano, Juan; Heuze, Yvonne; Cabeza, Marisa

    2011-11-01

    The aim of this study was to synthesize different ester derivatives of dehydroepiandrosterone with therapeutic potential as antiandrogens. The biological effect of these steroids was demonstrated in in vivo as well as in vitro experiments. In the in vivo experiments, we measured the activity of seven steroids on the weight of the prostate and seminal vesicles of gonadectomized hamsters treated with testosterone. For the in vitro studies, we determined the IC(50) values by measuring the concentration of the steroidal derivatives that inhibits 50% of the activity of 5α-reductase present in human prostate and also its binding capacity to the androgen receptors (AR) obtained from rat's prostate cytosol. The results from these experiments indicated that compounds 7 5α,6β-dibromo-3β-propanoyloxyandrostan-17-one, 8 5α,6β-dibromo-3β-butanoyloxyandrostan-17-one and 9 5α,6β-dibromo-3β-(3'-oxapentanoyloxy)-androstan-17-one, significantly decreased the weight of the prostate and seminal vesicles as compared to testosterone treated animals; this reduction of the weight of these glands was comparable to that produced by Finasteride 11. On the other hand, compounds 4 3β-acetoxyandrost-5-en-17-one, 5 3β-hexanoyloxyandrost-5-en-17-one 6 3β-(3'-oxapentanoyloxy)-androst-5-en-17-one, 7 and 12 dehydroepiandrosterone, (commercially available) inhibited the enzyme 5α-reductase. Compounds 4, 5, 6, 8 and 9 (IC(50) values of 5.2±1.2, 0.049±0.002, 6.4±1.1, 0.10±0.045, and 6.8±0.9 nM, respectively) exhibited the highest inhibitory activity. However, none of these compounds binds to the AR.

  9. Iron-Sulfur Cluster Engineering Provides Insight into the Evolution of Substrate Specificity among Sulfonucleotide Reductases

    PubMed Central

    Bhave, Devayani P.; Hong, Jiyoung A.; Keller, Rebecca L.; Krebs, Carsten; Carroll, Kate S.

    2011-01-01

    Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation via an ATP-dependent activation to form adenosine-5′-phosphosulfate (APS). Depending on the species, APS can be reduced directly to sulfite by APS reductase (APR) or undergo a second phosphorylation to yield 3′-phosphoadenosine-5′-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR). These essential enzymes have no human homolog, rendering them attractive targets for the development of novel antibacterial drugs. APR and PAPR share sequence and structure homology as well as a common catalytic mechanism, but the enzymes are distinguished by two features, namely, the amino acid sequence of the phosphate-binding loop (P-loop) and an iron-sulfur cofactor in APRs. Based on the crystal structures of APR and PAPR, two P-loop residues are proposed to determine substrate specificity; however, this hypothesis has not been tested. In contrast to this prevailing view, we report here that the P-loop motif has a modest effect on substrate discrimination. Instead, by means of metalloprotein engineering, spectroscopic and kinetic analyses, we demonstrate that the iron-sulfur cluster cofactor enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate specificity and catalysis. These findings offer new insights into the evolution of this enzyme family, and extend the known functions of protein-bound iron-sulfur clusters. PMID:22023093

  10. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  11. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs).

    PubMed

    Persson, Bengt; Kallberg, Yvonne

    2013-02-25

    The short-chain dehydrogenases/reductases (SDRs) constitute one of the largest protein superfamilies known today. The members are distantly related with typically 20-30% residue identity in pair-wise comparisons. Still, all hitherto structurally known SDRs present a common three-dimensional structure consisting of a Rossmann fold with a parallel beta sheet flanked by three helices on each side. Using hidden Markov models (HMMs), we have developed a semi-automated subclassification system for this huge family. Currently, 75% of all SDR forms have been assigned to one of the 464 families totalling 122,940 proteins. There are 47 human SDR families, corresponding to 75 genes. Most human SDR families (35 families) have only one gene, while 12 have between 2 and 8 genes. For more than half of the human SDR families, the three-dimensional fold is known. The number of SDR members increases considerably every year, but the number of SDR families now starts to converge. The classification method has paved the ground for a sustainable and expandable nomenclature system. Information on the SDR superfamily is continuously updated at http://sdr-enzymes.org/.

  12. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative.

    PubMed

    Persson, Bengt; Kallberg, Yvonne; Bray, James E; Bruford, Elspeth; Dellaporta, Stephen L; Favia, Angelo D; Duarte, Roser Gonzalez; Jörnvall, Hans; Kavanagh, Kathryn L; Kedishvili, Natalia; Kisiela, Michael; Maser, Edmund; Mindnich, Rebekka; Orchard, Sandra; Penning, Trevor M; Thornton, Janet M; Adamski, Jerzy; Oppermann, Udo

    2009-03-16

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with presently over 46,000 members. In phylogenetic comparisons, members of this superfamily show early divergence where the majority have only low pairwise sequence identity, although sharing common structural properties. The SDR enzymes are present in virtually all genomes investigated, and in humans over 70 SDR genes have been identified. In humans, these enzymes are involved in the metabolism of a large variety of compounds, including steroid hormones, prostaglandins, retinoids, lipids and xenobiotics. It is now clear that SDRs represent one of the oldest protein families and contribute to essential functions and interactions of all forms of life. As this field continues to grow rapidly, a systematic nomenclature is essential for future annotation and reference purposes. A functional subdivision of the SDR superfamily into at least 200 SDR families based upon hidden Markov models forms a suitable foundation for such a nomenclature system, which we present in this paper using human SDRs as examples.

  13. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  14. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  15. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  16. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  17. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  18. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  19. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  20. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  1. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    PubMed Central

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  2. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  3. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  4. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed

    French, C E; Nicklin, S; Bruce, N C

    1996-11-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one.

  5. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  6. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  7. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  8. Bioassay-guided isolation of dehydrocostus lactone from Saussurea lappa: A new targeted cytosolic thioredoxin reductase anticancer agent.

    PubMed

    Yang, Meili; Zhang, Junmin; Li, Ya; Han, Xiao; Gao, Kun; Fang, Jianguo

    2016-10-01

    In a screen for mammalian thioredoxin reductases inhibitors, an MeOH extract from the roots of Saussurea lappa C.B. Clarke (Compositae) inhibited the activity of cytosolic thioredoxin reductase (TrxR1). Bioassay-guided separation of the extract led to the isolation of a new TrxR1 inhibitor, dehydrocostus lactone (DHC), a guaiane-type sesquiterpene. The content of DHC in the extract was determined to be 0.4%. DHC inhibited human cervical carcinoma HeLa cells with an IC50 of ∼12.00 μM but displayed less cytotoxicity to human immortalized normal liver cells L02. We observed that DHC killed HeLa cells through induction of apoptosis. DHC inhibited the activity of TrxR1 in HeLa cells, which elicited an accumulation of reactive oxygen species (ROS) in cells and a collapse of the intracellular redox equilibrium and eventually induced apoptosis of HeLa cells.

  9. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.

    PubMed

    Bando, Masayasu; Inoue, Takashi; Oka, Mikako; Nakamura, Kayako; Kawai, Kenji; Obazawa, Hajime; Kobayashi, Shizuko; Takehana, Makoto

    2004-12-01

    Ascorbate free radical (AFR) reductase with diaphorase activity was isolated from the rabbit lens soluble fraction to characterise some molecular properties of the enzyme. The isolation was accomplished using gel filtration (Sephadex G-75 superfine or Sephacryl S-200 HR), affinity chromatography (Affi-Gel Blue), native isoelectric focusing and two-dimensional gel electrophoresis. A major soluble AFR reductase was found at an isoelectric point of 8.4 and a molecular weight of 31 kDa, and a few minor enzymes were also detected in the range of pI 7.0-8.6. An unknown N-terminal partial amino acid sequence was determined in one peptide fragment prepared from the major enzyme fraction. From the sequence analysis, it is discussed that the lens soluble AFR reductase may differ from NADH-cytochrome b5 reductase reported to be involved in the membrane-bound AFR reductase activity of mitochondria, microsomes and plasma membrane.

  10. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase[S

    PubMed Central

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Spina, Michele; Tran, Chi Nhan; Falconi, Maurizio; Eleuteri, Anna Maria; Angeletti, Mauro

    2011-01-01

    Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (Ki in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration. PMID:21357570

  11. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    PubMed

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  12. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  13. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  14. Purification and characterization of dimeric dihydrodiol dehydrogenase from dog liver.

    PubMed

    Sato, K; Nakanishi, M; Deyashiki, Y; Hara, A; Matsuura, K; Ohya, I

    1994-09-01

    High NADP(+)-linked dihydrodiol dehydrogenase activity was detected in dog liver cytosol, from which a dimeric enzyme composed of M(r) 39,000 subunits was purified to homogeneity. The enzyme oxidized trans-cyclohexanediol, and trans-dihydrodiols of benzene and naphthalene, the [1R,2R]-isomers of which were selectively oxidized. In the reverse reaction in the presence of NADPH as a coenzyme, the enzyme reduced alpha-dicarbonyl compounds, such as methylglyoxal, 3-deoxyglucosone, and diacetyl, and some compounds with a carbonyl group, such as glyceraldehyde, lactaldehyde, and acetoin. 4-Hydroxyphenylketones and ascorbates inhibited the enzyme. The results of steady-state kinetic analyses indicated that the reaction proceeds through an ordered bi bi mechanism with the coenzyme binding to the free enzyme, and suggested that the inhibitors bind to the enzyme-NADP+ binary complex. The dimeric enzyme was detected in liver and kidney of dog, and was immunochemically similar to the dimeric enzymes from monkey kidney, rabbit lens, and pig liver. The sequences (total 127 amino acid residues) of eight peptides derived on enzymatic digestion of the dog liver enzyme did not show significant similarity with the primary structures of members of the aldo-keto reductase and short chain dehydrogenase superfamilies, which include monomeric dihydrodiol dehydrogenases and carbonyl reductase, respectively.

  15. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    PubMed

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands.

  16. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    PubMed

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin.

  17. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    SciTech Connect

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reducta